

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/157366

Parra-González, LO.; España Cubillo, S.; Panach Navarrete, JI.; Pastor López, O. (2019).
An empirical comparative evaluation of gestUI to include gesture-based interaction in user
interfaces. Science of Computer Programming. 172:232-263.
https://doi.org/10.1016/j.scico.2018.12.001

https://doi.org/10.1016/j.scico.2018.12.001

Elsevier

An empirical comparative evaluation of gestUI to include
gesture-based interaction in user interfaces
Otto Parra, Sergio España, Jose Ignacio Panach, Oscar Pastor

ABSTRACT
Currently there are tools that support the customization of users’ gestures. In general, the inclusion of new gestures implies
writing new lines of code that strongly depend on the target platform where the system is run. In order to avoid this platform
dependency, gestUI was proposed as a model-driven method that permits (i) the definition of custom touch-based gestures,
and (ii) the inclusion of the gesture-based interaction in existing user interfaces on desktop computing platforms. The
objective of this work is to compare gestUI (a MDD method to deal with gestures) versus a code-centric method to include
gesture-based interaction in user interfaces. In order to perform the comparison, we analyse usability through effectiveness,
efficiency and satisfaction. Satisfaction can be measured using the subjects’ perceived ease of use, perceived usefulness and
intention to use. The experiment was carried out by 21 subjects, who are computer science M.Sc. and Ph.D. students. We use
a crossover design, where each subject applied both methods to perform the experiment. Subjects performed tasks related to
custom gesture definition and modification of the source code of the user interface to include gesture-based interaction. The
data was collected using questionnaires and analysed using non-parametric statistical tests. The results show that gestUI is
more efficient and effective. Moreover, results conclude that gestUI is perceived as easier to use than the code-centric
method. According to these results, gestUI is a promising method to define custom gestures and to include gesture-based
interaction in existing user interfaces of desktop-computing software systems.

Keywords. Model-driven method; human-computer interaction; code-centric method; gesture-based interaction;
comparative empirical evaluation.

1. INTRODUCTION
Gesture-based interfaces are harder to implement and test than traditional interfaces (i.e. interfaces based on WIMP –
Window-Icon-Mouse-Pointer) using a mouse and a pointer [1] because they require more skills and knowledge of the
software engineers about programming languages and tools to write source code. There are some complications in the
definition of custom gestures (in this paper, the word “gesture” is used to refer to touch-based gestures) and their inclusion in
user interfaces. Gesture-based interaction is supported at the source code level (typically third-generation languages) [2] that
is, using a code-centric method where the developers write source code using a programming language in order to implement
user interfaces with gesture-based interaction included. This involves a great effort with regard to coding and maintenance
when multiple platforms are targeted [3], has a negative impact on reusability and portability, and it complicates the
definition of new gestures [4].

We proposed gestUI, a model-driven method described in [5], to help in the definition of custom gestures and in the inclusion
of gesture-based interaction in existing user interfaces for desktops. The choice of gestUI is due to the fact that gestUI is the
only Model-Driven Development method that allows the end-user to personalize their own gestures. gestUI method employs
a model-to-model (M2M) transformation using ATL (http://eclipse.org/atl/) and a model-to-text (M2T) transformation using
Acceleo (http://www.eclipse.org/acceleo/) to obtain a user interface with gesture-based interaction included in its
functionalities. Regarding the gesture recognition required in our work, there are several methods to consider, i.e.: $-family

O. Parra
Computer Science Department, Universidad de Cuenca, Ecuador/ PROS Research Centre, Universitat Politécnica de Valencia, Spain
otto.parra@ucuenca.edu.ec, otpargon@upv.es
S. España
Department of Information and Computing Sciences, Utrecht University. The Netherlands
s.espana@uu.nl
J. I. Panach
Escola Tècnica Superior d’Enginyeria, Departament d’Informàtica, Universitat de València
joigpana@uv.es
O. Pastor
PROS Research Centre, Universitat Politécnica de Valencia, Spain
opastor@dsic.upv.es

mailto:otto.parra@ucuenca.edu.ec
mailto:otpargon@upv.es
mailto:s.espana@uu.nl
mailto:joigpana@uv.es
mailto:opastor@dsic.upv.es

($1 designed for unistroke gestures [6], $N designed for multistroke gestures [7], $P designed for memory reduction [8], $Q
for mobile, wearable and embedded devices [9] and variants), !FTL [10], etc. In our work, we consider multi-stroke gestures
and we adopt $N because this recognizer supports this type of gestures and it is easy to understand and easy to implement.
According to [7], $N supports XML language to describe a gesture, therefore, gestUI supports gestures defined in XML
language.

Moody [11] considers that the objective of the validation should not be to demonstrate that the method is “correct” but that
the method could be adopted based on its pragmatic success which is defined as “the efficiency and effectiveness with which
a method achieves its objectives”. According to ISO 9241-210 [12] and ISO 25062-2006 [13], usability is defined as “the
extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. Additionally, ISO 25062-2006 establishes that usability evaluation involves using
(1) subjects who are representative of the target population of users of the software, (2) representative tasks, and (3) measures
of efficiency, effectiveness and subjective satisfaction. The ISO also defines that at least one indicator in each of these
aspects should be measured to determine the level of usability achieved [2]. In order to evaluate satisfaction, we consider the
Method Evaluation Model (MEM) [1] [3] which considers three primary constructs: perceived ease of use – PEOU (“the
degree to which a person believes that using a particular system would be free of effort”), perceived usefulness – PU (“the
degree to which a person believes that using a particular system would enhance his or her job performance”) and intention of
use – ITU (“the extent to which a person intends to use a particular system”).

The main contribution of this paper is the design and analysis of an experiment that compares two types of methods to define
custom gestures and the inclusion of gesture-based interaction in user interfaces: code-centric and model-driven. With the
aim of validating gestUI, we have designed a comparative empirical evaluation in which we consider both methods to define
custom gestures and to include the gesture-based interaction. We evaluate efficiency, effectiveness and satisfaction (by means
of PEOU, PU and ITU) when the subjects apply gestUI in comparison with a code-centric method to include gesture-based
interaction in existing user interfaces. We used as indicators: (i) the time to finish the task for efficiency; (ii) the percentage
of correct tasks carried out in the experiment for effectiveness, and (iii) the MEM questionnaires for PEOU, PU and ITU.
Results of this evaluation help to know to which extent the use of Model-driven Development (MDD) helps in the process to
define custom gestures and to include gesture-based interaction in user interfaces.
We present and discuss the results obtained in the experiment. We have found that the results obtained for efficiency and
effectiveness are better when the subjects use gestUI in relation to when they employ a code-centric method. Also, the results
achieved for PEOU, PU and ITU are better if the subjects use gestUI in relation to when they employ a code-centric method.
This paper is organized as follows. Section 2 presents the related work. Section 3 describes two methods for including
gesture-based interaction: the code-centric method and the model-driven method – gestUI. Section 4 describes the
experimental planning. Section 5 reports the results of the experiment. Section 6 includes a discussion about the results
obtained in the experiment. Section 7 contains conclusions and outlines our future work.

2. RELATED WORK
In this section, we analyse the related work about comparative evaluation between methods based on a model-driven
paradigm and other existing methods (e.g. traditional software development methods) to develop software. There are several
works that report the comparison of experiments using MDD, some of them are described in the following paragraphs and
summarised in Table 1. The following information is included in each column: author(s) of the paper, year of publication,
type of study (e.g. case study, evaluation, controlled experiment), goal of the study, field of application of the experiment,
variables, experimental subject, and the tool used in the experiment.

Kapteijns et al. [14] describe a case study of the development of a small middleware application in order to make a
comparison between MDD implementation with regular third-generation programming. The MDD framework used, which is
called XuWare, allows the generation of a “create-remove-update-delete” functionality for Web applications from Unified
Modelling Language (UML) models. Results obtained show that MDD is highly applicable to small-scale development
projects under conditions which can easily be satisfied.

Bunse et al. [15], describe a case study in order to compare MARMOT (based on MDD and component-based development)
with RUP and Agile Development. In this evaluation, subjects developed a small control system for an exterior car mirror.
The metrics employed in the evaluation are: model-size, amount of reused elements, defect density and, development effort.
Their evaluation reveals that model-driven, component-oriented development performs well and leads to maintainable
systems and a higher-than-normal reuse rate.

Kane et al. [16], describe two user studies that compared how blind people and sighted people use touch screen gestures. The
authors of this research describe some design considerations related with touch-based user interfaces in different types of
devices and the definition of touch-based gestures by both types of users. They conducted a study in which both blind and

sighted participants were asked to invent gestures that could be used to conduct standard computing tasks on a touch screen-
based tablet PC. To determine if there were significant differences in how blind and sighted people performed the same
gestures, the authors conducted a second study in which all participants performed the same set of standard gestures. Based
on the results of these two studies, they offer preliminary advice on how to design future touch screen-based applications for
both blind and sighted users.

Ricca et al. [17], describe a controlled experiment with the aim of investigating the effectiveness of Model-driven
development during software maintenance and evolution activities. Subjects (Bachelor degree students) used two software
systems (Svetofor and Telepay) and by means of UniMod obtained two new versions of these software systems. In this
experiment, the results showed a marked reduction in time to complete the maintenance tasks, with no important impact on
correctness when UniMod is used instead of conventional programming.

Papotti et al. [18] describe a quantitative study in order to evaluate the impact of using model-driven code generation vs.
traditional development of software systems to implement a web application. Results show that the development time to code
generation is shorter than the time required when using traditional development.

Condori-Fernandez et al. [19] describe an empirical approach for evaluating the usability of model-driven tools. They
propose a framework to evaluate the usability, applying it to INTEGRANOVA, an industrial tool that implements an MDD
software development method called the OO-Method. The authors report results about the usability evaluation in terms of
efficiency, effectiveness and satisfaction within an experimental context.

Martinez et al. [20] describe a quasi-experiment in order to compare three methods (model-driven, model-based and code-
centric) developing the business layer of a Web 2.0 application. Results show that MDD approaches are the most difficult to
use but, at the same time, are considered to be the most suitable in the long term. Additionally, these authors in [21] report a
quasi-experiment in order to evaluate productivity and satisfaction when a group of Master’s degree students develop a Web
application using three methods: code-centric, model-based (UML) and model-driven (OOH4RIA). Results show that the use
of model-driven Engineering practices significantly increases both productivity and satisfaction of junior Web developers,
regardless of the particular application. Other work reported by these authors [22] concerns an empirical study on the
maintainability of Web applications. In this work, they compare model-driven Engineering with the code-centric method by
using OOH4RIA and Visual Studio .NET, respectively. The results show that maintaining Web applications with OOH4RIA
clearly improves the performance of the subjects.

Cervera et al. [23], describe an empirical evaluation using TAM and Think Aloud methods to assess usefulness and ease of
use of MOSKitt4ME. The results were favorable, that is, MOSKitt4ME was highly rated in perceived usefulness and ease of
use; the authors also obtained positive results with respect to the users׳ actual performance and the difficulty.

Panach et al. [24] describe an experiment in order to compare quality, effort, productivity and satisfaction of MDD and
traditional development. Subjects (final-year Master’s degree students) built two web applications from scratch. Results
obtained show that for small systems, and less programming-experienced subjects, MDD does not always yield better results
than a traditional method, even considering effort and productivity.

Safdar et al. [25] describe an experiment, in the context of model-driven software engineering (MDSE), with undergraduate
and graduate students in order to compare the productivity of the software engineers while modelling with UML tools (IBM
Rational Software Architecture, Papyrus, and MagicDraw). The authors measure the productivity in terms of modelling effort
required to correctly complete a task, learnability, time and number of clicks, and memory load required for the software
engineer to complete a task. Their results show that MagicDraw yields good results in terms of learnability, memory load,
and completeness of tasks.

Neto et al. [26] propose a framework based on MDD to systemize the pre-processing stage in knowledge discovery projects.
This stage is a complex task that demands from database designers a strong interaction with experts having a broad
knowledge about the application domain. In order to validate the proposed framework, two comparative studies were
conducted to show that the proposed framework delivers a performance equivalent or superior to those of existing
frameworks and reduces the time of data transformation with a confidence level of 95%.

Santos et al. [27] describe their proposal composed of a modelling language and model-to-code transformations for
producing runnable simulations automatically. In order to analyse the productivity of their MDD approach, they compared
the amount of design and implementation artefacts produced using their approach and traditional simulation platforms. The
authors report an evaluation of the effectiveness of their MDD approach consisting in an empirical study in order to measure
the productivity of their MDD approach. The results show that their MDD approach is effective for reducing the effort
required for developing agent-based simulations.

Hamid and Weber [28] describe an approach based on metamodeling and model transformation techniques to define patterns
at different abstraction levels and to generate different representations according to the target domain. They report an
empirical evaluation of the proposed approach through a practical application to an industrial use case in the metrology
domain with strong security requirements. The case study aimed to determine whether the pattern-based approach leads to a
reduced number or to a simplification of the engineering process steps. Results reveal that domain experts perceived the
approach to be extremely useful and agreed regarding the benefits of adopting the approach in a real industrial context.

Oliveira et al. [29] report a comparative empirical evaluation between BRCode (an interpretative MDE approach for fast-
changing Enterprise applications) and genMDE (a generative MDE approach). They use a case study that involves the
development of an Enterprise Resource Planning (ERP) system data collection based on 34 realistic scenarios in a Brazilian
company. The case study was conducted to evaluate the proposed technique by investigating the impact of the proposed
approach on the development effort and financial gains. The results show the strength of using BRCode to support software
production companies in the business environment.

Table 1. Related work
Author Year Type of study Goal Application field Variables Experimental

subjects
Tool employed in
the experiment

Kapteijns et
al. [14]

2009 Case study To compare an MDD
implementation
with regular third
generation
programming

A small middleware
application

Development
productivity,
development
time,
application
complexity.

Novice and
expert
developers

XuWare

Bunse et al.
[15]

2009 Case study To compare
MARMOT (based on
MDD and
component-based
development) with
RUP and Agile
Development.

A small control
system for an
exterior car mirror.

Development
effort, model
size, defect
density, amount
of reused
elements,
model size.

Graduate
students

MARMOT

Kane et al.
[16]

2011 User study To compare the
behaviour of two
type of users (blind
and sighted) when
they use gestures in
touch-based user
interfaces.

