Document downloaded from:

http://hdl.handle.net/10251/157206

This paper must be cited as:

Martinez-Paredes, E.; Llorens, J.; Ródenas Martínez, L.; Savietto, D.; Pascual Amorós, JJ. (2019). Effect of early development on semen parameters and lifespan of rabbit males selected by high growth rate. Theriogenology. 139:72-80. https://doi.org/10.1016/j.theriogenology.2019.07.014

The final publication is available at

https://doi.org/10.1016/j.theriogenology.2019.07.014

Copyright Elsevier

Additional Information

Accepted Manuscript

Effect of early development on semen parameters and lifespan of rabbit males selected by high growth rate

E. Martínez-Paredes, J. Llorens, L. Ródenas, D. Savietto, J.J. Pascual

PII: S0093-691X(19)30324-3

DOI: https://doi.org/10.1016/j.theriogenology.2019.07.014

Reference: THE 15094

To appear in: Theriogenology

Received Date: 24 May 2019 Revised Date: 16 July 2019 Accepted Date: 16 July 2019

Please cite this article as: Martínez-Paredes E, Llorens J, Ródenas L, Savietto D, Pascual JJ, Effect of early development on semen parameters and lifespan of rabbit males selected by high growth rate, *Theriogenology* (2019), doi: https://doi.org/10.1016/j.theriogenology.2019.07.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Running head: Effect of early development in rabbit males

Effect of early development on semen parameters and lifespan of rabbit males selected by high growth rate

Martínez-Paredes E.¹, Llorens J.¹, Ródenas L.¹, Savietto D.², Pascual J.J.^{1,3}

¹Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain

² GenPhySE, Université de Toulouse, INRA, INP, ENVT, Castanet Tolosan, France.

³ Corresponding author: J.J. Pascual

jupascu@dca.upv.es

Phone: +34963877432

Fax: +34963877439

This study was supported by the Interministerial Commission for Science and Technology (CICYT) from the Spanish Government (AGL2017-85162-C2-1-R).

Abstract

1

2 Life history theory suggests that different body development dynamics may influence 3 survival and future reproductive performance of organisms. The present work studied 4 how these dynamics could influence seminal traits and lifespan of rabbit males selected 5 for growth rate and intended for AI. To achieve this goal, a total of 550 rabbit males were controlled from birth, evaluated both during the testing phase (four consecutive 6 7 weeks after reaching 147 days of life) and the productive phase (377 of them from the 8 end of the testing phase until 2 years of life). In order to obtain individuals with 9 different body development dynamics, we pre-selected males based on their live weight (LW) at 0, 28, 63 and 147 days and on their average daily gain (ADG) between each 10 11 period (0-28, 28-63 and 63-147 days). Libido and main seminal traits (semen volume, motility, concentration, and production, as well as normal apical ridge and 12 13 abnormalities of spermatozoa) were controlled during the testing phase. Semen volume, 14 motility and concentration were subsequently controlled during the productive phase, as 15 well as the length of the male life, calculated as the number of days a rabbit was present 16 at the farm between age 147 and day of death, culling or censoring; set to 2 years of 17 life). The birth weight, the ADG between 0-28 days and between 28-63 days were 18 positively related to some seminal parameters measured during the testing phase (semen 19 volume, concentration, production and motility; P<0.05), while the ADG between 63-20 147 days was negatively related to the seminal productivity throughout the productive 21 life of the males (an increment of 10 g per day on ADG reduced the number of 22 profitable ejaculates by 4.9%; P<0.05). In addition, a higher growth between 0-28 and 23 between 63-147 days increased the risk of death or culling of males during the 24 productive phase (P<0.05). In conclusion, an adequate body development early in life seems to have a positive effect on the degree of sexual maturity with which male rabbits 25

- begin their reproductive life, but reaching the reproduction onset with excessive weight
- 27 can reduce their reproductive performance and lifespan.
- 28 Keywords: Oryctolagus cuniculus, body development, growth rate, reproduction,
- 29 lifespan, semen quality.

1. Introduction

30

31	In recent decades, the use of artificial insemination (AI) in rabbits has promoted an
32	organisational improvement in the management of commercial farms, as well as the
33	appearance of specific centres for males destined for AI. These AI centres mainly breed
34	rabbit males from genetic lines selected for growth rate at fattening, which are used as
35	breeding males in the three-way crossing scheme. This scheme allows an effective
36	dissemination of the genetic material to optimise the productivity of commercial farms.
37	Despite the impact of these males on farm profitability, the scientific information on the
38	proper feeding and raising management of male rabbits is still scarce. Nowadays we
39	have information on the influence of nutritional requirements (both in rearing [1,2] and
40	productive periods [3]) and the physiological development of males [4,5] on their
41	fertility. We also have some estimation of the genetic parameters for seminal traits [6,7],
42	but we lack information on how management practices in the early developmental age
43	may influence the future reproductive life.
44	Furthermore, rabbit males (especially those selected for growth rate) have some
45	reproductive peculiarities which could be improved on (late reproductive onset,
46	moderate both sexual libido and sperm production,), justifying a better understanding
47	of the main factors that could affect their reproductive performance.
48	Some of the most important milestones concerning the reproductive physiological
49	development of male rabbits happens early in life, especially during fattening and
50	rearing periods [5]. In addition, the higher nutritional requirements of males selected for
51	growth rate during early growth development, until 14th weeks of life, are difficult to
52	cover compared to other animals [8,9]. In this sense, we hypothesise that the
53	reproductive success of rabbit males (especially those from lines selected for growth

54	rate) are influenced by the different development states achieved at key phases of their
55	developmental life (i.e. birth, weaning, and end of both juvenile and pubescent life).
56	If we look at other animal species, although selection for growth rate is positively
57	correlated to the size of reproductive organs, this selection criterion is negatively
58	correlated to seminal quality (in mice, Eisen and Johnson [10]; in pigs, Johnson et al.
59	[11]; in bulls, Kealey et al. [12]). In the case of breeding rabbits, there are few studies
60	that refer to the influence of body development of juveniles on the subsequent
61	reproductive performance of individuals as adults. Poigner et al. [13] observed that
62	heavier rabbit females at birth later showed larger litter size at their first parturition
63	(+12.4%), while Rommers et al. [14] reported a better reproductive performance (first
64	cycle) among heavier rabbit females at first mating, probably due to their greater degree
65	of maturity when first mated at a fixed age (14.5 weeks old). Recently, Martínez-
66	Paredes et al. [15] observed that fatter rabbit females at the beginning of their
67	reproductive life had smaller litter sizes and higher risk of being culled compared to the
68	lean ones. In rabbit males, Brun et al. [16], using two divergent lines of males selected
69	for growth rate, observed that some reproductive traits were related to LW. Lavara et al.
70	[7] observed the existence of negative genetic correlations between different seminal
71	traits, such as normal apical ridge (NAR) and motility, and the ADG of males selected
72	for growth rate. Altogether, these results indicate that an adequate body development of
73	rabbit males through lactation and the fattening and rearing periods may affect their
74	future reproductive performance.
75	For this reason, the present work aims to evaluate the effect that early development,
76	from birth to the end of rearing period, could have on the seminal performance of rabbit
77	males selected for growth rate addressed to AI, both in the training phase and
78	throughout their reproductive life, as well as in their lifespan.

