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Recent theoretical and experimental progress on studying one-dimensional systems of bosonic,
fermionic, and Bose-Fermi mixtures of a few ultracold atoms confined in traps is reviewed in the broad
context of mesoscopic quantum physics. We pay special attention to limiting cases of very strong or
very weak interactions and transitions between them. For bosonic mixtures, we describe the develop-
ments in systems of three and four atoms as well as different extensions to larger numbers of particles.
We also briefly review progress in the case of spinor Bose gases of a few atoms. For fermionic mixtures,
we discuss a special role of spin and present a detailed discussion of the two- and three-atom cases. We
discuss the advantages and disadvantages of different computation methods applied to systems with
intermediate interactions. In the case of very strong repulsion, close to the infinite limit, we discuss
approaches based on effective spin chain descriptions. We also report on recent studies on higher-
spin mixtures and inter-component attractive forces. For both statistics, we pay particular attention
to impurity problems and mass imbalance cases. Finally, we describe the recent advances on trapped
Bose-Fermi mixtures, which allow for a theoretical combination of previous concepts, well illustrating
the importance of quantum statistics and inter-particle interactions. Lastly, we report on fundamental
questions related to the subject which we believe will inspire further theoretical developments and
experimental verification.
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I. INTRODUCTION

A. Few-body physics of ultracold atoms

Quantum engineering is a rapidly developing field of
modern physics. Its successes in the last three decades
originate in the deep progress of the experimental con-
trol of matter on subatomic scales interacting with the
electromagnetic field. Currently, quantum engineering is
typically identified with a broadly defined field of pho-
tonics (quantum informatics, interferometry, nonclassi-
cal correlations between photons) and with physics of ul-
tracold atoms [1]. Typically in the second case, the main
objective is to study the macroscopic behavior of many
quantum particles in optical lattices – periodic poten-
tials formed by standing waves of spatially arranged laser
beams. This path is inspired by the idea of quantum sim-
ulators for condensed matter systems, i.e., preparing re-
alistic and fully controllable quantum systems described
by simple toy models of condensed matter physics, like
the Hubbard model or spin-chain models, etc. [2].

Importantly, in parallel to this very fashionable direc-
tion of lattice models, an equally fascinating path of the-
oretical and experimental exploration is present in the
field – the physics of few-body ultracold systems. Sys-
tems of a few quantum particles form a natural link
between one-, two-body physics and the many-body
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physics which has spectacular consequences of collective
properties originating in inter-particle interactions and
quantum statistics [3, 4]. Therefore their quantum sim-
ulation is a fundamental and very interdisciplinary mile-
stone for building our understanding of physical quan-
tum systems. Up to a few years ago, engineering of such
systems, i.e., their coherent control and manipulation,
was not experimentally possible. However, due to recent
progress in the field of ultracold gases, it became feasi-
ble to prepare on demand few-particle interacting sys-
tems of a well-defined number of particles. In this way,
a completely new era in experimental studies of meso-
scopic quantum systems started, i.e., systems too large to
be reduced to simple two- and three-body problems and
too small to be described with the whole sophisticated
machinery of the quantum statistical mechanics. In this
review we want to focus on the most intriguing subset of
one-dimensional systems having many unique properties
forced by strongly reduced dimensionality.

Obviously, it is a very demanding task to experimen-
tally achieve ultracold one-dimensional few-body sys-
tems. It can be done only if one can control atomic sys-
tems on different levels with tremendous accuracy. The
crucial experimental landmark is a set of experiments in
which strongly interacting ultracold bosons forming the
Tonks-Girardeau gas was obtained [5, 6]. Then a very
striking experiment reported in [7] showed how the fa-
mous fermionization of bosons occurs in a strongly in-
teracting system. In general, trapping a few bosons in
the ultracold regime shows a larger difficulty than for
fermions, due to losses associated with three-body re-
combination. To overcome this difficulty, perfect con-
trol of interactions is needed. Fortunately, it is facili-
tated when bosons are loaded to appropriately prepared
optical lattice. For example, in [8, 9] it was shown
that with appropriate manipulation of optical double-
well confinement it is possible to fill one of its sites with
a successive number of bosons. At the same time, it
was shown that with an appropriate reshaping of a mi-
croscopic optical trap it is possible to load exactly two
atoms with a very high efficiency [10]. On the other
hand, dipole traps can be loaded via evaporating cool-
ing with tens of bosons [11]. In the case of fermions,
the first experimental preparation of a one-dimensional
two-component mixture of 40K atoms was reported in
[12] where the creation of two-particle bound states
was examined. Later, in [13] preparation of a one-
dimensional imbalanced system of 6Li atoms was an-
nounced. A completely different concept of preparation
of one-dimensional few-fermion systems was presented
in a groundbreaking series of experiments performed in
the J. Selim’s group in Heilderberg [14–17]. In these
experiments (by imposing a very deep one-dimensional
trap to previously confined three-dimensional system)
it was proven that quasi-one-dimensional systems of a
small, well-defined number of particles can be determin-
istically prepared, controlled, and measured [14]. Dur-
ing a whole experiment, the strength of inter-particle

interactions together with the shape of the external po-
tential can be changed almost adiabatically or instanta-
neously without losing coherence in the system. More-
over, by adding particles to the system one by one, it
was shown how the Fermi sea of interacting particles is
built in the system [15]. Then the few-fermion system
in the limit of very strong interactions was examined ex-
perimentally [16] proving that in fact the system can be
effectively described with the spin-chain Hamiltonian in
this limit. The setup is so flexible that even the multi-well
confinements can be seriously considered [17]. All these
experiments pointed evidently that the unexplored field
of few-body problems can now be studied and exam-
ined with high-precision experiments. In consequence,
many theoretical aspects of corresponding problems and
completely new questions have been addressed (for ex-
ample: the impurity immersed in the Fermi sea problem
[15, 18], the 1D Cooper pairing problem [19, 20], self-
formation of fermionic chains problem [16], the corre-
lated tunneling to the open space problem [21–23], etc.).

B. Review plan

Our review should be considered as a specific contin-
uation of previous attempts for obtaining a comprehen-
sive view of the problems of a mesoscopic number of in-
teracting particles. Therefore at this moment, we want
to recall other recent reviews which can be very help-
ful to the reader. First, there are a few comprehensive
descriptions of the many-body ultracold system [24, 25]
which give an appropriate background for a better un-
derstanding of the most important results in the field.
Since our review is devoted to one-dimensional systems,
we should definitely point out here two reviews devoted
to these kinds of many-body systems, i.e., [26] and [27]
for bosons and fermions, respectively. From the other
side, few-body limit of ultracold systems is adequately
described in [4]. In this work, however, the discussion is
oriented mostly on two- and three-dimensional confine-
ments. Having in mind all these comprehensive presen-
tations, our aim is to fill a gap between them and focus
on a detailed description of ultracold mixtures of several
atoms confined in one-dimensional traps. Although this
subject was already partially covered by the mini-review
[28], here we would like to give an extensive discussion
of different issues related to the subject.

Before we start our story, we would like to mention
some topics strictly related to one-dimensional few-body
systems which we intentionally do not discuss or dis-
cuss only briefly. First, we do not discuss any results
related to the whole branch of few-body problems con-
nected with the Efimov physics. An interested reader can
find a comprehensive description of these problems in
[29] and [30]. Second, in this review, we mainly fo-
cus on few-body systems confined in a single parabolic
trap. Therefore, the discussion on multi-well and/or pe-
riodic confinements is only mentioned when it is essen-
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tial for keeping the context. Finally, we limit ourselves
to the static problems and we are mostly oriented to the
ground-state properties. Therefore, we do not elaborate
on the dynamical problems related to different initial
states being out-of-equilibrium, different quench scenar-
ios, or periodic modulations of the system’s parameters.
These paths of explorations, although very important, in-
teresting, and appropriately justified in the case of large
number of particles (see [31, 32] for review) just started
to gain interest recently in the case of a few-particle prob-
lems. Therefore, we believe that it is too early to include
these considerations in our review. However, we men-
tion appropriate works, whenever dynamical properties
of the system are crucial to giving a route for a better un-
derstanding of statical properties of interacting few-body
systems.

Keeping all the above constraints our review has the
following structure. In Sec. II we introduce the Hamil-
tonian for a two-component mixture of bosonic particles
and we identify eight different interesting limits of re-
pulsive interactions, which we discuss in the Section. We
devote a subsection to succinctly review developments
in the case of attractive interactions, and focus in the
rest of the section in the most studied case of repul-
sive interactions. To get a better understanding of few-
bosons systems, we start with a brief discussion of the
seminal Girardeau observation that infinitely repulsive
bosons may be directly mapped to the system of non-
interacting fermions. Then we discuss with all details the
problem of three and four bosons and show how these
studies can be extended to the problem of a larger num-
ber of particles. We also discuss the developments in the
study of few-atom spinor bose mixtures. In Sec. III sim-
ilar discussion is provided for fermionic mixtures. Here,
however, we strongly focus on the role of particles’ spin
and correlations forced by the Pauli exclusion principle
for identical fermions. We discuss a very fresh idea
of the spin-chain description of the system being close
to infinite repulsions and we briefly overview different
methods for intermediate interactions. Inspired by re-
cent experiments, we also report the progress in our un-
derstanding of attractively interacting particles and dif-
ferent mass mixtures. In Sec. IV we merge both previ-
ous attempts and discuss properties of Bose-Fermi mix-
tures. In Sec. V we briefly discuss different possible ex-
tensions of problems discussed in previous sections. We
focus on those we believe can give rise for further explo-
ration and may bring many interesting results. Finally,
in Sec. VI, we summarize the review and address some
relevant and open questions which in our opinion may
bring a fundamental breakthrough in our understanding
of one-dimensional few-body systems and their links to
the many-body world.

FIG. 1. Energy spectrum of the relative motion Hamiltonian
(6b) in the subspace of even wave functions (bosons). Hor-
izontal dashed lines represent values achieved in infinite (at-
tractive as well as repulsive) interactions. In the bottom panel
we present the ground state wave function Ψ0(X) for differ-
ent interactions. Note characteristic cusps at r = 0 forced by
contact interactions.

C. Two particles in a harmonic trap

Many theoretical and experimental considerations de-
scribed in this review were inspired by the seminal paper
of Busch et al. [33] where the exact analytical solution of
the eigenproblem for two ultracold bosons confined in a
harmonic trap (of any dimension) was presented. At that
times the paper was treated only as an interesting theo-
retical curiosity since there were no experimental ways
to validate its predictions. However, along with exper-
imental progress in controlling and manipulating quan-
tum systems with a small number of particles, the paper
turned out to be one of the milestones in our understand-
ing of properties of a small number of quantum particles.

Since many of the upcoming discussions are based or
inspired by the two-body solution of Busch et al., let
us make (following detailed argumentation presented in
[34]) a brief overview of the original problem in the
one-dimensional case. The Hamiltonian of the consid-
ered system of two bosons of mass m moving in a one-
dimensional harmonic trap of frequency ω has the form

Ĥ = − ~
2m

(
∂2

∂x2
+

∂2

∂y2

)
+
mω2

2

(
x2 + y2

)
+ gδ(x− y),

(1)
where x and y are positions of particles interacting via
contact interactions with strength g. Whenever one deals
with harmonic confinement, it is extremely convenient to
express all quantities in natural units of a harmonic os-
cillator, i.e., to measure energy, positions, and momenta
in units of ~ω,

√
~/mω, and

√
~mω, respectively. Then
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the Hamiltonian (1) becomes dimensionless and it has
the form

Ĥ = −1

2

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2

(
x2 + y2

)
+ gδ(x− y), (2)

provided that the interaction strength g is measured in
its natural unit

√
~3ω/m.

At this point let us mention that in fact the interaction
coupling g can be expressed by the corresponding effec-
tive one-dimensional scattering length a

g = −2~2

m
a−1. (3)

One-dimensional scattering length is however directly
related to the three-dimensional s-wave scattering lenght
as as follows

a = − a
2
⊥

2as

(
1− C as

a⊥

)
, (4)

where a⊥ =
√

2~/mω⊥ is the natural with of the ground-
state of perpendicular confinement of frequency ω⊥ and
C = 1.4603 [35]. It means that interactions in the
one-dimensional confinement are controlled by three-
dimensional s-wave scattering as well as the shape of the
external perpendicular confinement.

To diagonalize the Hamiltonian (2) one changes vari-
ables to the center-of-mass and relative motion posi-
tions. It is very convenient to make this transformation
in rescaled form

R = (x+ y)/
√

2, X = (x− y)/
√

2. (5)

After this transformation the Hamiltonian decouples to
two independent single-particle Hamiltonians Ĥ = ĤR+

ĤX describing the center-of-mass motion and the rela-
tive motion of particles

HR = −1

2

d2

dR2
+

1

2
R2, (6a)

HX = −1

2

d2

dX2
+

1

2
X2 +

g√
2
δ(X). (6b)

As shown in [33] the relative motion Hamiltonian (6b)
can be analytically diagonalized. In the subspace of odd
wave functions the diagonalization is trivial since δ does
not affect solutions vanishing at X = 0. In the subspace
of even (bosonic) wave functions the eigenenergies Ek
are given by roots of the transcendental equation

− g Γ

(
1− 2Ek

4

)
= 2
√

2 Γ

(
3− 2Ek

4

)
, (7)

and the corresponding eigenfunctions are expressed in
terms of the Tricomi confluent hypergeometric function

Ψk(X) = Nk e−X
2/2 U

(
1− 2Ek

4
,

1

2
, X2

)
. (8)

Having these solutions one can show straightforwardly
that, in the limit of infinite repulsions, the ground-state
wave function has the form Ψ0(X) ∼ |X|exp(−X2/2)
with eigenenergy E0 = 1.5. It means that it is degener-
ated with the odd ground-state wave function Ψodd(X) ∼
X exp(−X2/2). The spectrum of the relative motion
Hamiltonian (6b) and shapes of the ground-state wave
functions (in the even subspace) as functions of interac-
tion strength are presented in Fig. 1.

Having analytical solutions of a two-body problem in
hand one can study different dynamical properties of the
system [36–40]. Note that, although the Hamiltonian is
separable into the centre-of-mass and the relative motion
coordinates (5), this is not the case in the configuration
space of particles’ position, i.e., interactions induce quan-
tum correlations during the dynamics. From the other
hand, one should also have in mind that the separation
of the Hamiltonian in the relative motion coordinates is
the immanent feature of the harmonic confinement. Any
anharmonicity present in a trapping shape leads directly
to a coupling between the center-of-mass and the rela-
tive positions. In consequence, it gives rise to transfer
excitations between these two degrees of freedom and,
as proved experimentally [41], may be very helpful for
the formation of bound pairs.

Since an existence of the exact analytical solutions of
many-body problems is rather rare, we want here also to
mention a few other examples of exactly solvable mod-
els. First, we want to mention the Moshinsky model,
i.e., an exactly solvable model of two particles confined
in a harmonic trap and interacting via harmonic forces
[42]. This model was extended to many interacting par-
ticles [43–45] and also many components [46, 47]. Sec-
ond, the Busch et al. solution for two particles can be
extended to cases of anisotropic harmonic traps [48].
Third, in the case of a four-body problem and contact
forces, neat analytical solutions associated with the sym-
metries of the three-dimensional and four-dimensional
icosahedra were discussed in [49] while a very specific
system ofN hard-sphere particles having special mass ra-
tios was solved in [50]. Finally, different exact solutions
of the two-body problem with other than contact inter-
actions were also announced: an attractive 1/r6 interac-
tion in [51], a repulsive 1/r3 interaction in [52, 53], and
a finite-range (repulsive and attractive) interaction mod-
eled by a step function in [54–56]. Of course, we should
also mention here two other seminal many-body solu-
tions, i.e., the Lieb–Liniger model of N bosons [57, 58]
and the the Calogero–Sutherland model of interacting
particles via inversely quadratic potentials [59, 60] and
its extensions [61, 62].

II. BOSONIC MIXTURES

In this section we discuss the properties of bosonic
mixtures with a small number of atoms. Unless other-
wise clarified, for simplicity we consider that the two
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atomic components consist of different hyperfine states
of the same atomic species and therefore they have iden-
tical mass and they are trapped in a one-dimensional
parabolic external potential with the same oscillator fre-
quency. The trapping in the two other directions is suf-
ficiently tight to effectively freeze the dynamics in these
directions, i.e., all excitations in perpendicular directions
are very unfavorable energetically. Since the number of
atoms is small and conserved in each component, it is of-
ten possible to work within the first quantization formal-
ism and write the Hamiltonian being a straightforward
extension of the two-boson Hamiltonian (2). There-
fore the Hamiltonian describing mixture of NA identical
bosons of kind A, with coordinates xi, and NB atoms of
kind B, with coordinates yi has a form

Ĥ =

NA∑
i=1

[
−1

2

∂2

∂x2i
+

1

2
x2i

]
+ gA

NA∑
i=1

NA∑
j=i+1

δ(xi − xj)

+

NB∑
i=1

[
−1

2

∂2

∂y2i
+

1

2
y2i

]
+ gB

NB∑
i=1

NB∑
j=i+1

δ(yi − yj)

+ gAB

NA∑
i=1

NB∑
j=1

δ(xi − yj), (9)

All mutual contact interactions are modeled by delta
functions. In general one deals with three indepen-
dent interactions strengths gA, gB, and gAB for intra-
component interactions in species A, B and inter-
component interactions, respectively.

At this point let us note that equivalently the Hamilto-
nian of the system (9) can also be written in the second
quantization formalism by introducing the bosonic field
operators Φ̂σ(x) annihilating a boson from the compo-
nent σ ∈ {A,B} at position x. Bosonic nature of particles
is encoded in the commutation relations which must be
fulfilled by these operators[

Φ̂σ(x), Φ̂†σ′(x
′)
]

= δσσ′δ(x− x′), (10a)[
Φ̂σ(x), Φ̂σ′(x′)

]
= 0. (10b)

With this notation the Hamiltonian (9) is transformed to
the form

Ĥ =
∑
σ

∫
dx Φ̂†σ(x)

[
−1

2

d2

dx2
+

1

2
x2
]

Φ̂σ(x)

+
∑
σ

gσ
2

∫
dx Φ̂†σ(x)Φ̂†σ(x)Φ̂σ(x)Φ̂σ(x)

+ gAB

∫
dx Φ̂†A(x)Φ̂†B(x)Φ̂B(x)Φ̂A(x). (11)

In fact, the Hamiltonian (11) describes the system with
arbitrary number of particles NA and NB. However,
since it commutes with the number operators N̂σ =∫

dx Φ̂†σ(x)Φ̂σ(x) it can be analyzed in each subspace of
given number of particles independently. In each of these

subspaces it has the form of the Hamiltonian (9) with
fixed particle numbers NA and NB.

In the following we consider the general Hamilto-
nian (9). Therefore there are two intra-component cou-
pling constants gA and gB and one inter-component
coupling constant gAB. For repulsive interactions
(gA, gB, gAB ≥ 0), there are eight natural limiting cases
(see cube representation in Fig. 2). These limits are:

• BEC-BEC limit, when all interactions are zero,
gA = gB = gAB = 0.

• BEC-TG limit, when one of the intra-component in-
teraction tends to infinite, while remaining ones
are zero,
gAB = gA(B) = 0 and gB(A) →∞.

• TG-TG limit, when inter-component interactions
vanish but both intra-component interactions tend
to infinite,
gAB = 0, gA →∞, and gB →∞.

• Composite fermionization (CF), when the inter-
component interaction tends to infinite while intra-
component interactions vanish,
gAB →∞, gA = gB = 0.

• Phase separation (PS), when the inter-component
together with one of the intra-component interac-
tions tend to infinite while remaining one vanishes,
gAB →∞, gA(B) →∞, and gB(A) = 0.

• Full fermionization (FF), when all interactions tend
to infinity
gAB →∞, gA →∞, and gB →∞.

Note that, in the case of the first three limits, the inter-
component interactions vanish. Therefore the problem is
substantially simplified since, in these cases, both com-
ponents are completely independent and the system can
be treated as a simple composition of one-component
bosonic gases (see for example [63] for a detailed dis-
cussion of single-component systems). Conversely, in
all other cases the inter-component interactions are very
strong and they induce non-trivial correlations between
particles belonging to opposite species. In these cases,
the particular components cannot be treated as indepen-
dent.

Whenever few-atom bosonic mixtures are studied it is
very helpful to have in mind a clear idea of some corner-
stones originating in the limit of a large number of par-
ticles. These considerations lead directly to criteria for
the four famous concepts: (i) the phase separation, (ii)
the Tonks-Girardeau limit, (iii) the composite fermion-
ization of the mixture, (iv) the full fermionization. Be-
fore discussing these four concepts in details (in subsec-
tions II B-E) let us first make a short overview on bosonic
mixtures when attractive interactions between particles
are present.
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𝑔𝑔A

𝑔𝑔B
𝑔𝑔AB

FIG. 2. Schematic view of the eight limits for two-component
bosonic mixtures. Figure adapted from [64]. Copyright (2014)
by the IOP Publishing.

