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1.  Introduction 
The medial temporal lobe (MTL) is the target of several neurodegenerative pathologies, 

most notably of neurofibrillary tangle (NFT) pathology which is thought to first affect the 

transentorhinal cortex, before it spreads to the entorhinal cortex and cornu ammonis 

region (CA) 1 of the hippocampus (Braak and Braak, 1995, 1991). As NFT pathology is 

closely related to neuron and synapse loss (Bobinski et al., 1997; Braak and Braak, 

1991; Fukutani et al., 1995), certain medial temporal lobe subregions may therefore 

show early and selective atrophy and serve as imaging biomarker in the early stages of 

Alzheimer’s disease. In fact, a recent in vivo MRI study showed selective atrophy in 

Brodmann area 35 (BA35), a region that approximates the transentorhinal region, in 

individuals with preclinical Alzheimer’s disease (AD) compared to controls (Wolk et al., 

2017). These subregions are also of interest because they are thought to subserve 

different cognitive functions, such as recollection and familiarity (Wolk and Dickerson, 

2011; Yonelinas et al., 2007), and are part of two dissociable MTL networks, where the 

anterior hippocampus, entorhinal cortex (ERC) and perirhinal cortex (PRC) are part of 

the anterior MTL network and the posterior hippocampus and parahippocampal cortex 

(PHC) are part of the posterior MTL (Ranganath and Ritchey, 2012). These networks 

are also thought to be affected in the early stages of AD (Wolk et al., 2017). 

 Fine-grained measurement of subregions of the MTL has therefore received 

increasing attention in the recent years, with many studies utilizing high resolution T2-

weighted (T2w) MRI images, often with ~0.4x0.4 mm2 in-plane resolution (Yushkevich 

et al., 2015a). The advantage of these images is that they allow for improved 

visualization of MTL structures, for example by the visualization of the stratum radiatum 

lacunosum moleculare (SRLM) which is an important border between certain subfields 

of the hippocampus, but also by the clear visualization of the dura mater, which is part 

of the meninges. The advantage of the clear visualization of the dura in these T2-

weighted MRI images is that it allows for accurate segmentation of important adjacent 

MTL subregions, in contrast to T1-weighted (T1w) MRI images in which the dura has 

similar intensity as gray matter (Xie et al., 2016). Even though there are advantages of 

these T2w MRI images over T1w MRI images, there are large datasets of T1w MRI 

scans available and analyzing these datasets would allow for more power to test 



 

hypotheses of interest. Additionally, T1-weighted images often have higher resolution in 

the through-plane direction which helps in better resolving the folding and branching of 

sulci, important for the segmentation of these MTL cortical regions. 

 There are methods available for the parcellation of MTL subregions for T1w MRI. 

Several manual approaches exist (Kivisaari et al., 2013; Nikolai V. Malykhin, 2008) 

which can be used to obtain granular measures of the MTL cortex on T1w MRI. 

Moreover, an advantage of these manual approaches is that they often take anatomical 

variability of the collateral sulcus into account, which greatly affects the location of the 

borders between MTL cortices (Ding and Van Hoesen, 2010). However, manual 

segmentation does not seem feasible for larger datasets like the Alzheimer’s disease 

neuroimaging initiative (ADNI), which includes hundreds of MRI scans. There are 

several automated methods available, like FreeSurfer (Fischl, 2012). However, these 

methods generally provide coarser labels of the MTL and often provide no account of 

how the method dealt with anatomical variability of the collateral sulcus, which greatly 

affects the location of the borders between MTL cortices. It should be noted that 

FreeSurfer does provide a method to subdivide the hippocampus into different subfields 

(Iglesias et al., 2015). However, we have previously argued that standard resolution 

T1w MRI scans do not provide sufficient resolution for the visualization of the inner 

structure of the hippocampus and the parcellation of the hippocampal subfields (de 

Flores et al., 2014; Laura E. M.Wisse, Geert Jan Biessels, 2014). Another issue for T1w 

MRI scans, as mentioned above, relates to the visualization of the dura mater, part of 

the meninges. In the MTL, a large proportion of the ERC and parts of the PRC are 

located directly adjacent to the dura and as a result often appear merged with parts of 

the dura in T1w MRI (red arrows in Figure 1). To the best of our knowledge, none of the 

automatic analysis pipelines for MTL cortices using T1w MRI have addressed this 

confound, and the dura is often segmented as part of the gray matter by the state-of-

the-art image processing algorithms (Figure 1c). This likely leads to an error in the 

quantification of ERC and PRC, which potentially confounds the findings of research 

studies. Speculating, if there is no space between the dura and cortex, as is often the 

case in healthy individuals, the dura may be mistakenly included in the cortex 

segmentation, whereas if there is space between the dura and cortex, for example in 



 

patient groups with severe atrophy, the dura may be correctly excluded from the cortex 

label. This would lead to a systematic bias in the estimation of group differences. 

 

Figure 1. The dura (red arrows) has similar intensity as gray matter in T1w MRI (a) but 

can be easily separated from the cortex in T2w MRI (b). It is often segmented as part of 

the cortex by state-of-the-art algorithms (c), e.g. FreeSurfer. 

 
 

 To address the issues relating to the dura and the coarseness of the MTL 

regions in previous automated methods, we developed a novel pipeline for the 

segmentation of ERC, PRC and dura on T1w images in our prior work (Xie et al., 2016), 

using an established multi-atlas segmentation framework (Yushkevich et al., 2015b) 

together with a super-resolution technique (Manjón et al., 2010). The atlas for this T1 

pipeline was created using the T2 atlas set that was previously published by Yushkevich 

et al. (2015b), which includes measures of the ERC and subdivisions of the PRC, that is 

BA35 and BA36, based on a segmentation protocol that takes anatomical variability of 

the collateral sulcus into account, and was developed in consultation with a 

neuroanatomist (SLD). The segmentations of this atlas set were transformed into the T1 

space after co-registration with the T2w MRI of the same subject and edited. 

Additionally, these segmentations were extended with a dura label informed by the T2w 

MRI. Evaluation of this pipeline and comparison to other methods, including FreeSurfer, 

indicated that a large portion of the dura received the correct label in our pipeline but not 

in other methods. That is, a large portion of the dura was included in gray matter in 

these other methods. Cross-validation experiments showed promising segmentation 

accuracy [Dice similarity coefficient or DSC (Dice, 1945) > 0.671] for cortical regions. 

Moreover, the clinical utility of the pipeline to other methods was evaluated by 



 

examining the statistical power in discriminating controls from amnestic mild cognitive 

impairment (aMCI) patients, and indicated, qualitatively, that the largest area under the 

curve (AUC) for our pipeline was for BA35. 

 In the current paper we have extended this work in several ways. We have 

extended our previous label set to include the parahippocampal cortex (PHC) and the 

hippocampus, including a subdivision of anterior and posterior hippocampus and 

provide thickness values in addition to volumes for the MTL cortices. We have improved 

the registration between the T1w and T2w MRI scans allowing for a closer alignment 

which required less editing of the transformed segmentations in the T1-space. We 

completed experiments to evaluate the performance of our pipeline. We performed 

cross-validation experiments of the new atlas set against the manual segmentation and 

compared our pipeline with FreeSurfer version 6.0 (Fischl, 2012) to evaluate how the 

different methods label dura in T1w MRI. And we evaluated the performance of our 

pipeline in scans from Alzheimer’s disease neuroimaging initiative (ADNI) phases GO 

and 2 by comparing MTL subregional volumes and thickness in amyloid negative 

controls with individuals with preclinical AD, prodromal AD and AD dementia. Finally, 

the atlas and software developed in this paper are made publicly available at 

https://sites.google.com/view/ashs-dox/home. In addition, we have also provided an 

easy-to-use cloud-based service of the proposed pipeline. Detailed tutorial on the cloud 

based serviced are available https://sites.google.com/view/ashs-dox/cloud-

ashs/overview and briefly summarized in Supplementary Material A. 

 
2. Methods and materials 

2.1 Participants 
2.1.1 PMC atlas set 
The atlas set used in this study consists of 15 cognitively normal older controls (NC) 

and 14 aMCI patients. These participants were recruited from the Penn Memory Center 

/ Alzheimer’s Disease Center (PMC/ADC) at the University of Pennsylvania. Diagnosis 

of aMCI was made following the criteria established by Peterson and others (Petersen, 

2004; Petersen et al., 2009; Winblad et al., 2004). Informed consent was provided by all 

https://sites.google.com/view/ashs-dox/cloud-ashs/overview
https://sites.google.com/view/ashs-dox/cloud-ashs/overview


 

subjects. This study was approved by the Institutional Review Board of the University of 

Pennsylvania. This is the same atlas set that was used by Yushkevich et al. (2015b) 

and Xie et al (2017) to develop the atlas set using both T1w MRI and high-resolution 

T2w MRI. To avoid confusion, the atlas set developed in this study will be referred to as 

the PMC-T1 atlas and the one used in Yushkevich et al. (2015) and Xie et al (2017) will 

be referred to as the PMC-T2 atlas. Demographic and the mini-mental state 

examination (MMSE) data for the aMCI and NC groups are shown in Table 1. 

 

Table 1 Characterisitcs of the PMC dataset 

 Normal Control aMCI 

N 15 14 

Age (yrs) 66.3 (9.5) 71.9 (6.2) 

Gender (M/F) 7 / 8 6 / 8 

Education (yrs) 15.6 (2.6) 16.9 (2.8) 

MMSE 29.5 (1.0) 26.9 (1.7) *** 

Note: All statistics are in comparison to cognitive normal control subjects. * p < 0.05; ** p < 0.01; *** 
p < 0.001. Independent two-sample t-tests (age, education, MMSE) and contingency χ2 test (gender) 
were used. Standard deviation in parentheses. Abbreviations: MMSE = mini-mental state 
examination. 
 