	_		_	
79	7	Matarial	and	methods
17	4.	IVIALEI IAI	anu	IIICHIUUS

- 80 All experimental procedures were approved by the Animal Welfare Ethics Committee
- 81 of the Universitat Politècnica de València (UPV), following the Spanish Royal Decree
- 82 1201/2005 on the protection and use of animals for scientific purposes.
- 83 2.1. Animals and housing
- We checked the LW of 550 male rabbits from the R line of UPV (selected for growth
- rate from 28 to 63 days of age) at 0, 28, 63 and 147 of life. In the four weeks following
- 86 the 147d of age, we evaluated the libido and some seminal parameters (once a week) on
- 87 550 males, pre-selected based on their LW and ADG variability at each weight control.
- 88 After this testing phase, we selected 377 males to be followed up as potential
- 89 reproduction males for 2 years of life.
- 90 To obtain the experimental males, 179 reproductive rabbit females from the R line,
- 91 housed at a selection centre (El Adil Redondo S.L., Carrizo de la Ribera, León, Spain)
- 92 were used. R females were artificially inseminated during five consecutive reproductive
- 93 cycles, using the semen from 55 R males from a different genetic origin. All the rabbit
- 94 females were inseminated at the same time (single batch), with a period between
- 95 inseminations of 42 days. Inseminations were carried out between February and
- 96 September.
- 97 2.2. Experimental procedure
- 28 Litters were sexed at birth to identify the males. A total of 1945 males were individually
- weighed at birth with a precision balance (± 0.01 g). Litter size (total and alive) and the
- visual presence of milk in the stomach (milk spot) were also recorded. To identify the
- males born, a 2 × 12 mm glass chip (EI1001, Felixcan S.A., Spain) was injected
- 102 (subcutaneously) in the back of the animals, between both scapulae. We used a needle
- disinfected in iodine and a syringe with a plunger. As most of the rabbit offspring had

104	nursed just after birth, visually checked by the presence of a milk spot, we corrected
105	LW at birth from such animals by applying the following equation:
106	$MS (g) = -9.497 + 0.239 \cdot OLWB + 0.303 \cdot LSB$
107	The estimated milk spot (MS) weight was a function of the offspring's LW at birth
108	(OLWB) with a milk spot and the litter size at birth (LSB). This equation was obtained
109	in a short trial performed on 120 offspring of the same line R, weighing both the mother
110	and their offspring before and after milking at day two after birth.
111	At 28 days old, the 1159 surviving male rabbits were weighed and re-identified with an
112	ink tattoo on the left ear. Litters were weaned at 36 days, transferring the mother to an
113	adjoining shed and leaving the weaned rabbits in the same cage in which they were
114	born.
115	Subsequently, the 1025 surviving males were weighed at 63 days of age. At that time, a
116	selection of the males that would be transferred to the AI centres was performed.
117	Selection was made considering the individual LW recorded and the ADG calculated in

the period 28-63 days. Males were chosen in each batch to obtain a population (604

males) that covered the maximum possible variability for the LW and ADG (Table 1) in

the different growth periods until this moment (at birth, between 0-28 days and between

28-63 days of life; corresponding to the lactation and the fattening period, respectively).

Once selected at 63 days of age, males were sent in an equitable manner to two different

locations (maintaining the variability profile in both ones). Half of them were sent to AI

centre A (Adil Redondo, Carrizo de la Ribera, León, Spain) and the other half to AI

Males were reared until 147 days of age (from 63 to 147 days), and the 550 males that

reached this age were weighed for the last time. During the next four weeks (testing

phase), the main seminal traits were controlled to determine the potential of each male

centre Z (Zapiños, Abegondo, A Coruña, Spain).

118

119

120

121

122

123

124

125

126

127

128

129	to be used as semen producers at the AI centres. For each male, one ejaculate per week
130	was collected with the help of an artificial vagina, and semen volume, motility,
131	concentration and production were determined, as well as the NAR and abnormalities of
132	spermatozoa.
133	From 175 days up to a maximum of 2 years of life, 377 males were selected from the
134	initial 550 to be maintained at the AI centres. In this period, seminal traits such as
135	volume, motility and concentration were individually recorded twice a week. Productive
136	life represented the number of days a male was present at the AI centre from 175 days
137	old to its death, culling or censoring (set to 2 years).
138	All the males were fed with the same feeding programme during the trial. During
139	lactation, young males ate the same diets as their dams, with 16.8% crude protein (CP)
140	and 14.1% crude fibre (CF) from 0 to 30 days of age, and with 15.0% CP and 18.4 CF
141	from 30 to 36 days of age (pre-weaning). Once the males were weaned, the litter
142	received a fattening diet with 15.8% CP and 14.7 CF until 63 days of age (including 60
143	ppm tiamulin fumarate, 450 ppm oxytetracycline and 158 ppm neomycin sulphate to
144	avoid digestive disorders). From this moment until 147 days of age, the males were fed
145	with a rearing diet (15.0% CP and 17.5 CF). Finally, during the productive phase, the
146	diet offered had 16.5% CP and 13.0% CF.
147	2.3. Semen evaluation
148	2.3.1. Testing phase (from 147 to 175 days of life)
149	Collected ejaculates with urine or any irregular aspect were discarded, and the rest
150	(successful attempts) were first observed to determine whether they contained gel
151	(immediately discarded to avoid spermatozoa agglutination). Subsequently, the volume,
152	concentration and sperm production were recorded according to the methods described
153	by Lavara et al. [6]. In brief, they are based on the visual assessment of ejaculation in a

154	graduated tube followed by the sperm count in a counting chamber (Thoma-Zeiss cell)
155	under a microscope (phase contrast, 40× increase). Visual sperm motility was evaluated
156	under a microscope by a trained technician (percentage of spermatozoa showing
157	motility), after dilution of the complete ejaculate to 1/5 in a tris-citric-acid-glucose
158	buffer. Motility of the ejaculate was presented as a binomial variable: 0 for samples
159	with percentage of motile spermatozoa below 65% or 1, for samples with a percentage
160	of motile spermatozoa above 65%.
161	NAR and percentage of abnormal spermatozoa were assessed after staining with eosin-
162	nigrosin mix. This procedure was similar to that described by García-Tomás et al. [17],
163	in at least 100 spermatozoa. The evaluation of abnormal forms was assessed according
164	to the criteria described by Barth and Oko [18], including the spermatozoa without
165	flagella.
166	2.3.2. Production phase (from 175 days to 2 years of life)
167	First, the aspect of each extracted ejaculate was evaluated, discarding those with a
168	yellowish colour and/or presence of urine, paste, gel, precipitates or blood. After that,
169	the volume of the ejaculate was measured in a graduated tube ($\pm~0.1~\text{mL}$) and visual
170	motility and concentration in a microscope after a 1:5 dilution with a tris-citric-glucose
171	diluent (250 mM of tris-hydroxymethylaminomethane, 83 mM of citric acid, 50 mM of
172	glucose; pH 6.8-7.0) were evaluated, both by the same trained technician in each AI
173	centre. Total collection attempts in the productive life was defined as the number of
174	times a male rabbit was taken to semen collection. Ejaculates were classified as
175	profitable when they presented adequate traits for use as commercial semen (a normal
176	aspect, an adequate visual motility above 65% and concentration). For each individual,
177	the percentage of profitable ejaculates was calculated in relation to the total collection
178	attempts.

