

Decentralized Container Tracking System

Author: Carlos Jácome Ferrao

Director: Manuel Esteve Domingo

Start date: 9/02/2020

1 Decentralized Container Tracking System

Objectives — The objective of this thesis is the design of a decentralized application that allows not only tracking

cargo containers in a single immutable ledger, but also to pay for the services incurred during their journey. As

an additional objective, a prototype will be implemented as proof of concept and testing bench for further

research.

Methodology — The methodology employed is, in the first place, the research of technical publications to

understand the fundamental concepts behind blockchain technology. Subsequently, the design and

implementation of a smart contract to handle the prototype business logic. Finally, the implementation of a

user interface to allow final users to interact with the smart contract.

Prototype – A decentralized application has been developed over Ethereum blockchain platform to demonstrate

the feasibility of the architecture proposed in this project.

Results — As a result of this project, we have a working prototype of a decentralized application that records

cargo containers events and allows direct payments from container owners to service providers using

blockchain technology.

Further research — The inclusion of IoT technologies would be an obvious further step on this research. There

is also the possibility to add more layers of data to the smart contract to have a more detailed information about

the cargo carried inside the container. Data related to type of cargo, temperature, customs, sanitary

documentation, etc. can be also traced. Including other stakeholders such as customs and sanitary authorities

to facilitate customs clearance. The creation of a custom currency to avoid variations on ether valuation can be

also considered.

Decentralized Container Tracking System 2

Abstract — This dissertation explores how blockchain technology can be used to improve assets tracking in the

supply chain. Tracking cargo containers is still a challenge for the logistics industry. Container owners rely on

direct links with each participant in the supply chain to track their containers. The information exchanged

between container owners and service providers is later used as baseline for cargo tracking and invoicing. On

numerous occasions, discrepancies between systems lead to lost containers and legal disputes. Instead of

recording container status on different systems, this work proposes the use of blockchain technology to record

container events into a single immutable ledger. After a theoretical introduction to the technologies that support

blockchain platforms, it is described the architecture of a decentralized application based on Ethereum

platform. Finally, a decentralized application prototype based on the previously proposed architecture has been

implemented. The prototype demonstrated the validity of the principles collected throughout this work and can

be a starting point for future developments.

Autor: Carlos Jácome Ferrao, email: carjafer@teleco.upv.es

Director: Manuel Esteve Domingo, email: mesteve@dcom.upv.es

Fecha de entrega: 25-11-2020

mailto:carjafer@teleco.upv.es
mailto:mesteve@dcom.upv.es

3 Decentralized Container Tracking System

INDEX

I. Introduction ..4

II. State of the Art ..5

II.1. Transactions ..5

II.2. Consensus Mechanism ...6

II.3. Merkle Tree ..6

II.4. Peer-to-Peer Network ...7

II.5. Scripting ...7

III. Architecture ...9

III.1. Ethereum Accounts ...9

III.2. Messages and Transactions ...10

III.3. Ethereum Virtual Machine (EVM) ...10

III.4. Smart Contracts ...11

III.5. User Interface ..11

III.6. Data Storage ..12

IV. Prototype ..13

IV.1. Business Scenario ...14

IV.2. Solution ...14

IV.3. Demo ...18

V. Conclusions ..25

References .. 26

Decentralized Container Tracking System 4

I. Introduction

Nowadays, freight containers tracking represents a challenge for the logistics industry. Container

owners rely on direct links with each participant in the supply chain to record changes in the status

of cargo containers. These events are later used as baseline for cargo tracking and invoicing. On

numerous occasions, discrepancies between systems lead to lost containers and legal disputes.

This thesis proposes the use of blockchain technology to track cargo containers along its journey

from its inclusion into the equipment pool to its retirement at the end of its lifecycle. Instead of

recording updates to container status on different systems, blockchain technology allows to record

container events into a single immutable ledger, adding transparency and traceability to the entire

system.

The proposed solution is a decentralized application on a permissioned blockchain, where only

registered participants can interact with the application. The participants interact with the blockchain

through a user interface that presents relevant information according to the participant profile (e.g.

cargo owner, terminal, warehouse, customs). Each participant is responsible for recording container

events that take place in their premises on the blockchain.