An application for a
Tablet PC

 Blind and
sighted people

Ricca et al.
[17]

2012 Controlled
experiment

To compare UniMod
programming with
code-centric
programming

Two new versions of
Svetofor and
Telepay: Svetofor+
and Telepay+.

Effectiveness of
UniMod

Bachelor degree
students

UniMod versions
of Svetofor and
Telepay

Martinez et
al. [21]

2012 Quasi-
experiment

To compare the
productivity and
satisfaction of junior
Web developers
developing the
business layer of a
Web 2.0 Application
using three
methods: code-
centric, model-
based or a MDE
approach

Web 2.0 application Productivity
and satisfaction

Master’s degree
students

A set of tools to
implement the
business layer of a
web application.

Papotti et
al. [18]

2013 Quantitative
study

To evaluate the
impact of using
model-driven code
generation vs.
traditional
development

Web application Development
time

Undergraduate
students

A set of tools to
implement

Martinez et
al. [20]

2013 Quasi-
experiment

To compare three
methods: model-
driven, model-based
and code-centric.

Web application Perceived
usefulness,
perceived ease
of use,
compatibility,
subjective
norm,
voluntariness.

Graduate
students

A set of tools to
implement the
business layer of a
web application.

Condori-
Fernandez
et al. [19]

2013 Empirical
approach

Usability of model-
driven tools

 Efficiency,
Effectiveness
and satisfaction

PROS-UPV
Researchers

INTEGRANOVA

Martinez et
al. [22]

2014 Empirical
study

Maintainability Web application Performance
and satisfaction

Graduate
students

OOH4RIA

Cervera et
al. [23]

2015 Empirical
evaluation

To evaluate
usefulness and ease
of use of
MOSKitt4ME

 Perceived
usefulness, ease
of use

Master’s and
PhD students, a
post-doc,
industrial
software
engineers

MOSKitt4ME

Panach et
al. [24]

2015 Experiment To verify some of
the most cited
benefits of MDD.

Web application Quality, effort,
productivity
and
satisfaction.

Final-year
Master’s degree
students

INTEGRANOVA

Safdar et al.
[25]

2015 Experiment To compare the
productivity of the
software engineers
when they use UML
modelling tools

Modelling software
processes.

Learnability and
memory load

Undergraduate
and graduate
students

IBM Rational
Software
Architecture,
Papyrus, and
MagicDraw

Neto et al. 2017 Comparative
study

To compare the
proposed
framework with
other existing
frameworks

Credit Behavioural
Scoring solutions.

Performance
(time),
Effectiveness

 RelAggs, CoMoVi,
and CbMVV
frameworks

Santos et
al. [27]

2018 Empirical
evaluation

To measure the
effectiveness in
terms of
productivity.

Developing signal
control agents in
the domain of ATSC
simulations with a
MDD approach

Productivity DSL4ABMS

Hamid and
Weber [28]

2018 Empirical
evaluation

To measure effort
and feasibility of
MDE application in
the metrology
domain.

Developing a
practical application
to a use case in the
metrology domain
with strong security
requirements

 Industry
practitioners
(Twenty people
experts in the
engineering
secure systems)

Oliveira et
al. [29]

2018 Empirical
evaluation

To compare BRCode
with genMDE

Development of
Enterprise
Information
Systems in industry

Development
effort and
financial gains.

Software
developers

An Enterprise
Resource Planning
(ERP) system

All these works describe comparative evaluations in order to check whether or not model-driven produces better results than
other methods (e.g. code-centric method, method based on RUP and Agile methodology). The types of study used in these
evaluations are mainly case studies, empirical evaluations and quantitative studies. As far as the authors know, there are no
previous experiments that dealt with the comparison of a model-driven versus a code-centric method in the context of
generating gesture-based interaction. So, this paper is a step forward in the process of covering this gap.

Apart from code-centric and gestUI, there are some commercial products to define customized gestures based on standard
gestures (e.g., Touch Me Gesture Studio of Microsoft [30], ASUS Smart Gesture [31], etc.). The gestures obtained with these
products could be added in a user interface as an additional task performed by developers.

3. METHODS TO INCLUDE GESTURE-BASED INTERACTION
Next, we describe the two methods used in the experiment to include gesture-based interaction in an existing user interface
[32]: code-centric and model-driven. Both methods are shown in Figure 1, code-centric on the left and model-driven on the
right. In this figure, we use a similar representation to show the two methods, with the purpose of facilitating the
understanding of the process to be followed in the comparative evaluation described in this paper.
Although the two methods are shown in a similar way, it is necessary to indicate that the code-centric method is based on
tasks related to the source code, while the object-oriented method bases its actions on related activities with the treatment of
models, as explained in this section.
Figure 1 shows the user interface development life cycle for both methods. In both cases we start from existing activities and
products (represented by means of colour grey) used to develop interfaces that must be enhanced to support gesture-based
interaction and a set of new activities and products (represented by means of the colour white) that deal explicitly with the
gesture-based interaction. In the following sections we describe proposed activities and products of each method.

Figure 1. Methods overview: code-centric (left) and model-driven (gestUI) method (right)

3.1 Code-centric method
The code-centric method consists in a set of tasks [33] (e.g. conceptualization and requirements gathering, analysis and
functional description, design, coding, testing and deployment) related with the implementation of a software system using a
programming language and a tool where software engineers work entirely by editing source code. In this method, software
engineers employ the integrated development environment (IDE) available in some case tool (e.g. Microsoft Visual Studio1,
Eclipse Window Builder2, NetBeans3, etc.) which includes toolbars and wizards to construct the user interface by including
forms, panels, buttons, etc.. The next step in this process is the code writing to include the logic required in the software and
to complete the development of the user interface.
Specifically, the work [34] describes an example of this method to develop a user interface by means of Eclipse SWT
Designer (Window Builder). This toolkit does not include components to define custom gestures nor to include gesture-based
interaction. SWT works under the assumption that the user interface is already implemented and the developer writes
additional source code containing gesture-based interaction. The final product obtained in the process is the source code
which is compiled in order to implement the user interface.

1 See https://docs.microsoft.com/en-us/windows/desktop/appuistart/implementing-a-user-interface to check the process to build a user interface using Visual

Studio of Microsoft
2 See http://www.vogella.com/tutorials/EclipseWindowBuilder/article.html to check the process to build a user interface using Eclipse
3 See https://netbeans.org/kb/docs/java/quickstart-gui.html to check the process to build a user interface using Netbeans

https://docs.microsoft.com/en-us/windows/desktop/appuistart/implementing-a-user-interface
http://www.vogella.com/tutorials/EclipseWindowBuilder/article.html
https://netbeans.org/kb/docs/java/quickstart-gui.html

The set of activities to perform with the aim of including gesture-based interaction in an existing source code through the
code-centric method (Figure 1 left) is detailed in the following paragraphs:
1. Activity C1: this allows software engineers to define the gestures requirement specification (by means of a language to

specify requirements, e.g. text) which makes up the gesture catalogue and the actions to be performed using such gesture
catalogue. The product obtained in this process is a requirements document containing the specification of the interaction
between gestures and actions included in a user interface.

2. Activity C2: this permits software engineers to select the user interface to include the gesture-based interaction according
to the aforementioned requirements specification, then he/she analyses the source code of the selected user interface with
the aim of determining the actions included in the user interface source code. The software engineer defines the gesture-
action correspondence by specifying the gesture that allows the execution of an action included in the user interface.

3. Activity C3: this allows software engineers to specify, by means of XML language each gesture included in the
requirements document of the gesture catalogue. This gestures specification is required in order to be supported by the
gesture recognizer algorithm. In this work we use $N [7] as the gesture recognizer. The product obtained in this step is
the gesture catalogue specification written in XML.

4. Activity C4: in this activity the software engineer writes the source code that implements the methods needed to execute
the actions specified with the previously defined gestures, that is, the software engineer combines two products (i)
gesture-based interaction source code and (ii) gesture catalogue specification in order to obtain the gesture-based user
interface. The product obtained in this last step is the user interface source code including gesture-based interaction.

5. Activity C5: this permits testing gestures using existing frameworks (e.g. quill [35], iGesture [36], $N [7]). The gesture
catalogue is generated according to the gesture definition of each framework, hence the users sketch gestures in each
framework in order to test the definition of each gesture. It is important to indicate that quill and iGesture have been used
only as target platforms to perform validity tests of the generation of the gesture catalogue, that is, to verify that the
result of the M2T transformation (definition of a gesture using XML) is adequate and correct. By other side, the $N
transformation is performed in order to check if the definition obtained is correct and to test the gesture in the canvas
included in the website of University of Washington4, where is described gesture recognizer algorithm called $N.

There are activities represented in Figure 1 (e.g. implement interfaces, interface design) whose functionality is included in the
process of development of user interfaces using some tools available. These activities are not described in this paper because
we consider that these activities belong to traditional development methods for obtaining user interfaces by using typical
development tools.
When a software engineer employs a code-centric method to include gesture-based interaction, some of the following
problems are involved [37] [38] [39]: (i) the amount of time required to implement this type of interaction. Depending of the
case tool used to obtain the source code required to implement the user interface, the amount of time could be high. In this
case, software engineers have two options to obtain it: (a) writing the source code from scratch or (b) adapting existing
source code; (ii) The gesture specification is not multi-platform; (iii) It is hard to reuse the source code to support gesture-
based interaction in other platforms; (iv) software engineers require skills in the programming language of each platform
employed in the implementation of user interfaces of information system; (v) in some cases, the Integrated Development
Environment (IDE) is not available in all platforms required by users. This situation complicates the job of the software
engineers because they need more training in order to use different IDEs in each platform.

3.2 gestUI: a model-driven method
Unlike a code-centric method, a model-driven method requires the definition of models and model transformations for the
generation of source code in order to obtain, in this case, a user interface. Software engineers do not require the use of an IDE
to develop a user interface, making it more affordable the process of obtaining the source code of the user interface by means
of automatic generation.
In order to tackle the problems described in Section 3.1, and that arise when a code-centric method is used, software
engineers have another alternative to implement a software system: using a model-driven paradigm. In this case, software
engineers use tools to describe the structure and behaviour of their software system using conceptual models, and source code
is generated automatically through transformation rules. An example of this method is gestUI [5], which allows the inclusion
of gesture-based interaction from conceptual models without writing any line of code (Figure 1, right).
gestUI [5] is a model-driven method that permits the definition of custom gestures and the inclusion of gesture-based
interaction in user interfaces for desktop-computing (Figure 1, right) by means of models and model transformations [40].

4 https://depts.washington.edu/madlab/proj/dollar/ndollar.html

https://depts.washington.edu/madlab/proj/dollar/ndollar.html

Gesture-based interaction is based on the selection and use of functions provided in software systems by means of gestures
on touch-based devices [41]. gestUI is model-driven since its main artefacts are conceptual models (Figure 2).
We consider that a user interface is used by one or more users. Each user can define his/her own gesture catalogue containing
one or more gestures; each gesture permits an action to be executed. This action is contained in the user interface. Each
gesture is composed of one or more strokes defined by postures, and described by means of coordinates (X, Y). The sequence
of strokes in the gesture is specified by means of an order of precedence. Each posture in a gesture is related to a figure (line,
circle, etc.) with an orientation (up, down, left, right), and is qualified by a state (initial, executing, final). Single-stroke
gestures and multi-stroke gestures are defined by the number of strokes in the gesture.

Figure 2. gestUI metamodel (Taken from [42])

gestUI is composed of three layers according to the model-driven method: a platform-independent layer, a platform-specific
layer and source code, as shown in Figure 1, right. Also, this method is iterative and user-centric: (i) it is iterative because if
the users are not satisfied with the definition of gestures, they can repeat the process (i.e. gestUI provides two loopbacks in
order to repeat the process to define gestures), and (ii) it is user-centric because the users are the main actors in the process of
defining custom gestures and in the inclusion of gesture-based interaction in user interfaces.
During the process of code generation, an option is added to the information system which allows redefining any gesture that
is difficult for the user to trace or remember during the runtime of the information system [42], [43]. In this context, tailoring
mechanisms are provided by gestUI to define custom gestures for each user and to modify this definition during the
execution stage. In this context, each user decides the gesture-based interaction elements in the beginning of the software
development life cycle, which will be applied in the user interface in the execution stage. The software engineer then includes
this specification in the user interface and finally, when the user interface is ready, the user performs actions using the
previously defined interaction elements. However, if the user wants to change the initial specification of a gesture-based
interaction then it is necessary to include the tools required to consider the modification of the gesture catalogue specification
with the aim of improving the interaction process.
gestUI is designed to be inserted in any existing user interface development method. Within this context, Figure 1, right,
shows the activities and products (grey background) of an existing method to build interfaces that aim to be enhanced with
gestUI and activities and products specific of gestUI (white background). For example, if a software engineer uses Eclipse to
generate a user interface during the stage of implementation, it is possible to take the source code of this user interface in
order to apply gestUI to include gesture-based interaction and to obtain a user interface supporting gestures.
In this work, in order to tackle the problems indicated in Section 3.1, we use gestUI to obtain user interfaces with gesture-
based interaction included. Additionally, MDD helps to improve the quality of the product (the user interface) in terms of
productivity, portability, interoperability, reusability. Table 2 shows the relationship between the aforementioned problems
and such factors:

Table 2. Relationship between detected problems and factors of the quality of the product improved with MDD

Problems described in Section 3.1 Factors of the quality of the product
improved by using MDD [33]

Problem (iv): Software engineers require skills in the programming language of each
platform.

Productivity

Problems (ii): The gesture specification is not multi-platform. Portability

Problem (v): IDE is not available in all platforms required by users. Interoperability

Problem (iii): It is hard to reuse the source code to support gesture-based
interaction in other platforms.

Reusability

Problem (i): The amount of time required to implement this type of interaction
depending of the method to obtain the source code.

Source code automatic generation

Figure 3 shows three systems involved in the process described in this paper using gestUI: the information system with
interfaces where we aim to include gesture-based interaction, the gestUI tool to include the gesture-based interaction, and a
framework to test the gestures defined using gestUI (i.e. quill, iGesture, $N).