A. Attractive forces – a brief overview

The discussion of attractive forces is started from
considering only a single component of bosonic gas.
Then as shown in [18], in the limit g → −∞, the
N -particle state forms a very exotic many-body state
called the super-Tonks-Girardeau gas. Its properties
were deeply studied theoretically [65–67] and later it
was also observed experimentally, as reported in [68].
When bosonic mixtures are considered, a very rich sce-
nario opens, as one can distinguish different relative
signs of different couplings, i.e., the case in which both
intra- and inter-component coupling have the same (at-
tractive) sign, or cases when sings are opposite (one
or more attractive, the rest repulsive). For the case
when intra-component interactions are strongly repul-
sive while the inter-component interactions are attrac-
tive (gAB < 0 and gA, gB → +∞), a detailed theoreti-
cal study in [69] convinces that two different scenarios
(depending on the density) are possible: the system is
collapsing or pairs of particles are created. In contrast,
when intra-component interactions are not necessarily
very repulsive or they are attractive, numerical studies in
the framework of the Multi-Configuration-Hartree-Fock
techniques presented in [70] show a very rich variety of
phenomena – different mechanisms of pairing, collapses,
states with loosely bound particles, etc. Recently, this
direction of research was additionally triggered by the
theoretical proposal [71–73] and experimental confirma-
tion [74–76] of the existence of quantum liquid droplets
in a two-component bosonic gas. In consequence, a num-
ber of works have explored this scenario in the limit of
small number of atoms. A key ingredient for this liq-
uid droplets to exist is the role played by three-body in-
teractions. Therefore, initial works studied the effect of
considering both two-body and three-body interactions
in a single-component bosonic gas [77]. Then, using
diffusion quantum Monte Carlo numerical computations
and analytical predictions, a number of works studied
bosonic mixtures with inter-component attractive and

intra-component repulsive interactions [78–80]. Partic-
ularly, in [81] the problem of three interacting bosons
was considered.

Previously, three-boson interactions were considered
rather in the case of optical lattice systems to mimic in-
fluence of higher bands [82–85]. Recently, this direc-
tion was reduced to problems of a few bosons confined
in a one-dimensional double-well [86]. We believe that
the problem of effective three-body interactions and their
competition with two-body forces is not well explored
yet. Since it is an extremely interesting and blooming
topic, it will attract a great attention in upcoming years.

B. Phase separation

There is a long tradition on literature on phase seg-
regation, which also is rooted in the study of other su-
perfluidic systems, such as 3He-4He [87]. For Bose-
Einstein condensates of alkali atoms the first theoretical
study [88] was shortly before the experimental realiza-
tion [89]. Then many important contributions to the un-
derstanding of binary bosonic mixtures came in the next
few years [90–97]. To make further discussion as simple
as possible let us now present simple mean-field argu-
mentation that in the limit of large number of particles
the phase separation may appear in the system. In this
presentation we follow arguments presented in [92] for
three-dimensional system.

For clearness of the argumentation let us consider a
mixture of NA and NB confined in a box potential with
total length L, i.e., it is described by the Hamiltonian
(11) with omitted parabolic confinement and all inte-
grals are over a region of length L. The mean-field de-
scription is based on the assumption that all bosons of a
given component occupy only one single-particle orbital
represented by the wave function φσ(x). Consequently,
the corresponding field operators can be written as

Φ̂σ(x) ≈ φσ(x)âσ, (12)

where âσ is the operator that annihilates an atom from
component σ being in a state φσ(x). With this notation
one immediately writes the mean-field approximation of
the ground-state of the system as

|ψMF〉 =

(
â†A

)NA

√
NA!

(
â†B

)NB

√
NB!

|vac〉, (13)

provided that the mean-field wave functions φA(x) and
φB(x) are chosen in such a way that the mean-field en-
ergy EMF = 〈ψMF|Ĥ|ψMF〉 is minimal.

In the problem studied, there are two conserved quan-
tities (NA and NB) and therefore the minimization is
done with two constraints encoded in two Lagrange mul-
tipliers µσ (chemical potentials), i.e., the condition for
minimization reads δEMF − µAδNA − µBδNB = 0. This
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procedure gives rise to the set of coupled Gross-Pitaevskii
equations of the form[
−1

2

d2

dx2
+ gA|φA(x)|2 + gAB|φB(x)|2 − µA

]
φA(x) = 0,[

−1

2

d2

dx2
+ gB|φB(x)|2 + gAB|φA(x)|2 − µB

]
φB(x) = 0.

(14)

For a homogeneous solution of equations (14) the ki-
netic term vanishes and the densities nσ = Nσ/L are
position independent. Consequently, chemical potentials
can be expressed as µσ = gσnσ + gABnσ′ . Therefore, the
total energy of the homogeneous state is

E1 =
1

2

[
gA
N2

A

L
+ gB

N2
B

L
+ 2gAB

NANB

L

]
. (15)

Here we assumed that the number of particles in each
component is very large, i.e., one can use approximation
Nσ − 1 ≈ Nσ and consequently Nσ(Nσ − 1) ≈ N2

σ .
In contrast, if we consider the inhomogeneous case in

which the two components have non-overlapping den-
sities with a sharp interface the total energy is substan-
tially different. Indeed, if Lσ is the volume occupied by
the component σ, then the densities are nσ = Nσ/Lσ
and the total energy of the inhomogeneous state is

E2 =
1

2

[
gA
N2

A

LA
+ gB

N2
B

LB

]
. (16)

After minimization of Eq. (16) with respect to Lσ with
constrain LA + LB = L one finds

Lσ = L

[
1 +

√
gσ′

gσ

Nσ′

Nσ

]−1
, (17a)

ρσ =

[
1 +

√
gσ′

gσ

Nσ′

Nσ

]
Nσ
L
, (17b)

with chemical potentials µσ = gσρσ. Then, the total en-
ergy for the inhomogeneous state reads

E2 =
1

2

[
gA
N2

A

L
+ gB

N2
B

L
+ 2
√
gAgB

NANB

L

]
. (18)

By comparing energies E1 and E2 one finds the condition
that the inhomogeneous state has lower energy

E2 − E1 = − (gAB −
√
gAgB)

NANB

L
< 0. (19)

This implies that whenever

gAB >
√
gAgB, (20)

the homogenous state is not energetically favorable and
the phase separation occurs in the many-body system.
The derivation of the criterion (20), introduced in [92],
is given for illustrative purposes. More sophisticated

derivations take into account the presence of an external
trap as well as corrections from the finite particles’ num-
ber and the thickness of the overlapping region. Prop-
erties of the phase separation at finite temperatures can
also be examined [98, 99]. For our purposes, it is use-
ful to have in mind that the physics of mixtures of a
few bosons will show the footprints of the phase sepa-
ration phenomena that would appear at the large atom
limit. Finally, we highlight a recent interesting study in
the three-dimensional case, which aimed to compare the
thermodynamic predictions with the results from numer-
ical Monte Carlo simulations of smaller number of atoms,
of the order of a few hundreds [100].

C. Tonks-Girardeau gas in a parabolic trap

The initial Girardeau papers on the strong repulsions
limit were originated from the observation that the
eigenstates φi(x1, . . . , xN ) of the first quantized Hamil-
tonian for interacting bosons

Ĥ =

N∑
i=1

[
−1

2

∂2

∂x2i
+

1

2
x2i

]
+ g

∑
i<j

δ(xi − xj), (21)

in the limit g → ∞ are exactly the same as those of the
Hamiltonian

Ĥ =

N∑
i=1

[
−1

2

∂2

∂x2i
+

1

2
x2i

]
, (22)

provided that the boundary condition φ|xi=xj = 0 is ap-
plied to the many-body wave function. In fact this condi-
tion is exactly equivalent to the condition forced by the
Pauli exclusion principle and therefore one can formu-
late the famous Bose-Fermi mapping for one-dimensional
systems: eigenstates φ of the Hamiltonian (21) for in-
finitely strong repelling bosons are in one-to-one corre-
spondence with the eigenstates ψF of the Hamiltonian
(22) of non-interacting fermions and can be constructed
by appropriate symmetrizations, which turns into the
simple relation φ = |ψF | for the many-body ground
state [101]. This was, in turn, the extension of the clas-
sical Tonks theory of hard-spheres [102] to the quantum
realm (named the Tonks-Girardeau gas). Shorty after
the original paper of Girardeau [101], the calculation of
the solution at all interaction strengths for the homoge-
neous potential was obtained with the Lieb–Liniger ap-
proach [57, 58]. This was further reduced to an eigen-
value problem of matrices of the same sizes as the ir-
reducible representations of the permutation group SN
for N atoms [103]. In fact, all these analytical solutions
were possible since, for the homogeneous external po-
tential one can solve corresponding problems within the
famous Bethe ansatz approach [104, 105]. These ini-
tial works were followed by a thorough and rich study
of bosonic systems in one dimension. The crossover
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from BEC to TG was studied in several works [106–
112]. It was shown that a Bose-Einstein condensate in a
thin cigar-shaped trap has dynamics that approach those
of a 1D TG gas, for large interaction strength and low
temperatures and densities [35, 106]. Thus, for ultra-
cold quantum gases, the most relevant set-up includes a
parabolic trap, which is not analytically solvable for the
whole range of interactions by the Bethe ansatz. Before
studying the parabolic trap case in detail, let us briefly
mention that many works have studied the TG gas in dif-
ferent external trapping potentials, a non-comprehensive
list includes potentials such as split traps [113–118], op-
tical lattices [119, 120], hard wall boxes [121–124], ring
potentials [125], double wells [86, 126–135], and an-
harmonic potentials [136]. The experimental realization
of a TG gas was first reported in [5, 6].

In the following, we discuss the parabolic trap case in
detail. Let us start with the solution in the TG limit in the
presence of an external trap potential [137]. The ground
state wave function for the ideal gas of fermions with N
atoms can be expressed as the Slater determinant of the
lowest N single-particle eigenfunctions of the external
confinement ϕi(x)

ψF (r) =
1√
N !

det [ϕi(xj)]
j=0,...,N−1
i=0,...,N−1 , (23)

where the positions vector r = (x1, . . . , xN ). In the
case of harmonic confinement one finds with ϕi(x) =

Ni Hi(x) e−x
2/2 with Hi(·) being the Hermite polynomi-

als. After applying appropriate symmetrization between
particles’ positions and a bit of algebra one finds the
ground-state wave function for N bosons in the Jastrow
form

φ(r) = CN

 N∏
i=1

N∏
j=i+1

|xi − xj |

 e−
∑
i x

2
i /2, (24a)

with

CN = 2N(N−1)/4

(
N !

N−1∏
n=0

n!
√
π

)−1/2
. (24b)

Different properties of the system are encoded in the
single-particle reduced density matrix usually defined as:

ρ(1)(x, x′)=

∫
φ(x, . . . , xN )φ(x′, . . . , xN )dx2 . . . dxN ,

(25)
In the TG limit an expression for ρ(1) in terms of N − 1
integrals can be obtained (see [137]). The diagonal
part of ρ(1) is the single-particle density profile n(x) =
ρ(1)(x, x) which can be written explicitly as n(x) =∑N−1
j=0 |ϕj(x)|2 [137]. In Fig. 3a we show the single-

particle reduced density matrix for N = 5 bosons. Rel-
evant information is also encoded in the single-particle
momentum distribution, i.e., diagonal part of the Fourier

x

x' x'

FIG. 3. (left panel) Single-particle reduced density matrix (25)
for a Tonks-Girardeau with N = 5 atoms. (right panel) Two-
particle density profile (27) for the same system, showing a
zero in the diagonal x1 = x2. Figure adapted from [137].
Copyright (2001) by the American Physical Society.

transform of the single-particle reduced density matrix

n(k) =
1

2π

∫
dx

∫
dx′ρ(x, x′) exp[−ik(x− x′)], (26)

as well as in the two-particle density profile

n2(x1, x2)=

∫
|φ(x1, x2, . . . , xN )|2dx3 . . . dxN . (27)

Since any two particles cannot be found at the same po-
sition, this density vanishes at the diagonal (x1 = x2),
see Fig. 3b.

According to the Penrose-Onsager criterion of con-
densation an occurrence of the dominant eigenvalue
in the spectral decomposition of the single-particle re-
duced density matrix ρ(1)(x1, x2) indicates condensation
in the corresponding dominant orbital. Shortly after
first Girardeau paper, in a series of paper Lenard stud-
ied the momentum distribution and gave a bound for
the dominant eigenvalue in the uniform Tonks-Girardeau
gas, a topic with was open anyhow in the subsequent
years [138–140]. It took many years for a generalization
to the trapped case [141]. The occupation of the domi-
nant natural orbital grows with the number of particles
like ∼ N0.5 showing that bosons have a natural tendency
to condense into a single orbital even in this strongly
repelling fermionized limit. We note that only recently
a beautiful generalization to any trapping potential has
been provided [142].

An important question is how a condensed system
with N bosons fermionizes as the interactions are in-
creased (that is how it reaches he TG limit). This study
has been attempted with different techniques, such as
Multi-Configuration Hartree-Fock techniques (MCTDH),
which are borrowed from chemistry [119, 144–146],
Monte Carlo numerical methods [65], semi-analytical
methods [147, 148], and the exact diagonalization [143]
(also some studies have attempted the exact diagonal-
ization when the delta, contact interactions are approxi-
mated by a thin Gaussian [149, 150]). To illustrate the
process of fermionization we will discuss the exact diag-
onalization method, due to its simplicity. This is based
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FIG. 4. (a) Density profile (diagonal part of the single-particle
reduced density matrix) for a Tonks-Girardeau with N = 5
atoms as the interactions are increased. (b) two-particle den-
sity matrix profile (two-particle reduced density matrix at the
origin for one of the variables) for the same system, as the in-
teractions are incrteased. It developes a zero at the origin, i.e.,
when x1 = x2. (c) Density profile in the momentum domain
for the same system and different interaction compared to the
distribution of N = 5 non-interacting fermions, (d) Total en-
ergy and its components: the kinetic, potential, and interaction
energy for N = 5. Here, the coupling constant g in Eq. (28) is
termed as U1D, as in [143]. Figure adapted from [143]. Copy-
right (2007) by the American Physical Society.

on an expansion of the field operator Φ̂(x) =
∑
i âiϕi(x)

in the basis of the eigenstates of corresponding single-
particle Hamiltonian. After substitution of this expansion
to the Hamiltonian (11) one finds

Ĥ =
∑
j

Ej n̂j +
g

2

∑
ijkl

Uijklâ
†
i â
†
j âkâl (28)

where n̂j = â†j âj are the number operators, and g

is the coupling constant, accounting for the strength
of the interactions. In the case of harmonic confine-
ment a single-particle energies read Ej = ~ω(1/2 +
j). Interaction integrals can be calculated straightfor-
wardly knowing shapes of single-particle states Uijkl =∫

dxϕi(x)ϕj(x)ϕk(x)ϕl(x). The drawback of this
method is that one has to truncate this basis to a max-
imum number of modes M . Then, one constructs the
Fock basis {Fi} for N particles build from these M
modes, calculate all possible matrix elements of the
Hamiltonian in this basis Hij = 〈Fi|Ĥ|Fj〉 and diago-
nalize the resulting matrix. The dimension of the ma-
trix to be diagonalized grows with the number of parti-
cles and the number of single-particle states taken into
account as (N + M − 1)!/[N !(M − 1)!]. Thus this is
restricted to a small number of atoms, to have reason-
ably big matrices and sufficient accuracy (a recent study
shows how to accelerate its convergence [151, 152]).
This method allows anyhow to illustrate many aspects
of the transition from a small interacting gas of bosons
to a TG gas. In Fig. 4(a) we show the single-particle den-

sity profile n(x) (the diagonal part of the single-particle
reduced density matrix), as g is increased for N = 5
bosons (in the figure, the nomenclature from [143] is
used, that is, g = U1D). As shown the density profile
evolves from a Gaussian form to the characteristic pro-
file for strongly repelling bosons, with a number of os-
cillations equal to the number of atoms. These specific
oscillations of the single-particle density profile can be
viewed as counterparts of the famous Friedel oscillations
known from solid-state physics [153, 154]. Throughout
the fermionization process, the two-particle density pro-
file n2(x1, x2), develops a zero at x1 = x2, and gets
very close to the one for fermions (Fig. 4(b)). Also,
the momentum distribution n(k) develops a peak and is
rather different from that of fermions (Fig. 4(c)). Partic-
ularly, high-momentum tails have the predicted behavior,
n(k) ∝ 1/k4 [155, 156]. This figure clearly illustrates
that, at the TG limit, the system is different from that of
ideal fermions. This information is also encoded in the
natural orbitals occupations, obtained after diagonaliza-
tion of the single-particle reduced density matrix, which
shows that the largest value is significantly big (see dis-
cussion above), showing some degree of condensation,
contrarily to fermions.

Finally, it is interesting to study different contributions
to the total energy E of the ground-state: the kinetic
part Ekin, the potential part Epot, and the interaction
part Eint. In Fig. 4(d) we plot these three components
together with the total energy E as functions of interac-
tions for N = 5 particles. Naturally, the total energy
asymptotically tends to the energy of non-interacting
fermions E → ~ω

∑N
j=1(1/2 + j) = 12.5 (for g = 0 all

five atoms have energy 1/2 so the total energy of the
non-interacting system is E0 = 2.5). It is quite obvi-
ous that in the limit of strong repulsions (g → ∞), the
interacting energy should go to zero. The fact that the
calculated Eint plotted in Fig. 4(c) gets small but not
zero shows that the exact diagonalization method fails
to describe the TG limit accurately, due to the truncation
in the number of basis modes used. Very interestingly,
in [157], Monte Carlo methods together with Local den-
sity approximation calculations were used to show the
differences in this transition from non-interacting (ideal
gas) limit to the TG limit when evaluated at a small and
large number of atoms. Particularly, the study of excita-
tions and the breathing mode showed that they behave
differently for a very small number of atoms.

D. Composite Fermionization

An important limit for the analysis is that of the com-
posite fermionization of the bosonic mixtures introduced
in [159, 160]. This limit occurs when in the Hamilto-
nian (9) we neglect intra-component interactions (gA =
gB = 0) keeping inter-component interaction very large.
The limit strictly occurs when gAB → ∞. The Hamilto-
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FIG. 5. (a) Single-particle density matrix for a mixture with
NA = NB = 2 bosons in the Composite fermionization limit,
for gA = gB = 0 and gAB = 20~ωaho. (b) Density profiles n(x)
for increasing number of atoms in component B, NB = 2, 3, 4.
Dashed lines represents the profiles of B, solid lines for A. Green
dashed line represents the limiting profile for B for very large
NB. (c) Two-particle density profile n2(x1, x2) for two atoms
in species A. (d) Two-particle density profile n2(x1, x2) for one
atom in species A and one in B. (e) Density profiles n(x) for
increasing number of atoms, but equal in both species, NA =
NB. Figure adapted from [64] and from [158] (last paper, only
panel (b)). Copyright (2014) by the IOP Publishing and by the
American Physical Society.

nian for finite inter-component interactions reads

Ĥ =

NA∑
i=1

[
−1

2

∂2

∂x2i
+

1

2
x2i

]
+

NB∑
i=1

[
−1

2

∂2

∂y2i
+

1

2
y2i

]

+ gAB

NA∑
i=1

NB∑
j=1

δ(xi − yj). (29)

In the case gAB → ∞, the wave function should vanish
whenever xi − yj = 0. Therefore, inspired by the Bose-
Fermi mapping and the wave function for a single com-
ponent (24a), we find that the many-body wave function
of the system has a form

φ(rA, rB) ∝

NA∏
i=1

NB∏
j=1

|xi − yj |

 e−
∑
i x

2
i /2e−

∑
j y

2
j/2.

(30)

where rA = (x1, . . . , xNA
) and rB = (y1, . . . , yNB

) are
just shortcuts for atoms’ positions in components A and
B respectively.

The main features of a composite fermionized gas
can be illustrated in terms of the single-particle reduced
density matrices ρA(x, x′) and ρB(y, y′) together with
the two-particle density profiles n(A)

2 (x1, x2), n(B)
2 (y1, y2)

and n
(AB)
2 (x, y) of particles from the same or opposite

components, respectively. First two are defined in anal-
ogy to (27), while the latter is defined as

n
(AB)
2 (x, y) =

∫
|φ(rA, rB)|2dx2dy2 · · · dxNA

dyNB
. (31)

The single-particle reduced density matrix of a system
where NA = NB = 2 (in this case it is the same for both
components) is presented in Fig. 5a. One notices two
distinct peaks showing that there is equally probable to
find the atoms on the left or on the right side of the trap.
The two-particle density profiles for two atoms belong-
ing to the same and opposite components n(σ)2 (x1, x2)

n
(AB)
2 (x1, x2) are shown in Fig. 5c and Fig. 5d respec-

tively. In the latter case, a characteristic separation (van-
ishing of the density) along with x1 = y1 line is clearly
visible. This allows one to make comprehensive inter-
pretation of the result: the system manifests a density
separation, if a boson from the component A is found in
one of the maxima the others particles from the same
component will be located nearby. At the same time,
bosons from the remaining component will be localized
around the second peak. The largest occupation of the
natural orbitals of the single-particle reduced density ma-
trix is λA,B0 ≈ 0.55 [158], showing that though there
is some kind of fermionization in the system, there is
also a strong tendency to condense all indistinguishable
bosons. For completeness, in Fig. 5b we plot the density
profile as the number of atoms in the B component is in-
creased, while there are only two atoms in A. As shown,
species B has a larger tendency to occupy the center of
the trap, while species B tends to split to two fragments
located in the edges of the system. Indeed, λB0 ≈ 0.62
and λB0 ≈ 0.68 for NB = 3 and NB = 4, respectively,
while λA0 tends to 0.5 [158]. In the limit of NB � NA,
the species B condenses in a Gaussian profile in the cen-
ter of the trap (schematically represented as a green line
in Fig. 5b) while species A fragments in two incoher-
ent peaks with one atom at each side of B. Therefore,
in this limit, λB0 → 1 and λA0 → 1/2, being similar to a
phase separated limit [158]. In Fig. 5e we illustrate how
the two peaks move further away from the center of the
trap as NA = NB is increased (calculated with Diffusion
Monte Carlo in [64]). The extreme limit in which one of
the species has only one atom connects with the impurity
problem, discussed in the subsection II H.