179	2.4. Statistical analysis
180	2.4.1. Libido "mating attempts" of young male rabbits during testing phase according
181	to the body development traits
182	To evaluate the libido of young male rabbits, we implemented a series of multinomial
183	logistic regression models. Models contained two fixed effects, the batch (1 to 5) and
184	the destination farm (A or Z) and a standardised co-variable related to the body
185	development (LW at 0, 28, 63 and 147 days of life, and ADG for the periods 0-28, 28-
186	63 and 63-147). We used the R-software (version 3.5.0) and the "multinom" function of
187	the "nnet" package.
188	2.4.2. Seminal characteristics of young male rabbits during testing phase according to
189	the body development traits
190	To evaluate the seminal characteristics (volume, concentration, production, motility,
191	NAR, and spermatozoa morphological normality) of young male rabbits, we
192	implemented a series of linear mixed models. All models included the AI centre (A or
193	Z), the batch (1 to 5), and the week of testing (1 to 4) as a fixed effect, the body
194	development traits (LW at 0, 28, 63 and 147 days old, and ADG for the periods 0-28,
195	28-63 and 63-147) as a covariate, and the permanent effect of each rabbit female (p) and
196	the error term (e) as random effects. Random effects were assumed to have an average
197	of zero and a variance of σ_p^2 for permanent, and σ_e^2 for the error term. We model the
198	variance-covariance among animals by using a compound symmetric structure for the
199	variance-covariance matrix of the residuals. The asymmetrical distribution of the
200	original data led to the logarithmic transformation of data from concentration and
201	production (log ₁₀ 10 ⁶ spermatozoa per mL or ejaculate, respectively). As motility during
202	the testing phase was recorded as a binomial variable (0, motile sperm below 65%; 1
203	motile sperm above 65%), data were analysed under the GLIMMIX procedures of SAS

204	[19] for binomial distributions. Solution provided odds values about the increase of
205	relative probability to be classified as 1 (motile sperm above 65%) per unit of proposed
206	LW or ADG change. Finally, as NAR data presented a Poisson distribution, data were
207	analysed with six GLIMMIX procedures for Poisson distributions. Finally, semen
208	production and motility data during the testing phase were also analysed with the same
209	procedures described above, including the effect of the growth variables as main effect
210	(4 quartile classes) instead of as a covariate, for a better presentation of the obtained
211	results.
212	2.4.3. Seminal parameters of male rabbits (as adults) during production phase
213	according to the body development traits
214	For each of the variables average volume, average motility and profitable ejaculates
215	(both number and percentage) controlled during the productive phase, the data were
216	analysed with six GLM procedures of SAS [19]. Each of them included as fixed effects
217	the location, the batch, and as a covariate one of the growth variables to be evaluated. In
218	addition, profitable ejaculates data during the productive phase were also analysed with
219	the same GLM procedures described above. However, for an easy interpretation of
220	results, the body development variables were set as a fixed effect with four levels,
221	representing the four quantiles (quantile limits are in Table 1).
222	2.4.4. Productive lifespan of rabbit males (as adults) during the productive phase
223	according to the body development traits
224	Lifespan during the productive phase according to the body development traits (LW at
225	0, 28, 63 and 147 days old, and ADG for the periods 0-28, 28-63 and 63-147) was
226	analysed using a series of Cox proportional hazard ratio models (one model for each
227	developmental trait). We first tested for the influence of the batch (1 to 5) or AI centre
228	the animal lived in (A or Z) on the productive lifespan. As neither of these variables

influence the productive life, they were not included in the models used to assess the influence of the body development traits on the productive lifespan of the adult male rabbits. As for the multinomial model and to avoid the scale effect, each development trait was standardised before being included in the model. Hazard ratios, p-values and the log likelihood ratio test for the model significance of each body developmental trait are shown in Table 5. Kaplan-Meier estimations of survivorship (percentage of live animals) according to the LW at 28 and at 147 days (the developmental traits explaining the variability in the survival of male rabbits during their productive life) are in Figure 4.

238	3. Results
239	Means, standard deviations, coefficients of variation (CV), quartiles, minimum and
240	maximum values of LW, ADG and main traits controlled during the testing and
241	productive phases are listed in Table 1. Based on this natural variability, we could
242	correctly select individuals with a different dynamic of body development to test the
243	hypothesis that the early body development pattern influences lifespan and the seminal
244	characteristics of male rabbits. Concerning the body development traits, the observed
245	CV varied from 11 to 23%.
246	For seminal characteristics (production and quality), the CV ranged from 17 to 96%
247	during the testing phase and from 10 to 74% in the productive phase. This variability
248	allows us to correlate the possible differences in the seminal traits to the different
249	growth patterns. The same is applicable for productive lifespan in the productive phase;
250	the productive lifespan ranged from 7 to 550 days on production.
251	Libido "mating attempts" of young male rabbits during the testing phase according to
252	the body development traits are shown in Table 2. Having a different LW or ADG, at all
253	the controlled times, did not affect the number of successful AI attempts, evaluated as
254	the relative risk of changing from zero to one, two, three or four successful attempts.
255	The relationships between body development traits and seminal parameters during the
256	testing phase are shown in Table 3. LW at 0, 28 and 63 days old, as well as the ADG
257	between the periods 0-28 and 28-63, influenced the semen characteristics. NAR was not
258	influenced by any developmental traits.
259	In summary, the increment (per each 10 g) on the LW at 0 days resulted in a higher
260	volume, concentration, production and spermatozoa motility ($+0.02$ mL, $+1.1\times10^6$
261	spermatozoa per mL, $+1.1 \times 10^6$ spermatozoa per ejaculate and an odds ratio of 1.13, the
262	likelihood of observing ejaculates with an adequate motility (>65%) being 13% higher,