2.1.2 Dataset from the Alzheimer’s disease neuroimaging initiative (ADNI) 
Part of the data used in the preparation of this article were obtained from the ADNI 

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment and early Alzheimer’s disease. For up-to-date information, see 

www.adni-info.org. 

   

Cognitively normal controls and amyloid-beta (Aβ) positive patients that have T1w MRI 

scan available from the ADNI GO and ADNI 2 were included in this study. The amyloid 



 

status of each participant is determined by thresholding the global Florbetapir SUVR 

(derived from Florbeta PET in a standard way, with signal in the whole cerebellum as 

the reference region) using a threshold of SUVR >= 1.11 (Landau et al., 2012). In total, 

663 participants were included and grouped into Aβ negative (Aβ-) controls, preclinical 

AD (Aβ positive controls), early prodromal AD [Aβ positive early mild cognitive 

impairment (MCI)), late prodromal AD (Aβ positive LMCI) and dementia patients (Aβ 

positive AD). Table 2 summarizes the characteristics of these subjects. 

 

Table 2. Characteristics of the ADNI dataset 

  Aβ- Control Preclinical AD Early Prodromal AD Late Prodromal AD Dementia 

N 190 95 142 109 127 

Age (yrs) 72.3 (6.0) 74.8 (5.9) *** 73.6 (6.9) 72.3 (6.8) 74.4 (8.2) * 

Gender (M/F) 100 / 90 31 / 64 ** 81 / 61 57 / 52 68 / 59 

Education (yrs) 16.9 (2.4) 16.1 (2.7) * 15.6 (2.8) *** 16.6 (2.6) 15.6 (2.7) *** 

MMSE 29.0 (1.3) 29.0 (1.1) 28.0 (1.7) *** 27.2 (1.9) *** 23.0 (2.8) *** 

Note: All statistics are in comparison to amyloid-β negative (Aβ-) control subjects. * p < 0.05; ** p < 
0.01; *** p < 0.001. Independent two-sample t-tests (age, education, MMSE) and contingency χ2 test 
(gender) were used. Standard deviation in parentheses. Abbreviations: AD = Alzheimer’s disease; 
MMSE = mini-mental state examination. 
 
 

2.2 Neuroimaging data acquisition 

2.2.1 Imaging protocol atlas set 
The MRI scans of the atlas set were acquired on a 3T Siemens Trio MRI scanner 

(Erlangen, Germany) at the University of Pennsylvania using an 8-channel array coil. 

The imaging protocols of include (1) a whole brain T1w (Magnetization Prepared Rapid 

Acquisition Gradient Echo, MPRAGE) MRI scan; (2) a T2w (Turbo Spin Echo, TSE) 

MRI scan with partial brain coverage and oblique coronal slice positioned orthogonally 

to the main axis of the hippocampus (De Vita et al., 2003; Thomas et al., 2004). The 

parameters of the T2w MRI are: TR/TE=5310/68 ms, 18.3 ms echo spacing, 15 echo 

train length, 150° flip angle, 0% phase oversampling, 0.4×0.4 mm2 in-plane resolution, 



 

2.0 mm slice thickness with 0.6 mm gap, 30 interleaved slices, 7:12 min acquisition 

time. For the T1w MRI, they are: TR/TE/ TI=1600/3.87/950 ms, 15° flip angle, 

1.0×1.0×1.0 mm3 isotropic resolution, 5:13 min acquisition time.    

 

2.2.2 ADNI Imaging protocol   

The protocols that used to acquire the T1w MRI scans from ADNI are variable because 

of the multi-center nature of the ADNI study. The T1w ADNI MRI protocol was 

previously described in Jack et al. (2008) and Leow et al. (2006). For Florbetapir PET, 

images were acquired in a 20 minutes PET brain scan session (4 frames of 5 minutes 

duration). 10 mCi tracer was injected followed by a 50 minutes uptake phase before 

imaging. We used the pre-processed images (“AV45 Coreg, Avg, Std Img and Vox Siz, 

Uniform Resolution”) available from the ADNI database. 

 
 
2.3 Manual segmentation of the MTL substructures in T1w MRI 
 

All edits and segmentations were performed in ITK-SNAP (Yushkevich et al., 2006).  

 

2.3.1 Segmentation of parahippocampal cortices and dura 
Manual segmentations of the parahippocampal cortices from the PMC-T2 atlas set from 

Yushkevich et al. (2015) and Xie et al. (2017) were propagated to the space of the 

aligned T1w MRI, followed by manual edits and addition of the dura label. Details are 

described below. Figure 2 shows examples that illustrates the workflow. 

 

Alignment between T2w MRI and the T1w MRI of the same subjects were performed 

following the steps below: 

(1) Rigidly aligned T1w MRI to T2w MRI using the SyN ANTs 

(http://stnava.github.io/ANTs/) with mutual information as the similarity metric. 

(2) Up-sampled T1w MRI to 0.5x0.5x1.0 mm3 by applying a patch-based super-

resolution (SR) technique (Manjón et al., 2010) for the purpose of bringing the 



 

resolution of the T1w MRI closer to that of the T2w MRI. Also, the SR upsampling 

increases the contrast between the dura and gray matter in T1w MRI so that the 

boundary between them can be better visualized. 

(3) Resampled T2w MRI and the corresponding manual segmentation to 0.4x0.4x1.3 

mm3 using linear and nearest neighbor interpolation respectively. The purpose of 

this step is to make the voxel size of the T2w MRI and SR T1w MRI similar. 

(4) The upsampled T2w MRI was cropped based on its manual segmentation with a 

margin of 10 voxels in all directions. This is done separately for left and right 

hemispheres. 

(5) For each hemisphere, affine registration was performed between the SR T1w 

MRI and the cropped upsampled T2w MRI to further align the two modalities, 

initialized with the rigid transformation between the whole brain T1w MRI and 

T2w MRI. 

(6) Transformed and resampled SR T1w MRI to the cropped up-sampled T2w MRI 

space (referred to as registered SR T1w MRI), in which manual segmentations of 

the parahippocampal cortices and the hippocampus were performed. 

 

After local registration of the T2w and T1w MRI described above, the MTL region of 

both modalities are well aligned as shown in the first two columns in Figure 2. Labels of 

the parahippocampal cortices, including cortical labels (ERC, BA35, BA36, PHC) and 

sulcus labels [collateral sulcus (CS) and occipitotemporal sulcus (OTS)], were copied 

over the registered SR T1w MRI (the third and the fourth columns in Figure 2). Because 

of small errors in registration due to highly anisotropic voxel size of T2w MRI, affine 

inter-modality registration and the up-sampling of both modalities, the labels were 

checked and manually edited to correctly match the border with the white matter, 

cerebrospinal fluid (CSF) and dura largely following the procedure described in Xie et al. 

(2016); for these edits both the T1w and T2w MRI were used (the fifth column in Figure 

2). Note that only the outer borders with surrounding regions were adjusted, not the 

borders between the different parahippocampal cortices. Only the last slice of the ERC 

was adjusted, as a transition slice, extending halve the length of one slice anterior (note 

that these two slices translate to one slice on the T2w MRI). This is similar to the 



 

procedure in (Berron et al., 2017). Because of small registration errors and perhaps 

slight differences in the visualization of the hippocampus on T1w and T2w MRI, the 

anterior and posterior borders of the parahippocampal cortices did not follow the 

protocol as described in (Yushkevich et al., 2015b) for some subjects. To reach 

consistency between subjects but to minimize changes to the original segmentations, 

an optimal anterior and posterior border was decided upon based on the full atlas set. 

The ERC, BA35 and BA36 extend one 1.3 mm slice anterior to the first slice of the 

hippocampus (was one 2.6 mm slice in the original protocol), ERC extends two 1.3 mm 

slices posterior to the most posterior slice of the uncus (same as in original protocol) 

and BA35/BA36 extends four 1.3 mm slices (same as in original protocol). The most 

anterior slice of the PHC is one slice posterior to the end of BA35 and BA36 (same as in 

original protocol) and the most posterior slice is fourth most posterior 1.3 mm slice of 

the hippocampus (was second most posterior 2.6 mm slice in original protocol). All 

subjects were visually checked and the segmentations were adjusted to match these 

boundary rules. Any given label needed to be extended at most two slices, where 

borders were matched to adjacent slices. In none of the cases the anatomy changes 

dramatically from one slice to the next, making these adjustments feasible.  

 

Importantly, along the full length of the parahippocampal cortices, a label for the dura 

mater was assigned to the voxels inferior to the corrected parahippocampal cortices 

labels that have gray appearance in the registered SR T1w MRI and dark appearance in 

the resampled T2w MRI. Of note, the segmentation of the dura was informed by the 

registered T2w MRI, from which the boundary between dura and the cortex can be 

identified. This is especially crucial for situation when dura is completely attached to the 

cortex and cannot be visualized in T1w MRI (example 1 in Figure 2). In some cases, a 

thin layer of cerebrospinal fluid (CSF) between the dura and gray matter is visible in SR 

T1w MRI (green arrow in example 2 in Figure 2), i.e. a layer of voxels that have much 

darker intensity between the dura and gray matter in SR T1w MRI, which helps guide 

the dura segmentation. The CSF voxels were assigned a miscellaneous label. 