We show the energy spectra as gAB is increased with
gA = gB = 0 in Fig. 6a. As observed, the ground state is
doubly degenerate when gAB →∞ [161]. Therefore, the
double-peaked ground state is doubly degenerated (see
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FIG. 6. Energy spectrum for NA = NB = 2 as a function
of gAB for different fixed gA and gB. The decoupled total CM
is assumed to be in its ground state (see discussion on subsec-
tion II G). The total parity is thus determined solely by the RAB
parity and is marked by black lines (even states) and red lines
(odd states). Solid curves correspond to symmetric (+1) and
dashed to antisymmetric (−1) eigenstates under the Sr oper-
ation. The indicated (avoided) crossings are exemplary and
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units. Figure adapted from [161]. Copyright (2014) by IOP
Publishing.

density profiles in Fig. 5). A small perturbation breaks
the symmetry giving rise to the density profiles in which
one peak separates from the other one, each localized at
one side of the trap so that the density separation is evi-
dent. This figure is discussed in detail in subsection II G.

E. Full Fermionization

The isotropic limit corresponds to the case in which all
coupling constants are equal, gA = gB = gAB [162]. In
such case the system is integrable for the homogeneous
case (see e.g. [162] for the solution via the Bethe ansatz)
but not in the trapped case. However, the problem is an-
alytically solvable even in the trapped case in the Full
Fermionization limit, i.e., the limit where all coupling
constants tend to infinity gA, gB, and gAB → ∞ [163].
This solution is obtained by an extension of the Bose-
Fermi mapping theorem to mixtures: for a system with
Nσ atoms in individual components, one constructs the
fermionic many-body ground state with the Slater de-
terminant for N = NA + NB particles in N the lowest
single-particle states. Then, appropriate symmetrization
is implemented in each component independently

φB(rA, rB) = SASB
(

det [ϕi(rj)]
i=0,...,N−1
j=0,...,N−1

)
, (32)

where Sσ introduces appropriate bosonic symmetriza-
tion with respect to the permutations of particles in indi-
vidual components. In the case of harmonic confinement

the ground-state wave function takes the Jastrow form

φ(rA, rB) ∝NA∏
i=1

NA∏
j=i+1

|xi − xj |
NB∏
i=1

NB∏
j=i+1

|yi − yj |
NA∏
i=1

NB∏
j=1

|xi − yj |


× e−

∑
i x

2
i /2e−

∑
j y

2
j/2. (33)

Note that in the mixed term we have intentionally se-
lected a positive symmetry whenever positions of A and
B atoms are exchanged. In fact, this choice is arbitrary
in the limit of infinite repulsions. In consequence, it
leads to the degeneracy of the ground-state manifold.
In the next section, we will describe all the possibilities
for the systems of three and four atoms. For a system
of N distinguishable atoms, with infinite interactions,
there would be N ! degenerate states. For a mixture of
NA and NB atoms, there are instead N !/(NA!NB!) de-
generate states (for a detailed study on the degeneracies
see [164, 165]). To prove this, one has to rely on the
symmetries of the system. To this end, it is usual to use
the Young Tableaux associated with the system, as is a
combinatorial object that permits for a convenient way
to describe the group representations [165]. For very
strong but finite interactions the degeneracy is lifted and
the state with the lowest energy (the true ground-state)
is the appropriate superposition of states with different
symmetries.

F. Minimal mixture: Three atoms

The minimal mixture of bosons in which the quan-
tum statistics plays any role consists of two bosons of
species A and one atom of a different species B. In the
case of harmonic confinement the system is described by
the Hamiltonian

Ĥ =

2∑
i=1

1

2

(
− ∂2

∂x2i
+ x2i

)
+ gAδ(x1 − x2) (34)

+
1

2

(
− ∂2

∂y2
+ y2

)
+ gAB [δ(x1 − y) + δ(x2 − y)] ,

where xi and y are positions of the bosons in appropriate
components. This Hamiltonian, for ω → 0, (no trapping
potential) was discussed in seminal papers [18, 166].
Particularly, the case with gA = 0 and gAB 6= 0 is the
Faddev-solvable Gaudin-Derrida model [166].

In this case there are four meaningful limits. Namely:

• BEC-BEC limit (gA = gAB = 0),

• BEC-TG limit (gA →∞, gAB = 0),

• CF limit (gA = 0, gAB →∞),

• FF limit (gA →∞, gAB →∞).
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In all these limits analytical solutions can be found [167,
168] by introducing convenient transformation to the Ja-
cobi coordinates

R =
x1 + x2 + x3

3
, (35a)

X =
x1 − x2√

2
, (35b)

Y =
x1 + x2√

6
−
√

2

3
x3. (35c)

In these variables the three-particle Hamiltonian (34) de-
couples to the Hamiltonian of the center-of-mass mo-
tion in coordinate R and the relative motion encoded
in the two remaining variables (X,Y ) (see appendix A).
Obviously, the center-of-mass Hamiltonian does not in-
clude the interaction term and it is simply equivalent to
the single-particle problem in a harmonic confinement.
On the other hand, the contact interactions define six
lines in the (X,Y ) plane (see Fig. 25 in appendix A and
Ref. [167]). They correspond to the the locus of points
where two particles meet. These lines are located at
X = 0 and X = ±

√
3Y . Thus, they delimit six regions in

the plane (note that Jacobi transformation breaks a sym-
metry between X and Y coordinates and they cannot be
interchanged). By introducing another transformation to
the polar coordinates

ρ =
√
X2 + Y 2 θ = arctan(Y/X) (36)

the three lines correspond to three angles θ =
{−π/6, 0, π/6}. As discussed in Appendix A this fact di-
rectly leads to a six-fold symmetry in the (X,Y ) plane
in the case gA = gAB. In the case gA 6= gAB the sym-
metry is reduced to two-fold one. This gives important
hints to construct Ansatz functions for different systems,
either three indistinguishable bosons, fermions, or mix-
tures of two bosons or fermions with an additional dis-
tinguishable particle [167, 168]. Let us first discuss the
case of two bosons interacting with one additional impu-
rity when g = gA = gAB. In such case, a useful basis for
representing functions for every g > 0 is

φm,nρ,nθ(ρ, θ) ∝ U
(
−nρ, nθ + 1, ρ2

)
Fm,nρ(θ)ρ

nθe−ρ
2/2,
(37)

where U(a, b, x) is the Tricomi confluent hypergeometric
function and the angular function Fm,nθ (θ) is defined in
each of the sextants of the plane as

Fm,nρ(θ) = α sin[nρ(θ−jπ/3)] exp[−im(j−1)π/3], (38)

when θ ∈ [(j − 1)π/3, jπ/3[ , with j = 1, . . . , 6. Here
nρ, nθ are positive integers and m = 0,±1,±2 and 3 due
to the six-fold symmetry. We call the index m orbital an-
gular pseudo-momentum (OAPM), as it was introduced
in the context of vortex solitons [169, 170]. The OAPM
is associated to discrete rotations of multiples of π/3 in
the polar plane. It provides a useful tool to express in an
easily interpretable way the results from [167] in terms

of the hyperspherical coordinates (called here polar coor-
dinates). The OAPM identifies how the state transforms
under a rotation by π/3 and it gives the charge of the
central singularity [171]. For m = 0 or 3 the solution
belongs to a one-dimensional representation of the point
group C6ν , either A1,A2, B1, or B2 (see appendix A). For
OAPM m = ±1 or ±2 the function belongs to the two
dimensional representation of E1 or E2, respectively. Ex-
citations due to nodes in the radial direction are given by
nρ and the number of nodes within a sextant in the an-
gular direction is given by nθ. For finite non-zero g, the
functions have to be continuous at the boundary between
the sextants where we defined the functions Fm,nρ(θ).
These boundaries are the lines at the angles θj = jπ/3,
with j = 1, . . . , 6. The interactions are thus implemented
by matching solutions using the condition

−1

2ρ2

(
dφ(ρ, θ)

dθ

∣∣∣∣
θj+ε

− dφ(ρ, θ)

dθ

∣∣∣∣
θj−ε

)
=

g√
2ρ
φ(ρ, θ),

(39)

at the angles θj . Writing g as ĝ =
√

2ρg, Eq. (39) be-
comes independent of ρ, and therefore of nρ. As a conse-
quence, nρ will label the solutions. The functions (37)
are exact eigenfunctions when g → ∞. The condi-
tion (39) will give two types of solutions, even-parity
solutions with nθ = 3 + 6n and odd-parity solutions
with nθ = 6n, with n = 0, 1, . . . . The energies are
E = 2nρ + nθ + 1. We remark that the six solutions
with same values of nρ and nθ have the same energy in-
dependently of m = 0,±1,±2, 3. This strong degeneracy
is broken for finite g.

In Fig. 7 we show the three quasi-degenerate solutions
for zero nρ and nθ and different m for large, but finite
g = gA = gAB. Not all solutions with any m (which
will be the six solutions with m = 0,±1,±2, 3 – see
appendix A) can be realized in a system with two in-
distinguishable bosons. To understand this, let us first
denote the 2-cycle operation as σ̂ij , which is the oper-
ation that permutes particles i and j. These permuta-
tions correspond to reflections or rotations in the X − Y
plane: the interchange of particles 1 and 2 correspond
to a reflection with respect to the X = 0 axis, which can
also be written as a transformation in the angular vari-
able as θ → −θ + π, while σ̂23 and σ̂31 correspond to
θ → −θ + π/3 and θ → −θ − π/3, respectively. Let us
label the two indistinguishable bosons as 1 and 2. Then
all eigenfunctions have to be symmetric under σ̂12 for the
mixture of two bosons and a distinguishable particle. Un-
der the 2-cycle transformations σ̂23 and σ̂31 they do not
show any specified symmetry. The solutions with m = 0
obey this condition, while the solutions with m = 3
do not, and therefore they do not appear in the spec-
tra. The eigenfunction as written in (37) with m = ±1
and ±2 do not have any defined symmetry under σ̂12.
This imposes a new condition, and thus these wave func-
tions have to show a reduced C2ν symmetry. For the two
bosons plus distinguishable particle, the combinations
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FIG. 7. Eigenfunctions when gAB = gA = 20 . (a) For finite but
large g, the ground state belongs toA1. (b) first and (c) second
excitations for finite g; These states have a reduced C2ν symme-
try. As discussed in the text, they are obtained combinations of
the two (vortex like) eigensates associated to the E1 and E2 ir-
reducible representation, respectively. (d) a radial and (e) an
angular excitation of the ground state; (f) a radial excitation;
of the first excited state. Figure adapted from [170].

|1, nρ, nθ〉+i|1, nρ, nθ〉 and |2, nρ, nθ〉−i|2, nρ, nθ〉 give the
solutions with the correct permutation property (which
now do not belong to C6ν but to its subgroup C2ν). In
Fig. 7, panel (a) corresponds to the solution with m = 0,
which is the one with the lowest energy in case g is finite
but large. Panels (b) and (c) give the first and second
excited state when g is large but finite. We finally note
that nρ labels radial excitations, as the one in Fig. 7 (d)
which has m = 0, nρ = 1 and nθ = 0 and in Fig. 7 (f),
which is a radial excitation of the first excited state. Also,
nθ labels angular excitations on site, as the one in Fig. 7
(e) which has m = 0, nρ = 0 and nθ = 1.

Finally, we emphasize an important set of solutions
that emerge for gA 6= gAB. First, as discussed in [168]
and numerically calculated in [172], when gA = 0 and
gAB → ∞ the eigenfunctions are exact again, and the
conditions (39) are also satisfied with half-integer E
given by E = 3/2 + 3n (for the expression of the eigen-
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FIG. 8. Eigenfunctions when gAB = 20 and gA = 0. (a) and (b)
are degenerate in energy while the first excitation is plotted
in (c). All these three state have integer energy. The third
excitation, plotted in (d) has half integer energy.

functions valid also in this limit see [168]). In Fig. 8 we
plot the eigenfunctions for finite gAB = 50 and gA = 0.
The one in panel (d) is the half-integer solutions. It is
degenerated with the one in panel (e). The ground state
is doubly degenerated [panels (a) and (b)]. We plot the
energies as gA is increased in Fig. 9 for various values
of gAB. The eigenfunction plotted in Fig. 8 panel (f)
shows that on-site radial excitations also occur here, but
now due to symmetry under the σ̂12, only those with odd
number of nodes are excited. For large gAB and varying
gA we find that there is a non-interacting solution, which
is the one in panel (c). We finally note that we do not
discuss here the limit TG-BEC [ gAB = 0 and gA → ∞]
because in this case the third particle does not play a
relevant role, and the system behaves as the two-atom
system (discussed in [33]). For further details in case
gA 6= gAB we refer appendix A and Refs. [167, 168, 172].
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FIG. 9. (a) Energy eigenspectrum as a function of gAB = gA =
g. Different line styles are used to help identify the different
excited states. (b) Energy eigenspectrum as a function of gA for
gAB = 50. Harmonic oscillator units are used for the energies
and distances. Figure adapted from [172]. Copyright (2014)
by the American Physical Society.

G. A fruitful example: four atoms

A mixture of four atoms represents the minimal system
in which the eight limits discussed above are meaningful,
as both the PS and the TG-BEC limits occur in this case.
The PS limit corresponds to gAB → ∞ and gA (or gB)
tend to infinity with gB (or gA) vanishing (see Fig. 2).
Let us show how this simple mixture with NA = NB = 2
atoms unravels a great amount of physics, which include
not only the usual fermionization when gB = gA is in-
creased [160], but also sharp crossovers between the dif-
ferent limits [64, 158], the first hints of quantum mag-
netism [173] and a very rich energy spectra [161].

The first meaningful limit of composite fermioniza-
tion occurs when gAB → ∞ with vanishing gA and
gB. In such case, the two-particle density profile
of opposite-component particles n(AB)

2 (x, y) identically
vanishes along with the diagonal x = y due to the in-
finitely strong repulsions. Contrarily, the two-particle
densities between particles belonging of the same species
n
(A)
2 (x1, x2) and n(B)

2 (y1, y2) do not vanish along the di-
agonal. In Fig. 5 we illustrate this behavior. It is also use-
ful to calculate the single-particle reduced density matri-
ces ρA(x, x′) and ρB(y, y′) for each component which is
presented in Fig. 5. The diagonalization of them gives
the natural orbitals occupations, λiA,B, which are normal-
ized between 0 and 1. The largest value, λ0A,B shows the
degree of condensation in each component. In this case,
for both species, one obtains the same number λ0, which
is large but significantly smaller than 1. The two-particle
densities and the single-particle reduced density matri-
ces give the following information: whenever a particle
of one species is detected in one position with, e.g., x > 0
all particles of the same species will be found located at
the left peak, whilst the atoms of the other species will be
found in the right peak. So though according to the den-
sity profiles it may seem that in the CF limit there is the
overlap of densities. In practice, this limit corresponds
also to phase separation.

A very different situation occurs in the phase separation
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FIG. 10. (a)-(b) Single-particle reduced density matrix (for
species A and B, respectively) in a mixture with NA = NB = 2
bosons in the phase separation limit, for gA = gAB = 20~ωaho
and gB = 0. (c)-(d) Two-particle density profile matrix for two
atoms in species A and B, respectively. (e) Two-particle density
profile for one atom in species A and one in B. Figure adapted
from [158]. Copyright (2013) by the American Physical Soci-
ety.

limit when gAB → ∞, and e.g. gA → ∞, with gB = 0.
In this particular case, not only the two-particle density
profile n(AB)

2 (x, y) vanishes along the diagonal x = y but
also other two-particle density (related to a strong intra-
component interaction gA) also reveal this property (see
Fig. 10). The one for species B does not have a zero
at y1 = y2. The density profiles show density separa-
tion: species B occupies the center of the trap, whiles
species A is moved to the edges. A key question here
is that the diagonalization of the single-particle reduced
density matrix for both species shows a value closer to 1
for species B and a number closer to 1/2 for species A.
This means that species B, which is located in the center
of the trap, is well condensed. Simultaneously, species
A occupies the edges of the B atoms cloud and has very
little coherence between the halves.

In the BEC-TG limit, one has, e.g., gA → ∞ and gB =
gAB = 0. This case is trivial, as for A species the system
behaves as a TG system and a corresponding occupation
of the most occupied natural orbital of 0.4. For species B
the atoms behave as an ideal gas, with a Gaussian density
profile and an occupation of the lowest natural orbit of
1. The TG-TG limit corresponds trivially to a mixture of
two independent two-atom TG gases; finally, the FF limit
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FIG. 11. (a)-(b) the largest occupation number of the natural
orbital (for spieces A and B, respectively) in a mixture with
NA = NB = 2 bosons as a function of gAB and gA, with gB = 0.
(c) the von Neumann entropy as a function of gAB for gA = 0
(thick line) and gA large (thin line). (d) the von Neumann
entropy as a function of gA for gAB = 2, 4, 20 (dash-dotted,
dashed, and solid line, respectively). Figure adapted from [64].
Copyright (2014) by the IOP Publishing.

implies that both species fermionize as a single 4 atom
species.

With this description of very different limits, the transi-
tions among them as the coupling constants are changed
is a very interesting question. This has been attempted
for the plane delimited by the BEC-BEC, TG-BEC, CF and
PS limits, leaving aside what happens within the cube,
towards the FF limit. In Fig. 11 we plot the largest oc-
cupation of a natural orbital. As seen there is a region
in which there is a sharp crossover between limits, with
an abrupt increase of the occupation. This transition was
first discussed in [158]. Just before the transition, the
two-particle and single-particle reduced density matrices
show large off-diagonal terms (see Fig. 12). This indi-
cates large correlations between both species. Indeed to
illustrate this one can rely on an inter-component mea-
sure of entanglement, the von Neumann entropy defined
as

S = −Tr[ρAlog2ρA] =
∑
j

−λj log2λj . (40)

where the reduced density matrix of the component A is
obtained by tracing-out all degrees of freedom of oppo-
site component from the density matrix of the system,
ρA = TrB [|φ〉〈φ|] . Real positive numbers λj are the
eigenvalues of the reduced matrix ρA.

This quantity is plotted in Fig. 11. It shows a peak
at the region where the crossover occurs, showing that
indeed large correlations between both species occur. Fi-
nally, we emphasize that in [64] the authors showed that
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FIG. 12. (a)-(b) Single-particle reduced density matrix (25) for
species A and B, respectively, in a mixture with NA = NB = 2
bosons for gA = 4~ωaho gAB = 20~ωaho and gB = 0, that is,
just before the crossover. (c)-(d) Two-particle density profile
(27) for two atoms in species A and B, respectively. (e) Two-
particle reduced density matrix for one atom in species A and
one in B. Figure adapted from [64]. Copyright (2014) by the
IOP Publishing.

the two-parameter (η1, η2) ansatz of the form

φ(rA, rB|η1, η2) ∝NA∏
i=1

NA∏
j=i+1

|xi − xj − η1|
NA∏
i=1

NB∏
j=1

|xi − yj − η2|


× e−

∑
i x

2
i /2e−

∑
j y

2
j/2. (41)

reproduces faithfully the numerical results shown in
Fig. 12, that is the solution just before the crossover.