263	respectively; P<0.05). In fact, semen production linearly increased with LW at 0 days of
264	male rabbits (Figure 1a) and motility was significantly lower for the males weighing
265	less than 65 g at birth (Figure 2a).
266	An increase in ADG in the period 0-28 days of 10 g represented an improvement in
267	semen concentration, production and motility of +1.3×10 ⁶ spermatozoa per mL,
268	$+1.4\times10^6$ spermatozoa per ejaculate and a likelihood of $+56\%$ of having an adequate
269	spermatozoa motility (>65%), respectively; P<0.05. The same pattern was observed for
270	the ADG between 28-63 days and for the measures of LW at 28 and 63 days. In fact,
271	both semen production (Figure 1b) and motility (Figure 2b) linearly increased with the
272	ADG of males in the period 0-28 days; males showing an ADG between 0-28 days
273	below 21 g per day had a diminished semen production and motility in the testing
274	phase.
275	For the ADG in the period 28-63, the improvements on semen concentration,
276	production and motility per each 10 g of increment was +1.2×10 ⁶ spermatozoa per mL,
277	$+1.3\times10^6$ spermatozoa per ejaculate and a 38% greater likelihood of having adequate
278	motility, respectively; P<0.05). In this case, semen production (Figure 1c) and motility
279	(Figure 2c) seem to achieve the highest values for those males showing an ADG in the
280	period 28-63 greater than 63 g/d, although they have no significant differences
281	compared to some other ADG quartiles. At the end of the rearing period (147 day), an
282	increase in LW of 1000 g only improved the semen volume (+0.06 mL, P<0.05),
283	although this was not relevant in practice.
284	Concerning the influence of LW and ADG on the volume, motility and the number and
285	percentage of profitable ejaculates (Table 4), only the number and percentage of
286	profitable ejaculates were influenced. In this sense, an increment of LW at 147 days of 1
287	kg represented a reduction of 6 percentage points in the percentage of profitable

288	ejaculates (P<0.05), while animals having gained, on average, 10 g per day more in the
289	period 63-147 had a lower number and percentage of profitable ejaculates (-10.1 and -
290	4.9%, respectively; P<0.05) throughout their productive life. In fact, rabbit males that
291	showed a growth rate above 29 g/d had the smallest number of profitable ejaculates
292	during the productive phase (Figure 3).
293	Finally, Figures 4 and Table 5 show the influence of early development traits on the
294	hazard ratio of death or culling during the productive phase. We observed that an
295	increase in one standard deviation unit on LW at 28 or at 147 days, as well as for the
296	ADG in the periods 0-28 and 63-147, all increased the risk of leaving the herd by $+14.6$,
297	+17.5, $+14.6$ and $+16.2$ %, respectively (P<0.05). These values return a median survival
298	life for theoretical males weighing 650, 750 and 850 g at 28 days old of 65, 56 and 51
299	weeks of age, respectively (Figure 4a), and for those weighing 4.6, 4.9 and 5.2 Kg at
300	rearing end would be 60, 53, and 48 weeks of age, respectively (Figure 4b).

4. Discussion

For an adequate assessment of the possible effect of the different degrees of
development of the males at different times in their early life, it was essential to build a
population of rabbit males that had a wide variability in their growth traits (Table 1).
CV values obtained in this work show a wide range for the different growth variables
controlled (from 11 to 23%). In fact, the standard deviation observed with 550 males
(6.9 g/d) for ADG during the fattening period was similar to that obtained for a
population of 12,908 rabbit males of this same genetic line (6.9 g/d; [7]). In addition,
mean values of growth traits were very close to the median values and there was, in
general, a good equidistance between quartiles on both sides, denoting symmetry in data
distribution. These results seem to confirm that the needed population structure was
achieved. On the other hand, the average LW and ADG values obtained in this work
were slightly higher than those reported in other studies with selected males from this
same genetic line [1,7,20]. This fact could be related to different climatic and
environmental conditions, as well as differences in the generation of selection in the
animals in the different trials.
Regarding the semen traits, data variability was very high both in the testing and
production phases (with CV values up to 96%). The same general conclusion was
reached by Lavara et al. [7] for the semen traits in rabbit males of R line (with CV
values up to 78%). These authors, using R rabbit males after the testing phase, presented
similar values to those obtained in our work for NAR during the testing phase and
semen motility during the production phase, but lower for the percentage of abnormal
spermatozoa (17.0 vs. 34.5 %) and higher motility (65.0 vs. 42.0 %) than our males in
the testing phase. Moreover, Pascual et al. [1] observed similar results on motility and
NAR values, but a lower number of ejaculates and abnormal spermatozoa, as well as

326	higher semen volume, concentration and production during testing phase (-1.3, -27,8%,
327	$+0.31$ mL, $+113 \times 10^6$ spermatozoa per mL and $+144 \times 10^6$ spermatozoa per ejaculate,
328	respectively). Differences between trials could be due to the different environmental
329	conditions, maturity degree of the rabbit males used and the use of different assessment
330	techniques in the case of motility (CASA vs. visual).
331	The testing phase is commonly used by AI centres to determine which rabbit males will
332	be chosen for semen production. Libido is a key behavioural trait in the choice of rabbit
333	males to be destined to AI. The results of the present work have showed that early
334	growth traits did not significantly affect the number of realised attempts of males during
335	the testing phase. However, higher ADG during the fattening period seems to be
336	associated with increased probability of a higher number of attempts (P<0.10). Pascual
337	et al. [1] observed that the R rabbit males that adequately cover their nutritional
338	requirements during the different phases of early development, also showed a high
339	number of ejaculates during their testing phase (+0.40 and +0.28 ejaculates for males
340	reared on autumn and spring seasons, respectively). These results could indicate that a
341	proper growth during the first steps of the life could contribute to achieve sooner an
342	adequate maturity degree, with a better libido, at the beginning of the reproductive life,
343	although further studies would be needed to confirm it.
344	Corroboration of existence of a relationship among body development traits and the
345	seminal parameters, both in the short and long term, would allow to anticipate and
346	improve the choice of the most adequate rabbit males to be destined to AI. To have a
347	higher LW at birth had a slightly positive effect on some seminal parameters at the
348	testing phase (volume, concentration, production and motility), especially for those
349	weighing over 65 g. Fortun [21] observed that the development and multiplication of
350	the primordial germ cells and of the primordial follicles already occurs during own