Moreover, in some cases, this layer of CSF is not visible, however the dura is not 

completely attached to the cortex either (example 3 in Figure 2). The portion of the dura 



 

near the brain stem and inferior to the CS that is not adjacent to the cortex (white 

arrows in the Figure 2) provides clues for automatic and manual segmentation of the 

dura. The anterior and posterior extents of the dura are limited to the slices with 

parahippocampal cortices labels (ERC, BA35, BA36 and PHC). 

 

Figure 2. Examples showing the procedure of manual segmenting medial temporal lobe 

(MTL) cortices in T1w MRI using manual labels in the space of the T2w MRI. Red and 

white arrows indicate the dura mater. The green arrow points to a thin layer of CSF 

between dura and the cortex that exists in some subjects. The white arrows show 

places that the dura is not completely attached to the cortex, which are important 

landmarks for manual and automatic segmentation. 

 
 

2.3.2 Segmentation of the hippocampus 
The European Alzheimer's Disease Consortium and Alzheimer's Disease Neuroimaging 

Initiative (ADNI) Harmonized Protocol (HarP) (Boccardi et al., 2015a; Frisoni et al., 

2015) is a well-validated harmonized protocol for hippocampus segmentation in T1w 

MRI. To be consistent with the HarP protocol, we chose a subset (15 controls and 15 



 

MCI patients) of the public available HarP training set from ADNI described in Boccardi 

et al. (2015b) as the training set to automatically segment the registered SR T1w MRI 

(obtained in Section 2.3.1) of the 29 cases in the PMC-T1 atlas set using the Automated 

Segmentation of Hippocampal Subfields (ASHS) package/software (see Section 2.4 for 

a brief description). These automatic segmentations were used to initialize the manual 

segmentation of the hippocampus. The characteristics of the HarP training set and the 

detail of the automatic segmentation pipeline is described in Supplementary material B. 

 

All segmentations were visually checked and edited where necessary in three planes, 

following the HARP protocol. Two adjustments were made to the HARP protocol. First, 

the medial border of the hippocampus was extended to be continuous with the 

parahippocampal cortices generated in Section 2.3.1. The medial border therefore 

followed the protocol from Wisse et al. (2012). In the most posterior slices, the 

hippocampal medial border was located at the most medial point of the cortex not 

including the calcarine sulcus. The hippocampus did not always reach the 

parahippocampal gyrus in these most posterior slices. Second, this medial border was 

executed until the slice where the hippocampus was embedded in the splenium, to 

improve the transition to the decreasing size of the hippocampus on consecutive slices. 

Moreover, the hippocampus was split in an anterior and posterior region, where the 

border was defined by the most posterior slice of the uncus, which was included in the 

anterior hippocampus (Malykhin et al., 2007). 

 

 

2.4 Automatic segmentation using ASHS 

Automatic segmentation of hippocampal subfields software/package (ASHS, 

https://sites.google.com/view/ashs-dox/home) was used to construct the atlas and 

perform automatic segmentation of a new subject.  

 

2.4.1 Construction of ASHS-T1 atlas using the ASHS training pipeline  
The original T1w MRI, whole-brain SR T1w MRI together with the bilateral manual 

segmentations in the space of the SR T1w MRI are fed into the ASHS training pipeline 



 

to generate an atlas (ASHS-T1 atlas). The ASHS training pipeline is described in detail 

in Yushkevich et al. (2015b) and summarized briefly in the following steps: (1) an 

unbiased whole brain population template is built using the T1w MRI of all the subjects; 

(2) the region of interest (ROI) of each hemisphere is identified by averaging the 

corresponding manual segmentations that are warped to the space of the template; (3) 

each SR T1w MRI and the corresponding segmentation is warped to the space of the 

template and cropped around the ROI; (4) pairwise registrations between all the 

subjects are performed between the warped and cropped scans; (5) label fusion is 

performed for each atlas in its native space using the rest of the atlases as candidates; 

(6) an adaboost classifier is trained to learn the systematic error between the automatic 

segmentation and the manual segmentations. The ASHS-T1 atlas is publicly available 

at https://www.nitrc.org/frs/shownotes.php?release_id=3851. 

 

2.4.2 Application of ASHS-T1 atlas to new images 
Once the ASHS-T1 atlas is trained, we can use the ASHS segmentation pipeline to 

automatically segment the T1w MRI scan of a new subject. Different from the pipeline 

described in Yushkevich et al. (2015b), the proposed pipeline only take the T1w MRI 

scan as input and does not require the T2w MRI scan. In brief, it involves the following 

steps:  

(1) The T1w MRI of the target subject is first up-sampled to 0.5x0.5x1 mm3 using the SR 

technique (Manjón et al., 2010). 

(2) The ROI around the left and right MTL are identified in the target SR T1w image by 

registering to a whole-brain template generated in the training pipeline. 

(3) For each target ROI, the corresponding ROIs in the atlas set are registered to it 

using ANTs with normalized cross-correlation metric (Avants et al., 2008). 

(4) Atlas labels are then warped to the target ROI and combined using the joint label 

fusion algorithm (Wang and Yushkevich, 2013). 

(5) The process is repeated in a bootstrapping fashion, where the initial segmentation of 

the target structures is used to initialize affine alignment between the atlas and target 

ROIs. This bootstrapping results in fewer failed atlas-to-target registrations and better 

https://www.nitrc.org/frs/shownotes.php?release_id=3851


 

overall segmentation accuracy. The automatic segmentation generated from this step is 

referred to as the “Heur” output. 

(6) Two adaboost classifiers, which were trained on shape features (the output referred 

to as the “NoGray”) or shape and gray-scale intensity features (“UseGray”) to correct 

for systematic errors generated in the multi-atlas label fusion step, are applied to further 

improve the automatic segmentation. Using the classifier outputs, i.e. NoGray and 

UseGray, is only recommended if the target T1w MRI scan is acquired with similar 

protocol as the atlas set. 

 

Final automatic segmentations are generated in the target SR T1w MRI space. For the 

atlas set of 29 subjects, the automatic segmentation in the space of the SR T1w MRI 

was generated in a leave-one-out manner using the remaining 28 subjects as atlases. 

The segmentation accuracy of the “UseGray” output is reported in Table 2 and those of 

all the three outputs (“Heur”, “NoGray” and “UseGray”) are also computed and reported 

in Supplementary Table 1. 

 

When segmenting the baseline scans of the ADNI cohort, the whole 29-subject ASHS-

T1 atlas set was used. To account for the difference in imaging protocol, the 

segmentation output from the bootstrapping step was used [the “Heur” result generated 

in step (5)]. The segmentation accuracy in terms of DSC between automatic and 

manual segmentations of “Heur” is comparable but slightly lower (1.5% maximum DSC) 

than “UseGray” shown in Supplementary Table 1. Volumetric and thickness (see 

Section 2.5.3) measurements of bilateral anterior/posterior hippocampus, ERC, BA35, 

BA36 and PHC were extracted for each subject.  

 

2.4.3 Quality control 
The quality of all the automatic segmentations generated by ASHS-T1 were visually 

checked. The pipeline successfully labels the baseline T1w MRI scans of all the 663 

ADNI subjects while small errors happened in small portion of the subjects. In detail, we 

observed under-segmentation in the lateral border of the hippocampus in 28 (7 Aβ- 

control, 2 preclinical AD, 8 early prodromal AD, 7 late prodromal AD and 4 dementia) 



 

out of 663 subjects. In 16 [1 Aβ- control, 1 early prodromal AD, 6 late prodromal AD (1 

overlap) and 8 dementia (1 overlap)] out of 663 subjects, oversegmentation of 

parahippocampal cortices were identified. This is unavoidable partially due to the lack of 

contrast between cortex and dura. Examples of the common segmentation errors are 

shown Supplementary Figure 1. 

 

2.5 Additional Image Processing 

2.5.1 Intracranial Volume (ICV) 

Intracranial space was segmented from the T1w MRI of each ADNI subject using an in-

house ICV segmentation software using ASHS with a training set of 27 T1w MRI scans 

(15 controls and 12 aMCI) and the corresponding manual intracranial space 

segmentations. The unique aspect of the training set is that the manual labels were 

generated with the guidance of the coregistered computer tomographic (CT) scans of 

the same subjects. Since the boundary between skull and the soft tissue is clear in CT 

scans, we were able to obtain an accurate manual segmentation of the intracranial 

space. Supplementary C describes the detail of ICV automatic segmentation pipeline. 

 

2.5.2 Cross validation experiment in the atlas set in the space of the T2w 
MRI (ASHS-T2) 

To compare the segmentation accuracy of the parahippocampal cortices of the 

proposed pipeline that only utilizes T1w MRI to that using both T1w and T2w MRI 

(Yushkevich et al. HBM, 2015), leave-one-out cross validation was also performed 

using the PMC-T2 atlas (comparisons were performed between the automatic and 

manual segmentations in the space of the T2w MRI). The same experiment has been 

done in Yushkevich et al. (2015b). However, since we have updated the ASHS software 

[ASHS version 2.0.0 rather than 1.0.0 (https://www.nitrc.org/frs/?group_id=370)] and the 

atlas manual segmentation [the PHC and OTS labels were added as described in Xie et 

al. (2017))], the results are slightly different from that in Yushkevich et al. (2015b). Note 

https://www.nitrc.org/frs/?group_id=370


 

that we did not perform this analysis for the hippocampus, as the segmentation protocol 

for the T1w and T2w hippocampus were different. 