The spectra of excitations for this system at all possi-
ble limits of interactions and as the coupling constant are
varied is discussed in [161]. To understand the energy
spectra it is very convenient to perform a transformation
of coordinates to the center of mass RCM , the relative
center-of-mass coordinate RAB , and the relative coordi-
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nates for each component rA,B:

RCM = (x1 + x2 + y1 + y2)/4, (42a)
RAB = (x1 + x2 − y1 − y2)/4, (42b)
rA = x1 − x2, (42c)
rB = y1 − y2. (42d)

With this choice of variables, as usual, the center-of-mass
coordinate RCM decouples from the rest, as expected,
and then we reduce dimensionality. The Hamiltonian as-
sociated with this variable is diagonalized trivially with
the single-particle solutions of the harmonic oscillator.
Moreover, in this framework, one can easily identify dif-
ferent symmetries of the system. First, the parity with re-
spect to the RAB coordinate determines the total parity
of the eigenstates. Second, for gA = gB the Hamiltonian
is invariant under rA ↔ rB exchange, called the Sr sym-
metry. Both transformations correspond to certain spa-
tial transformations in the four-dimensional coordinate
space, as in the three particle case (see appendix A). In
Fig. 6 we show the energy spectra for this system. In the
BEC-CF transition shown in Fig. 6a one observes how the
ground state becomes doubly degenerate. The two states
have even and odd parity with respect to RAB. The even
parity corresponds to the one shown in Fig. 5. This two-
fold degeneracy reflects the two possible configurations
discussed above: (A in left – B in right) or (A in right
– B in left). Also, it is important to note that there are
non-integer eigenvalues in the CF limit, as in the case of
three atoms.

The energy spectra along the transition between the
TG-TG and PS limits are plotted in Fig. 6c. The TG-TG
limit corresponds to the mixture of two independent two-
atom TG gases. In this case, the wave functions can be
expressed analytically, they have integer-valued eigenen-
ergies E(0)

0,k,l,m ≈ k + 2l + 2m + 4 with equal spacings,
and have the same degree of degeneracy as in the non-
interacting case (see spectrum for gAB = 0 in Fig. 6a). In
the FF limit, when all coupling constants tend to infin-
ity, the eigenfunctions are again analytic and the system
resembles a non-interacting ensemble of four fermions
with the ground state energy ~ωN2/2 = 8~ω [163]. Im-
portantly, one has to take into account that there are two
bosons in each component which are indistinguishable,
but distinguishable between components. Due to this
the degeneracy is N !/(NA!NB!) = 6-fold. A detailed
study on the degeneracies in this limit can be found
in [164, 165], where the latter corresponds to a Bose-
Fermi mixture, but the techniques apply also to this case.
Finally, a detailed study where one of the species is non-
interacting or strongly interacting is provided in [174],
where special care is given to explain the coordinate or-
dering of particles in the different resulting wave func-
tions in a relative motion expressed in hyperspherical co-
ordinates.
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FIG. 13. Ground-state single-particle density profiles in the
transition from TG-TG to FF limits. (a) Density profiles ρA =
ρB as the interaction is increased for the unpolarized case,
NA = NB = 20. (b)-(c) Density profiles ρA and ρB, for each
species, as the interaction is increased for a polarized case,
NA = 15 and NB = 10. To illustrate density separation, in
(d) and (e) we plot ρA + ρB and ρA − ρB, respectively. Fig-
ure adapted from [175]. Copyright (2009) by the American
Physical Society.

H. Mixtures with several atoms

As explained in the previous subsections II F and II G, a
three- and four-boson mixtures allow one to explore the
eight limits for the inter- and intra-species interactions
(see Fig. 2). Let us now discuss several theoretical works
which explore these limits and the transitions between
them for larger systems.

In [175] the transition from the TG-TG limit to the
FF limit was studied, with a density functional ap-
proach, valid for weak harmonic traps (small trapping
frequency). They consider two cases, an unpolarized
mixture with NA = NB = 20 and a polarized one,
NA = 15 and NB = 10. For the unpolarized case, they
observe a smooth transition between a mixture of two
TG gases with no correlations among them, and a FF
gas, with N = 40 peaks, as corresponds with Girardeau-
Minguzzi’s prediction [163], see Fig. 13a. For the polar-
ized case (see Fig. 13b-e) an important behavior is ob-
served: while in the TG-TG and FF limits the behavior
is as expected (two independent TGs and a FF gas with
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NA + NB peaks), in the transition (intermediate inter-
species interactions) signatures of density separation oc-
cur, see Fig. 13e. This is a shell structure. This is not
evident from the plots of ρA and ρB independently (pan-
els (b) and (c) in Fig. 13). Therefore, this figure also
presents the total density ρA + ρB and the spin density
distribution defined as the density difference ρA − ρB.
This latter spin density shows, for weakly and interme-
diate interactions, two peaks at the edges of the trap.
So there is a non-polarized mixture in the centre of the
trap, which is surrounded by the majority component.
For larger inter-component interactions the peaks dimin-
ish and eventually disappear, and the spin density profile
is also flat, as the total density. This is a further indica-
tion that, while the limits are well described, the transi-
tion between them is still intriguing in many instances,
particularly in polarized (imbalanced) cases.

Another example occurs on the plane defined by the
BEC-BEC, BEC-TG, CF, and PS limits. We discussed in
section II G the unpolarized case, NA = NB = 2 [64].
As shown in Fig. 11(a) and (b) the interior of this plane
shows a sharp crossover with a non-trivial dependence
on the interactions (see [158]). For imbalanced systems,
the area in which composite fermionization persists, be-
fore the sharp crossover to phase-separation shrinks as
NB is increased (see Fig. 14). For the limit when gAB is
large, and gA is tuned, as NB is increased the transition
becomes less abrupt (see bottom panels in Fig. 14).

Importantly, another effect occurs in the transition be-
tween BEC-TG and PS limits. For the unpolarized case,
as gAB is increased, keeping gA large and gB close to 0,
there is a smooth transition, through which the A cloud
reduces its orbital occupations, due to the fact that it den-
sity separates in two pieces without coherence between
them, while the B cloud occupies the center of the trap
(see Fig.11). For the polarized case, as NB is increased,
this transition occurs for smaller and smaller values of
gAB (see Fig. 14, upper panels). Indeed, as discussed
in [176], for large values of NB, the transition occurs for
very small values of gAB. Also, the fragmented cloud of
A atoms from two non-coherent TG gases, one at each
side of the B atoms and each with NA/2 atoms. Indeed,
for this limit and large values of NB, the system density
admits a description in terms of a system of two coupled
non-linear Kolomeisky-like equations:

µAφA =− ~2

2m
φ

′′

A +
[
V (x) + g̃A|φA|4 + gAB|φB|p

]
φA

(43a)

µBφB =− ~2

2m
φ

′′

B +
[
V (x) + gB|φB|2 + gAB|φA|p

]
φB,

(43b)

where g̃A = (π~)
2
/2m is independent on gA (see [176]

and [177]). This system of equations has a non-linearity
which is not cubic, as in the GPE equation, but quin-
tic. The cross term modeling the inter-species interac-
tions can have a cubic or quintic power (p = 2 or 4),

depending on the regime of interactions (small or large
gAB). In [176] it was shown good agreement between
the density profile calculated with exact diagonalization
and that calculated with Eqs. (43). We note that when
all exponents are 2 and all coupling constants are equal,
these equations resemble Manakov Equations, which are
well known in the context of nonlinear optics, and are
solvable via inverse scattering transform [178]. For the
case in which all coupling constants are large, Tanatar
and Erkan [179] derived the following set of equations:

µAφA =− ~2

2m
φ

′′

A +
[
V (x) + g̃|φA|4

+ ḡ|φA|2|φB|2 + g̃AB|φB|4
]
φA, (44a)

µBφB =− ~2

2m
φ

′′

B +
[
V (x) + g̃|φB|4

+ ḡ|φA|2|φB|2 + g̃AB|φA|4
]
φB, (44b)

with g̃ = (π~)
2
/2m, ḡ = (π~)

2
/3m and g̃AB =

(π~)
2
/6m. It is important to emphasize that Eqs. (43)

and (44) can be used only to calculate density pro-
files. Importantly, their time dependent versions (since
there are two conserved quantities, i.e., number of
atoms in each condensate, naively one writes φσ(x, t) =
φσ(x) exp[−iµσt/~]) cannot be used to calculate dynam-
ical properties of the system. As shown in [180] such
a utilization of the time dependent single-component
Kolomeisky equation is incorrect. It was illustrated with
the interference between split condensates that are re-
combined. The Kolomeisky approach predicts strong in-
terference fringes, while in fact they are very shallow
as shown within the exact many-body treatment. The
regime of validity of Eqs. (43) (also applicable to (44))
was discussed in a comment by Girardeau [181].

For the polarized case, the limiting situation is when
one of the species has only one atom. This turns to be an
impurity problem, linked to the Bose polaron problem in
the large NB atom limit, with gB and gAB small. Here,
we consider a few-atom limit, often with strong interac-
tions in a 1D trap. The smallest system of this type is the
three-atom case discussed in Section II F. It is clear that
this system can only occur in the BEC-BEC, BEC-TG, CP,
and FF limits. An ingredient which is often included in
this system is the mass imbalance between the impurity
atom and the bosons. With a pair-correlated wave func-
tion approach, it has been shown that through the transi-
tion from non-interacting case (BEC-BEC, gB = gAB = 0)
to the CP limit (gB = 0 and gAB → ∞), the impurity
particle A tends to localize in the edges of the major-
ity species B, when NB = 2, 3 atoms [182]. Then, it
has been shown that one can force the impurity parti-
cle to again localize in the center of the trap for more
massive impurities when NB = 2 to 4 atoms [183] (for
the 3+1 system see also appendix in [174]). The limit
when gB → ∞ has been studied in [184], showing that
when also gAB →∞ the particles cannot exchange their
initial ordering, while when gAB is large but not infin-
ity, the system maps into the spin chain Hamiltonian.
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Then, it is shown that when the mass of the impurity is
larger than the majority species mass, the impurity par-
ticle tends to localize in the center of the trap [184], as
in the case when gB = 0. We note that a large body
of theory is based on the effective spin-chain Hamilto-
nian description of a mixture of few bosons. We discuss
this approach in depth in section III, together with the
fermionic case. The localization of the impurity in the
center of the trap when it is more massive has also been
studied numerically for up to NB = 8 atoms in [185],
both when gB = 0 and in the transition to gB large. In-
deed when mA → ∞ the impurity atom behaves as a
delta function in the center of the trap. This behavior
of the impurity also has effects on the coherence prop-
erties of the majority atoms, as the largest occupation
of a natural orbital for B decreases as mA is increased
(see [183]). For large enough values of the mass of the
impurity (mA → ∞), the bosons are fragmented into
two incoherent halves. The opposite limit, when the im-
purity atom is light and also for three and four majority
atoms is treated in [186]. The problem of an impurity
in strongly interacting regimes connects with the study
of the Bose polaron (see recent experiments [187, 188])
beyond the Fröchlich Hamiltonian (see e.g. [189]). Fi-
nally, we note that this problem has attracted recently a
lot of interest, also in other external trapping potentials,
such as double wells or optical lattices [190, 191] as well
as in the case of attractive impurity [192]. In general,
when the mass imbalance is present and for any num-
ber of particles, certain arrangements of unequal masses
make the problem solvable for limits in unsolvable in the
equal mass case [193]. Some additional particular solv-
able cases are identified in [193] for systems up to five
particles.

I. Spinor Bose mixtures

Let us briefly review some results related to bosonic
mixtures of atoms having internal degrees of freedom –
spinor Bose gases. In the simplest case of spin-1 bosons,
the first quantized Hamiltonian describing N particles at
zero magnetic field in one dimension reads [164]

Ĥ =

N∑
i=1

[
− ~2

2m

∂2

∂x2i
+
mω2

2
x2i

]
Ii

+
∑
i<j

δ(xi − xj)
[
U0Ii · Ij + U2

~Fi · ~Fj
]
, (45)

where Ii and ~Fi are the identity and spin-1 matrices
in the spin space of i-th atom. Here U0 and U2 are
the effective one-dimensional coupling constants of the
spin-independent and spin-dependent interactions. Sim-
ilarly as in the single-component case (see (3) and (4)),
these couplings can be expressed by appropriate three-
dimensional s-wave scattering lengths as0 and as2. In
fact, they are expressed by appropriate linear combina-
tions of these scattering lengths c0 = (as0 + 2as2)/3
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FIG. 14. (a)-(b) The largest occupation numbers of the natural
orbitals (A and B species, respectively) for NA = 2 and NB = 3
as a function of gAB and gA, with gB = 0. (c)-(d) analogue
plots for the system with NB = 4. Figure adapted from [64].
Copyright (2014) by the IOP Publishing.

and c2 = (as2 − as0)/3 (see [35] for details). In this
model, p-wave scattering is neglected [194]. Here, the
number of atoms N±1 and N0 corresponding to states
with spin m = +1, 0,−1, are not conserved, because the
scattering between two atoms of spin s = ±1 can pro-
duce two atoms with s = 0. The total number of atoms
N = N+1 +N0 +N−1 and the total magnetization (total
spin in the z direction) M = N+1 − N−1 are conserved
quantities.

This system has more limits than those described in
Fig. 2. Here we only review some results in the topic.
For the case in which U0 →∞ with U2 = 0 analytical so-
lutions has been proposed via Bose-Fermi mapping theo-
rem (see [164, 195, 196]; see also [197] for a study on
the single-particle reduced density matrix and momen-
tum distribution in this limit and its relationship with
that of hard-core anyons). In [164] an exact diagonal-
ization study is provided with up to N = 8 when U0

is large with U2 = 0 or very small and negative (ferro-
magnetic coupling). It is shown that the ground state is
heavily degenerate for U0 → ∞ with U2 = 0 and quasi-
degenerate in case of U0 finite and U2 = 0 or small. For
U0 → ∞ in a gas of N distinguishable atoms the degen-
eracy is N !. This degeneracy has to be reduced due to
symmetrization associated to the bosonic statistics, giv-
ing that the degeneracy equals the dimension of the N -
particle spin space 3N [164]. These states, either de-
generate for U2 = 0 and U0 → ∞ or quasi-degenerate
for the other cases, correspond to different density pro-
files of the three components with spin m = +1, 0,−1
(see [164]). A detailed density functional study with
up to N = 30 atoms concluded that the competition
between the repulsive density-density interactions, U0,
and the spin-exchange interactions, U2, led to compli-
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cated density distributions of the three spin components,
even when both are kept equal [198]. Note that, in that
case, U2 had the same sign as U0, corresponding to the
antiferromagnetic case. A numerical exact diagonaliza-
tion study was also attempted in [199], also for the an-
tiferromagnetic case, and the conventional situation in
which U2 � U0, ranging U0 from the small interacting
case to large interactions. This study was performed for
a few atoms (N = 4). The total density showed the
evolution from a Gaussian-like distribution in the small
interacting limit to a TG-like distribution with N = 4
peaks, as U0 was increased from 1 to 50, always keep-
ing U2 = U0/100. It also showed that, in the small and
medium interaction regimes, the three component den-
sities overlap. On the contrary, for large U0 there is a
density separation. Indeed, the m = ±1 components
occupied the center of the trap and the m = 0 compo-
nent separates to the edges. In this paper, the authors
studied that, when U2 is made larger and comparable
to U0, the fermionization does not occur in the same
way, not reaching a TG-like structure with the increase
of the interactions, but a double peak structure more
similar to the composite fermionization observed in two-
component gases. This effect is called in this context
weakening of fermionization. In [200] it was performed
an exact diagonalization numerical study of fermioniza-
tion as U0 was increased. The author considered the an-
tiferromagnetic case, for U2 = U0/100 and N = 4, in the
sectors of the Hilbert state with different magnetization
M =

∫
dx[ρ1(x) − ρ−1(x)]/N , ρm(x) being the density

in spin component m. It was shown that fermionization
occurred as expected, but the denrepellingsity profiles of
each component showed different scenarios, from phase
separation to magnetic domains (see also [201] for a
study in the case of U2 = 0 up to N = 16).

III. FERMIONIC MIXTURES

In this section, we review the current stage of the
research devoted to systems of a few fermions in one-
dimensional traps. This path of exploration accelerated
recently due to a series of experiments performed mainly
in the J. Selim group in Heidelberg [14–17, 19, 20].
Theoretically, the idea of confining ultracold fermions
in one-dimensional traps has the same origin as in the
bosonic case (see [27] for a review). Trapping in two
perpendicular directions is very deep and therefore the
dynamics in these directions is frozen. Consequently, in
the remaining direction, the system is effectively one-
dimensional with some effective interaction strength de-
pending on the perpendicular confinement [35, 194,
195, 202]. Note however one fundamental difference
between bosonic and fermionic systems. Due to the Pauli
exclusion principle, particles cannot occupy only the low-
est single-particle state. In consequence, when a larger
number of particles is considered (even in the noninter-
acting case), the most excited particles may have energy

comparable with excitation energy in perpendicular di-
rections. Therefore, to keep a one-dimensional descrip-
tion valid, one should assure (similarly as in the case of
strongly repelling bosons) that excitations in perpendic-
ular directions are strongly suppressed. This issue was
one of the experimental challenges and was responsible
for obtaining one-dimensional fermionic systems much
later than the bosonic ones.

A. Role of the spin

In the case of ultracold fermions, the spin degree of
freedom plays a crucial role. In contrast to the bosonic
case, due to the quantum statistics, s-wave contact
forces between fermions exactly vanish whenever parti-
cles have all internal quantum numbers identical. Conse-
quently, the most prominent contribution to interactions
comes from the s-wave scattering between fermions be-
longing to different internal states. Of course, it is still
possible that identical fermions do interact, for example
via long-range dipolar forces. However, these interac-
tions are typically much weaker. We review this path
of exploration in Sec. V A. In fact, this particular distin-
guishability required by quantum statistics for interact-
ing fermions can be realized in three different ways –
identical fermionic elements may have different spin pro-
jections (like fermionic spin-1/2 3He atoms), they may
belong to different irreducible spin representations due
to different spin projections of their nucleus (for example
spin-1/2 and spin-3/2 6Li atoms [15]), or particles may
be fundamentally different elements of different mass
(for example bi-fermionic Li-K mixture [203, 204]). In
the two latter cases, numbers of particles belonging to
different components are conserved and interactions re-
duce to a simple density-density form.

With a few exceptions, few-fermion systems with a dy-
namical spin degree of freedom are not considered in
the literature. However, some studies in this direction
were performed. Typically, in such a scenario, one as-
sumes that the total number of particles N↑ +N↓ is con-
served, but their distribution among componentsN↑−N↓
(in this case called magnetization) depends on external
conditions controlled experimentally. For example, inde-
pendently on interactions, when strong enough external
magnetic field is applied, the system is forced to polarize,
i.e., all particles occupy only one selected component,
minimizing magnetic energy. The field in which the sys-
tem undergoes the transition to the fully-polarized sys-
tem, of course, depends on mutual interactions between
particles. Moreover, it also strongly depends on external
confinement. First detailed studies of this phenomenon
for the uniform system were given in [205]. Having in
hand the exact form of all the many-body eigenstates
of the system from the Bethe ansatz approach, the au-
thors were able to find different properties of the sys-
tem and predict the critical value of the magnetic field in
which the system becomes fully polarized. The situation
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is much more interesting in the case of confined systems.
In this case, one observes a specific interplay between
interactions, external magnetic field, and the shape of
external confinement in establishing ground-state mag-
netization of the system. As shown in [206], typically the
interacting system undergoes many transitions when in-
creasing magnetic field. At each transition, one fermion
flips its spin and change the total magnetization. How-
ever, when the interacting system is confined in a double-
well potential, it becomes possible that some magnetiza-
tions cannot be reached by the many-body ground-state
and then, in the transition points, simultaneous spin-flip
of two fermions is observed. The problem of the spon-
taneous spin-flip and stability of the ground state was
addressed recently in [207]. This path of exploration of
few-fermion systems is still open and may lead to many
interesting and surprising results (see also [208, 209] for
spin-1 bosonic counterparts).

From this point, we focus on cases where spin can
be treated as an additional and fixed quantum number
which simply distinguishes particles belonging to differ-
ent components. Consequently, the most general Hamil-
tonian for such a system, i.e., system of a few fermions
confined in a one-dimensional trap Vσ(x) and interacting
via contact forces has the form:

Ĥ =
∑
σ

∫
dx Ψ̂†σ(x)

[
− ~2

2mσ

d2

dx2
+ Vσ(x)

]
Ψ̂σ(x)

+
∑
σ 6=σ′

gσσ′

∫
dx Ψ̂†σ(x)Ψ̂†σ′(x)Ψ̂σ′(x)Ψ̂σ(x), (46)

where Ψσ(x) is the fermionic field operator annihilating
a fermion with spin σ at position x. These operators obey
standard fermionic anti-commutation relations{

Ψ̂σ(x), Ψ̂†σ′(x
′)
}

= δσσ′δ(x− x′), (47a){
Ψ̂σ(x), Ψ̂σ′(x′)

}
= 0. (47b)

In the simplest and the most widely studied case, only
two-component mixture is considered. Then the stan-
dard (pseudo) spin-1/2 notation is used (σ ∈ {↑, ↓}). By
decomposing the field operators Ψ̂σ(x) =

∑
b̂iσϕiσ(x),

the Hamiltonian can be rewritten in the more familiar
form

Ĥ =
∑
iσ

Eiσ b̂
†
iσ b̂iσ + g

∑
ijkl

Uijklb̂
†
i↑b̂
†
i↓b̂i↓b̂i↑. (48)

Here, the fermionic operators b̂iσ anihilate a particle with
spin σ in the state ϕiσ(x), which is the eigenstate of the
corresponding single-particle Hamiltonian[

− ~2

2mσ

d2

dx2
+ Vσ(x)

]
ϕiσ(x) = Eiσϕiσ(x). (49)

The amplitudes Uijkl =
∫

dxϕ∗i↑(x)ϕ∗j↓(x)ϕk↓(x)ϕl↑(x)

describe interaction terms between opposite-spin parti-
cles (compare with (28) and note the difference in the
notation due to the additional bosonic factor 1/2).