Additionally, the decentralized application allows automatic payments for the services incurred

during the container journey. For each event recorded on the blockchain, a smart contract calculates

the amount of money that must be payed to the service provider (e.g., terminal, depot or warehouse).

Container owners will be able to validate the amount and pay inside the application just few minutes

after the service has been completed. Usually, this payment process takes days or even weeks.

For this solution to work, the selected blockchain platform must give the possibility to develop

business logic through smart contracts and provide a native cryptocurrency to implement automatic

payments.

5 Decentralized Container Tracking System

II. State of the Art

A chain of transaction blocks linked by previous block hash was first described by Satoshi Nakamoto

on his paper published on 2008[1], introducing a new digital currency called Bitcoin.

Nakamoto’s purpose with Bitcoin was to enable an innovative peer to peer platform to transfer

electronic currency without a central authority, by implementing software programs for validation,

verification, and consensus on a decentralized infrastructure. Computation elements were added later

to the blockchain infrastructure that has opened new possibilities beyond currency transfer.

Bitcoin supports an optional and special feature called scripts for conditional transfer of values.

Ethereum, a second generation blockchain, extended this scripting feature into a complete code

execution framework called smart contracts. Ethereum provides a blockchain with a Turing-complete

programming language that can be used to create smart contracts.

II.1. Transactions

From a technical point of view, we can think of Bitcoin as a state transition system, where we have

a state consisting of the ownership of all existing bitcoins and, when applying a transition function

that takes current state and a number of transactions, outputs a new state as the result. Take for

example a standard banking system, the state is a balance sheet, the transaction is a request to move

certain amount of money from one account to another, the transition function decreases the balance

in the sender’s account, and increases the balance in the receiver’s account by the amount requested

in the transaction. If the sender’s account does not have enough funds requested in the transaction,

the transition function returns an error [2].

In Bitcoin, the state is the collection of all unspent transaction outputs (UTXO), with each UTXO

having a denomination and an owner. The owner is represented by a 20-byte address, which is

essentially a cryptographic public key. Each transaction contains one or more inputs, a cryptographic

signature produced with the owner’s address private key, and one or more outputs. In the same way

that each transaction input is associated to an existing UTXO, each output is an UTXO added to the

new state [2].

Transactions are grouped into blocks, each block containing a reference to previous block hash,

a timestamp, a nonce, and a list of all transactions that have taken place since the previous block.

Over time, this creates a persistent blockchain that continually updates to maintain the digital ledger

up to date [2].

Decentralized Container Tracking System 6

II.2. Consensus Mechanism

For all nodes to agree on the order of the blocks in the blockchain, Bitcoin needed to combine the

state transition system with a consensus mechanism. The proof-of-work is the consensus mechanism

used by Bitcoin and Ethereum.

Proof-of-work implementation involves scanning for a value that when hashed, it begins with a

number of zero bits. The block’s nonce is incremented until a value is found that produces a hash

with the expected number of zero bits. The average work required is exponential in the number of

zero bits required and can be verified by executing a single hash. This makes proof-of-work hard to

calculate, but easy to verify. Once the block is generated, it cannot be changed without doing the

proof-of-work again [1].

Determining the representation in majority decision making is also solved through the proof-of-

work. The majority is represented by the longest chain, which is the greatest proof-of-work effort

invested in it. If the majority of CPU is controlled by honest nodes, any competing chains will be

outpaced by the honest and fastest growing chain. Attackers wanting to modify a past block will have

not only to redo the proof-of-work of the targeted block, but also the proof-of-work of all blocks after

it, and to surpass the work of honest nodes [1].

The process of creating new blocks is called mining, therefore, block creators are miners. Miners

are entitled to 12.5 BTC for every valid block added to the chain as a compensation fee for the

computational work expended. Additionally, in the case the value of the inputs in a transaction is

higher than the value of the outputs, the miner gets the difference as a transaction fee [2].

II.3. Merkle Tree

In bitcoin, the hash of a block, a 200-byte piece of data, is in fact, the hash of the block header. It

contains the previous block hash, the timestamp, the nonce and the root hash of a data structure called

the Merkle tree representing all the transactions in the block [2].

A Merkle tree is a type of binary tree, where each transaction is hashed, then two transaction

hashes are concatenated and hashed together, and so on until there is a single hash that represents all

the transactions in the block. The reason why this works is that hashes propagate upward: if a

malicious user attempts to change a transaction in the bottom of the Merkle tree, this change will

propagate to the nodes above, all the way to the root hash and therefore the hash of the block, causing

the protocol to register it as a completely different block [2].