Figure 3. gestUI tool support

Regarding the gestUI system, we have developed a tool support [5] using the Java programming language and the Eclipse
Modelling Framework to implement it. This tool is composed of three subsystems, as shown in Figure 3: Gesture Catalogue
Definition Module, Gesture-Action Correspondence Definition Module and Model Transformation Module. Next we
describe these subsystems.
1. Subsystem “Gesture Catalogue Definition Module”. This contains the M1 activity (Figure 1, right):

(i) M1 Activity: The subject draws custom gestures using a finger (or a pen/stylus) on a touch-based screen.
Each gesture is stored in a repository. Then, in order to define the platform-independent gesture catalogue,
the subject chooses one or more gestures from the repository and then they are inserted in the gesture
catalogue model. This catalogue model (compliant with the metamodel described in [5]) is the input for the
“Model Transformation Module” and the “Gesture-Action Correspondence Definition Module”
subsystems.

2. Subsystem “Gesture-Action Correspondence Definition Module”. This contains two components:
(A) Component: “Gesture-based Interaction Designer”. The inputs for this component are: the gesture catalogue model

(from M1) and the user interface to include gesture-based interaction. This subsystem contains the M2 activity
(Figure 1, right):
(ii) M2 Activity: This defines the gesture-action correspondence through the following process: (1) selecting a

user interface source code with the aim of analysing it and finding the actions included in it by applying a
parsing process. The parsing process permits the discovery of a set of actions by means of checking the
source code to search strings (or substrings) containing keywords (e.g. in the Java programming language:
JButton, JPanel) [44]. Some complications can occur in the parsing process, especially depending on the
programming language in which the user interface is written and the components that have been included in
that interface. Therefore, the rules that are included in the parser must be very accurate in order to be able

to exhaustively analyse the source code of a user interface and, in this way, find the actions included in the
interface as a previous step to the inclusion of gesture-based interaction.
The process of defining gesture-action correspondence takes as input two arguments: (i) the previously
defined gesture catalogue model with the aim of assigning each gesture with an action; (ii) the source code
of a user interface to search keywords related with actions contained in the structure of source code that is
based on a programming language such as Java (e.g. JButton to define a button, JPanel to define a panel).
As a result of this process we obtain a set of actions included in the user interface. Therefore, if any action
is found, a one-to-one relationship is defined between this action and a gesture.

(B) Component: “Gesture-Based Interface Generator”. The inputs for this component are: gesture-action correspondence
and the user interface source code. The output of this component is the new version of the user interface source
code. It contains the M4 activity (Figure 1, right):
(iii) M4 Activity: This executes a code generation process in order to obtain the new version of the user

interface source code containing gesture-based interaction. By using an automatic process, we insert each
gesture-action correspondence in the corresponding component of the user interface. This process is
iterative while any action is found in the source code of the user interface. Finally, we apply a code
generation obtaining the user interface with gesture-based interaction included.

3. Subsystem “Model Transformation Module”. The inputs for this subsystem are: gesture catalogue model and the target
platform to perform the model transformations. This subsystem contains the M3 activity (Figure 1, right):

(iv) M3 Activity: This includes the transformation rules and the scripts written in ATL and Acceleo to apply
M2M and M2T transformations, respectively. This activity requires two inputs: the gesture catalogue
definition model and the target technology. Firstly, a M2M transformation is performed to obtain the
gesture catalogue model according to the specification of the gestures to be used in the gesture recogniser
algorithm. In this case, we consider as the target platform the $N gesture recogniser and we obtain the
platform-specific gesture catalogue specification. Secondly, an M2T transformation is performed to obtain
the gesture catalogue described in XML in order to include it in the user interface. Thirdly, a M2T
transformation is performed to obtain the user interface source code including gesture-based interaction.
Additionally, in order to test these transformations, an additional M2T transformation is performed to
obtain a gesture catalogue to be included in two frameworks to test gestures: (i) quill [35] using GDT 2.0 to
describe the gesture catalogue and (ii) iGesture [36] using XML to describe the gesture catalogue.
Regarding the source code generated by gestUI, it can be in any programming language used to implement
user interfaces (e.g. Visual Basic, C#, Java). In this case, we need to specify in the transformation rules the
keywords of the programming language used to implement the user interface. In this work, we use Java as
programming language to generate source code of a user interface.

Additional information about models and model transformations included in gestUI can be found in [40], [42].

3.3 Differences between code-centric method and gestUI (model-driven method)
There are some differences to consider between both methods in our work:

a. In the code-centric method the developer needs to specify the custom gesture by means of XML. The custom gesture
definition using gestUI is by means of a canvas that helps the developers to sketch the gesture. A module in gestUI
captures each point of the drawing done with the user’s finger.

b. The code-centric method is based on the writing of source code to include gesture-based interaction by means of an
IDE. In our experiment, the developers employs Java as programming language to include gesture-based interaction
in a user interface. gestUI does not require an IDE to write source code. gestUI is based on the specification of
information to execute model transformations in order to obtain the source code in Java, which includes gesture-
based interaction in a user interface. The target programming language (i.e. Java) can be chosen and it depends on
the target system where the code will be inserted.

c. Using the code centric method, the developer needs to deal with several factors: knowledge of the programming
language, knowledge of the target platform, experience using the IDE to write the code, etc. Using gestUI, the
developer does not need to know the characteristics of each programming language or platform. Developers only
need to know how to deal with conceptual models, relegating coding particularities to model to code
transformations.

In summary, the differences are directly related with the factors to improve the quality of the software product discussed in
Table 2, Section 2.

4. EXPERIMENTAL PLANNING
This section describes the design of the experiment according to the guidelines of Wohlin et.al. [45].

4.1 Goal
According to the Goal/Question/Metric template suggested by Moody [11], the research goal is:

Analyse the outcome of a code-centric and a model-driven method for including gesture-based interaction into user
interfaces,
For the purpose of carrying out a comparative evaluation
With respect to the usability of the model-driven method
From the viewpoint of researchers
In the context of researchers and practitioners interested in gesture-based interaction

4.2 Research Questions and Hypothesis Formulation
The goal of our study is to compare the usability of a method to deal with gesture-based interfaces through code-centric
versus model-driven. Since usability is an abstract concept, we need to operationalize it through more measurable concepts.
According to ISO 25062-2006 [13], usability can be measured through effectiveness, efficiency and satisfaction. Following
the works of Moody [11], satisfaction can be measured using perceived usefulness, perceived ease of use and intention to use.

We consider two scenarios in the experiment, the first one is related to the inclusion of gesture-based interaction (the subject
follows a set of tasks specified in the experiment to include gesture-based interaction in a user interface) and the second
scenario is related to the definition of custom touch gesture (the subject employs a finger or a pen/stylus to sketch a gesture
on a touch-based surface).

Regarding the type of gestures used in this experiment, even though gestUI supports multi-stroke gestures, we decided to use
only single-stroke gestures because our goal in the study is based on CRUD operations (which are simple gestures) 5. The
experiment is based on CRUD operation since they are the most frequently used in information systems [46] [47]. This
decision could result in a simplification of the experimental tasks but it does not reduce the validity of the experiment. We
simplified the tasks in order to minimize the threat Boring, this way we can recruit more subjects. Usually, it is difficult to
recruit subjects for long experiments and the percentage of abandonments is high in them. Note that we are comparing gestUI
versus code-centric to solve the same problem. So, even using a simple experimental problem we are not benefiting any
treatment, conditions are the same. The study of how the complexity of the problems can affect the results is out of scope of
our experiment.
Therefore, in the evaluation of efficiency and effectiveness we consider research questions (RQ1, RQ2, RQ3 and RQ4) to
measure usability within each scenario, since we are interested in evaluating the subjects when they are including gesture-
based interaction in the user interface and when they are defining gestures. However, for the evaluation of satisfaction
(PEOU, PU and ITU) we consider research questions (RQ5, RQ6 and RQ7) without differentiating between scenarios, since
we are interested in the global value of the method (code-centric and gestUI) for usability.

Considering this perspective, the research questions and the null hypothesis (named as H0i, with i=[1..5] and corresponding
with each research question) proposed for the experiment are:

RQ1: Regarding the inclusion of gesture-based interaction in user interfaces, is there any difference between the
effectiveness of the code-centric method and gestUI? The null hypothesis tested to address this research questions is: H01:
There is no difference between the effectiveness of gestUI and the code-centric method in the inclusion of gesture-based
interaction in user interfaces.

RQ2: Concerning the definition of custom touch gestures, is there any difference between the effectiveness of the code-
centric method and gestUI? The null hypothesis tested to address this research questions is: H02: There is no difference
between the effectiveness of gestUI and the code-centric method to specify custom gestures.

5 Prior to the experiment, the gestures that represented the CRUD operations were defined by the authors of this work. However, a module

was included (equivalent to an option in the menu of the information system used in the experiment) that allowed the redefinition of the
gestures used in the experiment. This fact means that the gestures can be defined / redefined by the users of the information system. The
main idea of this module is that if the gesture defined by the software engineers / designers are complicated to remember or difficult to
trace, users can define their own gestures to perform the actions in the information system.

RQ3: Regarding the inclusion of gesture-based interaction in user interfaces, is there any significant difference between the
efficiency of the code-centric method and gestUI? The null hypothesis tested to address this research question is: H03: There
is no difference between the efficiency of gestUI and the code-centric method in the inclusion of gesture-based interaction in
user interfaces.

RQ4: Concerning the definition of custom touch gestures, is there any difference between the efficiency of the code-centric
method and gestUI? The null hypothesis tested to address this research question is: H04: When the subjects define gestures,
efficiency is the same independently of the method used.

RQ5: How do subjects perceive the usefulness of gestUI in relation to the code-centric method? The null hypothesis tested to
address this research question is: H05: gestUI is perceived as easier to use than the code-centric method.

RQ6: How do subjects perceive the ease of use of gestUI in relation to the code-centric method? The null hypothesis tested
to address this research question is: H06: gestUI is perceived as more useful than the code-centric method.

RQ7: What is the intention to use of gestUI related to the code-centric method? The null hypothesis tested to address this
research question is: H07: gestUI has the same intention to use as the code-centric method.

4.3 Factor and Treatments
Each software development characteristic to be studied that affects the response variable is called a factor [48] (a.k.a.
“independent variable”). In this case, the factor detected in the experiment is the method to use and it has two treatments: the
code-centric method and the model-driven method. Table 3 includes the description of the factor and its two treatments.

Eclipse Framework is used as a tool to operationalize the code-centric method. This tool is used to implement the source code
in Java that represents a user interface. gestUI operationalizes the model-driven method. gestUI is used to include gesture-
based interaction in a user interface through conceptual models (without writing any lines of code) [49].

Table 3. Factor and treatments of the experiment

Factor
Treatment

Description
ID Name

Method to use
I Code-centric method Subjects manually write the source code to define custom gestures and to

include gesture-based interaction in a user interface.

II gestUI Subjects employ gestUI with the aim of defining custom gestures and including
gesture-based interaction in a user interface.

4.4 Response variables and metrics
Response variables are the effects studied in the experiment caused by the manipulation of factors. In this experiment, we
evaluate gestUI with regard to: effectiveness, efficiency and satisfaction.
4.4.1 Response variables for effectiveness and efficiency
In this experiment, we are interested in the evaluation of the subjects when they define custom gestures using a finger (or a
pen/stylus) on a touch-based surface, and we also are interested in the evaluation of the subjects using gestUI to include
gesture-based interaction. Therefore, we need metrics to evaluate efficiency and effectiveness for each scenario.
In this experiment, in order to answer the research questions (RQ1, RQ2, RQ3 and RQ4), we define a metric per research
question with the aim of evaluating the effectiveness and efficiency of gestUI when the subjects work in two scenarios: (i)
they include gesture-based interaction in a user interface and (ii) they define custom gestures during the experiment. Table 4
shows the response variables classified per scenario and research question. The columns of Table 4 describe the response
variables, their metrics, definition and the research question that they aim to answer.

Table 4. Response variables to evaluate effectiveness and efficiency of gestUI
Response variables Metrics Definition Research

question
INCLUSION OF GESTURE-BASED INTERACTION

Effectiveness in the
inclusion of

gesture-based
interaction

Percentage of correct tasks carried out
in the inclusion of gesture-based
interaction (PTCCI).

This is the relationship between: the number of
tasks correctly completed and the total number
of tasks during the inclusion of gesture-based
interaction in the user interface

RQ1

Efficiency in the
inclusion of

gesture-based
interaction

Time to finish the task during the
inclusion of gesture-based interaction
in the user interface (TFTI).

This is the number of minutes spent on each
task. This is reported by the subjects during the
inclusion of gesture-based interaction in the user
interface.

RQ3

CUSTOM GESTURE DEFINITION

Effectiveness in the
custom gesture

definition

Percentage of correct tasks carried out
in the custom gesture definition
(PTCCG).

This is the relationship between: the number of
tasks carried out correctly and the total number
of tasks during the definition of custom gestures

RQ2

Efficiency in the
custom gesture

definition

Time to finish the task during the
custom gesture definition (TFTG).

This is the number of minutes spent on the
experimental task. This is reported by the
subjects during the definition of custom
gestures.

RQ4

In this work, the term “correct task” means that the user has performed the task of defining a gesture (or the inclusion of
gesture-based interaction in the user interface) without errors.
4.4.2 Response variables for satisfaction
In this experiment, in order to answer research questions RQ5, RQ6 and RQ7, we define a metric for each one with the aim
of measuring satisfaction through PEOU, PU and ITU. We use a 5-point Likert scale in order to measure ITU, PEOU and
PU. In this case we are not distinguishing between defining custom gestures and including gesture-based interaction in a user
interface during the experiment, rather we are measuring satisfaction of the whole process. Table 5 describes response
variables, their metrics, definition and the research questions that we aim to answer.

Table 5. Responses variables to measure satisfaction of use gestUI6
Response
Variable

Metrics Definition Research
question

Satisfaction

Perceived ease of use
(PEOU)

This is the arithmetic mean of the Likert scale values of MEM
questionnaire items related with perceived ease of use

RQ5

Perceived usefulness (PU) This is the arithmetic mean of the Likert scale values of MEM
questionnaire items related with perceived usefulness

RQ6

Intention to use (ITU) This is the arithmetic mean of the Likert scale values of MEM
questionnaire items related with intention to use.

RQ7

Table 6 shows a summary of the research questions, hypotheses, response variables and metrics used to test these hypotheses.