The Hamiltonian (46) has a few symmetries which sig-
nificantly simplify the analysis of its properties. First
symmetry is related to the conserved number of parti-
cles in each component N̂σ =

∫
dx Ψ̂†σ(x)Ψ̂σ(x) men-

tioned above. It means that the Hamiltonian is block-
diagonal with respect to these numbers. Next symmetry
(permutation of identical particles) reflects the funda-
mental indistinguishability of particles belonging to the
same component. If the shape of the external potential
is symmetric under mirror reflection, x → −x, then the
Hamiltonian has an additional Z2 symmetry. The sym-
metry is guaranteed by the interaction term which, by
its construction, couples only the 4-products of single-
particle orbitals which are even (even sum i+ j+k+ l in
the harmonic oscillator convention). Finally, if an exter-
nal potential is quadratic and spin-independent, then the
motion of the center-of-mass decouples from the internal
motion, i.e., the Hamiltonian has an additional U(1) sym-
metry. Detailed analysis of properties of the Hamiltonian
(46) (in a harmonic trap) in terms of its symmetries was
presented in [210]. As shown, the reduction of the sys-
tem’s states with respect to immanent symmetries of the
Hamiltonian may be very helpful when adiabatic changes
of interaction strength are considered.

In most of the cases, the trapping potential Vσ(x) is as-
sumed as a simple harmonic trap independent on spin
σ. In this case, the motion of the center-of-mass of
the system decouples from the internal dynamics and
the whole discussion can be significantly simplified. For
example, it is possible to determine some well-defined
experimentally accessible quantities determining inter-
nal excitations. This may be a very important question
when experimental outcomes in an attractive interac-
tion regime are analyzed, due to the large uncertainty
of the center-of-mass position [211]. Besides harmonic
confinement, it should be pointed out that, due to re-
cent achievements in trapping techniques, it is also pos-
sible to consider other confinements, like double-well
confinements [17, 212–216], uniform rings [217], one-
side-open wells [20, 218], or even uniform hard-wall box
traps [219, 220], and tunable periodic potentials [221]
etc. In the following we will focus mostly on the har-
monic confinements, however, whenever it is relevant,
we will refer to appropriate discussions for other con-
finements.

B. Inter-particle correlations

When studying different properties of interacting few-
fermion systems, in a full analogy to the bosonic cases,
one focuses only on the simplest quantities which char-
acterize the state of the system, i.e., the single-particle
reduced density matrices

ρ(1)σ (x, x′) =
1

Nσ
〈Ψ̂†σ(x)Ψ̂σ(x′)〉 (50)
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and the density profiles, which are their diagonal parts
n
(1)
σ (x) = ρ

(1)
σ (x, x). Inter-particle correlations in a given

component are encoded in the corresponding k-particle
reduced density matrices, which have the form

ρ(k)σ (x1, . . . , xk, x
′
1, . . . , x

′
k) =

(Nσ − k)!

Nσ!
〈Ψ̂†σ(x1) · · · Ψ̂†σ(xk)Ψ̂σ(x′k)Ψ̂σ(x′1)〉. (51)

However, in the case of fermionic mixtures we are mostly
interested in the inter-component correlations forced by
interactions and the quantum statistics. These correla-
tions are captured dominantly by the inter-component
two-particle reduced density matrix

ρ
(2)
↑↓ (x, y, x′, y′) =

1

N↑N↓
〈Ψ̂†↑(x)Ψ̂†↓(y)Ψ̂↓(y

′)Ψ̂↑(x
′)〉

(52)
and its diagonal part n(2)↑↓ (x, y) = ρ

(2)
↑↓ (x, y, x, y), which

describes the probability distribution of simultaneous de-
tection of opposite-spin fermions. Of course, higher cor-
relation functions, similar to these for intra-component
correlations (51), can also be considered. In practice,
reduced density matrices with k > 2 are very hard to be
calculated (due to the numerical complexity). Therefore,
they receive less attention in literature.

In the case of fermionic mixtures, direct studies of
inter-particle correlations in terms of single- and two-
particle density matrices is much harder than in the case
of bosons. The fundamental reason lies in the additional
correlations forced by Pauli exclusion principle between
indistinguishable fermions. These correlations are re-
flected in density matrices as additionally occupied or-
bitals, exactly the same way as correlations forced by in-
teractions. The latter is of course much more interesting
since their properties are in principle under experimen-
tal control. To overcome this difficulty one needs to find
some convenient way to distinguish these two kinds of
correlations, i.e., to „subtract” trivial correlations forced
by the quantum statistics and remain only with those in-
duced by interactions. One of the simplest way to deter-
mine interaction-induced correlations is to calculate the
difference between diagonal parts of the two- and single-
particle density matrices, called the noise correlations in
position and momentum representation [222, 223]:

Gx(x, y) = n
(2)
↑↓ (x, y)− n(1)↑ (x)n

(1)
↓ (y), (53a)

Gp(px, py) = n
(2)
↑↓ (px, py)− n(1)↑ (px)n

(1)
↓ (py). (53b)

It is quite obvious that in the limit of vanishing interac-
tions both correlations become equal to zero. Note that
Gx and Gp are not connected by a simple Fourier trans-
formation since they are calculated only from the diago-
nal parts of corresponding density matrices.

Since the noise correlations (53) are calculated di-
rectly from the single- and two-particle density pro-
files, they have experimental relevance and, as shown

FIG. 15. Stern–Gerlach detection of different spin components
of 173Yb atoms confined in a quasi-one-dimensional trap for dif-
ferent experimental scenarios resulting in different number of
populated spin components. Figure adapted from [227]. Copy-
right (2014) by the Springer Nature Publishing.

in [224, 225], they may encode many interesting funda-
mental features of interacting fermionic systems which
are „hidden” in bare density matrices. It is worth men-
tioning that some extensions of the noise correlations to
higher-order densities are also possible [226].

C. Higher-spin mixtures

Importantly, it should be pointed out that few-fermion
mixtures with higher spins may also be considered with
a full analogy to spinor bosonic mixtures. This path
of exploration was recently undertaken with more care
due to the beautiful experiments on one-dimensional
fermionic mixtures with internal SU(N) symmetry [227]
(see Fig. 15) with ultracold 173Yb atoms. Due to the high
total spin 5/2, it was possible to prepare the system in
an arbitrary number of spin components (up to 6) and
show how the quantum statistics together with mutual
interactions influence statical and dynamical properties
of the system. It was also shown that in the limit of a
large number of components the system approaches a
bosonic spinless liquid.

On a theoretical footing, first discussions of multi-
component one-dimensional fermionic mixtures were
given in [228, 229] before the Florence experiment (see
also [230] for a different approach to mimic SU(N) sym-
metry with atoms confined in the one-dimensional hard-
wall potential). Here, by considering the system with-
out confinement and based formally on asymptotic ex-
pansions leading to the Fredholm equations, the authors
were able to obtain accurate results for the ground-state
energy in a whole range of interactions and local pair-
correlation function. Interestingly, they show that in the
limit of infinite spin, the energy per particle becomes
equal to that obtained for spinless bosons.

Noticeably, higher-spin mixtures are less sensitive to
the Pauli exclusion principle since there are much more
possibilities for particles to avoid the same sets of quan-
tum numbers. This phenomenological argument was
directly observed experimentally in [227] – the system
with a larger number of components manifests bosonic
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properties more clearly. This is also visible when momen-
tum distribution is considered. For a larger number of
components, the distribution becomes broadened along
with slower decay for high momenta. The detailed multi-
threaded theoretical discussion of this behavior in terms
of the Tan’s contact (for a large number of particles) was
given in [231, 232].

The most comprehensive theoretical studies of higher-
spin fermionic mixtures confined in a harmonic trap in
the few-body regime were given recently in [233]. Us-
ing different theoretical techniques the authors study
many different properties of such mixtures in a whole
range of interactions. One of the prominent results for
the ground-state is that with an increasing number of
fermionic components, in weak as well as in strong in-
teractions regimes, the system much faster approaches
the many-body limit of a large number of particles. It
should be also remarked that the dynamical properties of
the uniformly confined systems, focusing mainly on col-
lective spin-mixing dynamics, were discussed in [234].

In full analogy to the two-component mixtures, in the
limit of infinite repulsions, the ground-state of the system
can be obtained analytically [235]. Depending on the
number of particles and their distribution among compo-
nents, the system displays different spatial patterns and
the ground manifold can be characterized in terms of the
conjugacy class sums (see [236] for more details on the
Lieb-Mattis theorem). A quite similar analysis for the
system confined in a hard-wall potential was presented
recently in [237]. Based on exact solutions in the frame-
work of Bethe ansatz it was shown that the system can be
completely understood in terms of spin-exchange SU(N)
model.

Evidently, the path of exploration of the multi-
component fermionic mixtures is still not closed. Many
theoretical and experimental analysis performed previ-
ously in the many-body limit and higher dimensions are
still awaiting for repetition in the regime of a few-particle
sector in one spatial dimension (for a review for previous
progress see [238]). In the following, we mainly focus on
two-component (pseudo) spin-1/2 fermionic mixtures.

D. Two- and three-fermion cases

Due to the quantum statistics, the many-body spec-
trum of a few interacting fermions has many interest-
ing features. For N↑ = N↓ = 1 it is very similar
to the spectrum of two interacting bosons. However,
since in this case, both particles are fundamentally dis-
tinguishable, besides the symmetric states, antisymmet-
ric combinations (which are completely insensitive to in-
teractions) are also present [239]. Interestingly, in the
limit of infinite repulsion (the TG limit), symmetric and
anti-symmetric states become degenerate (see Fig. 16).
This degeneracy is a counterpart of fermionization de-
scribed previously for bosons and can be quite easily ex-
plained by considering (rescaled) relative and the center-

FIG. 16. Energy spectrum of the two-fermion system confined
in a one-dimensional harmonic trap. In the bottom panel, we
show the analytical expressions for the corresponding wave
functions in the relative (X) and the center-of-mass (R) co-
ordinates. Plots show shapes of relative motion wave functions
(that is, as a function of X). For vanishing interactions (g = 0)
the ground-state wave function is isolated and the first excited
state is doubly degenerated (single excitation of the relative or
the center-of-mass motion). In the limit of infinite repulsions,
the ground-state manifold is doubly degenerated and spanned
by the symmetric and antisymmetric function of the relative
motion. It is very instructive to compare this figure with Fig. 1
where the spectrum of relative motion of two bosons was dis-
cussed.

of-mass motion coordinates (5), X = (x1 − x2)/
√

2 and
R = (x1+x2)/

√
2. Since the first excited state (see panel

(C) in Fig. 16) is antisymmetric in X, it is insensitive to
the interaction strength (for vanishing interactions it is
degenerated with another state – panel (B) in Fig. 16–
which is singly excited in the center-of-mass motion co-
ordinate). Consequently, its energy as a function of g is
constant. Note that its relative motion wave function is
proportional to Xexp(−X2/2). In the limit of infinite in-
teractions, it becomes degenerated with the symmetric
ground-state (D) having relative motion wave function
proportional to |X|exp(−X2/2). These theoretical pre-
dictions for the system of two distinguishable fermions
were carefully examined in the seminal experimental
work [19]. Particularly, it was shown that indeed, in the
limit of strong repulsions, the system undergoes fermion-
ization, i.e., spatial properties of the system are exactly
the same as properties of two identical non-interacting
fermions.

It was argued that the ground-state degeneracy in the
limit of infinite repulsions can be lifted by additional
spin-changing interactions. The simplest way is to ex-
tend the model by adding the spin-orbit coupling to the
single-particle part of the Hamiltonian

ĤSO =

∫
dx Ψ̂

†
(x)

[(
~qr
im

d

dx
+
δ

2

)
σy +

Ω

2
σx

]
Ψ̂(x),

(54)
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where the algebraic vector Ψ̂(x) =
(

Ψ̂↑(x), Ψ̂↓(x)
)T

is
the two-component field operator describing both com-
ponents simultaneously and {σx, σy, σz} is a set of stan-
dard Pauli matrices acting in this two-dimensional al-
gebraic space. Parameters qr, δ, and Ω encode the
strengths of the different spin-orbit coupling processes
(two-photon recoil momentum, two-photon detuning,
and the Raman coupling strength, respectively). The re-
sulting energy spectra in the case of two particles were
carefully examined in [240] (see also [241] for a very
nice description in a corresponding two-dimensional sys-
tem of two particles). The detailed analysis of the in-
terplay between contact interactions and spin-orbit cou-
pling and changes of the different properties of the sys-
tems with larger number of particles (for fermions as
well as for bosons) were given in [242], [243], [244],
and [245].

As long as particles belong to different spin compo-
nents, the properties of the system are not affected by the
quantum statistics. In this spirit, the system of three dis-
tinguishable particles (belonging to three different com-
ponents) was also studied analytically in the vicinity of
infinite repulsions [246]. Since particles are completely
distinguishable, in this limit the ground state is six-fold
degenerated.

The simplest nontrivial system affected by the quan-
tum statistics is a two-component mixture of N↑ = 2 and
N↓ = 1 fermions. In this case, in contrast to two or
three different fermions cases, the ground state is only
three-fold degenerated in the limit of infinite repulsions.
The first analysis of properties of the system in the vicin-
ity of the TG limit was presented in [247]. For inter-
mediate interactions, although properties of this system
cannot be fully analyzed analytically, the description be-
comes quite simple when appropriate Jacobi coordinates
(a generalization of the two-particle relative and center-
of-mass coordinates) are used. More detailed discussion
along this path was given in two papers [248, 249] (see
also [250] for considerations in the framework of the hy-
perspherical formalism) where many different features
of the system were described and compared with pre-
dictions of the exact diagonalization approach. In ad-
dition, it was shown, that the method can be also ap-
plied when the additional ↓ particle has different mass
(see also [186] described in Sec. II for three- and four-
particle cases discussed in Born-Oppenheimer approxi-
mation and appendix A).

E. Impurity in the Fermi sea

Before we discuss few-fermion systems with a larger
number of particles in both components let us first men-
tion the intermediate case of single impurity immersed
in the Fermi sea composed from a larger number of
fermions. The problem of a single impurity interacting
with many opposite-spin fermions is not only a theoret-

FIG. 17. Experimentally measured interaction shift in the sys-
tem of an atom repulsively interacting (g = 2.8) with a meso-
scopic Fermi sea formed by N = 1, . . . 5 fermions. Figure
adapted from [15]. Copyright (2013) by the American Asso-
ciation for the Advancement of Science.

ical divagation. Recently, it was deeply studied exper-
imentally with 6Li atoms [15]. In this beautiful exper-
iment, the interaction energy was directly measured as
a function of increasing number of particles forming a
Fermi sea (see Fig. 17). It was argued that, for weak
interactions, along with increasing number of particles,
the interaction energy rapidly converges to the value
predicted by the polaron-like description [251–253] and
surprisingly, already for N ' 5 particles, the system re-
sembles the many-body limit. Contrary, for very strong
interactions, when the fermionization limit is achieved
and the polaron-like approach breaks down, the system
behaves like a system of N + 1 non-interacting fermions.
The transition between these two natural limits of inter-
actions was studied theoretically with different numeri-
cal methods: the local density approximation and diffu-
sion Monte-Carlo techniques [253], perturbative expan-
sions in the weak and strong interaction limits [254], and
an effective spin model in the limit of strong repulsions
[255]. At this point it is worth to mention that in the
limit of strong repulsions many different properties of
a fermionic system can be determined by considering an
effective single-particle description based on the assump-
tion that each particle is immersed in the Fermi sea (for
details see [256]). Finally, let us also mention that some
extension of the problem to the case of two impurities
immersed in the few-fermion sea was addressed recently
[257].

F. Mixtures close to infinite repulsions

For a larger number of particles, the situation becomes
much more interesting [258–260], as there is much more
freedom to choose symmetric and antisymmetric combi-
nations between distinguishable particles (see Fig. 18).
In consequence, in the limit of strong repulsions (TG
limit) the degeneracy of the ground-state become much
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FIG. 18. Spectrum of the many-body Hamiltonian (46) for
different number of equal mass fermions confined in a har-
monic trap. Note the quasi-degeneracy of the spectrum in the
strong repulsion regime. Figure adapted from [259]. Copyright
(2013) by the American Physical Society.

larger and can be expressed by the combinatorial fac-
tor D =

(N↑+N↓)!
N↑!N↓!

(see [261] for details). It is worth to
underline that all considerations about the degeneracy
of the many-body spectrum in the TG limit are valid for
any reasonable one-dimensional external trapping since
they originate in the fundamental inter-component sym-
metries of the system [262].

Typically, in the theoretical approaches, only the
ground-state properties of the system are considered.
However, this unusual quasi-degeneracy in the limit of
strong repulsion may have some applications. For ex-
ample, as discussed in [259, 263], whenever such a sys-
tem is in thermal equilibrium with some external thermal
bath, its measurable properties are very sensitive to any
changes in the temperature. Therefore, the system of a
few fermions may be used for very sensitive thermometry
in the nK regime.

Similarly to the bosonic case, fermionic systems in
the limit of infinite repulsions attract a lot of atten-
tion. In this limit (called full fermionization in the
previous section), exact forms of all many-body eigen-
states are known. The argumentation is very similar to
that adopted for bosons in Sec. II. Indeed, as shown in
[261, 264], the many-body wave function in the position
domain Ψ(x1, σ1, . . . , xN , σN ) has to fulfill two boundary
conditions. The first condition, forced by the Pauli ex-
clusion principle, acts in the subspace of particles hav-
ing the same spin and has a form Ψ|xi=xj ;σi=σj = 0.
Additionally, the second condition caused by infinite re-
pulsion affects pairs of opposite-spin particles and reads

Ψ|xi=xj ;σi 6=σj = 0. Both conditions lead directly to the
generalized condition Ψ|xi=xj = 0 independently on the
particles’ spin. It means that the wave-function can be
expressed as the Slater determinant of the correspond-
ing single-particle states with appropriate symmetriza-
tion between components assumed

Ψ(x1, . . . , xN ) ∝ S
(

det [ϕi(xj)]
i=0,...,N−1
j=0,...,N−1

)
, (55)

where S(.) is the symmetrization operator in the appro-
priate subspaces of distinguishable fermions of opposite
spins. In the one-dimensional case, the vanishing of the
wave function forced by infinite repulsions and the Pauli
principle has fundamental consequences for the spatial
distributions of particles. Namely, the particles cannot
exchange their positions and therefore their spatial or-
der becomes fixed. Consequently, in the limit of infinite
repulsions, the ground-state manifold is spanned by the
many-body states of given order – each having appropri-
ate modulations in the components densities [265, 266].
In this limit, the Hamiltonian can be written as a sum of
independent Hamiltonians acting in the subspaces of a
given order.

The observation outlined above is essential for treat-
ing the system perturbatively for strong but finite inter-
actions. In the series of several papers of independent
theoretical groups [267–270] it was argued that any de-
viation from the infinite interactions lifts the ground-
state degeneracy and the first-order corrections in 1/g
can be written effectively (depending on a sign of g)
as the anti-ferromagnetic or the ferromagnetic Heisen-
berg model with interactions proportional to 1/g (see
Fig 19). In the point 1/g = 0, the system undergoes the
specific transition between two orderings. Importantly,
the resulting model is not translationally invariant, i.e.,
the exchange coefficients between effective spins depend
on their positions and they are determined by the shape
of an external confinement [271]. A detailed numeri-
cal algorithm to compute these coefficients was given in
[272]. Moreover, as shown recently in [273], exchange
coefficients in an effective spin model non-trivially de-
pend on the transverse confinement and maybe engineer
also by tuning perpendicular degrees of freedom. Gen-
eralization to higher spin representations was discussed
recently in [274].

Recently, the theoretical concept of spin-chain rep-
resentation of strongly interacting fermions was exam-
ined experimentally with fermionic mixtures having up
to four atoms [16]. It was the first in-situ observation
of the quantum magnetism forced by many-particle cor-
relations of order higher than two. With this experi-
mental verification, it becomes realistic to consider one-
dimensional systems of strongly interacting atoms as tun-
able quantum simulators for different spin-chain models.
Particularly, they may have an important impact in the
area of state preparation and the state transfer. As shown
in [275, 276], by tuning the shape of the external con-
finement, it might be possible to transfer on demand the
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quantum state between the edges of the chain with al-
most perfect fidelity. It may shed some new light on the
problems of quantum memories and quantum communi-
cation and it leads directly to the idea of another exper-
imental possibility for constructing a quantum transistor
[277].