 

2.5.3 Thickness measures of the parahippocampal cortices extracted from 
the ASHS-T1 automatic segmentation 
For parahippocampal cortices, thickness measures may be more appropriate compared 

to the volume ones because they are less sensitive to uncertainty in boundary 

estimation between cortical regions. A multi-template thickness analysis pipeline (Xie et 

al., 2017, 2014) was applied to the parahippocampal cortices labels (ERC, BA35, BA36 

and PHC) to extract thickness. Since large anatomical variability, i.e. different branching 

and folding patterns of the cortex, exists at the parahippocampal cortices, traditional 

single-template-based approaches may not generate accurate thickness measures. The 

thickness pipeline takes anatomical variability into account by fitting corresponding 

variant-specific template to the target segmentation, which has been shown to generate 

more accurate thickness measurement (Xie et al., 2017, 2014).  

 

2.5.4 Volume and thickness measures of hippocampus, ERC and PRC 
using FreeSurfer 

In order to compare the volume and thickness measurements extracted from the 

proposed pipeline to that from an established paradigm for T1w MRI, FreeSurfer version 

6.0 (Fischl, 2012) was applied to the T1w MRI scans of both the 29 subjects in the atlas 

set and the ADNI dataset. Volume measurements of the hippocampus, ERC and PRC 

were extracted from the “aseg.stats”, “lh.BA_exvivo.thresh.stats” and 

“rh.BA_exvivo.thresh.stats” files.  

 

2.6 Statistical analysis 
All statistical analyses in this paper are two-tailed with significance levels of p = 0.05 

unless stated otherwise. Bilateral measurements of each subregion were averaged. 



 

 

2.6.1 Analysis of demographic and MMSE data 
To test the differences of demographic and MMSE between diagnosis groups, i.e. 

aMCI-NC of the PMC atlas set and each patient-control pair of the ADNI dataset, 

independent two-sample t-tests and contingency χ2 test were performed for continuous 

(age, education, MMSE) and categorical (gender) variables respectively.  

 

2.6.2 Evaluate consistency between automatic and manual 
segmentations 
To evaluate the automated segmentations generated by ASHS-T1 and ASHS-T2 

average DSC (Dice, 1945) between the automatic segmentations and the 

corresponding manual segmentations among the PMC atlas sets were computed. In 

addition, we also computed the intra-class correlation (ICC) between volume 

measurements of the MTL subregions extracted from the automatic segmentations in 

the PMC-T1 atlas set and those obtained using the edited manual segmentations in 

T1w MRI space. To compare the ICC for the ASHS-T1 pipeline with that of the ASHS-

T2 pipeline, similar analysis was performed for the parahippocampal cortices labels 

(ERC, BA35, BA36 and PHC) for the PMC-T2 atlas set as well. ICC is computed using 

the ICC (2,1) method in Shrout & Fleiss (1979).  

 

2.6.3 Group analysis between patients and Aβ- controls in ADNI 
To evaluate the clinical utility, the four patient groups were compared to Aβ- controls 

separately. For each volume measure, a general linear model (GLM) with group 

membership as the factor of interest, age and ICV as covariates, was fitted to obtain the 

t-statistics for the NC-patient contrast. Bonferroni corrected significance level (p < 

0.05/10) is used to determine significant effects. For thickness measures, similar 

analysis was performed but only age was used as covariate and the Bonferroni 

correction significant level was set to p < 0.05/6.  

3. Evaluation experiments and results 



 

We first evaluated the consistency of the automatic segmentation of ASHS-T1 with the 

manual ones in the space of the T1w MRI and compare the performance of ASHS-T1 

with that of ASHS-T2 (Section 3.1). Then, we investigated the extent to which the 

established analysis methods for T1w MRI, i.e. FreeSurfer, mislabel the dura mater and 

the cortex (Section 3.2). Lastly, to demonstrate clinical utility of the proposed pipeline, 

we compared the volume and thickness measures extracted using the proposed 

pipeline between patients and controls using a large dataset from the ADNI and 

compared this with FreeSurfer (Section 3.3).  

 

3.1 Evaluate consistency with manual segmentation 
Primary validation of consistency with manual segmentation was performed on the set 

of 29 subjects from the PMC atlas, for whom T1w MRI, T2w MRI, both automatic and 

manual segmentations of the SR T1w MRI and T2w MRI are available.  

 

The DSC results are summarized in Table 2. High DSCs of anterior (0.92), posterior 

(0.90) and whole (0.93) hippocampus segmentation were observed. The good accuracy 

in segmenting dura (0.75) and the MTL cortex labels (ERC: 0.76, BA35: 0.71, BA36: 

0.79, PHC: 0.80) indicates that the proposed pipeline can reliably segment the dura and 

the subregions of the MTL cortex. The slightly lower DSC of BA35 is not surprising 

given that it is a small structure and high anatomical variability exist in this region. No 

significant differences in segmentation accuracy, tested by two-sample t-test, were 

found between aMCI and NC for all labels. In addition, the DSCs of the MTL cortex 

labels of ASHS-T1 are comparable to that of the ASHS-T2, which has been validated to 

be comparable to inter-rater reliability of manual raters (Yushkevich et al., 2015b).  The 

DSC of the proposed pipeline in segmenting ERC (DSC = 0.76) is slightly lower than 

that in T2w MRI (DSC = 0.79), which could due to the limited ability to resolve gray 

matter boundaries because of the lower resolution and the confound of dura in T1w 

MRI.  

 



 

Table 2. Segmentation accuracy [measured by Dice similarity coefficient (DSC)] and 
intraclass correlation (ICC) relative to manual segmentations using leave-one-out cross 
validation. The atlas consists of 14 amnestic mild cognitive impairment patients (aMCI) 

and 15 cognitively normal controls (NC). DSCs of each substructure in both 
hemispheres are averaged. Mean and Standard deviation (parentheses) are reported in 

the table. 

Substructure 

T1w MRI T2w MRI 

ICC DSC ICC DSC 

All (N=29) All (N=29) All (N=29) All (n = 29) 

Anterior Hippocampus 0.95 0.92 (0.02) \ \ 

Posterior Hippocampus 0.89 0.90 (0.02) \ \ 

Whole Hippocampus a 0.98 0.93 (0.01) \ \ 

Entorhinal Cortex 
(ERC) 0.69 0.76 (0.03) 0.71 0.79 (0.03) 

Brodmann Area 35 
(BA35) 0.77 0.71 (0.06) 0.71 0.71 (0.06) 

Brodmann Area 36 
(BA36) 0.76 0.79 (0.03) 0.72 0.79 (0.04) 

Parahippocampal 
Cortex (PHC) 0.64 0.80 (0.03) 0.64 0.79 (0.04) 

Dura Mater 0.85 0.75 (0.05) \ \ 

Note: *: A DSCs for the compound labels (in italics) are measured using the merged label of corresponding sub-labels (Whole 
hippocampus: anterior and posterior hippocampus in T1 weighted MRI). 
 

From the ICC results, as reported in Table 2, ASHS-T1 demonstrates high consistency 

in segmenting anterior/posterior hippocampus (0.95 and 0.89), BA35 (0.77) and BA36 

(0.76). The ICC for ERC (0.69) and PHC (0.64) were slightly lower. The ICC values did 

not show notable differences between the ASHS-T1 and T2 pipeline. According to the 

Bland-Altman plots, shown in Figure 3, there exists a small bias in ERC segmentation, 

i.e. the pipeline tends to undersegment larger ERC volumes and oversegment smaller 

ones. This would likely lead to a slight underestimation of group differences for ERC. No 

bias is observed for the other subregions.  



 

 

Figure 3.    Comparison of subregion volume measured by ASHS-T1 and manual 

segmentation in the space of T1w MRI (top panel) MRI using Bland-Altman plots. To 

compare with ASHS-T2 (bottom panel), the comparisons between subregion volume 

generated in the space of T2w MRI and the corresponding manual segmentation in the 

PMC-T2 atlas set are also shown (.T2). HIPPO.T1 is a compound label by merging 

AHIPPO.T1 and PHIPPO.T1. 

 
 

3.2 Dura mislabeling as cortex 
In this section, we performed experiments to test the two hypotheses that were 

introduced in Section 1, i.e. (1) the MTL cortex is commonly over-segmented by 



 

FreeSurfer because of the mislabeling of the adjacent dura mater; (2) the degree of 

dura mislabeling as cortex may be different between patients and controls. 

 

To test the first hypothesis, among subjects in the PMC-T1 atlas set, we first resampled 

the FreeSurfer whole brain segmentations to the space of the SR T1w MRI and then 

computed the average percentage of voxels labeled as dura in the manual 

segmentations that were mislabeled as gray matter or other by the proposed pipeline 

and FreeSurfer. The results, shown in Table 3, support the notion that large proportion 

of dura (62.4%) is segmented as gray matter by FreeSurfer. We note that FreeSurfer 

does not have a specific label for the dura and therefore has to label the dura voxels as 

something else; including them in the gray matter introduces error to cortical thickness 

computations. On the other hand, the majority (71.9%) of dura voxels are correctly 

labeled by the proposed pipeline and only 6.5% of them are labeled as gray matter and 

the amount of dura mislabeling as cortex is not significantly different between aMCI and 

NC (6.8 ± 3.1% vs. 6.2 ± 4.2%, p > 0.1, revealed by two-sample t-test).  

 

Table 3. Comparisons of different analysis methods in labeling the dura mater in the 

PMC atlas set. 