Table 6. Summary of RQ's, hypotheses, response variables and metrics

Response Variables Metric RQ Hypotheses

Effectiveness in the inclusion of gesture-based
interaction PTCCI RQ1 H01

Effectiveness in the custom gesture definition PTCCG RQ2 H02

Efficiency in the inclusion of gesture-based interaction TFTI RQ3 H03

Efficiency in the custom gesture definition TFTG RQ4 H04

Perceived ease of use PEOU RQ5 H05

Perceived usefulness PU RQ6 H06

Intention to use ITU RQ7 H07

4.5 Experimental Subjects
The experiment was conducted in the context of the Universitat Politècnica de València (Spain). We had 21 subjects (15
males and 6 females) who are six M. Sc. and fifteen Ph.D. students in Computer Science. The experiment is not part of a
course and the students are encouraged to participate on a voluntary basis.
The background and experience of the subjects are found through a demographic questionnaire handed out at the first session
of the experiment. This instrument consists of 15 questions on a 5-point Likert scale. According to the questions included in
the demographic questionnaire, the results are:

• Mainly, the subjects are between 25-29 (33%) and 30-34 years (24%).

6 We are aware that Likert scales are qualitative data but some studies propose converting them to quantitative to work with statistical tests

[62].

• Regarding the computing platform, two of the most used are: Microsoft Windows (52% of the subjects) and MacOS
(33%). Linux is used by 15% of the subjects.

• All subjects (100%) indicated that they had taken a Java programming course. 62% of the participants had taken a
model-driven development (MDD) course and 52% of the subjects had taken a human-computer interaction (HCI)
course.

• Regarding the software development experience using Eclipse IDE and Java, 43% of the subjects reported that they
have “Average” self-rated programming expertise on a 5-point Likert scale. In this scale, the number 3 means
“Intermediate” and the number 5 means “Expert”.

• Furthermore, the subjects reported their experience in model-driven development. The “Average” self-rated model-
driven development expertise was 33% on a 5-point Likert scale. In this scale, the number 3 means “Intermediate”
and the number 5 means “Expert”. Also, in this field, 29% have a “Poor” level and 14% have a “Very Poor” level.

• Regarding experience using gestures on a device/computer, 71% of the subjects occasionally use gestures in their
daily activities. Additionally, 43% of the subjects would like to define custom gestures to use them in their daily
activities.

Table 7 summarizes the information about the subjects extracted from the demographic questionnaire. We conclude that
subjects have some experience in the context of software development related with this experiment, but they do not have
experience in the definition of custom gestures and the inclusion of gesture-based interaction in user interfaces.

Table 7. Summary of demographic questionnaire

 Value %

Average age
20-24 years
25-29 years
30-34 years
35-39 years

>40 years

3
7
5
4
2

14
33
24
19
10

Gender
Male

Female

15
6

71
29

Computing platform
Microsoft Windows

MacOS
Linux

11
7
3

52
33
15

Courses taken
Java
HCI

MDD

21
11
13

100
52
62

Software development experience
Average experience

Poor experience
Very Poor experience

9
7
5

43
33
24

Experience using gestures
No experience using gesture

15
6

71
29

Model-driven development experience
Average experience

Poor experience
Very Poor experience

7
6
3

33
29
14

4.6 Experiment design
In this experiment, we use a crossover design [45] (a.k.a. a paired comparison design). This is a type of design where each
subject applies both methods, that is, the subjects use one method (the code-centric method) and then they use a second
method (gestUI, a model-driven method) or vice versa. The order of use of each method depends on which group the subject
was assigned to at the beginning of the experiment in such a way that each treatment is balanced among all the subjects. This
design has the advantages that we are using the largest sample size to analyse the data, hence we avoid the learning effect and
the problem is not confounded with the treatments.

With the aim of comparing both methods against each other, each subject uses both methods (treatments) on the same object;
to minimise the effect of the order in which subjects apply the methods, we balanced the treatment applied in the first term.
As Table 8 shows, the experiment is carried out with the subjects separated into two groups (G1 and G2). Each group is
composed of subjects that are assigned according to a random value obtained by means of a random numbers calculator
available on the Internet (https://www.random.org/). Therefore, the 21 subjects were randomly split into two groups
following a process known as counterbalancing: (a) 11 subjects first apply gestUI and then the code-centric method, whilst
(b) the other 10 subjects start with the code-centric method and then apply gestUI.

Table 8. Crossover design
ID Treatment Subjects

I Code-centric method G1 G2

II Model-driven method (gestUI) G2 G1

The expected time to fulfill the tasks defined in each treatment was around two hours. This value was estimated based on two
factors: (i) a previous pilot test and (ii) using the KLM method (Keystroke Level Method) [50] [51]. KLM is a model for
predicting the time that an expert user needs to perform a given task on a given computer system. KLM is based on counting
keystrokes and other low-level operations, including the user’s mental preparations and the system’s responses [51]. Using
this model, we estimate the time required to input the lines of code required in the code-centric method considering the
operators and their average time proposed in [52] and shown in Table 9.

Table 9. Operators and average time on KLM
Operator Description Average Time Observations

M Mental Operation 1.2 sec. mentally prepare

H Home 0.4 sec. Home in on keyboard or mouse (change of
device).

P Point 1.1 sec. point with mouse

K Keystroke 0.28 sec. keystroke or mouse button press

R(t) System responsive t sec. Waiting for the system to become responsive (t)

The values of K operator is defined according to type of user: expert typist, average skilled typist, average non-secretarial
typist, worst typist [50]. In this experiment, we consider the average time of a non-secretarial typist because the subjects
participating in the experiment had to type in the source code that was included in the respective instrument of each method,
as is explained in the following pages. R(t) operator (t indicates the time in seconds that the user has to wait) defines the time
when the computer is busy doing some processing, and the user must wait before they can interact with the system. The
estimated values of time to perform the experiment are shown in Table 10.

Table 10. Estimating time for the experiment

Treatment Previous pilot test By using KLM

Code centric method 1h 08 min. 0h 57 min.

Model-driven method 0h 24 min. 0h 21 min.

Total time 1h 32 min. 1h 18 min.

4.7 Experimental objects
The object used in the experimental investigation is a requirements specification created for this purpose. It contains the
description of a problem related with the definition of custom gestures and the inclusion of gesture-based interaction in user
interfaces of a software system supporting traditional interaction using a mouse and keyboard. Figure 4 shows this software
system containing a main user interface to manage information of departments, teachers and classrooms in a university by
means of CRUD operations. Each option opens a new interface to specify information required by the university.
Even though gestUI has been used to include gestural interaction in another type of software (see [43], [42]), we decided to
perform the experiment with a simple information system since the subjects are familiar with the use of GUI interfaces with
windows and buttons to perform actions. That is, an information system to focus the analysis on answering the research
questions and avoiding functional complications.

https://www.random.org/

Figure 4. Software system supporting traditional interaction

Using traditional interaction, when the subjects click on the ‘Manage Departments’ button a new interface is opened, which
contains the information of each previously defined department in a grid included in the user interface. Next, clicking on the
‘Create’ button, a new interface is opened to enter information concerning a new department. Finally, when the information is
complete, the ‘Save’ button saves the information in a database.

The user must perform the same CRUD operations but using custom gestures, that is, by means of gesture-based interaction.
In this case, our work is related with the use of indirect symbolic gestures for triggering a command. The gesture is related
with a previously defined action containing the command to execute. Implicitly, such action contains parameters to include in
the command to execute. In general, the gesture can be single-stroke or multi-stroke, but in this experiment we use single-
stroke gestures because we use gestures to specify CRUD operations by means of simple drawings (letters C, R, U and D).

From the point of view of achieving the objective of the experiment reported in this article, that is, to compare the actions
carried out with the code-centric method and with gestUI, in our opinion, the use of single-stroke gestures in the experiment
does not have serious consequences. Basically, the imposed restrictions in the type of gestures depend on where the gestures
are applied to decide the use of single-stroke or multi-stroke gestures. In this case, single-stroke gestures are used because
they are suitable and enough for plotting the letters that represent the gestures of the CRUD operations. In another case, a
multi-stroke gesture could be a better solution for the purpose of drawing a gesture that allows executing an action already
established in a software (for example, using multi-stroke gestures in a CASE tool to draw primitives from a diagram, or a
multi-stroke gesture to execute a complex action that includes the command to execute and some parameter or option of the
command).
Therefore, if gesture-based interaction is included in user interfaces, the subjects can sketch gestures on the touch-based
display of the computer in order to execute some actions (in this case, the CRUD operations). One gesture can contain the
definition of one or more actions, but the gesture-action correspondence must be unique per interface. Gestures are defined
during the specification of the gesture-based interaction in each user interface. In this case, the ‘D’ gesture contains two
actions (each one in a different interface): (i) it can be used to open the user interface to manage departments, and (ii) it can
be used to delete one previously selected record in the database.

After the user draws the gesture, $N is used for recognition. This process is online and, if the gesture is recognized, the
previously specified action is triggered. This specification was made at the time the gesture-action correspondence was
defined (see Section 3.2, in the description of the Subsystem “Gesture-Action Correspondence Definition Module”). In this
case, an action is related with a command containing the instruction to execute each CRUD operation, for example, the
gesture “S” executes the command to save the information included in the fields of the user interface in the database of the
information system.

Even though the problem is small, it contains the necessary elements to validate the method: (i) a gesture catalogue definition
containing the aforementioned six gestures, and (ii) the process to include the gesture-based interaction in the existing user
interface source code. The inclusion of a greater number of user interfaces or gestures in the catalogue during the experiment
would mean repetitive work for the subjects.

4.8 Instrumentation
All the material required to support the experiment was developed beforehand, including the preparation of the experimental
object, instruments and task description documents for data collection used during the execution of the experiment. The
instruments used in the experiment are described in Table 11:

Table 11. Instruments defined for the experiment

Instrument Description
Demographic Questionnaire Questionnaire to assess the subjects’ knowledge and experience of the technologies and

concepts used in the experiment. This document includes questions containing Likert-scale
values ranging from 1 (strongly disagree) to 7 (strongly agree)

Task Description Document for
the code-centric method

Document that describes the tasks to be performed in the experiment using the code-centric
method and containing empty spaces to be filled in by the subjects with the start and end
times of each step of the experiment. This document contains guidelines to guide the subject
throughout the experiment and the source code to be included in the user interface.

Task Description Document for
the model-driven method
(gestUI)

Document that describes the tasks to be performed in the experiment using the model-driven
method and containing empty spaces to be filled in by the subjects with start and end times of
each step of the experiment. This document contains guidelines to guide the subject
throughout the experiment.

Post-test Questionnaire for the
code-centric method

Questionnaire with 16 questions containing Likert-scale values ranging from 1 (strongly
disagree) to 7 (strongly agree) to evaluate satisfaction of the whole process when the subjects
use the code-centric method to define custom gestures and to include gesture-based
interaction.

Post-test Questionnaire for the
model-driven method (gestUI)

Questionnaire with 16 questions containing Likert-scale values ranging from 1 (strongly
disagree) to 7 (strongly agree) to evaluate satisfaction of the whole process when the subjects
use the model-driven method (gestUI) to define custom gestures and to include gesture-based
interaction.

4.9 Experiment procedure
This section describes the procedure used to conduct the experiment. Prior to the experiment session, a pilot test was run with
one subject who finished the Master’s degree in Software Engineering in the Universitat Politècnica de València. This pilot
study helped us to improve the understandability of some instruments.
In this experiment, we consider a user interface of the existing software system mentioned in Section 4.7. In this user
interface, users perform CRUD operations to manage information by means of a traditional interaction with a mouse and a
keyboard. We are interested in including gesture-based interaction in the user interfaces of a software system. So, the
experiment addresses a real problem, i.e. the definition of custom gestures and the inclusion of gesture-based interaction in an
existing user interface to perform the aforementioned operations.
Prior to the experiment and considering that gestUI is a model-driven method, the definition of the gesture catalogue starts
with the platform independent definition (that is, the PIM of the gestures), then through the use of model transformations the
specific model of gestures is obtained (that is, the PSM of the gestures). The detail of this process is not included in this
article, but it can be reviewed in [5]. On the other hand, we define the gesture catalogue that the subjects require to apply both
treatments in the experiment in coordination with some representative users of this type of information systems. The gesture
catalogue (see Table 12) consists of four gestures to execute each CRUD operations action and one additional gesture to save
the information in the database (‘S’ gesture). Observe that the ‘D’ gesture has two actions to execute depending on the user
interface where the gesture is sketched by the user. This gesture catalogue is included in the Task Description Document of
each treatment.

Table 12. Gesture catalogue defined in the experiment

Action Gesture Description User interface

Open the “Managing
Department” user interface

The user sketches this gesture to open the user interface
to manage departments in the university.

Main user interface

Create a new department

The user sketches this gesture to open the user interface
to create a new department.

Managing
departments

Read a department record

The user sketches this gesture to open the user interface
to read the previously selected record of a department.

Managing
departments

Update the information of
the existing department

The user sketches this gesture to open the user interface
to update the previously selected record of a department.

Managing
departments

Delete a record of a
department

The user sketches this gesture to open the user interface
to delete the previously selected record of a department.

Managing
departments

Save the information of a
department

The user sketches this gesture to save the information of a
department in the database.

Department
Information

Hence, the user interface must contain the definition of gestures to perform CRUD operations. For instance, Figure 5 shows
three gestures defined in the user interface: (i) ‘D’, to open the user interface to manage departments; (ii) ‘C’, to create a new
department, by opening the user interface to enter the information of a new department; (iii) ‘S’, to save the information in
the database.
In this experiment, each user interface of the information system used in the experiment has an additional area where the
gestures are drawn exclusively there, without worrying about "invading" the rest of the user interfaces on the screen of the
computer. This decision was taken since the gesture might start on some control of other user interface and an unexpected
action might occur before finishing the gesture.
We consider two versions of the “Task Description Document”, as explained in Table 11. We use a sub-index ‘c’ when
naming the task ID to express the treatment “Code-centric method” and we use a sub-index ‘g’ to express this treatment
gestUI when naming the task ID. The subjects apply both treatments designed in the experiment with the aim of managing
the input of gestures sketched by the users to execute actions in the software system. Task Description Documents were
delivered to the subjects before starting the experiment.

Figure 5. Software system supporting gesture-based interaction

Figure 5 shows the execution of the actions related to the set of gestures defined to perform the experiment described in this
paper. The following events occur when the user sketches the gestures:

- The user sketches a gesture (“D”) in order to open a user interface to manage departments.

- If the gesture is recognized, the “Manage Departments” user interface is opened. Next, the user sketches the gesture
(“C”) with the aim of opening a user interface to create departments.

