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Abstract—Miniaturized, high-throughput, cost-effective sensing devices are needed to 

advance lab-on-a-chip technologies for healthcare, 

security, environmental monitoring, food safety, 

and research application. Quartz crystal 

microbalance with dissipation (QCMD) is a 

promising technology for the design of such 

sensing devices, but its applications have been 

limited, until now, by low throughput and 

significant costs. In this work, we present the 

design and characterization of 24-element 

monolithic QCMD arrays for high-throughput and 

low-volume sensing applications in liquid. Physical 

properties such as geometry and roughness, and 

electrical properties such as resonance frequency, 

quality factor, spurious mode suppression, and interactions between array elements 

(crosstalk), are investigated in detail. In particular, we show that the scattering parameter, 

S21, commonly measured experimentally to investigate crosstalk, contains contributions 

from the parasitic grounding effects associated with the acquisition circuitry. Finite 

element method simulations do not take grounding effects into account explicitly. 

However, these effects can be effectively modelled with appropriate equivalent circuit 

models, providing clear physical interpretation of the different contributions. We show 

that our array design avoids unwanted interactions between elements and discuss in detail 

aspects of measuring these interactions that are often-overlooked. 

Index Terms—Biosensors, crosstalk, finite element modeling simulation, food safety, 

monolithic arrays, nanotechnology, pathogen detection, piezoelectricity, point-of-care, 

QCMD, quartz crystal microbalance, quartz resonators 

 

I. Introduction 

A wide range of bioanalytical applications requires robust and compact detectors 

(sensors) for rapid and reliable quantification of multiple analytes in small sample volume 



lab-on-a-chip (LoC) devices. Applications range from Point-of-Care (PoC) devices for 

disease diagnostics, health monitoring, and treatment monitoring in personalized 

medicine[1], [2] to devices for analysis of active substances and pathogens in food and 

environmental safety [3]. It is foreseen that LoC devices will replace costly conventional 

analytical methods that require trained personnel, centralized laboratories, relatively large 

sample volumes, and complex sample preparation protocols. 

Critical requirements for the design of the sensors for LoC devices include simplicity and 

low cost, high sensitivity and specificity, low volume, portability and high-throughput. 

These sensors should be able to reliably detect specific analytes present at very low 

concentrations against a strong non-specific background [4]; allow deployment “in the 

field” (non-centralized laboratories, food processing plants, supermarkets, hospitals, 

patients’ homes); have low sample/reagent consumption; and enable simultaneous 

monitoring of multiple analytes at high speed to improve throughput [1], [2], [5]–[7]. 

Quartz Crystal Microbalance with Dissipation (QCMD) [8], [9] technology is emerging 

as a feasible candidate for their design, because it has the capability to satisfy all of those 

requirements. 

QCMD is a sensing technique based on piezoelectric resonators, typically a quartz plate 

that is electrically excited to oscillate in a thickness-shear mode at its resonance 

frequency. Interactions between the resonator and its environment are sensed as changes 

in its resonance frequency and bandwidth (dissipation) [8], [10], [11]. In its simplest form, 

QCMD senses mass of the material absorbed at the resonator surface[12]. Specificity is 

conferred by modifying resonator surfaces with antibodies or antigens for performing 

direct-, sandwich-, or competitive immunoassays [13], while surface modification with 

DNA probes allows for DNA-based detection; this works even in complex samples 

without further purification [14]. The sensitivity of QCMD-based immunoassays is, in 

the clinically relevant range, comparable to that of ELISA [13], and be further improved 

using the so-called high fundamental frequency (HFF) resonators [15], [16], with 

frequencies in the 50 MHz – 150 MHz range [17]–[19]. HFF resonators offer an 

improvement in sensitivity because the frequency shift due to a given load scales with the 

square of the resonance frequency according to Sauerbrey relationship [12]. In practice, 

the improvement has so far been more modest than predicted by theory [20], but HFF 

resonators offer a unique approach to miniaturizing and parallelizing QCMD-based 

assays through the design of the monolithic resonator arrays with low-volume elements, 

thus also improving the throughput and reducing reagent consumption. Design and testing 

of such monolithic HFF QCMD resonators arrays are the focus of the current 

contribution. 

Our array design is shown in Fig.1. Arrays consist of 6 columns of 4 resonator elements 

each. The design of each of the array elements is based on that of the individual 150 MHz 

HFF resonators we reported previously [21]: Individual resonators had a one-sided 

inverted MESA geometry and were optimized in terms of size, electrode geometry, and 

inverted MESA region thickness for spurious mode suppression, operation in liquids, as 

well as constraints imposed by the manufacturing and integration with fluidics and 

electronics [18], [19], [22]. Here, we characterize physical and electrical properties of 

these arrays (surface topography and roughness; resonance and inharmonic responses; 

interactions between array elements), and include a preliminary testing operation of the 

arrays in liquid. 