Method 
% of dura voxels in manual segmentation labeled as 

Dura Gray matter other 

ASHS-T1 71.9 ± 6.4 6.5 ± 3.7 21.6 ± 5.9 

FreeSurfer 6.0 N/A 62.4 ± 10.5 37.6 ± 10.5 

 

The second hypothesis can be tested using the ADNI dataset with controls and patients 

at different stages of AD. Since manual segmentation of the parahippocampal cortices 

and dura is not available in the ADNI dataset, the degree of dura mislabeling as gray 

matter by FreeSurfer is computed using the automatic ASHS-T1 segmentation, i.e. the 

average percentage of voxels labeled as dura by the ASHS-T1 that are labeled as gray 

matter. We believe this is a suitable measure because of the following evidence: (1) In 

the PMC-T1 atlas set, we computed the degree of dura mislabeling as gray matter by 

FreeSurfer relative to the dura label in the automatic segmentations generated by 



 

ASHS-T1 and relative to the dura label from the manual segmentations. These 

measurements were highly correlated (Pearson correlation r = 0.946, p = 9.3 e-15), 

shown in Supplementary Figure 2. (2) In the PMC-T1 atlas set, no significant 

differences were observed between aMCI and controls in segmentation accuracy of 

dura (DSC reported in Table 2, 0.74 vs. 0.76) or for mislabeling of dura as cortex (6.8% 

vs. 6.2%) using the automatic dura segmentations generated by ASHS-T1. Therefore, it 

is unlikely that it will introduce bias between patients and controls. (3) All the 

segmentations of the ADNI subjects generated by the T1 pipeline used in this analysis 

were visually checked and only segmentations that have high-quality MTL cortex 

segmentation were used in this analysis and thus the bias induced by segmentation 

errors is limited.  

 

Figure 4 summarizes the percentage of dura voxels segmented as gray matter by 

FreeSurfer in controls and the four patient groups. The amount of dura mislabeling as 

cortex decreases with increasing disease severity, probably due the more distinct 

separation between the MTL cortex and the dura (Figure 4). The proportion of 

mislabeling is significantly different between controls and patients at early prodromal 

AD, late prodromal AD and dementia stages revealed by two-sample t-tests. Since 

manual segmentation of the ADNI dataset is not available, it is not feasible to evaluate 

the amount of dura mislabeling as cortex of the proposed method. However, since we 

did not see large difference of dura mislabeling as cortex between aMCI and controls in 

the PMC-T1 atlas set (0.6%), it seems unlikely that the observed large differences of 

FreeSurfer dura mislabeling between groups (3.5%, 6.5% and 8.6% between patients at 

early, late prodromal AD, dementia and controls respectively) are mainly due to 

imperfect automatic segmentation of ASHS-T1. 

 

Figure 4. Percentage of dura voxels labeled as gray matter by FreeSurfer in all 
diagnosis groups. Examples of low, average and high over-segmentation in controls 

and dementia patients are shown on top and bottom respectively. 



 

 

3.3 MTL atrophy in early stages of AD in ADNI 



 

We compared the volume and thickness measures extracted using the proposed 

pipeline between patients at different stages of AD and Aβ- controls in ADNI and 

performed a comparison with FreeSurfer. To be noted, out-of-box (without quality 

control) performance of the proposed pipeline is reported in this section. Excluding 

subjects due to poor segmentation quality for the proposed pipeline did not significantly 

alter the results as shown in Supplementary Table 2.  

 

As shown in Table 4 and Table 5, no significant differences were observed in the 

preclinical stage. However, there was a trend level (F = 2.8, p = 0.093, if age is not 

included as a covariate, i.e. independent two-sample t-test was performed, the 

statistical result was t = 2.5, p = 0.014) difference in BA35 thickness between preclinical 

AD patients and controls. We observed Bonferroni-corrected significant group effects at 

the early prodromal (MCI) stage in posterior hippocampus volume (F = 16.8, p = 5.2e-

5), BA35 thickness (F = 10.4, p = 1.4e-3), ERC volume (F = 9.5, p = 2.2e-3), and BA35 

volume (F = 8.2, p = 4.5e-3). Volume and thickness of all the subregions were 

significantly smaller in patient groups at the late prodromal stage and the differences 

are bigger in dementia.  

 

Overall, the results generated by the FreeSurfer were similar to that of the proposed 

pipeline, i.e. (1) none of the measures from FreeSurfer showed significant differences in 

the preclinical AD stage; (2) Bonferroni-corrected significant effects were observed in 

the early prodromal AD stage [hippocampus volume (F = 23.0, p = 2.0e-6) and PRC 

volume (F = 9.8, p = 1.9e-3)]; (3) all measurements showed significant differences in 

late prodromal AD and dementia stages. FreeSurfer ERC and PRC thickness were 

consistently about 50% thicker than the corresponding measurements (ERC and BA35) 

by ASHS-T1, which is probably due to the mislabeling of dura as cortex. In addition, the 

mislabeling of dura seems introduce instability of FreeSurfer measurements of the MTL 

cortex in Aβ- controls and early stages of AD (preclinical and early prodromal AD). For 

example, FreeSurfer ERC volume decreased from Aβ- controls (802.5 mm3) to 

preclinical AD (768.2 mm3) but became slightly higher in early prodromal AD (804.1 

mm3). Also, FreeSurfer volume and thickness measurements were more variable 



 

(higher standard deviation of) than the corresponding measurements generated by the 

proposal pipeline.  

 

 

Table 4. Statistical analysis results using volumetric measurements, adjusted for age 

and intracranial volume, in discriminating patient groups from normal controls in ADNI. 

Measurements that survived Bonferroni correction (p < 0.05/10) are highlighted in bold. 
Region Aβ- Control 

(n = 190) 
Preclinical AD 

(n = 95) 
Early Prodromal 

AD (n = 142) 
Late Prodromal 

AD (n = 109) 
Dementia 
 (n = 127) 

ASHS-T1 Volume Measurements (mm3) 
Anterior 
Hippocampus 

1724.5 1711.6 1666.7 1533.9 1440.0 

SD 225.6 207.0 237.9 255.5 200.9 
% Diff  -0.7 -3.3 -11.1 -16.5 
F stats  <2.5 4.9 44.8 129.8 
p value  >0.1 0.027 1.1e-10 2.2e-25 

Posterior 
Hippocampus 

1646.5 1647.0 1571.4 1405.0 1344.1 

SD 160.1 152.7 172.0 202.7 167.0 
% Diff  0.0 -4.6 -14.7 -18.4 
F stats  <2.5 16.8 129.3 261.0 
p value  >0.1 5.2e-5 4.4e-25 4.0e-43 

Hippocampus 3371.0 3358.6 3238.2 2938.9 2784.0 
SD 309.9 298.7 351.5 411.8 320.8 
% Diff  -0.4 -3.9 -12.8 -17.4 
F stats  <2.5 13.1 105.3 262.1 
p value  >0.1 3.4e-4 2.5e-21 3.0e-43 

ERC 573.9 562.5 548.0 499.6 451.4 
SD 73.8 69.8 80.5 91.8 84.6 
% Diff  -5.2 -6.1 -12.8 -23.7 
F stats  <2.5 9.5 58.5 192.5 
p value  >0.1 2.2e-3 2.9e-13 1.9e-34 

BA35 606.5 597.1 579.6 539.8 481.3 
SD 82.2 80.3 92.1 100.2 81.3 
% Diff  -1.6 -4.4 -11.0 -20.6 
F stats  <2.5 8.2 38.6 183.3 
p value  >0.1 4.5e-3 1.8e-9 3.5e-33 

BA36 1881.0 1869.5 1814.6 1718.6 1581.9 
SD 249.7 228.5 227.9 264.3 230.3 
% Diff  -0.6 -3.5 -8.6 -15.9 
F stats  <2.5 6.1 27.9 115.4 
p value  >0.1 0.014 2.5e-7 4.0e-23 

PHC 958.0 977.6 959.2 909.7 869.4 
SD 117.9 129.0 138.3 129.5 122.8 
% Diff  2.1 0.1 -5.0 -9.3 
F stats  <2.5 <2.5 10.9 43.5 
p value  >0.1 >0.1 1.0e-3 1.8e-10 

FreeSurfer Volume Measurements (mm3) 



 

Hippocampus 3790.2 3732.6 3606.2 3299.6 3146.8 
SD 321.9 364.1 363.8 425.9 330.8 
% Diff  -1.5 -4.9 -12.9 -17.0 
F stats  <2.5 23.0 127,2 301.5 
p value  >0.1 2.0e-6 9.2e-25 9.0e-48 

ERC 802.5 768.2 804.1 699.5 662.1 
SD 197.1 203.1 212.2 229.8 191.2 
% Diff  -4.3 0.2 -12.8 -17.5 
F stats  <2.5 <2.5 17.0 38.9 
p value  >0.1 >0.1 4.9e-5 1.5e-9 

PRC 1067.5 1051.9 1019.0 916.8 834.1 
SD 150.0 142.1 147.9 193.4 161.6 
% Diff  -1.5 -4.5 -14.1 -21.9 
F stats  <2.5 9.8 56.9 171.6 
p value  >0.1 1.9e-3 5.7e-13 1.5e-31 

 

 

Table 5. Statistical analysis results using thickness measurements, adjusted for age, in 

discriminating patient groups from normal controls in ADNI. Measurements that survived 

Bonferroni correction (p < 0.05/6) are highlighted in bold. 
Region Aβ- Control 

(n = 190) 
Preclinical AD 

(n = 95) 
Early Prodromal 

AD (n = 142) 
Late Prodromal 

AD (n = 109) 
Dementia 
 (n = 127) 

ASHS-T1 Thickness Measurements (mm) 
ERC 2.02 2.02 1.99 1.93 1.78 

SD 0.16 0.17 0.18 0.18 0.22 
% Diff  0.1 -1.2 -4.3 -11.5 
F stats  <2.5 <2.5 18.4 122.0 
p value  >0.1 >0.1 2.4e-5 3.5e-24 

BA35 2.35 2.33 2.29 2.20 2.06 
SD 0.16 0.18 0.19 0.23 0.23 
% Diff  -1.1 -2.6 -6.7 -12.5 
F stats  2.8 10.4 49.1 184.4 
p value  0.093 1.4e-3 1.6e-11 2.3e-33 