- If the gesture is recognized, the “Create a department” user interface is opened. When the user finishes to enter the
information of the department, he/she sketches other gesture (“S”) in order to save the information in a database.

- Finally, if the gesture is recognized, the information is saved in a database.

The steps in the procedure of the experiment are:
Step 1: The goal of the experiment was introduced to the subjects and guidelines on how to conduct the process were given
to them.

Step 2: Each subject filled in a Demographic Questionnaire before starting the experiment where the subjects were asked
about age, gender, courses taken, experience in software development, experience in model-driven development, and
experience using gestures (Table 7). Results of this questionnaire are described in Section 4.5.

Step 3: The subjects did the experiment divided into two groups (G1 and G2) following the instructions given in the Task
Description Document of each method. In this experiment, for each method, we separately evaluate two processes: (i) custom
gesture definition and (ii) inclusion of gesture-based interaction, since we are interested in evaluating effectiveness and
efficiency of the subjects when they specify gestures on a touch-based device and when they include gesture-based
interaction. The evaluation of effectiveness and efficiency, taking in account PTCCG, PTCCI, TFTI, and TFTG (see Section
4.4) is performed based on the information registered in the Task Description Document.

During the inclusion of gesture-based interaction in the user interface we use the next process: When the subject finished the
previously defined tasks to include the gesture-based interaction (Table 14 includes an excerpt of the corresponding Task
Description Document), we analyze the questionnaire filled by the subject regarding performed tasks: number of tasks
correctly completed and the number of incomplete tasks. Then, we obtain the percentage of tasks correctly completed in
relation with the total number of tasks. Similar process is followed to calculate PTCCG

Next, we evaluate each method (code-centric and gestUI) in a global way with regard to PEOU, PU and ITU. The sequence
of steps for each group is the following.

- G1 group. G1 subjects applied the code-centric method to complete Treatment I.

Treatment 1 (code-centric method). In this case, the subjects received the Task Description Document containing
instructions to apply the code-centric method with the aim of adding new source code to define custom gestures.
Following the instructions included in the Task Description Document, the subjects perform a sequence of steps (see
Table 13 that contains an excerpt of the Task Description Document) to define the catalogue of gestures described in
Table 12. The definition of a gesture using the code-centric method consists of the creation of an XML file whose
structure, in this case, is based on the gesture specification according to $N gesture recogniser [7].

Table 13. An excerpt of the Task Description Document containing the sequence of steps for custom gesture definition using the

code-centric method
No. Task ID Task Description Observations

1 TG1C Definition of gesture “C” The subject sketches the “C” gesture using a finger or a pen/stylus

2 TG2C Definition of gesture “R” The subject sketches the “R” gesture using a finger or a pen/stylus

3 TG3C Definition of gesture “U” The subject sketches the “U” gesture using a finger or a pen/stylus

4 TG4C Definition of gesture “D” The subject sketches the “D” gesture using a finger or a pen/stylus

5 TG5C Definition of gesture “S” The subject sketches the “S” gesture using a finger or a pen/stylus

6 TG6C Save gesture catalogue The subject saves the gesture catalogue

Even though the subjects received an Eclipse project containing existing source code of the user interface, they must
write new lines of source code included in the Task Description Document using the editor of the Eclipse IDE in the
existing source code in order to add functionalities related to gesture-based interaction. The source code included in the
instrument called "Task Description Document" does not represent the only solution code for the purpose of including
interaction based on gestures in the user interface, however, it is a solution that allows to conduct the experiment.
The decision to include source code was taken with the aim of reducing the duration time of the experiment considering
that if the subjects had written all the source code to define gestures and to include gesture-based interaction in the

existing user interface from scratch, probably they would have required a greater number of hours (or maybe days). We
think that this decision could have some influence on the result of the experiment depending on the subject’s experience
in software development and the time required to write source code in the Eclipse Framework IDE.
An excerpt of the sequence of steps to perform in the experiment to include gesture-based interaction using the code-
centric method is included in Table 14.

Table 14. An excerpt of the Task Description Document containing the sequence of steps for gesture-based interaction inclusion
using the code-centric method

Task ID Task Description

TI1C To include $N as gesture recogniser in the software system

TI2C To implement methods and attributes required to use $N as gesture recognition

TI3C To implement the method to read gestures sketched by the user.

TI4C To add a new panel in the user interface to draw gestures.

TI5C To write a method to implement a listener sensing the finger (or pen/stylus) that is
drawing a gesture.

TI6C To write a method to implement a listener sensing that the gesture definition is
complete.

TI7C To implement a method to manage graphics in Java.

TI8C To implement a method to paint a gesture on the user interface.

TI9C To implement a method containing the gesture-action correspondence

TI10C To compile the new version of the source code and to run the software system

Tasks TI1C, TI2C and TI3C allow the adaptation of the source code of $N gesture recogniser in the source code of the
user interface with the aim of adding a gesture recogniser in the software system to recognise the gestures sketched by
the users. TI4C includes a panel in the user interface where the gestures are sketched by using a finger or pen/stylus. TI5C
and TI6C permit the inclusion of listeners to sense the finger that is sketching a gesture. These listeners capture the
information produced on the user interface when a gesture is sketched. TI7C and TI8C manage the process to draw the
gesture on the user interface. TI9C implements a method to define the gesture-action correspondence. In this case, the
subject needs to execute a process to search actions included in the source code. We use a user interface where the
actions are related with buttons definition (e.g. ‘Manage Departments’, ‘Create’, ‘Save’). Subjects define the action–
gesture relationship using the specification of gestures described in Table 12.

As a final result, the subjects obtain a new version of source code containing gesture-based interaction in the user
interface in order to execute actions indicated in the requirements specification using gestures. Then, in TI10C, the
subjects must compile the source code of the software system in Eclipse IDE, and then they can execute the software
system in order to test the gestures defined in the process to execute the previously specified actions in the experiment.

- G2 group. G2 subjects employed gestUI to complete Treatment II.

Treatment II (gestUI). In this procedure, we consider the same user interfaces of the software system shown in Figure 4.
G2 subjects received the Task Description Document containing instructions to apply gestUI to define custom gestures
and to include gesture-based interaction in the user interface. This treatment consists of the definition of the gesture
catalogue, and the specification of data to apply model transformations in order to generate the source code of the user
interface containing the gesture-based interaction.
Firstly, the subjects define the gesture catalogue by means of a pen/stylus or a finger on a touch-based surface. These
gestures are stored in a repository, as described in Section 3.2, and then the platform-independent gesture catalogue
(gesture-catalogue model) is obtained. The tasks to perform this step are included in Table 15, which shows an excerpt of
the Task Description Document for this treatment:

Table 15. An excerpt of the Task Description Document for custom gesture definition using gestUI
Task ID Task Description

TG1G Definition of gesture “C”

TG2G Definition of gesture “R”

TG3G Definition of gesture “U”

TG4G Definition of gesture “D”

TG5G Definition of gesture “S”

TG6G Executing model-transformation to obtain a platform-independent gesture catalogue

Secondly, with the aim of obtaining the platform-specific gesture specification, subjects apply a model-to-model
transformation that requires as input the gesture catalogue model.
Thirdly, the subject selects the user interface and the platform-specific gesture specification to design the gesture-based
interaction by defining the gesture-action correspondence. This correspondence is defined with the aim of assigning
each gesture to an action. Figure 6 shows the interface of the tool that contains the process to define this correspondence
consisting of steps 1 to 4 shown in red.

Figure 6. Gesture-action correspondence definition using tool support

Finally, gestUI generates the code with a new version of the user interfaces including gesture-based interaction. Then,
the subjects use Eclipse IDE to compile the source code of the software system and afterwards they test the gestures
defined in the process.
Table 16 contains the description of the steps shown in Figure 6.

Table 16. Gesture-action correspondence step-by-step definition

No. Description Explanation

1 It selects a gesture from the gesture catalogue This contains the gesture selected by the subject.

2 It selects an action from the list of actions included in the
user interface

This contains the actions selected by the subject.

3 It contains the gesture-action correspondence definition The subject confirms the gesture-action correspondence.

4 It generates the new version of the source code of the user
interface

This contains the process to generate the source code of
the user interface containing gesture-based interaction.

At the end of this process, the result is the generated source code of the user interface of the software system supporting
gesture-based interaction to execute actions, according to the definition of gesture-action correspondence. Figure 5
shows the same software system described in Figure 4 but supporting gesture-based interaction.

Step 4. Subjects filled in the corresponding Post-Test Questionnaire according to the treatment employed in the experiment.

According to Table 8, in Section 4.6, after the G1 subjects employed the code-centric method they must employ gestUI to
complete Treatment II, repeating steps 1 to 3 again. In similar way, after the G2 subjects employed the gestUI method they
must employ the code-centric method to complete Treatment I.

The data to evaluate PEOU, PU and ITU in this experiment were obtained from the post-task and post-test questionnaires.
After the data was gathered, they were checked for correctness and the subjects were consulted when necessary. The data
obtained of the aforementioned questionnaires filled in by the subjects are used to measure the response variables defined in
Section 4.4.

4.10 Threats of validity
In this section we discuss the most important threats to the validity of this evaluation. We have classified the threats
according to Wohlin et.al. [45], each of which is discussed below.

Internal validity: The main threats to the internal validity of the experiment are:

(i) Subject’s experience in defining gesture-based interaction: this threat was resolved since none of the subjects had
any experience in tasks related to the topic of custom gesture definition included in the experiment, according to the
pre-test questionnaire. So, the subjects’ experience in both treatments is the same.

(ii) Subject’s experience in software development: there are some factors that can influence the experiment:

a. Some of the subjects could have more experience than others in the development of software. Although we used
the pre-test questionnaire in order to find out their experience in this field, this threat could not be resolved since
we designed the groups in a random way. This threat could affect the evaluation of the effectiveness and the
efficiency because the time required to perform the experiment depends on the experience level of the subjects.

b. In some cases, subjects without an adequate level of experience in managing source code could produce syntax
errors in the source code when inserting the additional source code. This threat could be resolved, since the
subjects received adequate information and printed source code without errors included in the Task Description
Document with the aim of obtaining a new version of the existing source code of the user interface.

(iii) Information exchange among subjects: this threat was resolved since the experiment was developed in one session,
and it was difficult for the subjects to exchange information with each other;

(iv) Learning effect: this threat could not be resolved in both treatments (described in Section 4.7.1 and 4.7.2,
respectively) since the process to define custom gestures is identical to the five gestures included in the experiment.
Therefore, the definition of the first gesture required more time and effort compared to the following gestures. This
threat could affect the evaluation of efficiency and effectiveness because the time needed to perform the experiment
depends on the experience level of the subjects.

(v) Fatigue: The experiment may suffer this threat since the gestures used with gestUI and with code-centric are the
same, which may be boring for the subjects.

External validity: The main threats to the external validity of the experiment are:

i. Duration of the experiment: there are some factors that can influence the duration of the experiment.

a. Since the duration of the experiment was limited to 2 hours, only one interface, six actions (CRUD
operations + save the information + open the interface to manage departments) and five gestures were
selected. However, repetitive tasks could permit a reduction of time since the subject already knows the
process to perform. This threat could not be resolved since these tasks, even though repetitive, were
necessary to build the system.

b. Subjects require time to analyse the structure and the logic of the existing source code before the inclusion
of the additional source code. This threat could be resolved by including adequate instructions in the Task
Description Document in order to perform the experiment.

c. If any subject requires the maximum amount of time to perform the experiment, which is 2 hours
(according to what is specified in Section 4.6), the information is considered not valid to process because
this situation can represent some of the following situations: (i) the subject writes source code slowly using
the keyboard and mouse, (ii) a subject does not have the same experience in the use of software tools for
software development in relation to other subjects and he/she requires more time to complete the
experiment probably performing additional tasks (e.g. checking if the source code was completely
transcribed from the Task Description Document to the Eclipse project, checking for syntax errors in the
source code).

d. Total time required to perform the experiment depends of the typing speed and the experience of the
subject in managing source code. This threat could not be resolved in Treatment I (it contains more lines of
code to write than Treatment II) since we do not check each subject’s typing ability on the computer.

e. Time required to check whether the inclusion of the gesture-based interaction was successful varies
depending on the experience of the subjects. This threat could be resolved since the subjects answered a
question in the pre-test questionnaire about experience in the use of an IDE to develop software in a
positive way (43% have an “average” self-rated expertise and 38% have an “experienced” self-rated
experience).

ii. Representativeness of the results: despite the fact that the experiment was performed in an academic context, the
results could be representative with regard to novice evaluators with no experience in evaluations related with the
gesture interaction definition and inclusion. With respect to the use of students as experimental subjects, several
authors suggest that the results can be generalised to industrial practitioners [55] [56].

Construct validity: The main threat to the construct validity of the experiment is:

(i) Type of measurements to consider in the experiment: measurement that are commonly employed in this type of
experiment were used in the quantitative analysis. The reliability of the questionnaire was tested by applying the
Cronbach test, the obtained value is higher than the acceptable minimum (0.70).

Conclusion validity: The main threats to the conclusion validity of the experiment are:

(i) Validity of the statistical tests applied: this was resolved by applying Wilcoxon Signed-rank test, one of the most
common tests used in the empirical software engineering field. According to Wohlin et al. [45] if we have a sample
whose size is less than 30 and we have a factor with two treatments, we can use non-parametric statistical tests such
as the Wilcoxon Signed-rank test. In Section 4.11 the non-parametric tests used in this experiment are detailed.

(ii) Low statistical power: this happens when the sample size is not large enough. The power of any statistical test is
defined as the probability of rejecting a false null hypothesis. According to G*Power [57] the sample size needed for
an effect size of 0.8 is 20 subjects, which is the number of subjects we have. So, this threat has been minimized.

4.11 Data analysis
The calculated values are checked to see the p-value (significance level). An important issue is the choice of significance
level which specifies the probability of the result being representative. Generally speaking, the practice dictates rejecting the
null hypothesis when the significance level is less than or equal to 0.05 [48].

The first step is to analyse the reliability of the data obtained in the experiment: we start by calculating the Cronbach
coefficient (alpha). In this case, the result obtained is 0.736. According to [58] if the Cronbach coefficient is greater or equal
to 0.7 then the reliability of the data is assumed.