For completeness, at this point we should also men-
tion that a very similar analysis can be done for two-
component bosonic mixtures [173], multi-component
bosonic mixtures [278], as well as Bose-Fermi mixtures
(see Sec. IV for strongly interacting Bose-Fermi mix-
tures). It turns out that in all these cases, in the limit
of very strong inter-component repulsions (and appro-
priately chosen intra-component couplings) a very simi-
lar effect of spatial separation appears in the system and,
as a consequence, many system’s properties can also be
well-described in the language of an effective spin model
[279, 280]. A very nice summary of all these findings for
one-dimensional systems of strongly interacting atoms
having arbitrary spin was given recently in [281]. Ad-
ditionally, the role of spin-orbit coupling in destroying
the spin structure is also discussed there.

G. Intermediate interactions

On a theoretical footing one of the most challenging
tasks is to determine different ground-state properties in
the regime of intermediate repulsions, i.e., when inter-
actions are too strong to treat the system perturbatively
around the non-interacting system and too weak to per-
form perturbation analysis around the infinitely repul-
sive system as described above. In this regime of in-
teractions, if the system is confined, we do not have in

N↑ = N↓ dim(Ĥ) Sparsity

1 2025 5.1 · 10−1

2 4356 5.6 · 10−2

3 48400 9.3 · 10−3

4 245025 2.7 · 10−3

5 627264 1.3 · 10−3

TABLE I. The size of the cropped many-body Hilbert space and
the sparsity of the Hamiltonian matrix (relative number of non-
zero elements) as functions of the number of fermionsN↑ = N↓
for cut-off M = 12. Note the tremendous expansion of the
size of the Hilbert space along with decreasing sparsity of the
matrix.

our arsenal many theoretical tools to predict properties
of the fermionic system. Of course, one can still try to use
different methods which are suited rather for lattice sys-
tems [282] or some effective approaches based on uni-
tary transformations over known two-particle solutions
[283]. However, their applicability is limited in the most
interesting cases.

The most straightforward method to obtain an approx-
imate description of the system’s eigenstates is to per-
form numerical diagonalization of the Hamiltonian in
some selected many-body basis. The simplest way is
to construct such a basis as a finite set of Fock states
build from the M lowest lying single-particle orbitals
ϕiσ(x) used in the decomposition of the field operator
Ψ̂(x). Since the single-particle part of the Hamiltonian
is diagonal in this basis, the only non-trivial task re-
lays on calculating all matrix elements of the interac-
tion Hamiltonian. Fortunately, in typical situations the
resulting matrix is very sparse (see Table I for examples)
and therefore the diagonalization can be performed for
several particles and quite strong interactions with ad-
vanced Lanczos algorithm. Typically one has this scheme
of diagonalization in mind when the exact diagonaliza-
tion of the many-body Hamiltonian is mentioned. How-
ever, it is known that this construction of the many-body
Fock basis is not the most efficient since it takes into
account high-energy states in a very unsystematic way.
In consequence, the convergence of the method is very
slow. To solve this problem, a few different numerical
approaches were introduced. One of them is based on
a much more careful choice of the Fock states to con-
struct a cropped Hilbert space in which the diagonaliza-
tion is performed [284] (see also [285] for a pedagogi-
cal explanation). Other is based on an observation that
the single-particle orbitals of the non-interacting system
ϕiσ(x) are not well-optimized when quite strong inter-
actions are considered. The convergence can be signifi-
cantly speed-up if orbitals were slightly modified to en-
code shrinking (attractions) or expanding (repulsions)
spatial size of the system induced by interactions. Re-
cently, the method was used in the case of few bosons
problems [151]. However, it can be straightforwardly



26

FIG. 20. Single-particle density profile of N/2 = N↑ = N↓
fermions confined in a harmonic trap obtained for the ground-
state of an interacting system with coupled cluster method. (a)
Density profiles for interaction g = 1 and a different number of
particles. (b) Density profiles for N = 10 and different interac-
tion strengths. Figure adapted from [286]. Copyright (2015)
by IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

adapted for fermionic systems. At this point it should be
noticed that a relatively slow convergence of the exact di-
agonalization approach is predominantly determined by
a nature of contact interactions leading to non-analytical
cusps of the relative-motion wave functions. As shown
in [152], by performing appropriate transformation of
the many-body Hamiltonian one can remove the leading-
order singularity forced by interactions. Consequently
the convergence of the exact diagonalization approach is
significantly improved.

Due to the mentioned tremendous expansion of the
Hilbert space with the number of particles, the exact di-
agonalization of the many-body Hamiltonian (46) can
be performed numerically only for relatively small num-
ber of particles. As shown recently, other numerical ab
initio methods, intensively exploited in quantum chem-
istry, can be adapted to study problems with a much
larger number of fermions. In the introductory paper
[286] (and later in [287]) the authors explain in de-
tail many different numerical approaches, compare their
accuracies, and finally use them to obtain the simplest
single-particle properties of the system containing up to
80 fermions (see Fig. 20 for some examples).

Instead of applying quantum chemistry approaches
to the problem of a few interacting fermions one can
consider an approach based on the famous Kohn-Sham
density-functional theory [288]. Since in this framework
it is natural to express the energy functional in terms of
exchange and correlation energy functionals, then one
can explore more deeply the role of interactions and
quantum statistics in forming bulk properties of interact-
ing ground-state of the system [289]. Of course in this
approach, there are no numerical problems with a very
large number of particles. Here, we want also to men-
tion other more sophisticated method based on the com-
plex Langevin approach [290, 291], which in principle
can be applied to many different problems of interacting
fermions.

Another possible direction is to use some variational
schemes. Since the ground-state of an interacting one-

dimensional system is non-degenerated for any finite g,
the variational approach is very fruitful and may give
accurate predictions for the simplest measurable quan-
tities. For example, having in hand the exact form of the
ground-state for vanishing interactions |Ψ0〉 and appro-
priate combination for infinite repulsions |Ψ∞〉 one can
propose a very simple variational trial function (called
interpolatory ansatz) of the form:

|Ψ(g)〉 = α(g)|Ψ0〉+ β(g)|Ψ∞〉. (56)

Note that the extreme ground states are not orthogonal
and therefore amplitudes α(g) and β(g) do not fulfill
standard normalization conditions. By minimizing the
expectation value of the Hamiltonian one can find the
approximation of the many-body ground state and cal-
culate all quantities needed. This path of exploration
was initialized in [292], where the systems of N↑ = 1
and N↓ = 1, . . . , 5 were examined in this way. By study-
ing different examples, also for N↑ = 1, N↓ = 2 particles
with different masses, it was shown that the ansatz re-
stores the many-body spectrum in a whole range of in-
teractions with very good accuracy. It should be under-
lined, however, that in fact the ansatz (56) cannot be
used directly and it needs some technical improvements
to describe the perturbative regime 1/g ≈ 0 correctly.
The improvements are also discussed in [292].

Initially, the accuracy of the ansatz (56) was tested
only on the energy spectrum basis. However, it is known
that different variational approaches may give reason-
able energies but predict other quantities less accurately.
To show that the ansatz appropriately determines differ-
ent experimentally accessible quantities, in [293], a com-
prehensive discussion of the interpolatory ansatz’s accu-
racy for N↑ = N↓ = 2 particles was given. By calculat-
ing different single-particle and two-particle quantities,
as well as projections to the non-interacting Fock states,
it was shown that the ansatz surprisingly well predicts
all these quantities also for different mass systems. To
some extent, it is also possible to adopt the density ma-
trix renormalization group scheme to study properties of
confined few-particle systems. The method is however
limited (similarly as exact diagonalization) to not too
strong repulsions. A detailed comparison between this
approach, exact diagonalization, and the interpolatory
ansatz variational method was given in [294].

In the range of intermediate interactions, the varia-
tional approach can also be realized in a more standard
way. Simply, one postulates some family of many-body
states |Ψα〉 parametrized by a variational set of parame-
ters α = (α1, α2, . . .) and then minimize the energy func-
tional

E(α) =
〈Ψα|Ĥ|Ψα〉
〈Ψα|Ψα〉

(57)

to find the best approximation for the many-body
ground-state. As discussed in [295], in the case of two
particles (N↑ = N↓ = 1) in a harmonic trap, the situation
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is quite simple since one can decouple the center-of-mass
motion and adopt a variational method to the relative
motion only. Of course, in the case of a larger number of
particles, the problem is much more complicated since
one needs to find an appropriate family of many-body
functions which captures appropriately not only the cor-
relations forced by interactions but also those which are
induced by symmetrization conditions under exchange
of same-spin fermions.

One of the possible approaches is to go along the Jas-
trow ansatz scheme [296] which assumes that all inter-
particle correlations can be well-approximated by a prod-
uct of two-particle correlations. In the case of two-
component fermionic mixtures, this idea is captured by
the ground-state wave function

Ψ(r↑, r↓) ∼ Φ↑(r↑)Φ↓(r↓)
∏
i,j

ϕ(x↑i − x
↓
j ), (58)

where rσ = (x1σ, . . . , xNσ) are algebraic vectors com-
posed from the positions of all fermions of given spin
σ, Φσ are many-body wave functions for different com-
ponents σ (they encode appropriately symmetry con-
ditions under exchange of indistinguishable fermions),
and ϕ is the pair-correlation function encoding the
inter-component two-body correlations. In general, all
these functions can be treated as many-parameter vari-
ational probe functions. However, in the case of one-
dimensional fermionic mixtures confined in a harmonic
trap (where the analytical solution of the two-particle
problem is known) one can propose a quite simple family
of functions Φσ and ϕ which results in the ansatz having
the following properties: (i) in the case of N↑ = N↓ = 1
the ansatz restores the exact solution for any interaction
strength, (ii) for arbitrary number of particles the ansatz
restores the solution in g = 0 and g → ∞. A detailed
description of this construction is given in [297]. It is
also worth noting that recently in [298], it was argued
that the modified Jastrow approach having also these
two properties can be significantly simplified and also
nicely extended to other trapping potentials.

H. Attractive forces

In the case of interacting fermions, one can consider
also the attractive branch of inter-particle forces (g < 0).
It is justified since, due to artificial repulsions caused by
fermionic statistics, the system (more likely than bosonic
system) avoids the density collapse and its ground-state
remains stable. Quantum simulation of fermionic mix-
tures with attractive forces is quite interesting from both
theoretical and experimental points of view since the
problem directly corresponds to the very old idea of
Cooper pairing [299] – the fundamental block of the the-
ory of superconductivity. Moreover, for imbalanced sys-
tems, it may shed some light to different mechanisms
of unconventional superconductivity. In the case of one-
dimensional confined systems, the situation is even more

interesting since standard approaches to the supercon-
ductivity assume homogenous and three-dimensional ar-
rangement. From the perspective of few-body problems
a natural question which can be addressed in this context
is related to the number of particles needed to force the
system to form strongly correlated pairs in a collective
manner (see [300] for considerations for three fermions
case).

One of the first experiments on attractive ultra-
cold fermionic mixtures confined in an array of one-
dimensional tubes was performed with 6Li atoms in 2010
[13]. In this experiment, it was shown that, for spin-
imbalanced mixtures, inter-particle correlations are in
accordance with theoretical predictions, i.e., the results
may serve as some indirect proof for unconventional su-
perconductivity. Two years later, the few-body regime
was achieved with the same atoms in J. Selim’s group
[19, 20]. The experiments proved that attractive one-
dimensional systems of a few fermions can be precisely
prepared. By probing tunneling dynamics of an interact-
ing system it was shown that attractions lead to substan-
tial changes in observed probability distributions forced
by pairing correlations. The first theoretical description
of the tunneling dynamics was given in [22].

On theoretical footing, these general questions on
pairing in few-fermion ultracold systems were addressed
in two independent theoretical papers [301, 302].
Based on the exact diagonalization of the Hamilto-
nian (46) (with equal masses and harmonic confine-
ment) both groups found correlations between opposite
spin fermions which emerge when attractive forces are
present. In [302] these correlations are quantified in
terms of the conditional probability of finding opposite-
spin fermions at given positions. By integrating out the
center-of-mass of the appropriate pair-correlation func-
tion is determined. The paper focuses also on the pairing
gap, understood as an energy loss or gain when addi-
tional unpaired fermion is present or absent in the mix-
ture. These predictions for even-odd effect are in ac-
cordance with the corresponding experimental results in
[20].

The theoretical strategy proposed in [301] is dif-
ferent and it is based on the properties of the re-
duced two-particle density matrix of opposite fermions
ρ
(2)
↑↓ (x, y, x′, y′). It is shown that the fraction of Cooper-

paired fermions, defined as the value of the dominant
eigenvalue of this matrix, rapidly increases with increas-
ing attractions in the system. At the same time, clearly
visible correlations in positions and anti-correlations in
momenta appear in the corresponding dominant orbital
(see Fig. 21). With this strategy, it is quite easy to deter-
mine properties of correlated fermions when the system
is prepared not in the ground state, but in the thermal
mixed state of many-body eigenstates. It was shown that
the fraction of paired fermions decreases with tempera-
ture in accordance with predictions of the theory of su-
perconductivity.

Due to experimental progress [20], some larger at-
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FIG. 21. (Upper panel) The largest eigenvalues of the two-
particle reduced density matrix ρ

(2)
↑↓ as function of attractive

interactions strength g. Note that, for increasing attractions,
one of the eigenvalues strongly dominates in the system. (Bot-
tom panel) Spatial (left) and momentum (right) density distri-
bution of the dominant orbital in the strong attraction regime
g = −10. Note the strong correlations in positions and strong
anti-correlations in momenta. Results obtained for N↑ = N↓ =
N/2 = 4 fermions. Figure adapted from [301]. Copyright
(2015) by EPLA.

tention was also dedicated to the parity problem in at-
tractive systems. As mentioned above, the first theoreti-
cal considerations in this direction were given in [302],
where the fundamental energy gap is predicted to have a
characteristic alternating sign with respect to the parity
of the number of particles. This non-monotonic behav-
ior of the gap is a direct consequence of the many-body
ground-state energy which is not a convex function of
the particle number. It shows that attractive forces lead
to very non-trivial correlations between particles lower-
ing the energy. This parity effect was addressed in a more
comprehensive way in the recent work [303]. Based on
the perturbation theory and path integral approaches,
the authors calculate the parity parameter [304] in the
weak attraction regime. Treating this quantity as an ap-
propriate order parameter, they showed that its behav-
ior for a few-fermion system is fundamentally different
when compared to systems with a macroscopic number
of particles.

Quite a different approach to imbalanced fermionic
mixtures was presented in [305], where systems with
additional unpaired fermion were analyzed. Based on
a description in the language of the reduced two-particle
density matrix, it was shown that in the case studied,

the pairing between fermions of opposite spins has com-
pletely different features that in the balanced case. Al-
though for small attractive forces the two-particle orbital
of correlated pairs indeed dominates in the many-body
ground-state of the system, for strong interactions (far
from the perturbative regime) another two-particle or-
bital, which does not manifest any significant pairing
correlations, has the major contribution. It may suggest
that a relevant description of the system in terms of the
Cooper mechanism can be appropriate only in the per-
turbative regime of weak attractions. In a similar con-
text, inhomogeneous superfluid pairing analogous to the
Larkin-Ovchinnikov state was examined in [306].

Complementary studies for attractively interacting sys-
tem confined in a box potential were presented in
[307, 308]. Here, based on the Monte Carlo calcula-
tions in the real space, the authors explored different
properties of the system. It was shown that the hard-
walls lead directly to specific oscillations in density pro-
files (Fiedel oscillations) which in the presence of attrac-
tions change their pattern. This behavior is understood
as a manifestation of pairing correlations. The analysis is
nicely extended to the whole single-particle density ma-
trix and adapted also to the momentum distribution. As
shown, the distribution rapidly changes at the Fermi sur-
face reflecting interaction effects. The authors analyze
also short-distance behavior in terms of the Tan’s con-
tact density [309] encoding on-site pairing correlations.
Let us also mention that a comprehensive description of
few-fermion systems confined in finite-box with periodic
boundary conditions (in terms of one- and two-body re-
duced density matrices) was presented in [310].

Finally, a very nice extension of the attractively inter-
acting fermions in one dimension was given in [311],
where instead of s-wave contact forces p-wave interac-
tions were considered. Since this work is closely re-
lated to other scenarios exploiting p-wave interactions,
we briefly discuss these results in the appropriate con-
text (see subsection V A).

I. Different mass fermions

Due to a strong experimental motivation [203, 204],
the properties of fermionic mixtures of atoms having dif-
ferent masses are also widely studied. First, it is known
that, in the case of a homogenous system, as shown in
[313, 314], a specific spatial separation in the single-
particle density profiles occurs whenever the mass im-
balance is sufficiently large. This behavior of the system
strongly depends on the dimensionality and, in the case
of one-dimensional systems, it has completely different
properties than its three-dimensional counterpart. Along
with this path, using second-order perturbation theory, a
deep analysis of such systems was performed, the ther-
modynamic equation of state was derived, and canonical
phase diagrams for various mass ratios were determined
in [315].
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FIG. 22. Single-particle densities calculated in the ground state of four fermions (for N↑ = 3 and N↓ = 1) confined in a harmonic
trap for different interactions and mass ratios α . For equal masses, the separation occurs in the species with the larger number
of atoms (blue thin line). For the mass-imbalanced system (α = 40/6), always the lighter component (red thick line) undergoes
separation. Figure adapted from [312]. Copyright (2016) by IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Although the mentioned results were obtained for sys-
tems in the thermodynamic limit, they motivated for sim-
ilar research in the context of few-fermion systems. The
very first analysis of the role of a mass difference (and
also trap imbalance) was performed in the case of a
two-component mixture of a few fermions confined in
a three-dimensional spherical harmonic trap [316]. In
the case of a one-dimensional harmonic oscillator, a com-
prehensive analysis was done in [312]. It was predicted
that, independently on the number of particles in partic-
ular components, for strong enough repulsions the den-
sity profile of the lighter component is split to two do-
mains which are pushed out from the center of the trap.
At the same time, the density profile of the heavier com-
ponent remains localized in the center. In contrast to
the separation driven by the imbalance in the number
of equal-mass fermions predicted in [265], this behavior
is found to be very robust to imperfections of the state
preparation with domains having borders clearly visible
(see Fig. 22).

The properties of the separation of the density pro-
files induced by the mass difference between atoms be-
longing to different spin-components strongly depend on
the shape of the external potential. This fact is a di-
rect manifestation of the specific competition between
the single-particle part of the Hamiltonian and the inter-
action terms which have different properties in different
confinements. Note that, in the case of harmonic confine-
ment, single-particle excitations are completely insensi-
tive to the particle’s mass (as long as both components
are confined in the same-frequency trap). The only dif-
ference is present in the shapes of the single-particle or-
bitals which lead to different interaction integrals. In
contrast, in the hard-wall box potential, orbitals’ shapes
remain unchanged but the single-particle spectrum is af-
fected by the mass difference. As argued in [220], these
observations are directly responsible for separations of
different components in different shapes of external con-
finement. Moreover, when the shape of the trapping

potential is adiabatically changed, the system may un-
dergo a specific transition between different orderings.
This transition has many interesting features which can
be understood in the language of the critical transition
phenomena.

Finally, let us note that the phase separation in binary
mixtures induced by a different mass of atoms is a very
general phenomena and it is present also for bosonic or
mixed statistics. Some preliminary comparison of the ef-
fect for few-atom systems confined in a one-dimensional
flat box potential, with special attention dedicated to
spatial structures of density profiles, was given recently
in [317].

A mass difference between atoms belonging to differ-
ent components plays also a crucial role when attractive
interactions are taken into account. It is directly related
to the problem of pairing described in the previous sub-
section, which for different mass fermions has funda-
mentally different properties and is considered as one
of the models leading to unconventional superconduc-
tivity [318] (see also [319, 320] for specific reviews). In
the one-dimensional few-body regime appropriate theo-
retical predictions were presented in [321] for mixtures
confined in a harmonic trap. The whole discussion was
based on the inter-particle correlations encoded in the
momentum noise correlation, Eq. (53b). It was shown
that along with increasing mass ratio µ, the pairing corre-
lations are strongly suppressed and the components be-
come almost uncorrelated, i.e., some kind of phase sepa-
ration occurs in the system. Moreover, for the unexpect-
edly small mass ratio (around µ ≈ 2) the ground state
can be well approximated by the product of the non-
interacting ground state of the heavier component and
some well-defined many-body state of lighter fermions.
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IV. BOSE-FERMI MIXTURES

After discussing bosonic and fermionic few-body sys-
tems, here we focus on few-body mixtures of mixed
statistics, i.e., situations when particles belonging to dif-
ferent component have different statistics – the Bose-
Fermi mixtures (for current experimental situation see
[322]). These mixtures form a specific bridge between
purely bosonic and purely fermionic mixtures. A deep
understanding of their properties forced by interactions
and the specific role of the quantum statistics may be
very helpful in many different contexts.