gestation. In rabbit females, Poigner et al. [13] observed that females born with a
heavier weight produced more offspring as adults than lighter ones. However, the
positive linear effect of a heavier weight at birth at early reproductive live of rabbit
males seem to disappear after during the production period. Therefore, an adequate
foetal nutrition and development could contribute to a better semen performance at early
reproductive life, but without positive effects in long terms, so it does not seem to be
one of the most key development traits in defining future male performance.
Growth during the first two months of life had a strong influence on some seminal traits
(motility and semen concentration and production) during testing phase. Rabbit males
with patterns of low growth (up to 21 and 53 g per day during lactation and fattening
periods, respectively) showed clearly lower semen production with a worse motility at
early reproductive life. These results may be due to the fact that important changes in
physiological [22] and reproductive (seminiferous tubules; [5]) development take place
during lactation and fattening, and lighter males probably did not reach the testing phase
with a sufficiently mature reproductive status. Pascual and Pla [23], comparing R
rabbits differing in 16 generations of selection for growth rate during fattening,
observed that less selected animals (with lower growth rate both during lactation and
fattening period) showed a lower physiological development at the end of the fattening
period (-13% liver, -8% kidneys and -7% dissectible fat). In addition, rabbit males
showing low growth until 63 days of life may be due to their requirements not being
properly covered. Pascual et al. [1] observed worse semen traits during the testing phase
in those rabbit males that did not correctly cover their nutritional needs from 9 to 14
weeks of life. However, the negative effects of lower growth in the first 63 days of age
on semen performance disappeared in the production phase. These results seem to
indicate that an early underdevelopment could be delaying the reproductive capacity of

376	young males, so management programmes (standardised litter size during lactation,
377	specific diets during fattening) that will ensure the necessary provision of nutrients to
378	the males during the first two months of life would be advisable.
379	Both ADG during rearing period and LW at rearing end had no relevant effects on
380	semen traits during the testing phase. However, greater growth during the rearing period
381	and heavier weight at the beginning of their reproductive life had negative effects on the
382	number and percentage of profitable ejaculates obtained throughout the productive life
383	of the males. These negative linear effects associated with the rearing growth could be
384	related to an inappropriate feeding adjustment of programmes during this period.
385	During the rearing period, when using commercial diets provided ad libitum, rabbit
386	males from parental lines tend to over-consume [1], which may lead them to a level of
387	fatness higher than that desirable for the onset of the reproductive phase. Recently,
388	Pascual et al. [24,2] found that when fitting the nutritional requirements and providing a
389	constant daily supply of nutrients to rabbit males selected for growth rate,
390	improvements in some sperm morphological characteristics and the fertility rate of their
391	semen are achievable. In males, Du Plessis et al. [25] also observed that being
392	overweight could sometimes be associated with an increase in abnormal spermatozoa
393	and a high risk of fertility problems.
394	Finally, lifespan improvement of breeding rabbits should be one of the objectives of
395	rabbit production, as it is usually associated with an improvement in both farm
396	efficiency and the welfare and health of the animals. In the rabbit males used for AI,
397	reaching a higher life expectancy is mainly due to their better adaptability to the farm
398	environmental conditions and to their adequate semen production. In our work, higher
399	growth rates during lactation and rearing periods were associated with a higher risk of
400	death or culling during the production phase of rabbit males. A hypothesis for this

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

higher risk could be related to getting and sustaining an excessive level of fatness in rabbit males during the production phase. During lactation, the total number and size of adipocytes are defined, favoured by energy intake coming from fat [26]. Rabbit milk has a high fat content compared to that of other mammals [27], and young rabbit males showing higher ADG would consequently suckle higher amounts of fat from their mother's milk. A higher number of adipocytes would help the excessive deposition of fat when the nutrition requirements are not fitted in the long term. In fact, the energy requirements for growth and maintenance during the rearing period are scarce, and excessive energy intake could easily occur, which would increase the risk of rabbit males reaching the beginning of their reproductive life with a level of body reserves above that recommended at this age. In rabbits, Maertens [28] proposed fitting the feeding level to daily requirements to reduce the troubles associated to fatness. Recently, some works [29,15] have confirmed that non-adequate body condition around the first mating had clear negative effects on the future reproduction performance and lifespan of young rabbit females. Therefore, it seems that higher level of body reserves at the onset of reproductive life could lead rabbit males to an increased risk of suffering health troubles and/or reducing their libido or semen production or quality, which could increase their risk of death and culling.

_	~ 1	
5. (Conc	lusions

From these results, it could be concluded that early development of the rabbit males,
selected by growth rate during fattening and intended for AI, influences their semen
production and quality in the short and long term as well as their lifespan. A greater
growth development of the rabbit males until the end of their fattening period seems to
have a positive effect on the degree of sexual maturity with which they begin their
reproductive life, improving aspects such as libido, spermatozoa motility and seminal
production, but not in the long term. However, the rearing period seems to be key to
achieving a long and productive reproductive life. Reaching the reproduction onset with
an excessive weight seems to reduce the reproductive performance and lifespan of
rabbit males. Therefore, fitting the feeding requirements during the final phase of
growth, when the energy needs for growth are reduced, could be an adequate
management recommendation for the young reproductive rabbit males from paternal
lines.

6. Acknowledgements

The authors would like to thank José Manuel Arias, owner of the selection centre El Adil Redondo S.L., (Carrizo de la Ribera, León, Spain), and his team for their help, as without their collaboration this work could not have been carried out. This study was supported by the Interministerial Commission for Science and Technology (CICYT) of the Spanish Government (AGL2017-85162-C2-1-R).

7. References

- 441 [1] Pascual JJ, García C, Martínez E, Mocé E, Vicente JS. Rearing management of
- rabbit males selected by high growth rate: the effect of diet and season on semen
- characteristics. Reprod Nutr Dev 2004; 44: 49–63.
- 444 [2] Pascual JJ, Marco-Jiménez F, Martínez-Paredes E, Ródenas L, Fabre C, Juvero MA,
- Cano JL. Feeding programs promoting daily feed intake stability in rabbit males reduce
- sperm abnormalities and improve fertility. Theriogenology 2016; 86 (3): 730–737.
- [3] Castellini C. Semen production and management of rabbit bucks. Proceedings of the
- 9th World Rabbit Congress; 2008 June 10–13; Verona, Italy; p. 265–278.
- 449 [4] Lavara R, Mocé E and Vicente JS 2003. Buena práctica de inseminación artificial: I.
- 450 Preparación de dosis seminales. Los factores responsables de la variación de los
- resultados de fertilidad y prolificidad de la IA. Boletín de Cunicultura; 128: 14–23.
- 452 [5] García-Tomás M, Sánchez J, Piles M. Postnatal sexual development of testis and
- 453 epididymis in the rabbit: Growth and maturity patterns of microscopic markers.
- 454 Theriogenology 2008; 71: 292–301.
- 455 [6] Lavara R, Vicente JS, Baselga M. Genetic parameter estimates for semen production
- 456 traits and growth rate of a patern rabbit line. J Anim Breed Genet 2011; 128: 44–51.
- 457 [7] Lavara R, Vicente JS, Baselga M. Estimation of genetic parameters for semen
- 458 quality traits and growth rate in a paternal rabbit line. Theriogenology 2012; 78: 567–
- 459 575.
- 460 [8] Pascual JJ. Nutrición de machos destinados a inseminación artificial. Proceedings of
- the II Jornadas Internacionais de Cunicultura; 2002 Oct 11–12; Vila Real, Portugal; p.
- 462 197–212.
- 463 [9] Marín-García PJ, López-Luján MC, Ródenas L, Martínez-Paredes E, Blas E,
- Pascual JJ. Do high growth-rate rabbits prefer diets richer on amino acids than those