Boone et al. [59] recommend some data analysis procedures for Likert scale data: (a) for central tendency: mean, (b) for
variability: standard deviation, (c) for associations: Pearson’s r, and (d) other statistics using: ANOVA, t-test, regression.
According to Juristo et al. [48], if we have a sample whose size is less than 30 and it follows a normal distribution, then we
employ t-distribution (Student’s), but if the sample does not follow a normal distribution then we can apply the Wilcoxon
Signed-rank test in order to analyse the data obtained in the experiment. A normality test using the Shapiro-Wilk test is
required in order to verify if the data is normally distributed. We use this test as our numerical means of assessing normality
because it is more appropriate for small sample sizes (< 50 samples). Then, using Shapiro-Wilk we obtained the result that
the data is not normally distributed. In this case, we cannot apply the t-distribution test because this test requires normally
distributed data. So, we apply the Wilcoxon Signed-rank test.

The next step is verifying whether the data satisfy the sphericity condition and whether they are homogeneous:

- In order to check the sphericity condition, Mauchly’s test can be used. However, in this work, there are only two levels
of repeated measures (with the gestUI method and with a code-centric method), which precludes a sphericity violation
and the test is unnecessary.

- Non-parametric Levene’s test is used to test if the samples have homogeneity in their variances. In the result of this test
we can observe in column “Sig.” in Table 17, that the non-parametric Levene’s test for homogeneity of variances
provides a p_value>0.05, allowing us to assume that the data have homogeneity in their variances.

Table 17. Non-parametric Levene's test for the variables in the experiment

Variable F df1 df2 Sig.

PEOUg 0.353 1 19 0.560

PEOUc 0.004 1 19 0.948

Pug 0.042 1 19 0.840

PUc 0.754 1 19 0.396

ITUg 0.147 1 19 0.706

ITUc 0.416 1 19 0.527

In the section 5, we report the quantitative results of the experiment based on the statistical analysis of the data using (i)
descriptive statistics (mainly arithmetic mean), (ii) box-and-whisker plot, (iii) Spearman’s Rho correlation coefficient to
study the correlation between both treatments, and (iv) the Wilcoxon Signed-rank test with the aim of addressing the research
questions. The results of applying Wilcoxon Signed-rank test are described grouped by variables (PTCCI, PTCCG, TFTI,
TFTG, PU, PEOU and ITU).

Additionally, at the end of the Section 5, we include the results of the effect size calculation in order to check the
meaningfulness of the results and allow comparison between studies.

A significance level of 0.05 was established to statistically test the obtained results with subjects in the experiment. The
analysis has been performed using the SPSS v.23 statistical tool.

5. RESULTS
In this section, the subscript ‘g’ located at the end of each variable means “using the gestUI method”, and the subscript ‘c’
means “using the code-centric method”. Next, we analyse the results for each research question.

Table 18. Descriptive statistics for metrics

 N Min. Max. Mean Std. Dev.

PTCCIg 21 50 100 82.1429 17.9284

PTCCIc 21 50 100 77.3810 15.6220

PTCCGg 21 75 100 91.6667 12.0762

PTCCGc 21 25 100 71.4286 19.8206

TFTIg 21 9.00 33.00 19.7143 7.0224

TFTIc 21 18.00 49.00 28.3810 7.8834

TFTGg 21 12.75 66.75 31.8929 16.8301

TFTGc 21 60.50 346.25 154.6786 66.5967

PEOUg 21 1 5 3.2857 0.2154

PEOUc 21 1 5 3.3280 0.5073

PUg 21 1 5 3.8176 0.3451

PUc 21 1 5 3.2786 0.5762

ITUg 21 2 5 3.7381 0.7179

ITUc 21 1 4 2.9286 0.6761

Valid N 21

5.1 RQ1: Effectiveness in the inclusion of gesture-based interaction
We consider two treatments to analyse PTCCI in the inclusion of gesture-based interaction: PTCCIg and PTCCIc.

According to Table 18, the mean of PTCCIg (82.14%) is greater than the mean of PTCCIc (77.38%), that is, the subjects
achieved a greater percentage of correctly carried out tasks using gestUI than when they employed the code-centric method.

Figure 7. Box-and-whisker plot of PTCCI

Figure 7 presents the box-and-whisker plot containing the distribution of the PTCCI variable per method. The medians of
PTCCIg and PTCCIc are similar, but the third quartile is better for PTCCIg, since the percentage of correctly carried out
tasks achieved by the subjects using gestUI is greater than the percentage achieved when the subjects use the code-centric
method. This means that gestUI is slightly more effective than the code-centric method when the subjects include gesture-
based interaction in user interfaces.
Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.638). So, we can conclude that PTCCIg
and PTCCIc are strongly correlated, that is, when the percentage of correctly carried out tasks using gestUI increases, the
percentage using the code-centric method also increases.
In order to check whether the observed differences were significant we ran the Wilcoxon Signed-rank test. We obtained the
results shown in Table 19. They show that two subjects (2/21) have obtained a greater number of correctly carried out tasks
using the code-centric method compared to gestUI to include gesture-based interaction in the experiment. Six subjects (6/21)
have obtained a greater number of correctly carried out tasks using gestUI compared to the code-centric method. However,
thirteen subjects (13/21) have obtained the same number of correctly carried out tasks for both methods.

Table 19. Wilcoxon Signed-rank test for PTCCI

The results obtained with this test are: 2-tailed p-value=0.157>0.05 and Z=-1.414, therefore, according to this result, we
cannot reject the null hypothesis and can conclude that “There is no difference between the effectiveness of the gestUI and the
code-centric methods in the inclusion of gesture-based interaction in user interfaces”.

5.2 RQ2: Effectiveness in the definition of custom gestures
We consider two treatments to analyse PTCCG in the custom gesture definition: PTCCGg and PTCCGc.
According to Table 18, the mean of PTCCGc (71.43%) is less than the mean of PTCCg (91.67%), that is, the subjects
achieved a relatively greater percentage of correctly carried out tasks using gestUI than when they employed the code-centric
method.

Figure 8 presents the box-and-whisker plot containing the distribution of the PTCCG variable per method. The median, the
first quartile and the third quartile are better for PTCCGg, since it achieved a greater percentage of correctly carried out tasks.
This means that gestUI was more effective than the code-centric method when the subjects define custom gestures.

Figure 8. Box-plot-whisker of PTCCG

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.456). Then, we can conclude that
PTCCGg and PTCCGc have a moderate correlation, that is, when the percentage of correctly carried out tasks with PTCCGg
increases, there is a moderate increment in the percentage of PTCCGc.
In order to to check whether the observed differences were significant we ran the Wilcoxon Signed-rank test. We obtained
the results shown in Table 20.

Table 20. Wilcoxon Signed-rank test for PTCCG

It shows that fourteen subjects (14/21) have obtained more correctly carried out tasks using gestUI compared to using the
code-centric method, zero (0/21) subjects have obtained more correctly carried out tasks using the code-centric method than
using gestUI, and there are seven (7/21) subjects that have obtained the same percentage using both methods.

The results obtained with this test are: 2-tailed p-value=0.000<0.05 and Z=-3.556, therefore, according to this result, we
reject the null hypothesis and can conclude than “gestUI is more effective than the code-centric method in the definition of
custom gestures”.

5.3 RQ3: Efficiency in the inclusion of gesture-based interaction
We consider two treatments to analyse TFTI in the inclusion of gesture-based interaction: TFTIg and TFTIc.
According to Table 18, the mean of TFTIc (28.38) is greater than that of TFTIg (19.71), that is, the time required to include
gesture-based interaction in the experiment using the code-centric method is greater than the time needed to perform this task
using gestUI.
Figure 9 presents the box-and-whisker plot containing the distribution of the TFTI variable per method. The medians, first
quartile and third quartile are better for TFTIg, since the time needed to conduct the experiment is less when the subjects use
gestUI rather than when the subjects use the code-centric method. This means that the time to finish the task with gestUI is
better than with code-centric.

Figure 9. Box-plot for TFTI

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.210). Then, we can conclude that TFTIg
and TFTIc have a weak correlation, that is, between TFTIg and TFTIc there is not a significant relationship (Sig. (2-
tailed)>0.05) in the process of including gesture-based interaction.

In order to check whether the observed differences were significant we ran the Wilcoxon Signed-rank test. We obtained the
results shown in Table 21. They show that eighteen subjects (18/21) have employed more time using the code-centric method
compared to gestUI to include gesture-based interaction in the experiment. Three subjects (3/21) have employed less time
using the code-centric method than gestUI to include gesture-based interaction in the experiment.

Table 21. Wilcoxon Signed-rank test for TFTI

The values obtained with this test are: 2-tailed p-value=0.001<0.05 and Z=-3.269, therefore, according to this result, we
reject the null hypothesis and we can conclude than “gestUI is more efficient than the code-centric method in the inclusion of
gesture-based interaction in user interfaces”.

5.4 RQ4: Efficiency in the definition of custom gestures
We consider two treatments to analyse TFTG in the definition of custom gestures: TFTGg and TFTGC.
According to Table 18, the mean of TFTGc (154.67) is greater than the mean of TFTGg (31.89), which means that the time
required to define custom gestures in the experiment using the code-centric method is greater than the time to do this task
using gestUI.

Figure 10. Box-plot of TFTG

Figure 10 presents the box-and-whisker plot containing the distribution of the TFTG variable per method. The median, first
quartile and third quartile are better for TFTGg, since TFTGg needs less time to complete the task. This means that gestUI
was more efficient than code-centric method regarding the time required by the subject to define custom gestures during the
experiment.

Using Spearman’s Rho correlation coefficient, we obtained a positive correlation (0.216). Then, we can conclude that TFTGg
and TFTGc have a weak correlation, that is, when the time required to define custom gestures using code-centric method
increases, the time using gestUI method also has a weak increment.

In order to check whether the observed differences were significant, we run Wilcoxon Signed-rank test. We obtain the results
shown in Table 22.

Table 22. Wilcoxon Signed-rank test for TFTG

It shows that twenty-one subjects (21/21) have employed more time using the code-centric method than gestUI to define
custom gestures in the experiment.

The values obtained with this test are: 2-tailed p-value=0.000<0.05 and Z=-4.015, therefore, according to this result, we
reject the null hypothesis and we can conclude than “When the subjects define gestures, gestUI is more efficient than the
code-centric method”.

5.5 RQ5: Perceived Ease of Use
We consider two treatments to analyse PEOU: PEOUg and PEOUC.
Table 18 presents the results obtained through questions related to PEOU within Post-task and Post-test questionnaires. In
this case, the mean is above 3.0 in both cases. There is a difference of 0.042 between the mean of PEOUc and the mean of
PEOUg, that is, the PEOU of gestUI is relatively greater than the PEOU of the code-centric method.

Figure 11. Box-plot for PEOU

Figure 11 shows the box-and-whisker plot containing the distribution of the PEOU variable per method. The medians of both
treatments are the same. The first quartile is slightly better for gestUI and the third quartile is slightly better for the code-
centric method. This means that there are no differences between both treatments.
Using Spearman’s Rho correlation coefficient, we obtain a positive correlation (0.408). So, we can conclude PEOUg and
PEOUc have a moderate correlation, that is, when the perceived ease of use with gestUI increases, PEOU using the code-
centric method also increases.

In order to check whether the observed differences were significant, we ran the Wilcoxon Signed-rank obtaining the results
shown in Table 23. They show that eight subjects (8/21) perceive that gestUI is easier to use than the code-centric method,
eight subjects (8/21) perceive than the code-centric method is easier to use than gestUI and, five (5/21) perceive that both
methods are easy to use.

Table 23. Wilcoxon Signed-rank test for PEOU

The values obtained with this test are: 2-tailed p-value=0.917>0.05 and Z=-0.104, therefore, according to this result, we
cannot reject the null hypothesis and we can conclude than “gestUI is perceived as easier to use than the code-centric
method”.

5.6 RQ6: Perceived Usefulness
We consider two treatments to analyse perceived usefulness: PUg and PUc.

Table 18 presents the results obtained through questions related to PU in Post-task and Post-test questionnaires. In this case,
the mean of PUc is less than PUg, that is, perceived usefulness of gestUI (mean=3.82) is greater than the perceived
usefulness of the code-centric method (mean=3.28).

Figure 12. Box-plot of PU

Figure 12 presents the box-and-whisker plot containing the distribution of the PU variable per method. The median, first
quartile and third quartile of PUg is better than PUc. This means that the subjects perceived gestUI to be more useful than the
code-centric method.

Using Spearman’s Rho correlation coefficient, we obtain a positive correlation (0.310). So, we can conclude that PUg and
PUc have a weak correlation, that is, when the perceived usefulness of the code-centric method increases, the perceived
usefulness using the gestUI method also increases.

In order to check whether the observed differences were significant, we ran the Wilcoxon Signed-rank obtaining the results
shown in Table 24. This test shows that fifteen subjects (15/21) perceive gestUI to be more useful than the code-centric
method in the experiment. Three subjects (3/21) perceive the code-centric method to be more useful than gestUI, and three
(3/21) consider that both methods have the same level of perceived usefulness in the experiment.

Table 24. Wilcoxon Signed-rank test for PU

The values obtained with this test are: 2-tailed p-value=0.001<0.05 and Z=-3.239, therefore, according to this result, we
reject the null hypothesis and we can conclude than “gestUI is perceived as more useful than the code-centric method”.

5.7 RQ7: Intention to Use
We consider two treatments to analyse ITU: ITUg and ITUc.

Table 18 presents the results obtained through questions related to ITU in Post-test and Post-task questionnaires. In this case,
the mean of ITUg (3.74) is above 3.0 while the mean of ITUc (2.93) is below to 3.0.

Figure 13. Box-plot of ITU

Figure 13 presents the box-and-whisker plot containing the distribution of the ITU variable per method. The median, the first
and third quartile are better for ITUg. This means that gestUI has a greater intention to use than the code-centric method
when the subjects use it to define custom gestures and to include gesture-based interaction.

Using Spearman’s Rho correlation coefficient, we obtain a positive correlation (0.080). So, we can conclude that ITUg and
ITUc have a very weak correlation, that is, when the intention to use of gestUI (ITUg) increases, the intention to use of the
code-centric method (ITUc) increases very little compared with ITUg.

In order to check whether the observed differences were significant, we ran the Wilcoxon Signed-rank obtaining the results
included in Table 25. They show that gestUI has greater intention to use than the code-centric method (13/21 subjects), the
code-centric method has two (2/21) subjects with intention to use, and six (6/21) subjects have an intention to use for both
methods.