In the simplest case one considers a two-component
Bose-Fermi mixture, i.e., the system composed from NF

fermions and NB bosons. The Hamiltonian of such sys-
tem can be written in the form

Ĥ =

∫
dx Ψ̂†(x)

[
− ~2

2mF

d2

dx2
+ VF(x)

]
Ψ̂(x)

+

∫
dx Φ̂†(x)

[
− ~2

2mB

d2

dx2
+ VB(x)

]
Φ̂(x)

+

∫
dx Φ̂†(x)

[
gBF Ψ̂†(x)Ψ̂(x) +

gBB
2

Φ̂†(x)Φ̂(x)
]

Φ̂(x)

(59)

where mF (mB) denotes the mass of a fermionic
(bosonic) atom, while Ψ̂(x) and Φ̂(x) are fermionic
and bosonic field operators obeying standard (anti-
)commutation relations{

Ψ̂(x), Ψ̂†(x′)
}

=
[
Φ̂(x), Φ̂†(x′)

]
= δ(x− x′), (60a){

Ψ̂(x), Ψ̂(x′)
}

=
[
Φ̂(x), Φ̂(x′)

]
= 0. (60b)

Inter-particle interactions are controlled by two param-
eters gBB and gBF describing the strength of the con-
tact intra-component boson-boson and inter-component
boson-fermion forces, respectively. Of course the Hamil-
tonian commutes independently with the operators of
the total number of fermions N̂F =

∫
dx Ψ̂†(x)Ψ̂(x) and

bosons N̂B =
∫

dx Φ̂†(x)Φ̂(x). Therefore, its proper-
ties can be analyzed in the subspaces of fixed NB and
NF. Note that, in the simplest case, one neglects intra-
component interactions for fermions from the same rea-
sons they were neglected for pure fermionic mixtures in
Sec. III. At this point we want to point out that in many
theoretical divagations on Bose-Fermi mixtures two very
important simplifications are assumed. First, typically it
is assumed that bosons and fermions have exactly the
same mass, mB = mF. From the experimental point of
view, one should note that, in fact, it is very challenging
to find such mixtures since only isobars of different ele-
ments may have this property. In practice, equal mass
assumption is fulfilled only approximately. For exam-
ple in the case of 6Li-7Li mixture [323, 324] the devi-
ation is quite large, mB/mF ≈ 7/6, while in the case of
heavy mixture 173Yb-174Yb [325] one finds almost per-
fect equality, mB/mF− 1 < 0.6%. For intermediate cases

FIG. 23. Schematic phase diagram of the Bose-Fermi mix-
ture in the limit of strong repulsion. Depending on the ratio
η = |gBF |/gBB and the sign of the boson-fermion interac-
tion strength gBF , the system is effectively described by differ-
ent spin-chain models. Figure adapted from [331]. Copyright
(2017) by the American Physical Society.

40K-41K [326] or 86Rb-87Rb deviations are less than 5%.
Of course the assumption of equal mass is completely
not justified in other Bose-Fermi mixtures like 40K-87Rb
[327], 6Li-23Na [328], or 6Li-133Cs [329]. Second, it is
assumed that both components experience the same ex-
ternal trapping potential. In principle, different elements
response differently to optical pokes and introducing ef-
fectively the same external trapping for both components
may be very challenging. Both simplifications should
be treated carefully when precise calculations for experi-
mental setups are performed, since they introduce addi-
tional non-trivial symmetries to the Hamiltonian which
are not present in realistic systems [330].

First, let us discuss the properties of the few-body
Bose-Fermi mixtures in the limit of very strong interac-
tions, i.e., when interactions |gBB | and |gBF | tend to in-
finity. To formally consider this limit, let us assume that
all particles have the same mass m = mB = mF and
they experience the same harmonic potential VF(x) =
VB(x) = mω2x2/2. Then we can express all quantities in
natural units of the harmonic oscillator and remain with
only two dimensionless interaction couplings (expressed
in units of ~

√
~ω/m) which can be considered as close

to infinity. Consequently, according to the classification
done in section II, we can consider the four limits:

• the ideal gas limit, when gBB = gBF = 0,

• TG limit, when gBB →∞ and gBF = 0,

• the phase separation limit (PS), when gBB = 0 and
gBF →∞,

• the full fermionization limit (FF) when both gBB →
∞ and gBF →∞.
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The ideal gas limit is trivial, and the wave function of
the many-body ground state of the system can be eas-
ily written as a product of wave functions of NB non-
interacting bosons and NF non-interacting fermions

ψ(rB, rF) = Φ0(rB)Ψ0(rF) (61)

where rB = (x1, . . . , xNB) and rF = (y1, . . . , yNF) are po-
sition vectors of bosons and fermions respectively, while
Φ0(rB) ∝ exp(−r2B/2) and Ψ0(rF) is given by (55). The
TG limit is also trivial since in this case the system is
a composition of two completely independent gases –
a non-interacting fermionic gas and a single-component
bosonic gas in the TG limit.

In the PS limit, the many-body ground state manifests
a specific phase separation in the ground-state density
profiles [331]. Namely, the ideal gas of bosons occu-
pies the vicinity of the center of the trap, while the den-
sity profile of the non-interacting fermionic component
is split into two parts, which are pushed out to the edges
of the system to assure minimization of the interaction
energy. This behavior of the system is a spectacular man-
ifestation of the quantum statistics showing that, in the
case of two mutually interacting ideal gasses, different
scenarios are attributed to bosonic and fermionic com-
ponents.

In the case of the full fermionization limit of Bose-
Fermi mixtures, the first theoretical analysis in a har-
monic trap was given in [163], [332] and [165]. In
this limit, due to infinite repulsion between bosons
the system’s wave function need to fulfill the condi-
tion ψ(rB, rF) = 0 whenever xi = xj . Similarly,
due to infinite repulsion between bosons and fermions,
ψ(rB, rF) = 0 whenever xi = yj . Finally, due to the
fermionic statistics, ψ(rB, rF) = 0 whenever yi = yj . All
this means that, in this particular limit, the total wave
function can be constructed from the purely fermionic
wave function (the Slater determinant) for all N =
NB + NF particles provided that the appropriate sym-
metrization within bosonic positions will be applied, i.e.

ψ(rB, rF) = SB
(

det [ϕi(rj)]
i=0,...,N−1
j=0,...,N−1

)
, (62)

where SB is the symmetrization operator imposing the
positive sign over the wave function whenever two
bosons have interchanged positions. One should point
out that there is not any symmetrization condition when
the position of a boson is interchanged with the posi-
tion of a fermion in the determinant. Therefore, in the
FF limit, the ground state has a large degeneracy, equal
to N !/(NBNF). A complete classification of these states
from the immanent symmetries of the system is given
in [333] while in [334] it is discussed how the degener-
acy of the ground manifold is lifted when the interactions
are large but finite.

As discussed above, the system is controlled by two in-
dependent dimensionless quantities η = |gBF |/gBB and
the sign of gBF . Therefore, one can approach the limit of

strong repulsion in many different ways. It is clearly vis-
ible when the description of the system is carried out in
the appropriate spin-chain representation. In fact, in the
vicinity of infinite interactions, similarly to the case of
fermionic mixtures, any Bose-Fermi system can be effec-
tively described in this language [331, 335]. In this case,
however, the type of the resulting spin-model strongly
depends on the two parameters mentioned (see Fig. 23).

The particular case of NB = NF = 2 particles is stud-
ied in [165] from the spatial densities point of view and
linked to different orderings of bosons and fermions in
the simplest case of η = 1. The same case is also nu-
merically studied in [336]. Here, the authors find again
strong indications of density separation, and differences
in the odd-even number of atoms case (an effect already
noted in [165]).

A detailed study of the transition from the limit of ideal
gases (gBB = gBF = 0) to the FF limit (with η = 1)
is provided in [337] with the density functional theory,
up to NB = NF = 10 atoms. Interestingly, the authors
show how the majority of bosons become concentrated
in the center of the trap while fermions are pushed out
to the edges as interactions are increased. Comprehen-
sive analysis of the system’s properties for intermediate
interactions was performed in [338] where interesting
crossovers between different limits were explored. Ad-
ditionally, the consequences of different masses of par-
ticles in individual components are studied. As argued
in [339], for not too strong interactions, the properties
of the individual components can be well understood in
the framework of the simplified model obtained by tak-
ing into account effective intra-component interactions
induced by the inter-component correlations.

Finally, although it is beyond the scope of this review,
let us mention that one-dimensional few-body Bose-
Fermi mixtures confined in different external potentials
were also considered in the theoretical analysis. We men-
tion here double-well traps [340], split traps [341], or
optical lattices [342].

V. OTHER EXTENSIONS

In this section, we would like to bring attention to dif-
ferent, non-standard extensions of the models described
above. Additionally, our aim is to display some still
undiscovered lines of possible explorations which may
be very fruitful and may bring very interesting results.

A. Beyond s-wave interactions

In the majority of works about fermionic mixtures,
inter-particle interactions between fermions are assumed
to be s-wave contact. In the one-dimensional scenario,
they are modeled by a simple δ-like potential (in higher
dimensions δ(r) is not self-adjoint operator and some
specific regularization is needed [33]). Consequently, as
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mentioned before, this leads directly to vanishing inter-
actions between particles belonging to the same com-
ponent and only inter-component forces are present.
The first step towards taking into account interactions
between identical fermions is to include higher partial
waves of the scattering process. Going along this line the
simplest extension is to take into account p-wave scatter-
ing potential of the form [195, 343, 344]

Vp(r) = gp

←−
∂

∂r
δ(r)

−→
∂

∂r
, (63)

where r = xi − xj is a distance between interacting par-
ticles and gp is p-wave interaction strength. A mining
of the the non-symmetric derivative in (63) is clarified
when matrix elements of the the p-wave potential are
calculated. If φ1(r) and φ2(r) are some wave functions
of the relative motion of two particles then one has:∫

drφ∗1(r)Vp(r)φ2(r) = gp
∂φ∗1(r)

∂r

∣∣∣∣
r=0

∂φ2(r)

∂r

∣∣∣∣
r=0

(64)
,i.e., the first derivative acts to the left and the second
to the right [345]. In the second quantization formalism
the p-wave interaction between fermionic particles can
be written equivalently as

Ĥp = gp

∫
dx

dΨ̂†(x)

dx
Ψ̂†(x)Ψ̂(x)

dΨ̂(x)

dx
. (65)

In the context of a one-dimensional few-particle sys-
tem, the opening result was presented in [346] where a
specific duality between s-wave interacting bosons and p-
wave interacting fermions was displayed. It was proven
that the many-body ground-state wave function of N , p-
wave fermions, ψF(x1, . . . , xN ), can be constructed di-
rectly from the ground-state wave function of N , s-wave
interacting bosons, ψB(x1, . . . , xN ), as follows:

ψF(x1, . . . , xN ) =

 N∏
i<j

sgn(xi − xj)

ψB(x1, . . . , xN )

(66)
provided that gp = −~4/(µ2g). Here, µ is the reduced
mass of the relative motion of two particles (see also
[347]). This interesting mapping was pointed out also
directly in a very pedagogical paper [345], where the
exact analytical solution (counterpart of the Busch et.
al solution) for the two-particle problem with p-wave
interactions in a harmonic trap was obtained (see also
[348] for the solution obtained with different method).
Based on this solution, in [349] the first analysis of
inter-particle quantum correlations in the interacting
two-body ground state was studied and compared with
those induced by s-wave interactions. In this framework,
single-particle densities in the position and momentum
domains were obtained. Deep analysis of the p-wave
interacting fermions confined in a harmonic trap from
the correlations point of view was presented in [350].

Finally, the semi-analytical solution based on the Bethe
ansatz approach for a system of a few fermions con-
fined in a hard-wall potential was given in [311]. In
the same external arrangement, an appropriate mapping
from continuous to discretized model was analyzed in
[351]. As shown recently in [352], an analysis in the op-
posite direction is also possible, i.e., properties of p-wave
interacting fermionic systems can be exploited (via men-
tioned specific Bose-Fermi mapping) to study bosonic
system being close to TG limit of infinite interactions.

A very nice extension of the p-wave interactions prob-
lem to the case of two-component Fermi-Fermi and Bose-
Fermi mixtures was presented in [353]. In these cases,
the systems studied are described with the standard
Hamiltonians (46) (Fermi-Fermi) and (59) (Bose-Fermi)
extended by an additional p-wave interaction (63) in the
fermionic components. The authors focus on the prob-
lem of strongly repelling region and they show that ad-
ditional p-wave forces substantially change the descrip-
tion in the language of effective spin-chain Heisenberg
model. In consequence, different additional magnetic
phases can be reached in the ground-state of the system.
Going along a similar line for Fermi-Fermi mixture, the
problem of experimental engineering of these new be-
haviors was addressed in [354].

All these studies on contact limits of finite-range inter-
actions seem to be still not fully uncovered. Although the
direct mapping of the eigenstates to the bosonic problem
is clarified, further explorations in this directions may
bring us much closer to our understanding of the zero-
range limit of interactions in the case of a mesoscopic
number of particles.

B. Dipolar interactions

One possible extension when ultracold mixtures are
considered is to take into account some long-range part
of the inter-particle interactions. In the context of atomic
physics, the most natural long-range interaction between
neutral atoms is the interaction immanently present be-
tween magnetic or electric atomic dipoles, i.e., dipolar
forces. In view of the recent ground-breaking experi-
ments with ultracold two-component mixtures of mag-
netic atoms [355], this direction for extending previ-
ous results in the context of few-body systems seems to
be very promising. In contrast to contact interactions,
dipolar forces are not isotropic and therefore their one-
dimensional reduction strongly depends on mutual ori-
entation between interacting dipoles. For example, if
interacting dipoles are oriented parallelly in z direction
and their relative position is r = r1− r2 = (x, y, z), then
the interaction potential has the form

Vd(r) =
γ

|r|3

(
1− 3z2

|r|2

)
, (67)

where γ measures the strength of the dipolar interac-
tion. To obtain an effective one-dimensional interac-
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tion potential between particles (in x direction) one as-
sumes that the confinement in perpendicular directions
is very strong and particles occupy only the lowest state
in these directions. If the transverse confinement is har-
monic with frequency Ω⊥, one can write this wave func-
tion as (κ/

√
π) exp(−ρ2/2κ2), where ρ =

√
y2 + z2 and

κ =
√
~/mΩ⊥. After integrating out these frozen de-

grees of freedom in the interaction integral, one finally
obtains an effective one-dimensional interaction poten-
tial of the form (see [356, 357] for a detailed derivation
and generalizations to other dipoles orientations):

Vd(ξ) = (68)

V0

[
−2ξ +

√
2π
(
1 + ξ2

)
e ξ

2/2erfc
(
ξ/
√

2
)
− 8

3
δ(ξ)

]
,

where ξ = |x|/κ is a dimensionless distance between
dipoles and V0 = −γ/(8κ3) is an effective dipolar in-
teraction strength controlled by the transverse width. At
large distances (ξ � 1) the potential (68) can be ex-
panded as

Vd(ξ) =
4V0
ξ3

(
1− 6

ξ2
+

45

ξ4
− . . .

)
and the leading term has the typical form for dipolar
interactions, 1/ξ3. This observation opens a route to a
simplified description of the system in the crystalliza-
tion limit (similarly as done for ultracold ions [358]),
i.e., when particles are spatially well-separated [359–
361]. Note that the general form of the one-dimensional
dipolar potential (68) can be very unstable from the
numerical point of view if calculated straightforwardly.
However, appropriate numerical routines approximating
its form with very well-behaving expressions are known
[362].

Up to now, in the few-body regime, most of the atten-
tion was devoted to the problem of bosonic mixtures of
polar atoms. Let us mention the most important mile-
stones in building our understanding of such systems
in one-dimensional traps. First studies, in the case of
harmonic confinement, were deeply conducted in [357],
where different single-particle properties of the system
were presented. Later, different properties of a few dipo-
lar bosons confined in a double- [363], triple- [364],
and four-well [365], as well as in periodic lattice [366]
were studied. In all these cases, it was argued that
the interaction-induced tunnelings may have fundamen-
tal importance for the ground-state properties of the in-
teracting particles. Due to the long-range form of the
dipolar forces, one can also consider the problem of cou-
pled bosonic systems confined in independent quasi-one-
dimensional tubes. This path of exploration was pre-
sented recently in [367] and [368], where an effective
description of the system in the language of weakly in-
teracting bound states was proposed.

In the case of a sole fermionic component and Bose-
Fermi mixtures only a few (introductory) results were

presented already [369, 370]. Therefore, we see a large
field to be uncovered with theoretical as well as exper-
imental approaches in the area of few-body mixtures of
ultracold polar particles.

C. Artificial quantum statistics

In the case of one-dimensional few-body systems,
some attention was also dedicated to the case of artifi-
cial anyonic statistics. Although anyonic systems seem to
be very exotic, they become widely studied in the con-
text of topological computations based on precise quan-
tum control (for comprehensive reviews see [371, 372]).
It seems also possible that anyonic statistics can be en-
gineered in ultracold atomic systems [373, 374]. In
the simplest case of the one-dimensional problem, one
considers a single-component system of N particles de-
scribed by a Hamiltonian very similar to the single-
component bosonic Hamiltonian of the form

Ĥ =

∫
dx Υ̂†(x)

[
− ~2

2m

d2

dx2
+ V (x)

]
Υ̂(x)

+ g

∫
dx Υ̂†(x)Υ̂†(x)Υ̂(x)Υ̂(x). (69)

However, in this case, one imposes the anyonic com-
mutation relations to the field operator Υ̂(x). In one-
dimensional cases, these relations read

Υ̂(x)Υ̂†(x′)− eiκ σ(x−x
′)Υ̂†(x′)Υ̂(x) = δ(x− x′), (70a)

Υ̂(x)Υ̂(x′)− eiκ σ(x−x
′)Υ̂(x′)Υ̂(x) = 0, (70b)

where the signum function σ(x) = −1, 0,+1 for x < 0,
x = 0, and x > 0, respectively, while the anyonic param-
eter κ ∈ [0;π] determines the statistics and for κ = 0 (κ =
π) it corresponds to standard bosonic (fermionic) statis-
tics. The analysis of anyonic problems in the context of
ultracold systems in one spatial dimension is started in
[375] with an observation that strongly repelling anyons
can be one-to-one mapped to non-interacting fermions
with almost the same arguments as in the case of bosons.
In this way, it may be applied to the different exact so-
lutions known. For example, in the case of a uniform
box potential, the Hamiltonian (69) takes the form of
the standard Lieb–Liniger Hamiltonian (except the quan-
tum statistics) and therefore it can be diagonalized an-
alytically in terms of Bethe ansatz. First attempts to
find ground-state properties of the system were given in
[376] where the single-particle momentum distributions
for different statistics were compared for different inter-
actions strengths. This analysis can also be extended by
adding an additional two-body velocity-dependent inter-
action term [377]. First analysis of the few-anyon sys-
tems from the momentum distribution point of view in a
hard-core limit was provided in [378]. In the case of
non-uniform external confinements, and in the strong
repulsion limit, a comprehensive discussion was given
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system as well as between the constituting parts of the evolving
wave packets. In the further analysis we use the one-particle den-
sity in real ρðx; tÞ and momentum ρðk; tÞ spaces, their natural oc-
cupations ρNO

i ðtÞ and correlation functions gð1Þðk 0jk; tÞ (28–30).
We defer the details on these quantities to Methods. To study the
correlation between the source and emitted bosons we decom-
pose the one-dimensional space into the internal IN and external
OUT regions with respect to the top of the barrier, as illustrated
by the red line and arrows in Fig. 1, Lower. This decomposition of
the one-dimensional Hilbert space into subspaces allows us to
quantify the tunneling process by measuring the amount Px

not;ρðtÞ
of particles remaining in the internal region in real space as a
function of time. In Fig. 2 we depict the corresponding quantities
for N ¼ 2 and N ¼ 101 by the green dotted curve. A first main

observation is that the tunneling of bosonic systems to open space
resembles an exponential decay process.

The key features of the dynamics of quantum mechanical sys-
tems manifest themselves very often in characteristic momenta.
Therefore, it is worthwhile to compute and compare evolutions of
the momentum distributions ρðk; tÞ of our interacting bosonic
systems. Fig. 3 depicts ρðk; tÞ for N ¼ 2; 4; 101 bosons. At t ¼ 0
all the initial real space densities have Gaussian-shaped profiles
resting in the internal region (Fig. 1, Upper). Therefore, their
distributions in momentum space are also Gaussian-shaped and
centered around k ¼ 0. With time the bosons start to tunnel out
of the trap. This process manifests itself in the appearance of a
pronounced peak structure on top of the Gaussian-shaped back-
ground, see Fig. 3, Black Framed Upper. The peak structure is very
narrow (similar to a laser or an ionization process), the
bosons seem to be emitted with a very well-defined momentum.
For longer propagation times a larger fraction of bosons is
emitted and more intensity is transferred to the peak structure
from the Gaussian background. Thus, we can relate the growing
peak structures in the momentum distributions to the emitted
bosons and the Gaussian background to the bosons in the source.
We decompose each momentum distribution into a Gaussian
background and a peak structure to check the above relation
(Methods). The integrals over the Gaussian momentum back-
ground, Pk

not;ρðtÞ, are depicted in Fig. 2 as a function of time. The
close similarity of the Px

not;ρðtÞ, characterizing the amount of par-
ticles remaining in the internal region in real space, and Pk

not;ρðtÞ
confirms our association of the Gaussian-shaped background

Fig. 1. Protocol of the tunneling process. (Upper) Generic density ρðx; t < 0Þ
(blue line) is prepared as the ground state of a parabolic trap Vðx; t < 0Þ
(dashed black line). The trap is transformed to the open shape Vðx; t ≥ 0Þ
(black line), which allows the system to tunnel to open space. (Lower)
Sequential mean-field scheme to model the tunneling processes. The bosons
are ejected from IN to OUTsubspaces (indicated by the red line). The chemical
potential μi is converted to kinetic energy Ekin;i. All the momenta correspond-
ing to the chemical potentials ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEkin;i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mμi

p
; i ¼ N; N − 1;…; 1

appear in the momentum distribution, see Fig. 2. All quantities shown are
dimensionless.