- 465 recommended? Proceedings of the 69th Annual Meeting of the European Federation of
- 466 Animal Science (EAAP 2018); 2018 Aug 31; Dubrovnic, Croatia; p. 585.
- 467 [10] Eisen EJ, Johnson BH. Correlated responses in male reproductive traits in mice
- selected for litter size and body weight. Genetics 1981; 99: 513–24.
- [11] Johnson RK, Eckardt GR, Rathje TA, Drudik DK. Ten generations of selection for
- 470 predicted weight of testes in swine: direct response and correlated response in body
- weight, backfat, age at puberty, and ovulation rate. J Anim Sci 1994; 72:1978–88.
- 472 [12] Kealey CG., Macneil MD, Tess MW, Geary TW, Bellows RA 2006. Genetic
- parameter estimates for scrotal circumference and semen characteristics of Line 1
- 474 Hereford bulls. J Anim Sci 2006; 84:283–90.
- 475 [13] Poigner J, Szendrö Z, Lévai A, Radnai I, Biró-Nemeth E. Effect of birth weight
- and litter size at suckling age on reproductive performance in does as adults. World
- 477 Rabbit Sci 2000; 8 (3): 103–109.
- 478 [14] Rommers JM, Meijerhof R, Noordhuizen JPTM, Kemp B. Relationships between
- 479 body weight at first mating and subsequent body development, feed intake, and
- 480 reproductive performance of rabbit does. J Anim Sci 2002; 80 (8): 2036–42.
- 481 [15] Martínez-Paredes E, Ródenas L, Pascual JJ, Savietto D. Early development and
- 482 reproductive lifespan of rabbit females: implications of growth rate, rearing diet and
- 483 body condition at first mating. Animal 2018; 12 (11): 2347–2355.
- 484 [16] Brun JM, Theau-Clément M, Esparbié J, Falières J, Saleil G, Larzul C. Semen
- 485 production in two rabbit lines divergently selected for 63-d body weight.
- 486 Theriogenology 2006; 66: 2165–2172.
- 487 [17] García-Tomás M, Sánchez J, Rafel O, Ramon J, Piles M. Variability, repeatability
- and phenotypic relationships of several characteristics of production and semen quality.
- 489 Anim Reprod Sci 2006; 93: 88–100.

- 490 [18] Barth AD, Oko RJ. Abnormal morphology of bovine spermatozoa. Iowa State
- 491 University Press, 1989.
- 492 [19] SAS. SAS/SAT User's Guide (Release 9.1). SAS Inst. Inc. Cary NC, USA, 2002.
- 493 [20] Lavara R, Baselga M, Marco-Jiménez F, Vicente JS. Embryo vitrification in
- rabbits. Consequences for progeny growth. Theriogenology 2015; 84: 674–680.
- 495 [21] Fortun JE. Ovarian follicular growth and development in mammals. Biol Reprod
- 496 1994; 50: 225–232.
- 497 [22] Deltoro J, López AM. Allometric changes during growth in rabbits. J Agric Sci
- 498 1985; 105: 339–346.
- 499 [23] Pascual M, Pla M. Changes in carcass composition and meat quality when
- selecting rabbits for growth rate. Meat Sci 2007; 77 (4): 474–481.
- 501 [24] Pascual JJ, Marco-Jiménez F, Martínez-Paredes E, Ródenas L, Martínez-Talaván
- A, Fabre C, Martín E, Juvero MA, Cano JL. El uso de programas de alimentación en
- 503 conejos reproductores que regulan la ingestión reduce las anormalidades espermáticas y
- mejora la fertilidad. Proceedings of the XL Symposium de Cunicultura ASESCU; 2015
- 505 May 28–29; Santiago de Compostela, Spain; p. 70–74.
- 506 [25] Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of
- obesity on sperm disorders and male infertility. Nat Rev Urol 2010; 7: 153–161.
- 508 [26] Šnajder D, Perić Kačarević Ž, Grgić A, Bijelić N, Fenrich M, Belovari T, Radić R.
- 509 Effect of different combination of maternal and postnatal diet on adipose tissue
- 510 morphology in male rat offspring. J Matern Fetal Neonatal Med 2018. Doi:
- 511 10.1080/14767058.2017.1419181.
- 512 [27] Pascual J, Cervera C, Blas E, Fernández-Carmona J. Effect of high fat diets on the
- 513 performance, milk yield and milk composition of multiparous rabbit does. Anim Sci
- 514 1999; 68(1): 151–162.

- 515 [28] Maertens L. Feeding systems for intensive production. In: De Blas C, Wiseman J,
- editors. Nutrition of the Rabbit, Wallingford, UK: CABI Publishing; 2010, p. 253–266.
- 517 [29] Martínez-Paredes E, Ródenas L, Martínez-Vallespín B, Cervera C, Blas E,
- 518 Brecchia G, Boiti C, Pascual JJ. Effects of feeding programme on the performance and
- energy balance of nulliparous rabbit does. Animal 2012; 6: 1086–1095.

Table 1. Main descriptive values of population used in the experiment (550 males until testing phase and 377 males for production phase).

Variables	Mean	SD	Min	Lower	Median	Upper	Max	CV
Variables	Mean	SD	IVIIII	Q	Median	Q	IVIAX	
LW and ADG (g)								
LW 0 days	65.0	11.1	34.3	57.8	64.9	72.1	102.0	17.15
LW 28 days	765	157	318	662	764	870	1240	20.53
LW 63 days	2785	319	1696	2586	2800	3012	3640	11.45
LW 147 days	4909	530	3095	4580	4905	5260	6495	10.79
ADG 0-28 days	25.01	5.43	9.75	21.45	25.00	28.62	41.16	21.72
ADG 28-63 days	57.69	6.92	30.51	53.09	58.17	62.91	73.89	11.99
ADG 63-147 days	25.28	5.74	8.60	21.64	25.15	28.76	42.85	22.69
Semen traits during testing phase ¹								
Ejaculates (n)	2.68	1.43	0.00	2.00	3.00	4.00	4.00	53.29
Average volume (mL)	0.60	0.28	0.00	0.40	0.58	0.75	1.77	46.49
Average motility (%) ¹	42.01	26.42	0.00	23.17	45.00	67.50	82.00	62.89
Average concentration (spz×10 ⁶ /mL)	123.8	100.9	0.0	50.9	102.0	165.8	817.5	81.51
Average production (spz×10 ⁶ /ejaculate)	79.4	76.2	0.0	22.2	57.5	110.7	530.4	96.04
Average NAR (%)	89.5	15.5	19.9	90.1	96.0	98.0	100.0	17.25
Average spz abnormalities (%)	34.50	20.20	1.56	17.80	30.01	48.14	90.10	58.56
Traits during production phase ²								
Productive life (days)	351.2	198.2	7.0	155.0	395.0	546.0	550.0	56.42
Collection attempts (n)	88.1	53.1	2.0	38.0	88.0	144.0	182.0	60.25
Extracted ejaculate (n)	83.6	52.3	1.0	36.0	83.0	138.0	159.0	62.62
Average volume (mL)		0.20	0.00	0.76	0.86	1.00	1.38	22.60
Average motility (%) ³		7.57	0.00	75.00	77.00	78.00	82.00	9.96
Profitable ejaculates (n)	67.8	50.1	0.0	22.0	58.0	113.0	155.0	73.92
Profitable ejaculates (%)	69.9	22.5	0.0	54.7	74.6	90.3	100.0	32.16