BA36 2.41 2.39 2.39 2.29 2.21 
SD 0.23 0.23 0.21 0.22 0.24 
% Diff  -0.7 -0.8 -5.1 -8.5 
F stats  <2.5 <2.5 20.3 57.8 
p value  >0.1 >0.1 1.0e-5 3.4e-13 

PHC 2.15 2.17 2.14 2.09 2.00 
SD 0.13 0.16 0.13 0.15 0.16 
% Diff  0.7 -0.3 -2.7 -7.2 
F stats  <2.5 <2.5 13.3 94.2 
p value  >0.1 >0.1 3.2e-4 1.2e-19 

FreeSurfer Thickness Measurements (mm) 
ERC 3.18 3.17 3.14 2.90 2.74 

SD 0.30 0.33 0.34 0.40 0.40 
% Diff  -0.2 -1.1 -8.8 -13.6 
F stats  <2.5 <2.5 46.3 122.6 
p value  >0.1 >0.1 5.7e-11 2.9e-24 

PRC 3.44 3.47 3.36 3.11 2.87 



 

SD 0.31 0.33 0.34 0.41 0.37 
% Diff  1.0 -2.2 -9.5 -16.4 
F stats  <2.5 5.2 59.8 217.0 
p value  >0.1 0.023 1.7e-13 1.1e-37 

 

 

4 Discussion 
In this paper, we present an automatic segmentation pipeline for T1w MRI for 

measuring granular MTL subregions accounting for the confound of dura. Our pipeline 

showed accuracy of >0.76 DSC, except for BA35, and >0.76 ICC, except for ERC and 

PHC, for the automatic compared to the manual segmentation, which is comparable to 

the performance of our T2 pipeline (except for ERC for which the accuracy is slightly 

lower). The experiments using the PMC-T1 atlas showed that proposed pipeline can 

reliably separate dura from gray matter, only mislabeling 6.5% of the dura as gray 

matter, whereas the FreeSurfer segmentation mislabels 71.9% of dura as gray matter 

indeed leading to about 50% thicker cortex in ERC and PRC. In an analysis in the ADNI 

dataset, we showed that the degree of dura mislabeling decreases with increasing 

disease severity, indicating a bias where cortex in controls are oversegmented to a 

larger extent than in patients. This could potentially lead to an overestimation of group 

differences in later stages of the disease. Finally, in the ADNI dataset we demonstrated 

that our pipeline picks up in early MCI in the MTL, including in ERC and BA35, that 

match the known progression of NFT pathology, but also in the posterior hippocampus. 

Moreover, the volume and thickness loss become more severe and widespread with 

increasing disease stages. 

 

This pipeline has several unique aspects and strengths. First, it provides granular 

measures of the MTL, including subdivision of the PRC and hippocampus, for T1w MRI. 

It could therefore be very useful in several large large-scale studies in older populations 

(e.g. ADNI) in the interrogation of, for example, AD or age-related effects on the MTL, 

the anterior and posterior MTL networks and memory processes. Moreover, the 

segmentation protocol for the MTL cortices was developed in collaboration with a 



 

neuroanatomist and takes the anatomical variability into account which can largely 

affect borders between cortices in contrast to most previous methods for T1w MRI. The 

accuracy of our automated segmentations generated by our pipeline compared to the 

manual segmentations is good with a DSC >0.76, except for BA35, and ICC >0.76, 

except for ERC and PHC. The MTL cortices are at the lower end of these ICC and DSC 

values and thickness rather than volume measurements might therefore be a more 

powerful approach. Additionally, thickness measures are also less sensitive to border 

placement. As far as we know, this is the first validation of automated segmentation of 

MTL cortices against manual segmentations on T1w MRI and the only other study 

performing such a validation on T2w MRI was of this same pipeline. The T1 pipeline 

show similar accuracy for the MTL cortices as the T2w pipeline, with a slightly lower 

accuracy for the ERC. With regard to hippocampus, our pipeline performs comparable 

to state-of-the-art methods (Xie et al., 2018).  

 

In addition, to the best of our knowledge, this is the first automated pipeline that 

explicitly accounts for the confound of dura in segmenting MTL subregions in T1w MRI. 

Experimental results indicate that the dura can be reliably separated from the gray 

matter (the DSC and ICC are 0.75 and 0.85 respectively), indicating that the portions of 

the dura that not merged with the cortex (write arrows in Figure 2) provide sufficient 

features for automatic segmentation when there is low or even no contrast between the 

dura and the cortex. The importance of accounting for this confound was shown in the 

analyses of dura labeling in the FreeSurfer pipeline which indicated that not taking the 

dura into account can lead to 1) mislabeling of dura as gray matter causing errors in 

volume or thickness estimations and 2) a bias where this mislabeling is larger in 

controls than patients. However, it should be noted that while our pipeline explicitly 

accounts for the dura, it still makes a small error where small portions of the dura are 

counted towards the gray matter. With the limited contrast differences between dura 

and gray matter, this can unfortunately not be avoided. Moreover, this slight mislabeling 

of dura may explain the slightly lower accuracy of the ERC as it is adjacent dura for a 

relatively larger extent than the other MTL cortices. With the lower resolution and limited 

contrast in T1w MRI, it is more difficult to resolve this boundary than in T2w MRI. For 



 

that reason, MTL cortex segmentation on high resolution T2-weighted images is still 

preferred. Another limitation is that the most anterior portions of the ERC and PRC are 

not included in the current automated pipeline, which is especially of interest for 

diseases such as semantic variant Primary Progressive Aphasia which show a clear 

anterior-to-posterior gradient of atrophy in the MTL (Chan et al., 2001; Davies et al., 

2009). We will include these regions in future work. Moreover, the anterior and posterior 

border of ERC and PRC are directly determined by the extent of the hippocampal head. 

This could potentially introduce an error where ERC and PRC volume changes along 

with hippocampal head volume changes, that is, if the hippocampal head extends for a 

lower number of slices, ERC and PRC will automatically do so as well. This will affect 

thickness measures in a lesser extent, but will mostly affect volume measures. Indeed, 

in later stages of the disease the percentage volume loss in ERC and PRC is larger 

than the percentage thickness loss, which may reflect this bias. This is not reflected in 

the p-values as volume measures are also noisier. Qualitatively a stronger association 

of anterior hippocampal volume with ERC and BA35 volume is found than with ERC and 

BA35 thickness, separately for both hemispheres (Left: ERC volume: ρ=0.74, thickness: 

ρ=0.57; BA35 volume: ρ=0.68, thickness: ρ=0.57 – Right: ERC volume: ρ=0.75, 

thickness: ρ=0.53, BA35 volume: ρ=0.61, thickness: ρ=0.49). 

  

In light of above described strengths and limitations we would like to give some 

recommendations for users of the proposed T1w pipeline. Careful assessment of the 

MRI scans and segmentations is important, especially in light of small errors in dura 

labeling. Additionally, we noticed some errors in a small number of ADNI subjects at the 

lateral aspect of the hippocampus. Because of the composition of our atlas set the most 

appropriate target population is older adults and MCI patients. In this study, we applied 

the atlas also to images of patients with early AD dementia and careful quality 

assessment indicated that the atlas also performed well in this population. This matches 

our recent findings that atlas compositions of only controls, only MCI patients or a 

mixture did not significantly affect segmentation accuracy in these different groups (Xie 

et al., 2018). However, care is warranted when this atlas and pipeline are applied to 

other populations including other ages and diseases or very different imaging protocols. 



 

When this atlas is applied to images acquired at a different platform or with a different 

MRI protocol, it is recommended to use the “Heur” output (step 5 in Section 2.4.2). 

  

To assess the clinical validity and utility of our pipeline, we applied it to the ADNI 

dataset and compared different stages of AD with amyloid-β negative controls on MTL 

subregional volume and thickness. Compared to the amyloid-β negative controls, we 

observed a trend difference in BA35 thickness in amyloid-β positive controls (preclinical 

AD), a significant difference in ERC volume, BA35 volume and thickness and posterior 

and total hippocampal volume in early MCI and in all regions in late MCI and early AD. 

The observed earliest effect on BA35 is consistent with the earliest accumulation of NFT 

pathology in this region (Braak and Braak, 1995, 1991)(REF). A recent study in a 

different, only partially overlapping, subset of ADNI showed a similar, but significant, 

decrease in BA35 thickness in preclinical AD (Wolk et al., 2017) using T2w MRI. The 

difference in significance may be due to more reliable segmentation of the MTL cortex 

because of a better contrast and separation of dura in T2w MRI as compared to T1w 

MRI. In light of the recently published A/T/N model, in future work it will be interesting to 

further select cases that are also tau-positive and investigate whether these subjects 

show increased neurodegeneration in BA35. 

 

The spreading of atrophy to adjacent ERC and hippocampus in early MCI also matches 

the known spreading of NFT pathology (Braak and Braak, 1995, 1991) and to other 

studies investigating MTL atrophy patterns in the early stages (Killiany et al., 2002; 

Krumm et al., 2016; Olsen et al., 2017; Stoub et al., 2010; Xu et al., 2000; Yushkevich 

et al., 2015b). The volume loss in posterior hippocampus, rather than anterior 

hippocampus, was surprising, given that pathology starts in BA35, part of the PRC, 

which is thought to be more strongly connected to the anterior hippocampus, at least in 

the primate MTL (Aggleton, 2012). One might therefore speculate that the anterior 

hippocampus could be earlier affected than the posterior hippocampus in AD. Only a 

few studies investigated atrophy in the anterior and posterior hippocampus in MCI, 

where one study reported specific atrophy in anterior regions (Martin et al., 2010), but 

another did not (Greene and Killiany, 2012). Moreover, a qualitative inspection of 



 

studies using shape analysis of the hippocampus to investigate granular effects of MCI 

shows inconsistent findings not clearly pointing towards an anterior-to-posterior gradient 

of atrophy in MCI (Chételat et al., 2008; Liana G. Apostolova, 2012; Qiu et al., 2009). 