Monolithic QCMD arrays designs have been presented previously. The initial focus 

was on gas sensing applications [23]–[25]. Sensing applications in liquids started 



appearing more recently [24]–[32]. These designs demonstrated the potential of 

monolithic sensor arrays for improving the throughput of the detection of biological 

samples in liquid environments with QCMD, but they also illustrated some of the 

problems associated with their design and implementation. In particular, the field of HFF 

resonator arrays remains in its infancy, and much remains to be done in terms of 

optimizing their design for practical applications. In this work, we investigate interactions 

(interference, crosstalk) between array elements, and how these interactions are measured 

and modelled. We compare experimental measurements of the crosstalk between array 

elements with the results of the finite element method (FEM) simulations. Our analysis 

reveals that the FEM simulations do not reproduce experimental results unless the 

parasitic grounding phenomena arising from the interface to the readout systems are 

explicitly taken into account; these have not previously received attention in the literature. 

We propose a lumped element equivalent circuit model that is much simpler than the 

FEM simulations. This simple model is able to provide a reliable representation of the 

experimental measurements. Moreover, it also allows a direct identification of the 

physical contributions to the experimentally measured crosstalk between the array 

elements. This has practical implications for the design of monolithic HFF QCMD arrays 

because it allows a quick estimation of the inter-element interference and a means to 

identify its causes. 

 

 

Fig. 1.  The main result of this work is the 24-element monolithic QCMD resonator array. 

A photograph is shown in (a). Numbers indicate the row and the column of each element. 

(b) An optical micrograph of four of the array elements (outlined with a red box in (a)). 

The image is taken in transmission, and therefore, the gold appears black, while quartz 

appears light-grey. Center-to-center distances between the individual array elements 

along the X and the Z’ directions are indicated. (c) and (d): top view and side view of the 

individual array elements, respectively. The dimensions of the square MESA region, 762 

m  762 m, and the width of the gold electrode, 558 μm, are indicated in (c), while 

thicknesses of the substrate region, the MESA region, and the electrodes (gold with a Cr 

adhesion layer), are indicated in (d). Quartz crystallographic axes indicated in (b) also 

apply to (a). Note, that the working surface of the array is the one with the common 

electrodes, which in this figure is facing down. The “back” surface is the one with the 

MESA region. 

 



II. Materials and Methods 

A. Materials 

Nanopure water used in this study was either analytical grade water (Panreac Química 

SLU, Barcelona, Spain), or produced with a Smart2Pure UVUF water purification system 

(Thermo Fisher Scientific, Barcelona, Spain). Distilled water was purchased at the local 

supermarket. 99.5% pure ethanol was from Panreac Química SLU. Ultra-pure nitrogen 

was from Al Air Liquide España, S.A. (Valencia, Spain), distributed with a gas filter 

pistol equipped with a 1 m pore diameter PTFE filter (Skan AG, Allschwil, 

Switzerland). Acetone was of technical grade (Panreac Química SLU). 

B. Array Manufacturing 

Resonator arrays based on the one-sided inverted MESA technology were 

manufactured from 66 μm thick AT-cut quartz wafers using photolithographic, wet 

etching, and thermal evaporation/filament plating technologies [18]. A photo of one of 

such arrays is shown in Fig.1, where the dimensions are also indicated. These arrays are 

designated AWS-Array2-24-150.0M (Advanced Wave Sensors S. L., Valencia, Spain) 

for future reference. 

C. Array Preparation, Cleaning 

Prior to use, the arrays were treated for 10 min in UV/ozone cleaner (BioForce 

Nanosciences Inc., Chicago, IL, USA), rinsed with ethanol, distilled water, dried with a 

stream of filtered nitrogen, and again treated with UV/ozone for another 10 min. 

D. Array Characterization 

1. Physical Characterization 

The arrays were examined optically with an MZ APO Stereomicroscope from Leica 

Microsystems (Leica Microsistemas S.L.U, Barcelona, Spain). Surface morphology, 

topography & roughness, as well as presence of contamination, electrode alignment and 

presence of the etching channels in the quartz, were investigated with atomic force 

microscopy (AFM), scanning electron microscopy (SEM) and optical profilometry (OP). 

SEM was performed with a Field Emission Scanning Electron Microscope (Ultra 55 

FEGSEM, Zeiss, Oberkochen, Germany) at a working distance of 3.8 mm with an 

accelerating voltage of 2 kV and a vacuum level of 8×10−7 mbar at the chamber. The 

sample was mounted using a colloidal silver adhesive (SPI Supplies, West Chester, PA, 

USA). 

AFM was performed with a Multimode 8 Atomic Force Microscope (Bruker, Billerica, 

MA, USA) equipped with a JV vertical engage scanner and a silicon tip with a spring 

constant of 26 N/m and a resonance frequency of 300 kHz (OTESTA-R3, Bruker, 

Billerica, MA, USA). For imaging, the arrays were attached to metal pucks with double-

sided tape and imaged in tapping mode at scanning rates of 0.5 Hz– 1 (depending on the 

scan size) at optimal gain. Images were acquired in air. To acquire some of the images, 

arrays had to be cut. 

The profile of the MESA surface of the array was analyzed with a Surftest SJ-410 

profilometer (Mitutoyo, Kanagawa, Japan) with a 2 µm radius and 60º angle 12AAC731 

tip. The surface was scanned with a rate of 0.5 mm/s. 

 

2. Electrical Characterization 

Complex admittance spectra of the array elements, as well as the scattering parameter 

S21 used to evaluate crosstalk between array elements, were measured with a DG8SAQ 

VNWA 3 Vector Network Analyzer (SDR-Kits, Melksham, Wiltshire, UK).  