SD: standard deviation; Min: minimum value; Q: quartile; Max: maximum value; CV: coefficient of variation; LW: live weight; ADG: average daily gain; spz: spermatozoa; NAR: normal apical ridge; Profitable ejaculates: ejaculates of normal appearance with an adequate visual motility and concentration (percentage of the total collection attempts).

¹ Testing phase: from 147 to 175 days old; ² Production phase: from 175 to 2 years old (maximum);

³ Visual motilities done by the same technician at each centre.

Table 2. Relative risks ratio, of changing from zero mating attempts to one, two, three or four successful attempts, per each unit of increase in the standardised variables related to the early development.

Standardised	- 					P-values			
variable ¹	Zero ²	One	Two	Three	Four	One	Two	Three	Four
LW 0 days	1.00	0.852	0.979	0.840	0.927	0.431	0.905	0.221	0.584
LW 28 days	1.00	1.182	1.277	1.140	1.180	0.417	0.184	0.386	0.274
LW 63 days	1.00	1.184	1.444	1.266	1.195	0.417	0.052	0.119	0.232
LW 147 days	1.00	1.349	1.394	1.354	1.184	0.238	0.131	0.103	0.356
ADG 0-28 days	1.00	1.207	1.294	1.165	1.198	0.360	0.161	0.314	0.235
ADG 28-63 days	1.00	1.125	1.437	1.281	1.146	0.590	0.074	0.117	0.371
ADG 63-147 days	1.00	1.227	1.101	1.109	1.023	0.398	0.634	0.547	0.894

 $^{^{1}}LW$ = live weight and ADG = average daily gain. 2 Zero represents the reference level to which the pairwise comparisons were performed.

Table 3. Linear effect of early growth traits on semen parameters during the testing phase (estimate \pm standard error).

		LW at birth ² (×10g)	LW at weaning (×100g)	LW at rearing onset (×1000g)	LW at rearing end (×1000g)	ADG lactation (×10g)	ADG fattening (×10g)	ADG rearing (×10g)
Volume (mL)		$0.019 \pm 0.009^*$	0.013 ± 0.007	0.069 ±0.036	0.057 ±0.024*	0.037 ±0.021	0.024 ±0.017	0.020 ±0.023
Concentration	$(\log_{10} 10^6 \text{spz/mL})$	$0.038 \pm 0.015^{*}$	$0.043 \pm 0.012^{***}$	$0.210 \pm 0.061^{***}$	0.046 ± 0.042	$0.123 \pm 0.036^{***}$	$0.071 \pm 0.030^*$	-0.048 ±0.039
	(10^6spz/mL)	1.091	1.104	1.622	1.112	1.327	1.178	0.895
Production (le	og ₁₀ 10 ⁶ spz/ejac)	$0.051 \pm 0.018^{**}$	$0.055 \pm 0.015^{***}$	$0.286 \pm 0.072^{***}$	0.092 ± 0.050	$0.158 \pm 0.043^{***}$	$0.102 \pm 0.036^{**}$	-0.038 ±0.046
(1	10 ⁶ spz/ejac)	1.125	1.135	1.932	1.236	1.439	1.265	0.916
Motility (la	n odds) ³	$0.123 \pm 0.059^*$	$0.155 \pm 0.049^{**}$	$0.870 \pm 0.248^{***}$	0.238 ± 0.157	$0.447 \pm 0.142^{**}$	0.321 ±0.122**	0.000 ± 0.146
(0	odds) ³	1.131	1.168	2.387	1.269	1.564	1.379	1.000
NAR (%)		0.000 ± 0.023	-0.001 ± 0.019	0.003 ± 0.095	-0.003 ±0.063	-0.002 ±0.056	0.003 ± 0.046	-0.006 ±0.058
Spz abnormali	ities (%)	-0.003 ± 0.004	-0.003 ± 0.004	-0.024 ±0.018	0.001 ± 0.012	-0.007 ±0.011	-0.012 ±0.009	0.010 ±0.011

The change in each growth trait needed to obtain the estimated change for the different semen parameter is shown in brackets.
Standardised weight at birth (corrected by milk spot presence).
Motility of the ejaculate presented as a binomial variable: 0, motile sperm below 65%; 1, motile sperm above 65%. Odds: increase of relative probability to be classified as 1 (motile sperm above 65%) per unit of proposed LW or ADG change (see ^a).

LW: live weight; ADG: average daily gain; NAR: normal apical ridge; spz: spermatozoa; ejac: ejaculate.

Weaning (28 days old); Rearing onset (63 days old); Rearing end (147 days old). *P<0.05; ** P<0.01; *** P<0.001.