Additionally, tractography studies in primates indicate that the posterior hippocampus is 

more strongly connected with the parahippocampal cortex which is in turn connected via 

the cingulum bundle with regions such as the posterior cingulate cortex and precuneus 

(this has also been supported by fMRI studies (Aggleton, 2012; Mufson and Pandya, 

1984; Poppenk et al., 2013)) which have been indicated recently to show the earliest 

amyloid pathology (Palmqvist et al., 2017). This amyloid pathology, which is likely 

already present for years by the time subjects reach the early MCI stage, may have 

indirectly affected posterior hippocampal integrity. Moreover, the posterior hippocampus 

is part of the posterior MTL network (Ranganath and Ritchey, 2012), which has been 

found to already show atrophy in early MCI (Das et al., 2016). Finally, the increasing 

severity and widespread atrophy of the MTL in late MCI and early AD dementia again 

matches known spreading of NFT pathology (Braak and Braak, 1995, 1991) and other 

in vivo MTL work (de Flores et al., 2015; Dickerson et al., 2001; Jauhiainen et al., 2009; 

Stoub et al., 2010). 

 

In general, FreeSurfer performed fairly similar in charactering the MTL atrophy pattern 

in the different AD stages by picking atrophy in PRC and hippocampus in early MCI and 

increasing atrophy, including ERC, at later stages. The most evident different in the 

early stages is a lack of significant ERC volume or thickness loss in early MCI using 

FreeSurfer. In fact, when looking carefully at the ERC volume measures a fluctuation 

can be observed where ERC volume loss is observed in preclinical AD compared to 

controls but then an increase is observed in early MCI, where ERC volumes again 

match those in the control group. This may be due to mislabeling dura as ERC which 

may introduce additional noise. Given that ERC atrophy is expected to be subtle at this 

stage, and the bias with regard to the dura mislabeling was observed at later disease 

stages, the inclusion of dura in the ERC label may lead only to increased measurement 

error. Surprisingly, even though we observed a bias in FreeSurfer of decreasing 

mislabeling of dura, this did not lead to larger effect sizes for group differences between 



 

late MCI or early AD compared to controls. Perhaps this effect is counteracted by some 

other features of the labels, e.g. the effect size may be weakened by the larger extent of 

ERC and PRC which may potentially not show equal neurodegeneration along the full 

length. An important note is that the ERC and PRC in FreeSurfer do not represent 

completely the same regions as the ERC and the combined BA35 and BA36 into PRC 

in our pipeline. ERC and PRC in FreeSurfer actually show a 44.7% and 40.8% overlap 

with BA35 in our pipeline, and in fact ERC and PRC in FreeSurfer have about 37% 

overlap with each other. Having a granular label of BA35 rather than including it in ERC 

or a larger PRC label is advantageous, especially in the earliest stages of AD where 

NFT pathology is only thought to affect the transentorhinal cortex, which approximates 

our BA35 label, and a small portion of the lateral ERC. We did observe BA35 thinning in 

preclinical AD compared to amyloid-negative controls with our pipeline, although only at 

a trend level, which could potentially due to the heterogeneity in disease severity of the 

preclinical group. 

 

5 Conclusions 
In conclusion, we present a reliable automated pipeline for segmenting granular 

measures of the MTL for T1w MRI, explicitly accounting for the confound of dura. 

Moreover, we demonstrated the clinical utility by showing atrophy of early Braak regions 

in early MCI which becomes more severe and widespread in later stages. These 

findings should be replicated in other cohorts. Interesting and important future directions 

are establishing change in MTL regions over time, as longitudinal atrophy is more 

closely linked to clinical status and is important for tracking disease progression or as 

potential marker in clinical trials and establishing the association with Tau-PET uptake 

to better understand the drivers of neurodegeneration. This pipeline could be 

particularly useful for investigating Tau-PET tracers that show high uptake in the dura. 

We hope that this publicly available atlas and software including a cloud-based service 

(https://sites.google.com/view/ashs-dox/home and https://sites.google.com/view/ashs-

https://sites.google.com/view/ashs-dox/home
https://sites.google.com/view/ashs-dox/cloud-ashs/overview


 

dox/cloud-ashs/overview) will serve the scientific community and enable the 

interrogation of the role of the MTL in aging, dementia and cognition. 
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Supplementary Material 
Supplementary Table 1. Segmentation accuracy of the three outputs of ASHS-T1 

relative to manual segmentations, measured by Dice similarity coefficient (DSC) using 
leave-one-out cross validation. DSCs of each substructure in both hemispheres are 

averaged. Mean and Standard deviation (parentheses) are reported in the table. 

Substructure Heur NoGray UseGray 

Anterior Hippocampus 0.91 (0.02) 0.91 (0.02) 0.92 (0.02) 

Posterior Hippocampus 0.89 (0.02) 0.89 (0.02) 0.90 (0.02) 

Whole Hippocampus a 0.92 (0.01) 0.92 (0.02) 0.93 (0.01) 

Entorhinal Cortex (ERC) 0.76 (0.03) 0.76 (0.04) 0.76 (0.03) 

Brodmann Area 35 (BA35) 0.70 (0.06) 0.71 (0.07) 0.71 (0.06) 

Brodmann Area 36 (BA36) 0.78 (0.04) 0.79 (0.05) 0.79 (0.03) 

Parahippocampal Cortex (PHC) 0.79 (0.03) 0.80 (0.04) 0.80 (0.03) 

Dura Mater 0.74 (0.05) 0.75 (0.06) 0.75 (0.05) 

a DSCs for the compound labels (in italics) are measured using the merged label of 
corresponding sub-labels (Whole hippocampus: anterior and posterior hippocampus). 
 
 

 

 

 

Supplementary Table 2. Statistical analysis results using volumetric measurements in 

discriminating patient groups from normal controls in ADNI. Quality control was 

performed to exclude low quality automatic segmentations. Measurements that survived 



 

Bonferroni correction (p < 0.05/4 for hippocampal measurements and p < 0.05/6 for 

parahippocampal cortices measurements) are highlighted in bold. 
Region Aβ- Control Preclinical AD Early Prodromal 

AD 
Late Prodromal 

AD 
Dementia 

 
Hippocampal Volume Measurements (mm3), adjusted for age and ICV 
N 183 93 134 102 123 
ASHS-T1 
Anterior 
Hippocampus 

1721.1 1714.9 1660.6 1530.2 1434.5 

SD 224.6 205.4 237.3 249.6 199.4 
% Diff  -0.4 -3.5 -11.1 -16.7 
F stats  <2.5 5.2 43.8 128.7 
p value  >0.1 0.023 1.9e-10 4.4e-25 

ASHS-T1 
Posterior 
Hippocampus 

1647.3 1648.8 1566.7 1401.1 1345.6 

SD 160.9 152.9 172.6 199.7 168.6 
% Diff  0.1 -4.9 -14.9 -18.3 
F stats  <2.5 18.3 128.8 245.8 
p value  >0.1 2.5e-5 7.9e-25 6.0e-41 

ASHS-T1 
Hippocampus 3368.4 3363.8 3227.3 2931.2 2780.1 

SD 313.4 296.1 348.8 402.7 322.1 
% Diff  -0.1 -4.2 -13.0 -17.5 
F stats  <2.5 14.1 103.6 248.9 
p value  >0.1 2.1e-4 6.4e-21 2.6e-41 

FS 
Hippocampus 3779.9 3741.3 3583.6 3292.0 3130.7 

SD 320.8 332.8 357.0 415.6 320.4 
% Diff  -1.0 -5.2 -12.9 -17.2 
F stats  <2.5 25.2 123.1 304.1 
p value  >0.1 8.9e-7 6.4e-21 1.3e-47 

Parahippocampal Cortices Volume Measurements (mm3), adjusted for age and ICV 
N 189 95 141 103 119 
ASHS-T1 ERC 573.9 562.5 549.7 502.3 451.6 

SD 74.0 69.8 78.1 93.2 80.7 
% Diff  -2.0 -4.2 -12.5 -21.3 
F stats  <2.5 8.6 51.5 193.7 
p value  >0.1 3.7e-3 6.0e-12 2.1e-34 

ASHS-T1 BA35 606.5 596.9 581.5 543.1 481.4 
SD 82.0 80.2 89.8 100.2 80.7 
% Diff  -1.6 -4.1 -10.4 -20.6 
F stats  <2.5 7.2 33.6 176.2 
p value  >0.1 7.7e-3 1.7e-8 5.0e-32 

ASHS-T1 BA36 1878.3 1869.5 1816.6 1719.4 1585.2 
SD 247.4 228.5 227.4 259.4 229.0 
% Diff  -0.5 -3.3 -8.5 -15.6 
F stats  <2.5 5.4 26.3 190.2 
p value  >0.1 0.021 2.4e-7 4.9e-22 

ASHS-T1 PHC 958.3 977.6 960.4 910.0 867.1 
SD 118.2 129.0 138.0 129.4 122.3 
% Diff  2.0 0.2 -5.0 -9.5 



 

F stats  <2.5 <2.5 10.5 44.6 
p value  >0.1 >0.1 1.3e-3 1.1e-10 

FS ERC 802.8 768.2 805.0 703.1 661.9 
SD 197.6 203.1 212.7 230.7 194.1 
% Diff  -4.3 0.3 -12.4 -17.5 
F stats  <2.5 <2.5 15.2 37.0 
p value  >0.1 >0.1 1.2e-4 3.6e-9 