The values obtained with this test are: 2-tailed p-value=0.003<0.05 and Z=-3.005, therefore, according to this result, we
reject the null hypothesis, and we can conclude that “gestUI has an intention to use greater than the code-centric method”.

Table 25. Wilcoxon Signed-rank test for ITU

In summary, the result of each hypothesis is shown in Table 26.

Table 26. Summary of the results obtained in the experiment

Variable

Null
hypothesis
status

Conclusion

PTCCI Not
rejected

There is no significant difference between the effectiveness of gestUI and the code-centric
method in the inclusion of gesture-based interaction in user interfaces.

PTCCG Rejected There is a significant difference between the effectiveness of gestUI and the code-centric
method in the specification of custom gestures. Results obtained are better when the
subjects use gestUI rather than the code-centric method, that is, PTCCGg is greater than
PTCCGc.

TFTI Rejected There is a significant difference between the efficiency of gestUI and the code-centric method
in the inclusion of gesture-based interaction in user interfaces. The results obtained are less

when the subjects use gestUI rather than when they use the code-centric method.

TFTG Rejected When the subjects define gestures, gestUI is more efficient than the code-centric method.

PEOU Not
rejected

gestUI is perceived as easier to use than the code-centric method.

PU Rejected gestUI is perceived as more useful than the code-centric method.

ITU Rejected gestUI has an intention to use greater than the code-centric method

5.8 Effect-size calculation
According to Kotrlik [60], effect size measures focus on the meaningfulness of the results and allow comparison between
studies, furthering the ability of researchers to judge the practical significance of results presented. We use means and
standard deviations of the metrics defined in this experiment to calculate Cohen’s d and effect-size correlation r. The
calculation was performed using the effect size calculator provided by the University of Colorado (Colorado Springs),
available at http://www.uccs.edu/~lbecker/.
Based on the work of Lakens [61], we can see that the effect size is “Large” if d>0.8, “Medium” if d<=0.5 and d>0.2, and
“Small” if d<0.2. In Table 27, we present the results of the effect size calculation of the metrics included in this experiment
and this shows the equivalences applied to the results obtained.

Table 27. Effect size of the metrics

Response variable Metric Mean St. Dev. Cohen’s d Equivalence

Effectiveness in the
inclusion of gesture-based
interaction.

PTCCI

PTCCIg

PTCCIc

82.1429

77.3810

17.9284

15.6220

0.2832 Medium

Effectiveness in the custom
gesture definition.

PTCCG

PTCCGg

PTCCGc

91.667

71.428

12.076

19.821

1.233 Large

Efficiency in the inclusion of
gesture-based interaction.

TFTI

TFTIg

TFTIc

19.714

28.381

7.022

7.883

1.161 Large

Efficiency in the custom
gesture definition.

TFTG

TFTGg

TFTGc

31.893

16.8301

154.678

66.5967

2.5279 Large

Satisfaction

PU

PUg

PUc

3.8176

3.2786

0.3451

0.5762

1.1349 Large

PEOU

PEOUg

PEOUc

3.2857

3.3280

0.2154

0.5073

0.1085 Small

ITU

ITUg

ITUc

3.7381

2.9286

0.7179

0.6761

1.1609 Large

According to this classification, the results obtained for effect size show that:
(i) In the case of PTCCG, TFTI, TFTG, PU and ITU, the effect size calculated through Cohen’s d is greater than 0.8,

which means that it is classified as “Large”. So, there is a significant difference in the application of each method in
this experiment related to: effectiveness in the definition of custom gestures (PTCCG), efficiency in the inclusion of

http://www.uccs.edu/%7Elbecker/

gesture-based interaction (TFTI), efficiency in the definition of custom gesture (TFTG), perceived usefulness (PU)
and intention to use (ITU).

(ii) In the case of PTCCI, the effect size calculated through Cohen’s d is equals to 0.2832 (d>0.2), which is classified as
“Medium”. So, the difference in the application of each method to include gesture-based interaction in a user
interface considering the effectiveness in the inclusion of gesture-based interaction, is not important.

(iii) In the case of PEOU, the effect size calculated through Cohen’s d is less than 0.2 (d=0.1085), which is classified as
“Small”. So, there is a minimum difference in the application of each method in this experiment related to the
perceived ease of use (PEOU).

In the next section, we analyse the results obtained in this experiment.

6. DISCUSSION
In this section, we discuss the results of the experiment described in Section 5 in order to draw some conclusions regarding
the comparison of gestUI (a model-driven method) and the code-centric method (traditional software development). In order
to validate gestUI, three aspects are considered in this experiment: effectiveness (using PTCCI, PTCCG), efficiency (using
TFTI and TFTG) and satisfaction (using PU, PEOU and ITU). The discussion about the results obtained in the experiment is
performed according to the aforementioned research questions.

6.1 Effectiveness
RQ1: Effectiveness in the inclusion of gesture-based interaction

Regarding PTCCI metric, which is related with RQ1, the results show that there is no significant difference between the
results obtained when the subjects applied gestUI and when the subjects applied the code-centric method to include gesture-
based interaction in an existing user interface. We consider that the small difference obtained (approximately 4%) by
applying both methods to calculate PTCCI is because (i) the subjects used existing source code (included in the Task
Description Document) instead of writing the source code from scratch as is done in a typical development process [39]. This
context helped to obtain better results with the code-centric method and the difference was less than expected; (ii) the
subjects were not familiar with the process defined in gestUI to apply a model-driven method (i.e. by using model
transformations to include gesture-based interaction); (iii) the subjects did not have experience in the inclusion of gesture-
based interaction and when they applied gestUI, the process was not very intuitive to follow. However, the process
implemented in gestUI is like a typical wizard included in some available applications in any operating system. Therefore, if
the user is not familiar with the process of gestUI, this feature (wizard) helped to the users to perform the inclusion of
gesture-based interaction with minor number of problems regarding to code-centric method.

RQ2: Effectiveness in the definition of custom gestures

About PTCCG metric, which is related with RQ2, values obtained show that gestUI is significantly more effective than the
code-centric method in the definition of custom gestures. The percentage obtained with gestUI is greater than the percentage
obtained with the code-centric method. In this case, the difference between the percentage of task correctly carried out in the
custom gestures definition using gestUI or using the code-centric method is almost 20%. This difference is due to subjects
using gestUI having a more intuitive process to follow to define gestures and to obtain a XML file containing the description
of the gesture. In gestUI we added a canvas to draw gestures, in a similar way as $N. Therefore, the subjects can perform this
task easier than with other method. By other side, using the code-centric method, the process of defining gestures is more
complex because it includes additional tasks (e.g. analyse the shape of the gesture, draw it and define it using XML, among
others) requiring more effort. In both methods, the subjects started defining a gesture whose definition process was new for
them, but in the other gestures, the process was similar which meant that they required less effort to define the rest of gestures
in the same method.

6.2 Efficiency
RQ3: Efficiency in the inclusion of gesture-based interaction

Concerning the TFTI metric, related with RQ3, values obtained show that gestUI is significantly more efficient than the
code-centric method in the inclusion of gesture-based interaction in user interfaces. When the subjects did the experiment
using gestUI, they required less time than when they used the code-centric method. The difference of time between both
methods is moderate (8.67 min.) in the inclusion of gesture-based interaction in user interfaces, this could be related to the
ability to type the source code in a correct way, probably because the subjects had experience developing software (according
to the demographic questionnaire, the average self-rated programming expertise was 43%). Also, they required less time to
type source code since they had experience using the integrated development environment used in the experiment (according
to the demographic questionnaire 38% had an “experienced” level and 43% had a “medium experienced” level with Eclipse
Framework). Probably, the aforementioned wizard available in gestUI to perform the process of inclusion of gesture-based

interaction helped to the subject to be more efficient completing the process specified in the Task Description Document. By
other side, the null experience of the subjects in the use of gestUI involved a higher time in the use of gestUI. Other results of
the use of gestUI is that we identified difficulty to apply the model transformations included in gestUI.

RQ4: Efficiency in the definition of custom gestures

Regarding TFTG metric, related with RQ4, obtained results show that the time required to define custom gestures using
gestUI is less than the time required using the code-centric method. The difference of the time required to define custom
gestures, by means of each method, is high (122.7857) since some subjects had some problems with the definition of gestures
using XML language as they were not familiar with the syntax of XML. Another aspect that could have increased the time
required with the code-centric method is related to syntax errors generated during the process of gesture definition. If the
subjects run the experiment first with gestUI and then with the code-centric method, they require a longer time that those
subjects that run the experiment first with the code-centric method and then with gestUI. In this case, there were some
problems when the subjects employed $N to recognise some gestures sketched by them. This could have had some influence
in the duration of the process of custom gesture definition.

In summary, regarding effectiveness and efficiency, we can say that:

- The result obtained in the experiment permit one to say, in general, that the effectiveness and efficiency of gestUI are
greater than those of the code-centric method.

- Considering the metrics PTCCG, TFTG and TFTI, the results obtained with Cohen’s d value (d>0.8, i.e. “Large”)
suggest a high practical significance for the results obtained. Also, Cohen’s d value (d = 0.2832 for PTCCI) suggested a
moderate practical significance for the results obtained.

- Concerning the values of TFTG and TFTI obtained in the experiment, we think that if the subjects had written the source
code from scratch, the difference in time would have been greater. In general, the overall results lead us to interpret that
gestUI has achieved better effectiveness and efficiency for the subjects in almost all the analysed statistics in comparison
with the code-centric method.

- Finally, considering effect size, we can conclude that in comparison, effectiveness and efficiency of gestUI are better
than those obtained with the code-centric method in the custom gesture definition.

6.3 Satisfaction
RQ5: Perceived ease of use

With respect to PEOU, related with RQ5, obtained results show that the difference between PEOUg (3.286) and PEOUc
(3.328) is minimal (0.0423). So, we can say that the subjects perceive that both methods are easy to use. However, in the case
of the code-centric method, this result could be influenced by the inclusion of source code in the Task Description Document
as was explained in Section 4.7.1. This decision was taken with the aim of reducing the complexity of the code-centric
method and the time required to do the experiment. Other factor that may affect the result can be the experience of the
subjects in the use of the IDE (Eclipse) used in the experiment to write the source code required in the code-centric method.
The subjects perceived as ease of use the code-centric method because they are familiar with the process of writing code in an
IDE to obtain a solution of software.

RQ6: Perceived Usefulness

Regarding PU, which is related with RQ6, obtained results show that there is difference (0.539) between the values of PUg
(3.8176) and PUc (3.2786). So, we can say that the subjects perceive gestUI to be more useful than the code-centric method.
The subjects perceive the usefulness of gestUI by noting that if gestUI is easy to use they may find gestUI more useful, and
hence, have some motivation to use it. Specifically, the subjects perceive the usefulness of gestUI when they use it to
automatically obtain source code to include gesture-based interaction in a user interface based on a specification of gestures
and actions to define the gesture-based interaction.

RQ7: Intention to use

About ITU, related with RQ7, obtained results show that there is a difference (0.8095) between the values of ITUg (3.7381)
and ITUc (2.9286). So, we can say that the subjects have an intention to use gestUI greater than the code-centric method.
This conclusion is based on the fact that the subjects considered gestUI as easy to use and useful compared to the code-
centric method.

In general, the results of our work indicate that gestUI is accepted by the subjects since the results obtained for effectiveness,
efficiency and satisfaction with gestUI are better that the results obtained with the code-centric method. With these results we
could say that gestUI is a hopeful approach and justifies further investigation.

7. CONCLUSIONS AND FUTURE WORK
This paper compares a model-driven method (gestUI) versus a traditional software development method (the code-centric
method) in terms of (i) effectiveness in the custom gesture definition, (ii) effectiveness in the inclusion of gesture-based
interaction, (iii) efficiency in the custom gesture definition, (iv) efficiency in the inclusion of gesture-based interaction, and
satisfaction (PEOU, PU and ITU) through an experimental investigation. Results show that, in general, gestUI has a greater
effectiveness, efficiency and satisfaction level than the code-centric method, and gestUI was also perceived by the subjects as
easier to use than the code-centric method. It is important to highlight that these differences between gesUI and a code-
centric method arise even when we work with simple experimental problems, as we use in our experiment.
Some aspects that must be contextualised according to the type of experiment are:
(i) The sample size is small, twenty-one (21) subjects.
(ii) The subjects were M.Sc. and Ph.D. students and they do not have enough experience in the topics included in the

experiment: tasks related with the custom gesture definition and the inclusion of gesture-based interaction.
(iii) The subjects have experience in software development using the Java programming language, which could have

influenced the results obtained with the code-centric method.
(iv) We consider that the decision to include source code in the Task Description Document to reduce the time for the

code-centric method has reduced the differences in terms of efficiency between treatments, since subjects only had
to transcribe the source code specified in the document.

Gesture definition is interesting for the subjects since they can specify their own gestures with the aim of executing actions in
a user interface. In this context, each subject defined four gestures in order to use them in the user interface doing CRUD
operations in a database. The subjects could define their own gestures according to their preferences.

Tailoring mechanism included in gestUI is very interesting because it permits that the users redefine some gesture hard to
remember or draw. If the users experience problems when using gestures, they can solve this situation by themselves using
this mechanism to redefine custom gestures without the support of a software engineer.

gestUI and its features gives to the users the potential needed to define custom gestures and to include gesture-based
interaction in user interfaces whose source code is available. It is sufficient with apply gestUI in order to incorporate gestures
in a user interface. gestUI helps to improve the level of desirability of the software system as the user employs custom
gestures that he/she has defined.

Even though the experimental results are good for the usefulness of gestUI, we are aware that more experimentation is
needed to confirm these results. Existing results must be interpreted within the context of this experiment. In general, the
subjects considered gestUI a good solution since they defined custom gestures and they included the gestures in the user
interface in a short time compared to the time required when they used the code-centric method.

As future work, we plan to perform more replications of the experiment in order to minimize the influence of the threats to
validity identified. Additionally, we consider some aspects that could be included in future work such as: (i) studying how to
adapt gestUI to an existing model-driven framework to implement user interfaces because its architecture means it can be
adapted to an existing framework based on the model-driven paradigm; (ii) the evaluation of gestUI with end-users who do
not play the role of developers, since gestUI aims to be easy to use and any user could define gestures and include them in a
user interface; (iii) different replications will allow us to build a family of experiments where data could be aggregated
through meta-analysis or pooling data. This way we can improve the statistical power of the analysis; (iv) to include
additional platforms (e.g. mobile platform) as a target to produce gesture-based user interfaces; currently we support desktop-
computing; (v) to include additional programming languages (e.g. Visual Studio .NET with C#) as target language to
generate source code, currently we support Java, in order to give support for gesture-based interaction to other types of
software systems.