In order to connect the arrays to the network analyzer, we adapted a benchtop robot 

(F4300N.1, Fisnar Inc., Germantown, Wisconsin, USA, Fig. 4a) to house two custom-



designed printed circuit boards (PCBs): one mounted on the base of the robot, and the 

other one on its moving arm (Fig. 4b, c). The array studied was effectively sandwiched 

between the two PCBs, mounted with the MESA region facing up. In this configuration, 

an electrical contact is established between the common electrode of the array (bottom in 

Fig. 1a) and the bottom PCB, which is grounded, on one hand, and the individual 

electrodes of the different array elements and the top PCB through 0.6 mm diameter 

spring contacts (Peak Test, Chester-Le-Street, County Durham, UK), on the other hand. 

The top PCB has five spring contacts, four of which are connected to four array elements, 

while the fifth one connects the bottom PCB to ground. The spring contacts assure an 

electrical connection without generating an uncontrolled pressure that could break the 

array. With this setup, we measured the admittance of each of the array elements, and 

cross-talk between pairs of elements (Sij, Si+1,j); (Sij,Si,j+1); (Sij,Si+1,j+1) with i = 1∙∙6 and 

j = 1∙∙4 along the X direction, Z’ direction, and the diagonal. The setup was calibrated by 

placing the calibration components at the PCB level. The surfaces of the PCBs were 

degreased with acetone immediately prior to measurements. 

Complex admittance spectra were used to visualize spurious modes and quantify the 

separation between the fundamental and the first spurious mode for each of the array 

elements. Around the resonance frequency, the complex admittance spectra were fit to a 

phase-shifted Lorentzian model proposed by Petri and co-workers [33], to obtain 

maximum conductance, Gmax; resonance frequencies, fres; and bandwidths, Γ, of the array 

elements. Quality factors, Q, were calculated from fres and Γ as Q=fres/(2 Γ). The phase-

shifted Lorentzian provides a robust fit to the data that is relatively insensitive to the 

residual calibration imperfections.  

Measurements of the S21 parameter for characterizing the cross-talk between the 

elements were performed by exciting one array element with an incident power of 1 mW 

(0 dBm) and recording the power at the neighboring array element, on each of the array 

element pairs for the three directions (X, Z’, diagonal). 

E. Modelling and Simulations 

1. Equivalent Circuit Model 

An equivalent circuit model was developed to analyze the cross-talk between array 

elements based on the monolithic crystal filter topology (MCF, Fig.10a) [34], [35]. 

The equivalent circuit consists of two resonators. Each resonator is represented by a 

Butterworth-van Dyke (BvD) circuit containing the standard resistor Ri, inductor Li, and 

a capacitor Ci connected in series representing the motional, or acoustic, branch, and a 

capacitor C0i, connected in parallel, representing the electrical branch that describes the 

static and parasitic capacitances; i = 1 or 2 is one of the two coupled resonators. The two 

resonators shared a common electrode, grounded via parasitic elements consisting of an 

inductor Lp and a resistor Rp as shown in Fig.10 b. 

The coupling between the two resonators is represented by a parallel network of a 

resistor Re and a capacitor Ce, and an inductor La. Re and Ce, represent electrical coupling, 

and La acoustic coupling, respectively. Further details are provided in Section S3 of the 

Supporting Information. Such modified BvD circuit models of coupled resonators have 

been introduced in the literature previously [34]–[36]. 

 

2. FEM Simulations 

3D FEM simulations of the coupled resonators were used to further understand 

crosstalk between the array elements. They were implemented in the commercial software 

package ANSYS version 19 (ANSYS, Canonsburg, PA, USA) running on a high-

performance workstation (C50000 Pro workstation, Orbital Computers LLC, WA, USA). 

As a starting point for the simulations, we took the numerical model of a single 150 MHz 



HFF-QCM resonator we have previously developed [21], since this individual resonator 

served as the basis for the design of the array elements. 

Material properties were assigned based on the ‘SOLID226’ coupled-field element of 

the ANSYS libraries that captures the coupling between displacements and electrical 

potentials in piezoelectric materials. Values for the physical properties of AT-cut quartz 

used in the calculations are listed elsewhere [21], [37], [38]. To model the detuning, the 

density of the quartz was slightly modified for one of the resonators. The damping factor 

was set to 5 × 10−5. The structure was meshed according to the procedure described in 

ref. [21], which also describes the electrode effects. The mesh is also shown in Fig. 9a 

and 9b. More details about FEM modelling can be found in Section S2 of the Supporting 

Information. 

III. Results and Discussion 

A. The Geometry of the Monolithic HFF-QCMD Arrays 

The key result of this work is the 24-element array design shown in the optical 

micrographs in Fig 1a, b. The elements are organized into 6 columns of 4 elements each. 

The columns are defined by the six long electrodes running the size of the array in the Z’ 

direction, with four short rectangular finger-like electrodes extending away from each 

column along the X direction. The column electrodes are grounded, thus effectively 

forming one electrode common to all 24 array elements. This common electrode 

constitutes the “working” side of the array. It faces the sample.  

On the other side of the array, the short rectangular electrodes are oriented with their 

long axes along the Z’ direction and are connected to the driving circuitry individually. 