FS PRC 1066.9 1051.9 1022.2 922.3 839.8 
SD 150.2 142.1 143.5 193.2 162.6 
% Diff  -1.4 -4.2 -13.6 -21.3 
F stats  <2.5 8.7 50.4 157.0 
p value  >0.1 3.4e-3 9.8e-12 2.6e-29 

Parahippocampal Cortices Thickness Measurements (mm), adjusted for age 
N 189 95 141 103 119 
ASHS-T1 ERC 2.02 2.02 2.00 1.94 1.79 

SD 0.16 0.17 0.17 0.18 0.22 
% Diff  0.0 -1.1 -3.8 -11.3 
F stats  <2.5 <2.5 14.3 116.0 
p value  >0.1 >0.1 1.9e-4 3.9e-23 

ASHS-T1 BA35 2.35 2.33 2.30 2.20 2.06 
SD 0.16 0.18 0.17 0.22 0.23 
% Diff  -1.0 -2.3 -6.4 -12.4 
F stats  2.8 9.2 44.2 178.0 
p value  0.097 2.7e-3 1.5e-10 2.7e-32 

ASHS-T1 BA36 2.41 2.39 2.39 2.30 2.21 
SD 0.23 0.23 0.21 0.21 0.24 
% Diff  -0.7 -0.7 -4.8 -8.2 
F stats  <2.5 <2.5 17.4 52.0 
p value  >0.1 >0.1 4.0e-5 4.3e-12 

ASHS-T1 PHC 2.15 2.16 2.14 2.09 2.00 
SD 0.13 0.16 0.13 0.15 0.15 
% Diff  0.7 -0.2 -2.7 -7.1 
F stats  <2.5 <2.5 11.9 94.0 
p value  >0.1 >0.1 6.4e-4 1.5e-19 

FS ERC 3.18 3.17 3.15 2.92 2.75 
SD 0.30 0.33 0.34 0.39 0.41 
% Diff  -0.2 -1.0 -8.2 -13.5 
F stats  <2.5 <2.5 40.4 113.7 
p value  >0.1 >0.1 8.1e-10 8.9e-23 

FS PRC 3.44 3.47 3.37 3.13 2.88 
SD 0.31 0.33 0.33 0.41 0.37 
% Diff  0.9 -2.0 -8.8 -16.1 
F stats  <2.5 4.4 51.0 201.9 
p value  >0.1 0.036 7.4e-12 1.6e-35 

 

 

 

 

 

 



 

Supplementary Figure 1. The three common errors of the ASHS-T1 pipeline, indicated 

by the white arrows. In order to better visualize the error in the third example, the 

transparency of the segmentation was set to 60% and zoom-in images were provided. 

 
 



 

Supplementary Figure 2. The percentages of dura voxels labeled as gray matter by 

FreeSurfer computed using automatic and manual segmentation are highly correlated (r 

= 0.946, p = 9.3e-15). 

 
 

 

 

 

 

Supplementary material A. Cloud-based ASHS-T1 service 
tutorial 



 

This is a tutorial for using the cloud-based ASHS-T1 service, made available via ITK-

SNAP 3.8.0-BETA or higher version (available to download from: 

http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3). This service is 

designed to segment the medial temporal lobe (MTL) subregions, including 

anterior/posterior hippocampus, ERC, BA35, BA36 and PHC, from 3T whole-brain T1-

weighted MRI scans (MPRAGE, ~1.0 mm3 isotropic resolution) of older adults (55+ 

age). No skull-stripping is necessary. Below is the step-by-step instruction: 

 

(1) Create an ITK-SNAP workspace 
To send your images to the cloud, you need to create an ITK-SNAP workspace that 

contains the T1-weighted images.  

• Download and install ITK-SNAP 3.8-BETA or higher version 

• Open ITK-SNAP 

• Use "File->Open Main Image..." to load the T1-weighted image as the main 

image  

 
• Save the ITK-SNAP workspace to a file using "Workspace->Save Workspace" 

 
(2) Login to the Distributed Segmentation System (DSS) 
Next, you need to login to the DSS server. This requires a Google account.  

• Open the DSS window using "Tools->Distributed Segmentation Service" 

http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3


 

 

• Select the "Connect" tab if not already selected 

• Press the "Get Token" button. This will open a web browser and take you to the login 

page for DSS, shown to the right. 

o Follow the login prompts on the website. Once you login with your Google 

account, you will see a 40-character login token. Copy the token and paste it 

back into ITK-SNAP. 

 

• The ITK-SNAP DSS window should show an updated status, in green, indicating 

that you successfully logged into the system 

o Next time you open ITK-SNAP on the same device, your login information will 

be saved. You will not need to repeat the token-based login process. 



 

 

(3) Upload Your Workspace and Create a Ticket 
In this step, you will send your workspace to the cloud for segmentation with ASHS. 

• Select the "Submit" tab in the ITK-SNAP DSS window 

 
• Select the service you wish to use. In this tutorial, we are using the ASHS-PMC-T1 

service. The image specifications for this service are described here.  

• Ignore the AC/PC landmarks in the table. These are not yet supported. 

• Press "Submit". The workspace will be uploaded to the server and a new ticket will 

be created. 

 

(4) Monitoring Ticket Status 
Once a ticket is created, the DSS window will switch to the "Results" tab, where you can 

monitor the progress of your ticket. While the ticket is being processed, you can close 

ITK-SNAP or submit additional tickets.  

• Your ticket will be highlighted in the list of tickets on the left of the window, and the 

progress of your ticket will be shown on the right.  

https://sites.google.com/view/ashs-dox/mri-data/ashs-pmc-t1-atlas-requirements?authuser=0


 

 
• Note the status of your ticket: 

o ready: the ticket has been uploaded and is in the queue to be processed 

o claimed: the ticket is actively being processed 

o success: the ticket was successfully processed and results are available 

o failed/timed out: an error occurred while servicing the ticket 

• Once your ticket is in claimed state, log messages show the progress of ASHS 

segmentation. Some log messages have attachments in the form of QC (quality 

control) images. Click the attachment button to list the attachments and open them 

in a web browser. 



 

 
• To abort ticket processing, press the "Delete" button 

 

(5) Download and Examine ASHS Results 
Once a ticket completes successfully, you can download the results as an ITK-SNAP 

workspace.  

• Select a ticket that is in success state and press the "Download" button 

• A dialog shown on the right will appear.  

• Choose where to save the result workspace and whether to open it after 

downloading. 

• The segmentation will be opened as shown below. 



 

 
 

In addition to ASHS-T1, more services are available to analyze other datasets. Please 

check https://dss.itksnap.org/services for a complete list of services.  

 

 

Supplementary material B. HARP atlas set 
We selected T1-weighted MRI scans and their hippocampal manual segmentations of 

from the HARP training set (Boccardi et al., 2015b) from ADNI that is publicly available 

(http://www.hippocampal-protocol.net/SOPs/index.php). In total, 15 controls and 15 MCI 

patients were selected. The Automated Segmentation of Hippocampal Subfields 

(ASHS) algorithm (see Section 2.4 for a brief description) was run to build an atlas, for 

which the cross-validation showed a Dice similarity coefficient of 0.90 and 0.91 for left 

and right hippocampus respectively. Demographic information of the selected subjects 

are available in Supplementary Table 4. 

 

Supplementary Table 4. Characteristics of the HARP atlas 

  Control MCI AD 

N 11 13 8 

https://dss.itksnap.org/services
http://www.hippocampal-protocol.net/SOPs/index.php


 

Age (yrs) 77.3 (8.8) 75.6 (7.6) 77.5 (6.2) 

Gender (M/F) 7 / 4 8 / 5 6 / 2 

Education (yrs) 16.8 (2.7) 16.2 (2.8) 15.0 (2.6) 

Note: All statistics are in comparison to amyloid-β negative (Aβ-) control subjects. * p < 0.05; ** p < 
0.01; *** p < 0.001. Independent two-sample t-tests (age, education) and contingency χ2 test 
(gender) were used. Standard deviation in parentheses. Abbreviations: AD = Alzheimer’s disease. 
 

 

 

Supplementary material C. ICV atlas set 
Whole-brain T1-weighted MRI and CT scans of 15 controls, 12 aMCI subjects from the 

PMC/ADC center were used to develop a training set for automatic intracranial volume 

(ICV) segmentation. Intracranial volume was manually traced in the space of the T1-

weighted MRI with the guidance of the coregistered CT scans of the same subjects. 

Since the boundary between the skull and soft tissue can be clearly visualized in CT 

scans, we were able to obtain an accurate manual segmentation of the intracranial 

space. Similarly, the Automated Segmentation of Hippocampal Subfields (ASHS) 

algorithm (see Section 2.4 for a brief description) was run to build an atlas, for which the 

cross-validation showed a Dice similarity coefficient of 0.98. Demographic information of 

the ICV atlas set is shown in Supplementary Table 4. 

 

Supplementary Table 4. Characterisitcs of the ICV atlas  

 Normal Control aMCI 

N 15 12 

Age (yrs) 70.2 (7.9) 74.0 (9.2) 

Gender (M/F) 3 / 12 9 / 3 ** 

Education (yrs) 16.9 (2.6) 16.7 (3.1) 

Note: All statistics are in comparison to cognitive normal control subjects. * p < 0.05; ** p < 0.01; *** 
p < 0.001. Independent two-sample t-tests (age, education) and contingency χ2 test (gender) were 
used. Standard deviation in parentheses. 
 

 