Further details about this validation can be found at https://gestui.wordpress.com/evaluation.

Acknowledgments
This work has been supported by Department of Computer Science of the Universidad de Cuenca and SENESCYT of
Ecuador, and received financial support from the Generalitat Valenciana under Project IDEO (PROMETEOII/2014/039) and
the Spanish Ministry of Science and Innovation through the DataMe Project (TIN2016-80811-P).

REFERENCES

[1] M. Hesenius, T. Griebe, S. Gries and V. Gruhn, “Automating UI Tests for Mobile Applications with Formal Gesture Descriptions,”
Proc. of 16th Conf. on Human-computer interaction with mobile devices & services, pp. 213-222, 2014.

https://gestui.wordpress.com/evaluation

[2] S. H. Khandkar, S. M. Sohan, J. Sillito and F. Maurer, “Tool support for testing complex multi-touch gestures,” in ACM International
Conference on Interactive Tabletops and Surfaces, ITS'10, NY, USA, 2010.

[3] D. Schmidt, “Guest editor's introduction: Model-driven Engineering,” IEEE Computer, vol. 39, no. 2, pp. 25-31, 2006.

[4] H. Lü and Y. Li, “Gesture Coder: A tool for programming multi-touch gestures by demonstration,” Proceedings of the 2012 ACM on
Human Factors in Computing Systems, pp. 2875-2884, 2012.

[5] O. Parra, S. España and O. Pastor, “A Model-driven Method and a Tool for Developing Gesture-based Information System
Interfaces,” in Proceedings of the CAiSE 2015 Forum at the 27th International Conference on Advanced Information Systems
Engineering (CAiSE 2015), Stockholm, Sweden, 2015.

[6] J. Wobbrock, A. Wilson and Y. Li, “Gestures without Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes,”
in Proceedings of ACM Symposium on User Interface Software and Technology - UIST 2007, Newport, Rhode Island, USA, 2007.

[7] L. Anthony and J. O. Wobbrock, “A Lightweight Multistroke Recognizer for User Interface Prototypes,” Proc. of Graphics Interface,
pp. 245-252, 2010.

[8] R. Vatavu, L. Anthony and J. Wobbrock, “Gestures as point clouds: a $P recognizer for user interface prototypes,” in Proceedings of
the 14th ACM international conference on Multimodal interaction ICMI'12, Santa Monica, California, USA, 2012.

[9] R.-D. Vatavu, L. Anthony and J. Wobbrock, “$Q: A super-quick, articulation-invariant stroke-gesture recognizer for low-resource
devices,” in Proceedings of the ACM Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI
'18), Barcelona, Spain, 2018 (to appear).

[10] J. Vanderdonckt, P. Roselli and J. L. Perez-Medina, “!FTL, an Articulation-Invariant Stroke Gesture Recognizer with Controllable
Position, Scale, and Rotation Invariances,” in Proceedings of the 20th ACM International Conference on Multimodal Interaction
ICMI'18, Boulder CO, USA, 2018.

[11] D. Moody, “The Method Evaluation Model: A Theoretical Model for Validating Information Systems Design Methods,” in ECIS 2003
Proceedings, Naples, Italy, 2003.

[12] ISO/IEC, “Ergonomics of human-system interaction,” ISO, 2010. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:9241:-
210:ed-1:v1:en. [Accessed 28 09 2015].

[13] ISO/IEC/JTC 1/SC 7, ISO/IEC 25062:2006, Software engineering - Software product Quality Requirements and Evaluation
(SQuaRE) - Common Industry Format (CIF) for usability test reports, Geneva: ISO, 2006.

[14] T. Kapteijns, S. Jansen, S. Brinkkemper, H. Houët and R. Barendse, “A Comparative Case Study of Model Driven Development vs
Traditional Development: The Tortoise or the Hare,” in 4th European Workshop on "From code centric to model centric software
engineering: Practices, Implications and ROI, Enschede, The Netherlans, 2009.

[15] C. Bunse, H. Gross and C. Peper, “Embedded System Construction - Evaluation of Model-Driven and Component-Based
Development Approaches,” in M. R. Chaudron (Ed.) Models in Software Engineering: Workshops and Symposia at MODELS 2008,
Heidelberg, Springer, 2009, pp. 66-77.

[16] S. Kane, J. Wobbrock and R. Ladner, “Usable Gestures for Blind People: Understanding Preference and Performance,” in CHI 2011:
Session: Gestures, Vancouver, Canada, 2011.

[17] F. Ricca, M. Leotta, G. Reggio, A. Tiso, G. Guerrini and M. Torchiano, “Using UniMod for Maintenance Tasks: An Experimental
Assessment in the Context of Model Driven Development,” in Proceedings on 4th International Workshop on Modeling in Software
Engineering (MiSE), Zurich, Switzerland, 2012.

[18] P. E. Papotti, A. F. do Prado, W. Lopes de Souza, C. E. Cirilo and L. Ferreira Pires, “A Quantitative Analysis of Model-Driven Code
Generation through Software Experimentation,” Proceedings of 25th International Conference CAiSE 2013, vol. LNCS 7908, pp.
321-337, 2013.

[19] N. Condori-Fernandez, J. I. Panach, A. I. Baars, T. Vos and O. Pastor, “An empirical approach for evaluating the usability of model-
driven tools,” Science of Computer Programming, vol. 78, pp. 2245-2258, 2013.

[20] Y. Martinez, C. Cachero and S. Melia, “MDD vs Traditional Software Development: a practitioner subjective perspective,”
Information and Software Technology, vol. 55, no. 2, pp. 189-200, 2013.

[21] Y. Martinez, C. Cachero and S. Meliá, “Evaluating the Impact of a Model-Driven Web Engineering Approach on the Productivity and
the Satisfaction of Software Development Teams,” Proceedings of 12th International Conference Web Engineering - ICWE 2012, vol.
LNCS 7387, pp. 223-237, 2012.

[22] Y. Martinez, C. C. and S. Meliá, “Empirical study on the maintainability of Web applications: Model-driven Engineering vs Code-
centric,” Empirical Software Engineering, vol. 19, pp. 1887-1920, 2014.

[23] M. Cervera, M. Albert, V. Torres and V. Pelechano, “On the usefulness and ease of use of a model-driven Method Engineering
approach,” Information and Software Technology, vol. 50, pp. 36-50, 2015.

[24] J. I. Panach, S. España, O. Dieste, O. Pastor and N. Juristo, “In search of evidence for model-driven development claims: An
experiment on quality, effort, productivity and satisfaction,” Information and Software Engineering, vol. 62, no. C, pp. 164-186, 2015.

[25] S. Safdar, I. M. and M. Khan, “Empirical Evaluation of UML Modeling Tools–A Controlled Experiment,” in Modelling Foundations
and Applications. ECMFA 2015. Lecture Notes in Computer Science, vol 9153, L'Aquila, Italy, 2015.

[26] R. Neto, P. Adeodato and A. Salgado, “A framework for data transformation in Credit Behavioral Scoring applications based on
Model Driven Development,” Expert Systems with Applications, vol. 72, pp. 293-305, 2017.

[27] F. Santos, I. Nunes and A. Bazzan, “Model-driven agent-based simulation development: A modeling language and empirical
evaluation in the adaptive traffic signal control domain,” Simulation Modelling Practice and Theory, vol. 83, pp. 162-187, 2018.

[28] B. Hamid and D. Weber, “Engineering secure systems: Models., patterns, and empirical validation,” Computers and Security, vol. 77,
pp. 315-348, 2018.

[29] A. Oliveira, V. Bischoff, L. Gonçales, K. Farias and M. Segalotto, “BRCode: An interpretive model-driven engineering approach for
enterprise applications,” Computers in Industry, vol. 96, pp. 86-97, 2018.

[30] Microsoft, “TouchMe Gesture Studio,” Appsolutely Apps, 2015. [Online]. Available: https://www.microsoft.com/en-us/p/touchme-
gesture-studio/9wzdncrdg0l8. [Accessed 02 08 2018].

[31] ASUS, “Smart Gesture - Introduction of ASUS Smart Gesture software,” 25 07 2018. [Online]. Available:
https://www.asus.com/support/FAQ/1009613/. [Accessed 02 08 2018].

[32] A. Forward and T. Lethbridge, “Problems and opportunities for model-centric versus code-centric software development: a survey of
software professionals,” in Proceedings of the 2008 international workshop on Models in software engineering - MiSE'08, Leipzig,
Germany, 2008.

[33] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven Architecture: Practice and Promise, Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[34] L. Vogel, Eclipse Rich Client Platform. The complete guide to Eclipse application development, Lars Vogel, 2015.

[35] A. C. Long, J. A. Landay and L. A. Rowe, “quill: A Gesture Design Tool for Pen-based User Interfaces,” 2009.

[36] B. Signer, U. Kurmann and M. Norrie, “iGesture: A General Gesture Recognition Framework,” in 9th Conf. on Document Analysis
and Recognition, Brazil, 2007.

[37] A. Milicevic, D. Jackson, M. Gligoric and D. Marinov, “Model-based, Event-Driven Programming Paradigm for Interactive Web
Applications,” in OnWard! 2013, Indiana, USA, 2013.

[38] S. Sim and R. Gallardo-Valencia, “Introduction: Remixing Snippets and Reusing Components,” in Finding Source Code on the Web
for Remix and Reuse, New York, Springer Science+Business, 2013, p. 348.

[39] J. Farrell, An Object-Oriented Approach to Programming Logic and Design, Boston: Course Technology, 2013.

[40] O. Parra, S. España and O. Pastor, “gestUI: A Model-driven Method and a Tool for Including Gesture-based Interaction in User
Interfaces,” Complex Systems Informatics and Modeling Quarterly, vol. 6, pp. 73-92, 2016.

[41] J. Kolb, B. Rudner and M. Reichert, “Gesture-based Process Modeling Using Multi-Touch Devices,” International Journal of
Information System Modeling and Design, vol. 4, no. 4, pp. 48-69, 2013.

[42] O. Parra, S. España and O. Pastor, “Tailoring User Interfaces to Include Gesture-Based Interaction with gestUI,” in Conceptual
Modeling. ER 2016. Lecture Notes in Computer Science, Gifu, Japan, 2016.

[43] O. Parra, S. España, J. Panach and O. Pastor, “Extending and validating gestUI using Technical Action Research,” in 11th
International Conference on Research Challenges in Information Science (RCIS), Brighton, UK, 2017.

[44] K. Krugler, “Krugle Code Search Architecture,” in Finding Source Code on the Web for Remix and Reuse, New York, USA, Springer
Science+Business, 2013, p. 348.

[45] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell and A. Wesslèn, Experimentation in Software Engineering, Berlin: Springer,
2012.

[46] C. Truica, F. Radulescu, A. Boicea and I. Bucur, “Performance Evaluation for CRUD Operations in Asynchronously Replicated
Document Oriented Database,” in 2015 20th International Conference on Control Systems and Computer Science, Bucharest,
Romania, 2015.

[47] F. Li, W. Wang, J. Qu and H. Han, “The Design of Adaptive User Interface Based on the Grey Relational Grade,” Journal of Physics:
Conference Series, vol. 1060, no. 1, pp. 1-10, 2018.

[48] N. Juristo and A. Moreno, Basics of Software Engineering Experimentation, Springer US, 2001.

[49] O. Parra, S. España and O. Pastor, “Including multi-stroke gesture-based interaction in user interfaces using a model-driven method,”
in Proceedings of the XVI International Conference on Human Computer Interaction - INTERACCION '15, Vilanova i la Geltrú
(Barcelona), 2015.

[50] D. Kieras, “Using the Keystroke-Level Model to Estimate Execution Times,” University of Michigan, Michigan, USA, 2001.

[51] S. Card, A. Newell and T. Moran, The Psychology of Human-Computer Interaction, Hillsdale, NJ, USA: L. Erlbaum Associates Inc.,
1983.

[52] J. H. Kim and R. C. Miller, “6.813/6.831 User Interface Design,” MIT, 02 09 2009. [Online]. Available:
http://courses.csail.mit.edu/6.831/2009/handouts/ac18-predictive-evaluation/klm.shtml. [Accessed 28 10 2015].

[53] S. España, J. Grabis, M. Henkel, H. Koc, K. Sandkuhl, J. Stirna and J. Zdravkovic, “Strategies for Capability Modelling: Analysis
Based on Initial Experiences,” in Proceedings of the CAiSE 2015 International Workshops, Stockholm, Sweden, 2015.

[54] J. Stirna, J. Grabis, M. Henkel and J. Zdravkovic, “Capability Driven Development – An Approach to Support Evolving
Organizations,” in PoEM 2012, 2012.

[55] P. Runeson, “Using Students as Experiment Subjects – An Analysis on Graduate and Freshmen Student Data,” Proceedings 7th
International Conference on Empirical Assessment & Evaluation in Software Engineering, pp. 95-102, 2003.

[56] M. Svahnberg, A. Aurum and C. Wohlin, “Using students as subjects - an empirical evaluation,” in Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and measurement, Kaiserslautern, Germany, 2008.

[57] F. Faul, E. Erdfelder, A. G. Lang and A. Buchner, “G*Power3: A flexible statistical power analysis program for the social,
behavioural, and biomedical sceinces,” Behavior Research Methods, vol. 39, pp. 175-191, 2007.

[58] K. Maxwell, Applied Statistics for Software Managers, Prentice-Hall, 2011.

[59] H. Boone and D. Boone, “Analyzing Likert Data,” Journal of Extension. Sharing Knowledge, Enriching Extension, vol. 50, no. 2,
2012.

[60] J. Kotrlik, “The Incorporation of Effect Size in Information Technology, Learning, and Performance Research,” Information
Technology, Learning, and Performance Journal, vol. 21, no. 1, pp. 1-7, 2003.

[61] D. Lakens, “Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs,”
Frontiers in Psychology, vol. 4, no. Article 863, pp. 1-12, 2013.

[62] S. Jamieson, “Likert scales: How to (ab)use them,” Medical Education, vol. 38, pp. 1217-1218, 2004.