Array elements (numbered with a row and a column index in Fig. 1a) consist of square 

one-sided inverted MESA structures (visible in Fig. 1b) sandwiched between the two sets 

of the short rectangular electrodes that are oriented orthogonally to each other. One such 

individual element is depicted schematically in Fig. 1c. Element design is based on the 

individual 150 MHz HFF resonators we reported previously [21].  

The side view of the MESA region, with dimensions, is shown in Fig. 1d, where various 

numbers refer to the different zones of the array element surfaces. In particular, zones 1 

and 6 correspond to the surface of the rectangular electrode on the etched side of the array, 

while zone 5 corresponds to the surface of the rectangular electrode on the flat side of the 

array (grounded, working surface). Zones 2 and 3 refer to the bare quartz on the etched 

side of the array, and zone 4 on the flat side. The flat side of the MESA corresponds to 

the working side of the array. 

B. Physical Characterization of the Arrays 

The arrays were fabricated by a combination of photolithography and wet etching 

processes. These methods have previously been used by us [21] and others [18], [24], 

[39]–[41] to successfully fabricate high-quality HFF-QCMD resonators and monolithic 

resonator arrays based on the inverted MESA geometry. The process is cost-effective, 

robust, and yields low-roughness resonator surfaces, but it can result in etch channels and 

etch pits that are detrimental to the resonator performance [41]–[44]. We investigated the 

morphology and roughness of the resonator surfaces and reproducibility of the individual 

features across the array elements by optical microscopy, FEGSEM, profilometry, and 

AFM. The results are presented in Table I, Fig. 2 and Fig. 3. 

A FEGSEM image of a typical array element is shown in Fig. 2a. The square inverted 

MESA region is readily visible, and the rectangular gold electrode extending from the 

surrounding buffer to the MESA region itself (zones 1 and 6) can be identified. Note, that 

the inverted MESA is bound by the edges with different slopes due to the anisotropy of 

the etching process [43]–[45]. The electrode is seen to closely follow the slanted edge of 



the inverted MESA (on the left in Fig. 2a), insuring proper conductivity across the 

electrode [44]. The two electrodes are perpendicular to each other. This makes our design 

robust to mask misalignments. 

 

Fig. 2.  Physical Characterization of the Arrays (a) A FEGSEM image of one of the array 

elements showing the inverted-MESA region (zone 2) and the gold electrode (zones 1 

and 6). Zone numbers refer to Fig. 1d. White dashed line indicates where the surface 

profiles, shown in (b), were taken. Axes indicate the crystallographic orientation of the 

AT-cut quartz. Scale bar is 200 m. (b) Surface profiles measured with a profilometer 

along the direction indicated with the dashed white line in (a). Profiles are offset by 0.05 

m along the abscissa and by 5 m along the ordinate relative to each other. Note the 

characteristic difference in slopes between the two sides of the inverted MESA region 

that arises from the anisotropy of the etching process. 

 

The reproducibility of the depth and size of the inverted MESA region can be evaluated 

from the profilometry traces shown in Fig. 2b. Here, each color represents a different 

array element from two different arrays. The fabrication process was extremely 

reproducible, with the etching depth of 55.9 μm ± 0.5 μm, which is convenient for 

reliable operation in automated data acquisition systems. 

TABLE I 

VALUES OF ROUGHNESS 

Zone (see Fig. 1d) Ra (nm) 2.5 µm x 2.5 µm 

1 (Gold, etched, MESA) 0.67 ± 0.01 

2 (Quartz, etched, MESA) 0.72 ± 0.06 

3 (Quartz, etched, buffer) 0.9 ± 0.1 



4 (Quartz, flat, buffer) 0.34 ± 0.04 

5 (Gold, flat, MESA) 0.79 ± 0.2 

6 (Gold, etched, buffer) 1.02 ± 0.08 

Calculated from the AFM images of the different regions (zones) of the resonator elements of 

an array, such as those shown in Fig. 3. Zone numbers are specified in Fig. 1d. “Etched” and 

“flat” refer to two sides of the array. 

FEGSEM images reflect the uniformity of the surface finish of the array elements after 

the etching process. This is further investigated on a smaller length scale in Fig. 3, where 

the AFM images of zones 1, 2, 4, and 5 of one of the array elements are shown. Apart 

from a few spikes caused, most likely, by contamination of the samples during the cutting 

and mounting of the array on the stage of the AFM, the images appear devoid of any 

large-scale features. This is consistent with the SEM results presented above. The values 

of the roughness calculated from these images for the different zones are summarized in 

Table I. In all of the zones, the roughness is ~ 1 nm or less, (Table I). Note, that on the 

flat side, the gold deposition increases the roughness (c.f. zones 4 and 5 in Table I), while 

on the etched side, it decreases the roughness (c.f. zones 1 and 2 in Table I). This arises 

from the finite size of the gold grains, which are larger than the features of the polished 

quartz face but smaller than the features of the etched quartz face. 

 
Fig. 3.  High-resolution Surface Characterization of the Array Elements AFM images of 

the different regions of one element of an array. Encircled numbers refer to the zones 

defined in Fig. 1d: 1) Surface of the gold electrode in the MESA region, 2) MESA region 

without the electrode, 4) Bottom surface of the resonator without the electrode and 5) 

Surface of the gold electrode on the bottom face. A few white regions (spikes) are seen 

in the images of zone 1 and zone 4. 