7 Decentralized Container Tracking System

Fig.1. Merkle Tree.

The purpose of the Merkle tree is to allow the data in a block to be delivered in small pieces, a

node can download only the header of a block from one source, the small part of the tree relevant to

them from another source, and still be assured that all of the data is correct. The Merkle tree protocol

is an important scalability feature of Bitcoin, essential to long-term sustainability [2].

II.4. Peer-to-Peer Network

New transactions are sent to all nodes, each node adds the new transactions to a block and starts the

work to find the proof-of-work. A new transaction does not need to reach all nodes, as long as they

reach many nodes, it will be added to a block sooner than later [1].

New created blocks are broadcasted to all nodes once the proof-of-work is found, the new block

is accepted only if all transactions are valid. Nodes do not have to communicate that the new block

has been accepted, they just start working on the next block using the hash of the previous block.

Blocks are also tolerant to dropped messages, nodes will realize that one block is missing once the

next one is received, in that case the node requests the missing block to complete the chain [1].

In the case two nodes broadcast different versions of the same block at the same time, all nodes

will start working on the branch formed by the block that was received first, and save the other block

in case the branch becomes longer. The longest chain is always considered to be the correct one.

When the next proof-of-work is found and one of the branches becomes longer, the nodes working

in the other branch will switch and start working on the longer branch [1].

I.5. Scripting

The concept of smart contracts was first proposed by Nick Szabo in 1994 [3]. The idea behind the

smart contract is self-executing contracts, written in the form of software programs, with the terms

of the agreement between interested parties. A smart contract is a piece of software that exist across

T1 T2

T3

T4

H1

H2

H3

H4

H12

H34

H1234

Decentralized Container Tracking System 8

a distributed, decentralized blockchain network and allows transactions to be conducted between

anonymous or untrusted parties without the need for a central authority [5].

 Bitcoin protocol provides a basic version of the concept of smart contracts, where a UTXO can

be owned not only by a public key, but also by a more complicated script expressed in a simple stack-

based programming language. In this model, a transaction must provide the data to satisfy the script

in order to spend the UTXO. Another example is a script that requires more than one private key

signature to validate the transaction [2].

However, writing smart contracts with complex logic is not possible in Bitcoin due to the

limitations of its scripting language [2]. Second generation blockchain platforms, such as Ethereum,

embrace the idea of running user-defined software programs on the blockchain, thus creating

expressive customized smart contracts with the help of Turing-complete programming languages [5].

Ethereum smart contracts are written in high level languages, such as Solidity, and compiled in a

stack-based bytecode language and executed in Ethereum Virtual Machine (EVM). Ethereum is

currently the most popular platform for developing smart contracts.

9 Decentralized Container Tracking System

III. Architecture

A decentralized application solves a problem that requires blockchain services and blockchain

infrastructure for realizing its purpose. Typically, a decentralized application has a web frontend, a

blockchain backend, and the code connecting the two.

In such an architecture, the frontend of a decentralized application channels any external stimulus

from the users to the blockchain infrastructure and returns any response back to them.

Fig.2. Ethereum architecture stack.

III.1. Ethereum Accounts

In Ethereum, the state is made up of objects called accounts, with each account having a 20-byte

address, and state transitions being direct transfers of value and information between accounts [2].

An Ethereum account contains four fields: the nonce, the account’s ether balance, the contract

code (if present) and the account’s storage (empty by default). The nonce is a counter used to ensure

each transaction is only processed once. Ether is Ethereum’s built-in cryptocurrency, and it is used

to pay transaction fees [2].

In general, there are two types of accounts: externally owned accounts or EOA, controlled by

private keys, and contract accounts, controlled by their contract code. An externally owned account

has no code, and one can send messages from an externally owned account by creating and signing

a transaction; in a contract account, every time the contract account receives a message its code

activates, allowing it to read and write to internal storage and send messages to other contracts [2].