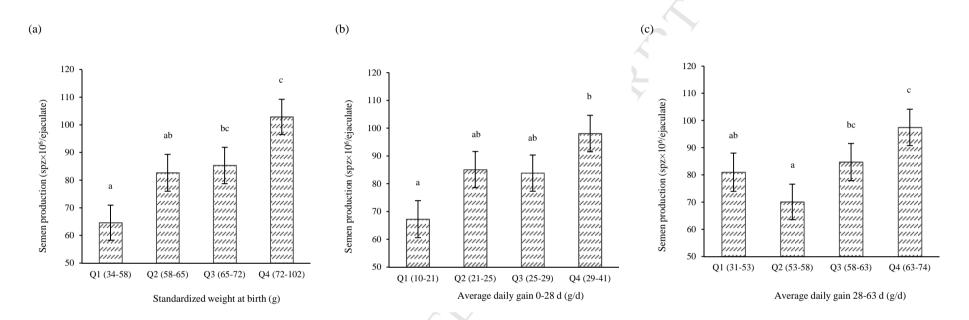
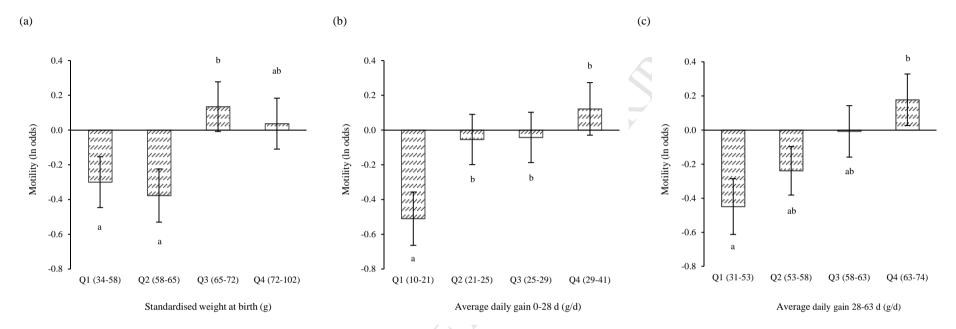
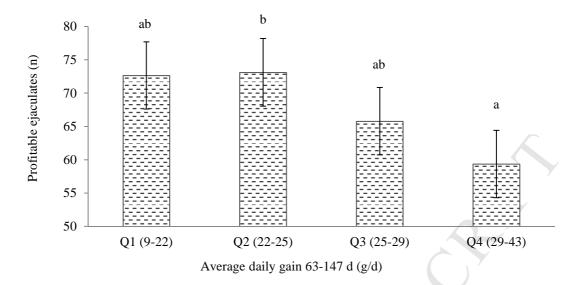



Figure 1. Average semen production (spermatozoon $\times 10^6$ per ejaculate) according to the classification by quartiles of the population for: (a) standardised weight at birth (corrected according to milk spot presence), (b) average daily gain from 0 to 28 days of age and (c) average daily gain from 28 to 63 days of age.

Figure 2. Average motility (ln odds) according to the classification by quartiles of the population for: (a) standardised weight at birth (corrected by milk spot presence), (b) average daily gain from 0 to 28 days of age and (c) average daily gain from 28 to 63 days of age. Motility of the ejaculate was presented as a binomial variable: 0, motile sperm below 65%; 1, motile sperm above 65%. Odds: increase of relative probability to be classified as 1 (motile sperm above 65%).


Table 4. Linear effect of early growth traits on semen parameters during the productive phase (estimate \pm standard error).

	LW at birth ²	LW at weaning	LW at rearing onset LW at rearing end ADG lactation			ADG fattening	ADG rearing
	(×10g)	(×100g)	(×1000g)	(×1000g)	(×10g)	(×10g)	(×10g)
Average volume (mL)	0.000 ± 0.007	0.000 ± 0.005	-0.008 ±0.026	-0.030 ±0.018	0.000 ± 0.015	-0.005 ±0.012	-0.028 ±0.016
Average motility (%)	0.029 ± 0.102	0.101 ± 0.077	0.492 ± 0.370	0.119 ± 0.243	0.298 ± 0.226	0.168 ± 0.177	-0.198 ±0.219
Profitable ejaculates (n)	-2.036 ±2.115	-2.314 ±1.590	-3.261 ±7.709	-10.945 ±5.219	-6.584 ±4.607	1.399 ± 3.682	-10.057 ±4.699*
Profitable ejaculates (%)	-0.208 ± 0.788	-0.804 ±0.592	-2.911 ±2.867	-5.829 ±1.898**	-2.374 ±1.715	-0.672 ±1.371	-4.856 ±1.713**

¹ The change in each growth trait needed to obtain the estimated change at the different semen parameter is shown in brackets. ² Standardised weight at birth (corrected by milk spot presence). LW: live weight; Weaning (28 days old); Rearing onset (63 days old); Rearing end (147 days old).

Average volume: average value of ejaculates with normal aspect; Average motility: average value of ejaculates with normal aspect.

Profitable ejaculates: ejaculates of normal appearance with an adequate visual motility and concentration (percentage of the total number of attempts to extract semen.). *P<0.05; *** P<0.01.

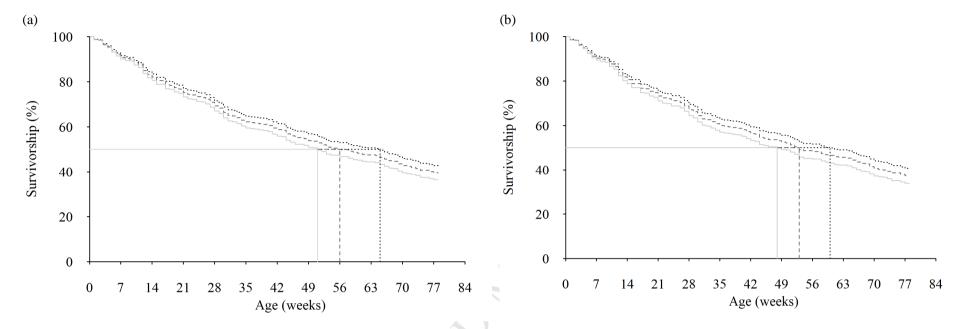


Figure 3. Number of profitable ejaculates (ejaculates of normal appearance with an adequate visual motility and concentration) according to the classification by quartiles of the average daily gain from 63 to 147 days of age.

Table 5. Influence of the early development variables (standardised variables) on the hazard ratio of death or culling of males during its productive life. Values above one represents an increment on the hazard ratio and therefore a reduction on the productive life.

Standardised variable ¹	Hazard ratio	95% Confidence interval	P-value	Likelihood ratio test ²
LW 0 days	1.067	[0.93-1.22]	0.34	0.30
LW 28 days	1.146	[1.00-1.31]	0.04	0.04
LW 63 days	1.039	[0.91-1.19]	0.57	0.60
LW 147 days	1.175	[1.02-1.35]	0.03	0.03
ADG 0-28 days	1.146	[1.00-1.31]	0.04	0.04
ADG 28-63 days	0.965	[0.84-1.10]	0.59	0.60
ADG 63-147 days	1.162	[1.02-1.33]	0.03	0.03

¹LW = live weight and ADG = average daily gain. ² P-values of likelihood ratio test for the null hypothesis that all covariates of the implemented model are equal to zero.

Figure 4. Survivorship estimation (percentage of live animals) across time (age in weeks) according to the live weight at different points of development: a) theoretical males with different live weight at weaning (light grey: 650 g; dark grey: 750 g; black: 850 g) and vertical segments represent the median survival time: 65, 56 and 51 weeks, respectively; b) theoretical males with different live weight at the end of the rearing period (light grey: 4600 g; dark grey: 4900 g; black: 5200 g) and vertical segments represent the median survival time: 60, 53 and 48 weeks, respectively.

Highlights

Body development of young rabbit males influences on their semen performance and lifespan.

Growth until 2-months age had only effects at the beginning of males' reproductive life.

Excessive growth at rearing have negative consequences on males' semen in long-term.

Excessive growth at lactation or rearing could have negative effects on males' lifespan.