The roughness of the resonator surfaces is important for acoustic sensor performance 

in liquids: gas bubbles can be trapped in the roughness during the wetting of the sensors; 

new energy dissipations channels arise from the hydrodynamic effects at the oscillating 

sensor surface; finally, roughness affects adsorption behavior of biomolecules. These 

effects are minimized in our case by etching the blanks from one side only. This leaves 

the working side of the array polished and untouched, exhibiting sub-nm roughness 



(Table I) that is, in fact, better than that of the state-of-the-art resonators (~ 1 nm [46]). 

These values are of the same order as those reported in the literature (see Table II). Indeed, 

the only currently available method of improving the surface roughness of the resonators 

beyond this range is through the ultra-flat technology that has not yet been generalized to 

the HFF resonators [46], [47].  

In summary, the physical characterization of the arrays revealed array elements with 

highly reproducible lateral dimensions and depths, devoid of large-scale surface features 

that would impede their operation, with surfaces roughness of the order of ~ 1 nm. 

TABLE II 

COMPARISON OF QUALITY FACTOR Q AND ROUGHNESS RA REPORTED BY DIFFERENT 

MANUFACTURING TECHNIQUES  

Reference 
Frequency 

(MHz) 
Ra (nm) 

Q (in air) Fabrication 

process 

Values in this work 150 1 12000 Wet etching 

Abe et al. [48] 94 2 30000 Deep RIE 

Liang et al. [40] 84 -- 25000 Wet etching 

Hung et al. [49] 83 4-8 12000 Deep RIE 

Liang et al. [40] 73 -- 24000 Wet etching 

Kao et al. [25], [27] 60-70 2 22100 Deep RIE 

Liang et al. [40] 60 -- 27000 Wet etching 

Buettgenbach et al. [44] 48 10 50000 Wet etching 

Liang et al. [40] 47 -- 25000 Wet etching 

Zhang et al. [50] 45 -- 13200 Wet etching 

Zimmermann et al. [18] 30 -- 37.000 Wet etching 

Abe et al. [51] 20 2 2000 Deep RIE 

RIE: Reactive Ion Etching 

 

C. Electrical Characterization of the arrays 

1. Resonance parameters 

To characterize resonance behavior of the array elements, their complex admittance 

spectra were measured using a vector network analyzer. To this end, the arrays were 

mounted in a home-made device adapted from a bench-top robot shown in Fig. 4. 

Resonance frequencies and quality factors are shown in Fig. 5 and Fig. 6, respectively. 

The data reveal compact distributions of frequencies and quality factors from 26 different 

arrays, with averages of 149 MHz± 0.2 MHz and (1.2 ± 0.1)104 for the resonance 

frequency and quality factor, respectively (measured in air). 



 
Fig. 4.  Home-made robotic setup for the electrical characterization of the arrays. (a) 

Overview of the base with the movable arm and the network analyzer (VNWA). Location 

of the array, under the movable arm, is indicated with a white circle, while the red outline 

defines the region shown in (b). (b) Enlarged view of the movable arm, with the top PCB, 

and VNWA connection cables visible. In this configuration, the array is not visible as it 

is sandwiched between the two PCBs. They are shown in (c) in the open configuration. 

(c) The PCB assembly: bottom PCB with an array and a 5ȼ euro coin to give the idea of 

the scale; Movable arm, detached from the robot, with the top PCB and the VNWA 

connection cables. 

The variation in the values of the resonance frequency between array elements is similar 

to that we reported for the single sensors previously [21]. There is a slight systematic 

trend visible in Fig. 5 with the resonance frequencies decreasing across the columns, most 

likely due to uneven etching that will be fixed in the subsequent batches. The detuning 

between sensors caused by the manufacturing deviations, even though unintended, is 

beneficious for crosstalk reduction [38]. 

 
Fig. 5.  Resonance Frequencies of the Array Elements The results from 26 arrays are 

shown. Measurements were performed in air. (a) A 3D bar plot of the average resonance 

frequencies of the array elements as a function of their position in the arrays. (b) A 

histogram of the resonance frequencies of the array elements depicting their overall 

distribution. (c) A box plot of the resonance frequencies of the array elements as a 

function of position in the array. Red lines: means; black lines: medians; the box defines 



25th and 75th percentiles, while the error bars define 10th and 90th percentiles, while blue 

filled circles show outliers.  

The observed quality factors of the array elements can also be compared with the 

theoretical limit estimated according to the relationship Q∙fres=1.6103 Hz [20]. For the 

resonance frequency of 150 MHz, this relationship yields the expected value of 

~1.1  105 for the maximal attainable quality factor. The experimentally observed values 

are within an order of magnitude lower than of this theoretical limit. They are close to 

what we have previously reported for the individual 150 MHz resonators of the same 

design (9.5  103 [21]). Furthermore, we have previously obtained quality factors of 

(4.4 ± 0.4)  104 for the 50 MHz resonators and (2.5 ± 1.0)  104 for 100 MHz resonators; 

the measurements were performed with the same setup as shown in Figure 4. The 

theoretical limits for these resonators are 3.2  105 and 1.6  105, respectively. The 

measured values are also similar to the ones reported in the literature (see Table II). This 

comparison with our own and literature values for various HFF resonators reveals that 

the quality factors of HFF resonators are typically 1 – 2 orders of magnitude lower than 

expected theoretical limits. According to some authors, some surface features (such as 

etch pits, etching channels or large-scale roughness) or departures from parallelism tend 

to reduce the quality factor of the resonators [42]–[44], [52]. 