Fig. 2. Many-body tunneling to open space is a fundamentally exponential
decay process. To confirm that the fraction of atoms remaining in the trap
decays exponentially with time, we depict the density-related nonescape
probabilities Px

not;ρðtÞ in real and Pk
not;ρðtÞ in momentum space, indicated by

the respective solid green symbols and red lines. All quantities shown are
dimensionless.

Fig. 3. The peak structures in the momentum distributions characterize
the physics of many-body tunneling to open space. The total momentum dis-
tributions ρðk; tÞ for N ¼ 101 (Black Framed Upper) and their peak structures
for N ¼ 2, N ¼ 4, N ¼ 101, and the respective Gross–Pitaevskii solutions, at
times t1 < t2 < t3 < t4. The broad Gaussian-shaped backgrounds correspond
to the bosons remaining in the trap, the sharp peaks with positive momenta
can be associated with the emitted bosons. For N ¼ 2 we find two peaks in
Lower (i), for N ¼ 4 we find three peaks and an emerging fourth peak at
longer times in Lower (ii). Lower (iv) we find three washed out peaks for
N ¼ 101. The corresponding GP dynamics reveals only a single peak for all
times in Lower (iii). The arrows in the plots mark the momenta obtained from
the model consideration. All quantities shown are dimensionless.

13522 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1201345109 Lode et al.

FIG. 24. Typical scenario of the tunneling process to the open
space. At initial moment particles are confined in a trap (black
dashed line) and they occupy the many-body ground state
(blue line). Then at t = 0 the trap is suddenly opened and
particles may tunnel through a potential well (black solid line).
Figure adapted from [23]. Copyright (2012) by the National
Academy of Sciences.

in [379] and properties of the system based on differ-
ent particle configurations were presented. Finally, as
pointed out in [380], the off-diagonal long-range or-
der encoded in the reduced single-particle density matrix
strongly depends on the quantum statistics, i.e., its dom-
inant eigenvalue λ0 scales with the number of particles
as λ0 ∼ NC , where C strongly depends on interactions
strength g and the anyonic parameter κ.

Finally, let us mention that studying anyonic systems
can be very helpful when properties of the standard
statistics systems are considered. For example, in [381]
it was shown that a one-dimensional model of bosons
interacting via two- and three-body contact forces is ex-
actly equivalent to the problem of anyonic particles in-
teracting via only two-body forces. Therefore, the initial
model, recognized previously as unsolvable, can be fully
solved with the Bethe ansatz approach.

D. Tunneling to the open space

Although in this review we do not discuss dynami-
cal problems in one-dimensional few-body systems, here
we would like to mention one of the possible directions
which seems to be very challenging and opening new
possibilities. It is related to the experimental schemes
in which one measures static properties of interacting
systems indirectly by capturing escaping particles after
a sudden opening of a trap. In a typical standard sce-
nario, one assumes that initially, the interacting particles
occupy the many-body ground state |Ψini〉 of the initial
Hamiltonian ((11) and (46) for bosons and fermions,
respectively) and then the trapping potential becomes
suddenly opened and the system evolves in time (see

Fig. 24). One of the simplest quantity encoding prop-
erties of the system is the survival probability P(t) =
〈Ψini|Ψ(t)〉, i.e., the probability that after time t the sys-
tem remains in the initial state. Inspired by experimen-
tal results from [21], the first theoretical description of a
decaying few-body system was given in [382]. Assum-
ing that particles are initially confined in a hard-wall
trap and starting from t = 0 they may tunnel through
a delta-like barrier, it was shown that, in the case of
strongly repelling bosons (or non-interacting fermions),
inter-particle correlations lead to violations in the expo-
nential decay predicted for a single-particle case [383].

The particular case of tunneling ultracold bosons was
studied theoretically in several papers. First in [384], by
solving time-dependent many-body Schrödinger equa-
tion straightforwardly, it was shown that even for a
weakly interacting few-boson system, the decay process
is not captured by a mean-field description and may sub-
stantially depend on the number of particles. This path of
exploration was continued in [23], where it was argued
that the tunneling process of the initially coherent cloud
of bosons can be viewed as a superposition of individ-
ual single-particle decays from sources having a different
number of particles. In consequence, the system loses its
coherence and becomes fragmented. This tunneling pro-
cess can be controlled by tuning the shape of the external
confinement or the inter-particle interactions [385]. In
this context, the interested reader can find a quite com-
prehensive description of decaying few-bosons system in
a recent monograph [386].

The case of two interacting ultracold particles was
studied theoretically with increased attention. In [387]
the decay through the delta-like barrier was studied.
Then, due to the spectacular experiments with decaying
two 6Li atoms [19, 20], the tunneling through the barrier
of the form

V (ξ) = V0
[
1− (1 + ξ)−1

]
− αξ, (71)

where V0 and α are controlled experimentally while ξ is
the dimensionless position, was deeply studied in [388]
and [389].

Finally, the decay problem for attractively interacting
bosons was analyzed recently in [390, 391]. In these
works, it was shown that, depending on the attraction
strength, different tunneling processes dominate in the
dynamics of the system. For strong attractions, particles
tunnel as one composite system, while for weak attrac-
tions particles are emitted sequentially one by one. For
intermediate interactions, depending on the number of
particles in the initial state, the dynamics is dominated
by different collective few-boson decay.

In this general context of decaying one-dimensional
systems of ultracold atoms we want to point out that,
until now, all studies were devoted almost only to bosons
or two distinguishable particles (for fermionic cases see
[383, 392]). Therefore a whole area of problems re-
lated to two-component mixtures of fermionic particles
(or Bose-Fermi mixtures) is still almost undiscovered. For
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sure, theoretical and experimental research in these di-
rections may bring interesting results and uncover the
role of the quantum statistics in the decay problems.

VI. SUMMARY AND FINAL REMARKS

One-dimensional systems of bosonic, fermionic, and
Bose-Fermi mixtures of a few ultracold atoms confined
in parabolic traps is a topic that has attracted a consider-
able research effort in recent years. This intense theoret-
ical work was triggered by the experiments that realized
the Tonks-Girardeau gas [5, 6] and more recently, by the
striking experiments on few trapped fermions [14–17],
or the experiments in one-dimensional multicomponent
fermionic mixtures [227], to mention few.

For bosonic mixtures, after short discussion of attrac-
tive forces, we first described the four conceptual pil-
lars, coming from the thermodynamic, largeN limit, that
help build the developments in the few atom trapped
case: the Tonks-Girardeau gas, the composite fermion-
ized gas, the full-fermionized mixture, and the phase
separation in bosonic mixtures. With these concepts at
hand, we described eight limiting cases of interactions,
and we use this classification to structure the descrip-
tion of the theoretical description from the literature of
systems of three and four atoms and the extensions to
larger numbers of atoms. We also reported on the stud-
ies on the transitions between limits. We remark here
that, whilst these transitions are quite well studied in
systems of three and four atoms, there is still room for
future research progress in the cases of intermediate in-
teractions, particularly for polarized cases, i.e., when the
number of atoms in each component is different. We also
described the mass imbalanced systems. We pay special
attention to impurity systems, where one of the species
consist only in one atom. Intense research in impurity
problems in the few atoms and large atom cases is at-
tracting a lot of interest recently, and many future stud-
ies are expected in the few-atom and strongly interacting
cases. We also described spinor Bose gases with a small
number of atoms. Here, while the limiting cases are al-
ready described, transitions between limits remain open,
among other open questions, such as mass imbalanced
systems. We also gave some remarks from the study of
the symmetries in a few atom systems that guided theo-
retical developments in this area. Anyhow, the detailed
study of symmetries in these systems is too long and out
of the scope of this review. Here, we only gave some de-
scription of these concepts, only to the extent that it may
help understand the systems at hand.

For fermionic mixtures, we started with a detailed de-
scription of the role of the spin in these systems. Then,
we briefly outlined the results on multicomponent sys-
tems, i.e. higher-spin mixtures. From here on, we fo-
cused on two-component mixtures, and described in de-
tail the two- and three-atom cases and the impurity prob-
lem in a small Fermi sea. Importantly, in the case of very

strong repulsion, thus close to infinite repulsion, we de-
tailed the proposed solutions and the descriptions based
on an effective spin chain Hamiltonian. We henceforth
described the numerical and theoretical efforts made to
study intermediate interaction cases, which, as in the
bosonic case, remain more elusive to theoretical descrip-
tions, leaving room for further future research. We end
the few-atom fermionic mixtures discussion with two im-
portant topics: mass imbalance and attractive interac-
tions. Both are of crucial importance for fermionic mix-
tures due to their experimental and conceptual implica-
tions, for example, in studies on Cooper-pairing or un-
conventional superconductivity.

Using a similar conceptual structure based on the lim-
iting cases used for bosonic mixtures, we describe the
recent results on Bose-Fermi mixtures. Here, most of the
analytical results belong to the strongly repulsive case,
i.e., when inter-component or intra-component (for the
bosonic atoms), tend to infinity.

We end our report by briefly discussing a subjectively
selected collection of topics which we believe will attract
future research interest and give rise to important sci-
entific advancements. This includes more exotic inter-
actions (beyond s-wave) such as p-wave or dipolar in-
teractions, artificial quantum statistics, that is systems of
anyons, and tunneling to open space in systems of a few
atoms.
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Appendix A: Symmetries in three atom systems

To illustrate the symmetry analysis in systems of few
atoms, let us first consider the three-body Hamiltonian
with all quantities expressed in natural units of the har-
monic oscillator

Ĥ0 =

3∑
i=1

[
−1

2

∂2

∂x2i
+

1

2
x2i

]
+

3∑
i=1

3∑
j=2

Vij (xi − xj) , (A1)

where xi are the dimensionless positions of the three par-
ticles and Vij(x) is the two-body interaction potential be-
tween particles i and j. Performing the Jacobi transfor-
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FIG. 25. Eigenfunctions for the three particle case taking
g12 = g23 = g13 = 10 . (a) A state that occurs in the BBB,
BBX, or XYZ systems, belonging to A1, with the lowest energy
if g is finite. (b) Corresponds to BBX and XYZ and (c) to FFX
and XYZ; these two are degenerated and are the first excited
doublet for finite g; These states have a reduced C2ν symmetry.
As discussed in the text, their combinations states generate the
two (vortex like) eigenstates associated with the E1 irreducible
representation. (d) corresponds to BBX and XYZ and (e) to
FFX and XYZ; these two are degenerated and are the second
excited doublet for finite g; Similarly as the (B) and (c), these
two states generate the (vortex-like) states that belong to E2;
(f) corresponds to FFF, FFX or XYZ, belonging to B1; it is the
lowest energy state for the FFF system and an excited state for
FFX and XYZ. Figure adapted from [170].

FIG. 26. Eigenfunctions for the three particle case taking g13 =
g23 = 2 and g12 = 10.

mation [167, 172]

R =
x1 + x2 + x3

3
, (A2a)

X =
x1 − x2√

2
, (A2b)

Y =
x1 + x2√

6
−
√

2

3
x3 (A2c)

the full Hamiltonian separates as Ĥ = ĤCM + Ĥrel with

ĤCM = −1

2

d2

dR2
+

1

2
R2, (A3a)

Ĥrel =
1

2

(
− ∂2

∂X2
− ∂2

∂Y 2
+X2 + Y 2

)
+ Vint(X,Y ),

(A3b)

where

Vint(X,Y ) = V12

(∣∣∣√2X
∣∣∣)

+ V13

(∣∣X +
√

3Y
∣∣

√
2

)
+ V23

(∣∣X −√3Y
∣∣

√
2

)
. (A4)

The center-of-mass Hamiltonian ĤCM has a form of stan-
dard harmonic oscillator Hamiltonian and therefore can
be diagonalized straightforwardly. If we focus only on
the case of zero-range contact interactions (Vij(x) =
gijδ(x)) then the interaction part of the relative motion
Hamiltonian Vint has a form

Vint(X,Y ) =
g12√

2
δ(X)

+
√

2g13 δ
(
X +

√
3Y
)

+
√

2g23 δ
(
X −

√
3Y
)]
. (A5)

The Hamiltonian with delta-interactions is exactly solv-
able when zero, one, two or three of the two-body inter-
action strength parameters gij are infinite and the rest
are zero. For intermediate values, there is no analytic
solutions. When all gij are finite and equal the rela-
tive interacting Hamiltonian Hrel (A3a) is symmetric un-
der the finite group of transformations of configuration
space C6v, i.e., the rotation and reflection symmetries of
a hexagon [167]. The twelve elements of C6v are shown
in the first column of in Table II. The second column
of this table represents the realization of these elements
of C6v as transformations of relative configuration space
are summarized, that is permutation of particles (repre-
sented as σ̂ij for two particles or σ̂ijk for the permutation
of three particles) and parity inversion (represented as
π̂). Here one can observe the main question in this ap-
proach: the fact that the system consist of three indistin-
guishable bosons, fermions, two bosons or two fermions
plus an additional atom poses conditions on the way the
wave function can transform under permutation of parti-
cles combined with parity inversion about the minimum
of the harmonic trapping potential.

Because C6ν is a symmetry of the relative interact-
ing Hamiltonian, energy levels are associated with its ir-
reducible representations (irreps), whose properties are
summarized in Table III. There are four one-dimensional
(or singlet) irreps (denoted as A1, A2, B1, and B2; and
two two-dimensional (or doublet) irreps (E1 and E2).
This means that there will only be singly-degenerate
or doubly-degenerate energy levels. The singlets have
m = 0 or m = 3. The solutions for g = g12 = g13 = g23
are well approximated by the ansatz (37), which is ex-
act when g → ∞. Thus they can be represented by
the quantum numbers m, nρ and nθ. We therefore de-
note them as |m,nρ, nθ〉. Systems of three bosons can
only have m = 0 and of three fermions m = 3, as im-
posed by the permutation symmetry. Of course, a sys-
tem of three distinguishable atoms can belong to any
irrep. In Fig. 25 we represent the lowest lying eigen-
functions calculated when g = 10. The panel (a) corre-
sponds to a system of three bosons and it has m = 0,
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g ∈ C6v g ∈ S3 × Z2 ϕ→ ϕ′

E ê ϕ

σv σ̂12 −ϕ+ π

σv′ σ̂23 −ϕ+ π
3

σv′′ σ̂31 −ϕ− π
3

C−1
3 σ̂231 ϕ− 2π

3

C3 σ̂312 ϕ+ 2π
3

C2 π̂ ϕ+ π

σd π̂σ̂12 −ϕ
σd′ π̂σ̂23 −ϕ− 2π

3

σd′′ π̂σ̂31 −ϕ+ 2π
3

C6 π̂σ̂231 ϕ+ π
3

C−1
6 π̂σ̂312 ϕ− π

3

TABLE II. The first column is the symmetry transformation des-
ignated by the corresponding element of the point symmetry
group of the regular hexagon permutation group C6v. The sec-
ond column is the same transformation expressed as the cor-
responding element of S3 × Z2. We use the notation for S3

permutation group elements such that e is the identity, the 2-
cycle σ̂ij switches particles i and j, and 3-cycle σ̂ijk switches
1 to i, 2 to j and 3 to k. The element π̂ is parity inversion.
The third column is the transformation in the cylindrical Jacobi
coordinate tanϕ = Y/X.

while (f) to three fermions and it has m = 3. The
two dimensional representations have m = ±1 or ±2.
But solutions with a well defined m do not have any
symmetry with respect to permutations, and thus can
only be realized by three distinguishable atoms. For
two bosons or two fermions and a distinguishable par-
ticle, the two degenerate solutions have to be combined
into a solution of the subgroup C2ν . Thus the combina-
tions |1, nρ, nθ〉 + i|1, nρ, nθ〉 and |2, nρ, nθ〉 − i|2, nρ, nθ〉
give the solutions with the correct permutation prop-
erty for two bosons plus a third distinguishable parti-
cle. These are represented in panels (c) and (e) of
Fig. 25. And the combination |1, nρ, nθ〉− i|1, nρ, nθ〉 and
|2, nρ, nθ〉+ i|2, nρ, nθ〉 give the solutions with the correct
permutation property for two fermions plus a third dis-
tinguishable particle, represented in panels (b) and (d)
of Fig. 25. From here, excitations are obtained for larger
values of nρ and nθ, representing radial and angular ex-
citations.

For the system of two bosons or fermions plus an ad-
ditional particle, the interactions can be different, i.e.,

g12 6= g13 = g23. In such case, the symmetry is C2ν

(see second column in Table III). In this case there are
only four one dimensional representations A1, A2, B1,
and B2. The quantum number m is still a good num-
ber, but can only take the values 0 and 1. The radial
quantum number nρ and angular nθ play the same role
as in the C6ν case. Since there are no two-dimensional
representations, the double degeneracy associated with
the doublets is lost. In Fig. 26 we show an example of
the lowest energy eigenfunctions for g13 = g23 = 2 and
g12 = 10. The solutions for g13 = g23 = 0 and g12 → ∞
µ ± C6v C2v Possibilities m

0 N.A. A1 A1 BBB, BBX, XYZ 0
1 + E1 B1 FFX, XYZ N.A. (from ±1 subspace)
1 − E1 B2 BBX, XYZ N.A. (from ±1 subspace)
2 + E2 A1 BBX, XYZ N.A. (from ±2 subspace)
2 − E2 A2 FFX, XYZ N.A. (from ±2 subspace)
3 + B1 B1 FFF, FFX, XYZ 3
3 − B2 B2 BBB, BBX, XYZ 0
4 + E2 A1 BBX, XYZ N.A. (from ±1 subspace)
4 − E2 A2 FFX, XYZ N.A. (from ±1 subspace)
5 + E1 B1 FFX, XYZ N.A. (from ±2 subspace)
5 − E1 B2 BBX, XYZ N.A. (from ±2 subspace)
6 + A1 A1 BBB, BBX, XYZ 0
6 − A2 A2 FFF, FFX, XYZ 3

TABLE III. This table identifies the energy eigenbasis vectors
for pseudo-angular momentum µ = 0 and the symmetric (+)
and antisymmetric (−) combinations of µ > 0 with their cor-
responding symmetry representations and superselection rules.
The pattern repeats for vectors with µ > 6. BBB (FFF) means
three identical bosons (fermions); BBX (FFX) two identical
bosons (fermions) and one other particle; XYZ three distin-
guishable particles.

can be also obtained analytically in a similar fashion as
with ansatz (37), as discussed in the main text.

Finally, we refer the reader to [393, 394] for an exten-
sive study on symmetries on few-body systems with more
than three atoms and different trapping potentials. Also,
we note that a complementary approach to the study
of permutation symmetry can be performed with Young
tableaux. See e.g. Ref. [395] for a study in general spinor
quantum gases with this approach.
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[84] T. Sowiński, Phys. Rev. A 85, 065601 (2012).
[85] A. F. Hincapie-F, R. Franco, and J. Silva-Valencia, Phys.

Rev. A 94, 033623 (2016).
[86] J. Dobrzyniecki, X. Li, A. E. B. Nielsen, and T. Sowiński,
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063608 (2019).
[392] M. Pons, D. Sokolovski, and A. del Campo, Phys. Rev. A

85, 022107 (2012).
[393] N. L. Harshman, Few-Body Systems 57, 11 (2016).
[394] N. L. Harshman, Few-Body Systems 57, 45 (2016).
[395] V. A. Yurovsky, Phys. Rev. Lett. 113, 200406 (2014).

http://dx.doi.org/10.1103/PhysRevA.89.053620
http://dx.doi.org/10.1088/0953-4075/44/19/195301
http://dx.doi.org/10.1088/0953-4075/44/19/195301
http://dx.doi.org/10.1103/PhysRevA.92.033629
http://dx.doi.org/10.1103/PhysRevA.92.033629
http://dx.doi.org/10.1103/PhysRevA.91.041601
http://dx.doi.org/10.1103/PhysRevA.91.041601
http://dx.doi.org/ 10.1103/PhysRevA.98.013634
http://dx.doi.org/ 10.1103/PhysRevA.98.013634
http://dx.doi.org/ 10.1103/PhysRevA.99.063608
http://dx.doi.org/ 10.1103/PhysRevA.99.063608
http://dx.doi.org/10.1103/PhysRevA.85.022107
http://dx.doi.org/10.1103/PhysRevA.85.022107
http://dx.doi.org/10.1007/s00601-015-1024-6
http://dx.doi.org/10.1007/s00601-015-1025-5
http://dx.doi.org/10.1103/PhysRevLett.113.200406