Ethereum Virtual Machine

Smart Contracts

User Interface

Peer-to-Peer Network

Hardware

Decentralized Container Tracking System 10

III.2. Messages and Transactions

The term transaction is used in Ethereum to refer to the signed data package that stores a message

to be sent from an externally owned account. Each transaction contains, the recipient of the message,

the signature that identifies the sender and the amount of ether to transfer from the sender to the

recipient. Transactions also contain an optional data field, STARTGAS and GASPRICE values [2].

The first three fields are expected in any cryptocurrency system. The data field has no function

by default, but the virtual machine has an opcode which a contract can use to access the data. The

STARTGAS value represents the maximum number of computational steps that the transaction

execution can take. The GASPRICE represents the fee the sender pays per computational step [2].

In order to prevent intended or accidental infinite loops or computational expensive operations

that may slow down the network, each transaction must set a limit of computational steps of code

execution that can be used. Computational cost is calculated in gas units, usually one computational

step costs one gas. This means that computationally more expensive operations cost higher amounts

of gas that simple ones. There is also a fee of five gas for every byte added to the transaction data

[2].

III.3. Ethereum Virtual Machine (EVM)

At the heart of the Ethereum protocol and operation is the Ethereum Virtual Machine, or EVM. The

EVM is a computation engine, not quite different to the virtual machines of Microsoft’s .NET

Framework, or interpreters of other bytecode-compiled programming languages such as Java [6].

The EVM is the part of Ethereum that handles smart contract deployment and execution. At a

high level, the EVM running on the Ethereum blockchain can be thought of as a global decentralized

computer containing millions of executable objects, each with its own permanent data store [6]. The

code in Ethereum contracts is converted into a low-level bytecode language. This stack-based code

is also known as Ethereum virtual machine code or EVM code. The EVM code consists of a series

of bytes, where each byte represents an operation. EVM code execution is an infinite loop that

consists of performing the operation pointed to by the program counter and then incrementing the

program counter by one, until the end of the code is reached, or an error occurs. [2].

The operations have access to three types of space to store data: stack, memory and storage.

The stack is a last-in-first-out container limited in size, to which values can be pushed and popped.

Memory space is an infinitely expandable not persistent byte array, when the contract execution

finishes memory contents are not saved. Unlike stack and memory, which reset after computation

ends, storage persists for the long term. Contract storage is a key/value store that acts as a public

11 Decentralized Container Tracking System

database, from which values can be read externally without having to send a transaction to the

contract. However, writing to contract storage is expensive compared to writing to memory. The

code can also access the value, sender and data of the incoming message, as well as block header

data, and can return a byte array of data as an output [2].

III.4. Smart Contracts

In decentralized applications, smart contracts are used to store the business logic and the related state

of the application. Smart contracts can be viewed as the server-side (backend) component in a regular

application. One of the main differences is that any computation executed in a smart contract is

expensive and so should be kept as minimal as possible. It is therefore important to identify which

aspects of the application need a trusted and decentralized execution platform [6].

Ethereum blockchain platform allows to build architectures in which a network of smart contracts

call and pass data between each other, reading and writing their own state variables, with their

complexity restricted only by the block gas limit. One major consideration of smart contract

architecture design is that it is not possible to change the smart contract code once it is deployed. It

can be deleted if it is programmed with an accessible SELFDESTRUCT opcode, but it cannot be

changed in any way [6].

The second major consideration of smart contract architecture design is the application size. A

large monolithic smart contract may cost a lot of gas to deploy and use. Therefore, some applications

may choose to have off-chain computation and an external data source [6].

III.5. User Interface

Unlike the business logic of a decentralized application, which requires to understand the EVM and

new programming languages such as Solidity, the client-side interface uses standard web

technologies HTML, CSS and JavaScript. Interactions with Ethereum, such as signing messages,

sending transactions, and managing keys, are often conducted through the web browser, via an

extension such as MetaMask [6].

Although it is possible to create a mobile decentralized application, currently there are few

resources to help create mobile decentralized applications frontends, mainly due to the lack of mobile

clients that can serve as a light client with key-management functionality. The frontend is usually

linked to Ethereum via the web3.js JavaScript library, which is bundled with the frontend resources

and served to a browser by a web server [6].

Web3.js is a collection of libraries that allow you to interact with a local or remote Ethereum node

using HTTP, IPC or WebSocket. It represents a JavaScript language binding for Ethereum JSON

Decentralized Container Tracking System 12

RPC interface, which makes it directly usable in web technology, as JavaScript is natively supported

in almost all web browsers. Using MetaMask browser extension in combination with web3.js, in a

web interface, is a convenient way to interact with the Ethereum network.