 

Fig. 6.  Quality Factors parameters of the Array Elements. Results from 26 arrays are 

shown. (a), (b), and (c) are the same as in Fig. 5, but for the quality factor. 

2. Analysis of Inharmonic Sidebands 

Spurious modes may be an issue for sensing applications because coupling between 

them and the harmonic mode takes energy from the latter [18], [22]. This effect is more 

dramatic in liquid-media applications [18], [53] and the problem is more acute with the 

HFF resonators because for higher fundamental frequencies, inharmonics are relatively 

closer to the harmonic mode than in the case of lower fundamental frequencies [22]. 



Suppression of inharmonic modes is achieved by optimizing electrode geometry 

(electrode surface area and thickness) relative to the geometry of the inverted-MESA 

region based on the energy trapping principle developed for the classical QCMD 

resonators. The so-called plate-back equation is used to estimate the necessary electrode 

thickness [22], [54], and a compromise is then found between spurious mode suppression, 

conductivity, and the resonator quality factor [21], [27], [38], [55]. We have optimized 

electrode geometry for the individual 150 MHz resonators, as described in our previous 

work [21]. Here, we study the effect of their integration into the array on the inharmonic 

behavior by comparing experimentally measured conductance of the array elements as a 

function of frequency (Fig. 7a, b) with the results of the FEM simulations of the individual 

resonators (Fig. 7c). Heatmaps of conductance as a function of frequency show the 

detuning between the array elements (Fig. 7a). For an easier quantification of inharmonic 

separation, the same heatmaps are shown in Fig. 7b as a function of normalized 

frequency, f/fres, where fres is the resonance frequency of each array element. 

For most of the array elements, the intense fundamental mode <111> appears at 

f/fres = 1, followed by the inharmonic modes at higher frequencies. Significantly, the 

harmonic analysis performed by FEM simulations of the individual resonators accurately 

predicts the localization of the inharmonic modes found in the array elements 

experimentally (dashed lines in Fig. 7b). In particular, the odd modes <113>, <131> and 

<133> (black dashed lines in Fig. 7b) appear in all of the array elements as expected on 

theoretical grounds at frequencies that fit very well with the predictions of the FEM 

simulations for the individual resonators [21]. The separation between the fundamental 

<111> and the first of the odd inharmonic modes <113> is ~ 300 kHz or 0.003 in terms 

of f/fres, which agrees well with the results presented by Buettgenbach et al. for a 50 MHz 

HFF resonator [44]. This separation is enough for measurements in aqueous media, but it 

should be made as wider as possible within the limits set by manufacturing restrictions. 

The main difference between the predictions of the FEM simulations for the individual 

resonators and experimental results obtained with the arrays is that even modes 

(<112>,<121>,<122>,<132>,<114>,<132> and <124>) are also visible in some elements 

of the arrays, as a consequence of the slight asymmetries existing in the real resonators 

(white dashed lines in Fig. 7b) [22]. On the other hand, the misalignment during the array 

fabrication process, apparent in the FEGSEM images (Fig. 2a), lead to the asymmetries 

in the electrode configuration and different electrode thickness/effective surface areas for 

the different array elements, translating into differences in the spectra. These effects are 

minor, however. Apart from these two aspects, the modal behavior of the array elements 

is well-predicted by the FEM simulations of the individual resonators and is unaffected 

by their being part of a monolithic array. 

3. Analysis of the interactions between array elements (crosstalk) 

The purpose of the resonator arrays is to enable parallel measurements with each of its 

elements functioning independently of each other. Therefore, the extent of the 

interactions between the elements is an important consideration.  

Experimentally, interactions between array elements are measured through the 

scattering parameter S21 shown in Fig. 8. It is immediately clear that the cross-talk 

between array elements in each of the three directions is, for all intents and purposes, 

negligible and our design is appropriate for parallel individual measurements: the 

experimental maximum value in |S21|, that is ~ – 32 dB at the most with averages values 

of less than – 50 dB (Fig. 8a – c). These values agrees well with those reported by other 

authors: ~-30dB for the 3×3 66 MHz array [25], [27]; ~-50dB for the 4×4 43 MHz array 

[24], and < -40dB for the  2×2 10MHz array (with average values smaller than - 60dB) 

[56]. 



 
Fig. 7.  Inharmonic Analysis of the Array Elements. Heatmaps of conductance as a 

function of frequency, f, (a), and as a function of normalized frequency, f/fres, where, fres 

is the resonance frequency of the array element, (b), for different array elements. 

Representative results for one array are shown. The most intense (highest conductance) 

mode is the fundamental, <111> mode that appears at f/fres = 1. Dashed lines in (b) refer 

to the different inharmonic modes, black for odd, and white for even. The frequencies of 

the modes, and their displacement patterns that are shown in (c), were calculated with 

modal analysis simulations of individual resonators [18]. 

The experimental observation of negligible cross-talk is supported by the results of the 

FEM simulations (Fig. 9) that show lack of acoustic interactions between array elements 

(|S21| below -50dB) and lack of displacement in the passive resonator when the active 

neighbor is excited (see Fig. 9d). 



 
Fig. 8.  Cross-talk analysis: results. Plots of the scattering parameter, |S21|, as a function 

of frequency normalized to the resonance frequency of the element with the lower 

resonance frequency, fres,min, for three different values of detuning fij = fi – fj, where ith 

element is the active one and jth element is the passive one. For |S21|, the experimental 

results are shown in black, and equivalent circuit model calculation results—in red. 

Equivalent circuit model parameters were: C1= C2 = 5.73 fF, Ce = 32 fF, Re= ∞ Ω, 

La = 0 H, C01 = C02 = 2.29 pF, Lp = 2 nH and Rp = 0 Ω, fres, j = fres, i + Δfij. Furthermore, 

in (a), fres,1 = 148.1 MHz, f  = 49 kHz, R1 = 7 Ω, and R2 = 4 Ω; in (b), 

fres,1 = 147.5 MHz, f = 212 kHz, R1 = 12 Ω, R2 = 11.4 Ω; in (c), fres,1 = 147.3 MHz, 

f = –1009 kHz, R1 = 13 Ω, and R2 = 15 Ω.  

 

Similarly, analytical calculations based on MCF filters design also predict that acoustic 

coupling should be minimal. Indeed, the coupling strength K can be easily estimated from 

the geometry of the array and the properties of quartz according to the following 

expression [34]: 𝐾 =
3𝑐11

8𝑓𝑟𝑒𝑠
2 𝑥

2 𝑒−𝑑. Here c11=8.674×1010 N m2 is the elastic coefficient of 

AT quartz in the X direction, fres is the resonance frequency of the uncoupled resonators 

(assumed to be the same in this case; no detuning), ρ is the density of quartz, and d is the 

distance between the resonators along the X direction (2.25 mm). ξ is the propagation 

constant for the shear-thickness mode, defined as  =
2.298

𝑡
𝛥1 2⁄ , where t is the thickness 

of the resonator and Δ is the so-called plate-back, ∆=
𝑓𝑠−𝑓𝑟𝑒𝑠

𝑓𝑠
, where fs is the resonance 

frequency of the quartz plate without the electrodes. In our case, fs≈ 165 MHz, 

fres≈ 150 MHz, giving Δ ~ 0.0909 and ξ ~ 69287.3. 
𝑥

= 𝑑 + 2𝑟 +
0.418𝑡

∆1 2⁄  is the effective 

length of the vibration volume along the X axis, where r is the electrode dimension in the 



X direction; in our case, this is taken for the individual electrodes on the etched side of 

the array, or 550 m, giving 3·10-3 for x. Plugging the numbers into the expression for 

K, one arrives at a value of ~ 10–74. In other words, in our arrays, the elements are not 

expected to interact acoustically. 

 

 
Fig. 9.  Cross-talk analysis: FEM simulations. Simulation geometry and meshing. (a) Two 

resonators on the same AT quartz substrate are shown, with the mesh indicated. Mesh 

size was 50 m  50 m. The distance between the two resonators was 2.25 mm (element-

element distance in X direction of the manufactured array). (b) View of one of the mesh 

elements illustrating the meshing in the thickness direction. The substrate thickness was 

10 m, meshed into 10 slabs. Axes in (a) and (b) indicate crystallographic directions. (c) 

A plot of |S21| extracted from the simulations as a function of the normalized frequency 

and the corresponding impedances Z. Detuning was f = 200 kHz. To bring the values of 

|S21| away from resonance in the FEM simulations into register with the experimental 

ones, a capacitor with a value of ~ 23 fF, had to be explicitly introduced into the FEM 

simulations. (d) Patterns of instantaneous displacement in the active (right) and passive 

(left) resonators. There is no evidence of displacements in the passive resonator when the 

active one is excited with 0.5 V. 

Interestingly, however, the FEM simulations do actually not reproduce the 



experimentally observed dependence of S21 on frequency: the peak in S21 visible in 

Fig. 8a – c is absence in Fig. 9c. To understand this discrepancy, we constructed an 

equivalent circuit model based on the classical MCF topology [34], [35].The model 

proposed here, shown in Fig. 10b, adds new elements Lp and Rp to the well-known model 

used in MCF theory to account for the parasitic electrical grounding effects in the 

experimental setup.  

The correspondence between the predictions of the model and the experimental data, 

visible in Fig. 9a-c, is excellent when acoustic coupling was neglected (La=0), but the 

electrical component of the coupling (Ce) and a poor grounding Lp were considered. S21 in 

Fig. 9a-c is measured at three different values of detuning between the two elements. Note, 

that in this model, Lp is the only adjustable parameter, and its value was the same for all 

three values of the detuning. A more detailed explanation about the effects of the individual 

circuit elements on the crosstalk can be found in section S3 of the Supporting Information. 

The authors wish to point out that, although the modeled parasitic effects are, in this 

case, negligible, and would not affect the characterization of the designed array, this does 

not invalidate the model itself. The model proposed faithfully represents those mentioned 

effects and allows its identification in a simple and sufficiently precise way. Therefore, it 

may be applicable in other cases where such effect could be not negligible. 

Note, that while our discussion of the cross-talk is based on the results of the X-

crystallographic direction only, all of the above arguments apply equally to the other 

crystallographic directions up to the substitution of the appropriate values for the 

geometric, elastic, and piezoelectric parameters. 

 

Fig. 10.  Cross-talk analysis: the equivalent circuit model. Array element topology (a), 

and its equivalent circuit representation (b), used to analyze crosstalk between the 

adjacent array elements. The topology corresponds to two resonators sharing a common 

electrode that is grounded. R1, L1, C1 and R2, L2, C2 comprise the motional branches of 

the BvD circuits used to represent each of the two quartz resonators (array elements). C01 

and C02 account for the static capacitances between the electrodes of each of the two 

resonators. Coupling between the resonators is modeled with a combination of a capacitor 

Ce, inductor La, and a resistor Re; the latter accounts for the losses. Parasitic elements Lp 

and Rp model the ground path. Further details can be found in the text. 



D. Behavior of the Arrays in Liquid 

As a final step, we checked whether the arrays functioned in liquids. These results are 

merely illustrative; details of the microfluidic cell and the detailed validation of array 

performance in fluids will be presented in a future publication. 

The change in the resonance frequency and bandwidth upon transfer from air to water 

is expected to satisfy the Kanazawa-Gordon-Mason (KGM) relation [8], [57], [58], ∆𝑓 +

𝑖∆Г = −
(1−𝑖)√2𝑓𝑟𝑒𝑠

3 𝜌𝑙𝑖𝑞𝑙𝑖𝑞

𝑍𝑞√2𝜋
, where Zq is the acoustic impedance of AT quartz 

(8.84×106 kg m-2 s-1), fres is the fundamental resonance frequency of the array element, 

liq is the density of the liquid, and liq its viscosity. The results are shown in Table III, 

where the theoretically expected values and experimentally obtained values for the arrays 

and various individual resonators are shown.  

TABLE III 

AIR-TO-WATER FREQUENCY AND BANDWIDTH  

Condition Δf kHz ΔΓ kHz 
Accuracy 

rms (Δf) kHz rms (ΔΓ) kHz 

150 MHz (n = 1) 

Theory -113 ± 0.6 113 ± 0.6   

Experiment 

(arrays) 

-103 ± 16 116 ± 12 19 (16%) 13 (11%) 

35 MHz (f0 = 5 MHz, n = 7) 

Theory -1.78 1.78   

Experiment -1.83 ± 0.05 1.67 ± 0.009 0.05 (3%) 0.12 (7%) 

150 MHz (f0 = 50 MHz, n = 3) 

Theory -37 37   

Experiment -40 ± 2 38 ± 2 3 (8%) 2 (5%) 

100 MHz (n = 1) 

Theory -60 60   

Experiment -62 ± 2 53.0 ±0.5 2.4 (4%) 7.3 (12%) 

Data shifts for the arrays prepared in this study compared with those for the individual 

sensors. Theoretical values were calculated using the KGM relationship. For the arrays, 

the resonance frequencies, fres, of the individual elements (Fig. 5) were used in the 

calculations. Errors are standard deviations, accuracy values are rms deviations between 

the measured and the theoretical values. Water density and viscosity at 22ºC were used 

in the calculations.  

The values presented in Table III show that the air-to-water shifts can be measured with 

these arrays with the accuracy comparable to that observed with the individual HFF 

resonators. We also note that the frequency shift due to the change from air to water, ~ 



− 113 kHz, is much smaller than the separation between the fundamental and the first 

inharmonic modes, which is ~ 300 kHz (see section III.C.2).  

IV. Conclusion 

The main result of this work is the 24-element monolithic, high fundamental frequency 

(HFF) QCMD array design and the physical and electrical characterization of the arrays 

manufactured according to this design. Special emphasis in characterizing the arrays was 

placed on surface roughness, inharmonic sidebands, and analysis of the interactions 

between the elements of the array, as these aspects will detrimentally affect array 

performance and may limit its biosensing functionality.  

Reproducibility of array manufacturing has been demonstrated. The roughness of the 

working surface of the array was ~ 1 nm, that is to say, comparable with that of other 

commercially available QCMD resonators. Resonance frequencies of the array elements of 

149 MHz ± 0.2 MHz and quality factors of (1.2 ± 0.1)×104, averaged over 26 different 

arrays, have been obtained. Inharmonic modes do not disturb operation with liquids, since 

a separation between the fundamental and the first observed inharmonic of ~ 300 kHz was 

achieved. This value significantly exceeds the change in frequency and bandwidth due to 

the immersion of the arrays in aqueous media. The behavior of the array elements fits very 

well with that of the individual resonators of the same design and predictions of the FEM 

simulations. Finally, we demonstrate that the performance of the arrays in liquid is 

comparable to that of the individual HFF resonators. 

A significant part of our work deals with the interactions between the array elements. We 

show that there are no detectable acoustic interactions between the array elements for our 

array geometry. This conclusion is consistent with the theoretical predictions and is 

supported by the results of the geometry-specific FEM simulations. We also observed 

differences between the experimental S21 shape and FEM simulations results. Using an 

equivalent circuit model based on the MCF topology, we show that these differences are 

explained entirely by parasitic impedances from the grounding of the resonators. This 

model can be useful for the general design of monolithic HFF QCMD arrays; since it 

provides a simple tool that allows a fast simulation of the interferences between array 

elements and a mean to identify the causes and try to avoid them. 

We expect our arrays to be useful for biosensing applications and our results to 

investigators wishing to design their own high-performance monolithic HFF QCMD arrays. 
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