III.6. Data Storage

Due to high gas costs and the currently low block gas limit, smart contracts are not well suited to

storing or processing large amounts of data. Hence, most decentralized applications utilize off-chain

data storage services, storing the bulky data outside the Ethereum blockchain, on a data storage

platform. The data storage platform can be centralized (cloud database), or decentralized, stored on

a P2P platform such as the IPFS or Swarm [6].

Decentralized P2P storage is ideal for storing and distributing large static assets such as images,

videos, and the resources of the application’s frontend web interface (HTML, CSS, JavaScript).

13 Decentralized Container Tracking System

IV. Prototype

In order to demonstrate the validity of the principles collected in previous sections, a decentralized

application prototype has been developed. This prototype is intended as a proof of concept and

starting point for future developments.

 A representative number of events were selected to track containers status and pay for the services

received. These events will be represented as functions in the smart contract. A web page is used as

the user interface that allows the container owner and service providers to interact with the smart

contract.

 The user interface provides information about the user account, account balance, container

numbers, container status and location. In addition, the container owner can see the amount of ether

owed to the providers, pay for the services received, and display the events recorded in the

blockchain.

Fig.3. Decentralized Application User Interface.

 Service providers can see the containers located on their premises or in transit, and the amount of

ether owed to them. They can also record container events through a set of buttons showed in the

user interface at container level.

Truffle framework has been used to develop the decentralized application prototype. Truffle

provides a development tool with the ability to test and implement decentralized applications based

on Ethereum blockchain. Ganache, also part of Truffle framework, is a local blockchain simulator

that allows to replicate blockchain networks to test smart contracts.

Decentralized Container Tracking System 14

III.1. Business Scenario

This section describes the business scenario that will be used later to run a demo of the prototype.

Consider two containers, MSKU1239016 and MRKU0046221, that will be exported from

Valencia, Spain to Cartagena, Colombia. Both containers will be initially located at a container

terminal in Valencia (Terminal VLC). From there, the containers will be picked up by a truck and

delivered to a warehouse within Valencia city (Warehouse VLC). Inside the warehouse, the

containers will be stuffed with the cargo that will be later imported to Colombia.

The two full containers will be transported back to the terminal by truck to be loaded on a vessel

that will take them to Cartagena. Once discharged in Cartagena (Terminal CTG), the containers will

be picked up by a truck and moved to a warehouse for delivering the cargo (Warehouse CTG).

Both empty containers are transported back to the container terminal for storage, waiting for the

next shipment. Finally, the container owner will pay for the fees incurred during the container

transportation to the service providers, i.e. terminals and warehouses.

III.2. Solution

The smart contract is the piece of software that handles decentralized application’s backend business

rules. On our prototype, the ContainerTracker smart contract is written in Solidity, an object-

oriented, high-level language created for implementing smart contracts on Ethereum blockchain.

In the first section of the smart contract, custom variables that represent the containers and service

providers locations were defined as shown in Fig. 4. Container structure includes variables that

identify current location, previous location, full or empty status, and transport mode. Transport mode

can be “truck” or “vessel” when the container is being moved from one location to another, and

“none” when the container is inside a terminal or warehouse.

Location structure includes variables to identify the location name, location type and country.

Status, location mode, transport mode and country are lists of fixed values that identify attributes of

locations and containers. Container owner, debt to vendors, and lists of containers and locations are

also defined as variables.

In Solidity language, modifiers are inheritable properties that allow to control the behaviour of

the functions in the smart contract. Modifier onlyOwner, described in Fig. 5, requires that only the

container owner account calls a specific function. The other two modifiers described in Fig. 5 validate

that containers and locations are not registered more than once.

15 Decentralized Container Tracking System

Fig.4. Smart contract custom types and state variables.

Fig.5. Smart contract modifiers.

 Functions addLocation and addContainer are used to register new locations and add new

containers to the pool. Both functions verify that new values are not registered already by inheriting

the modifiers that check for duplicates. Functions addLocation and addContainer can be called only

by the container owner.

Decentralized Container Tracking System 16

Fig.6. Smart contract functions addLocation and addContainer.

 Functions gateIn and gateOut record transactions when the containers arrive or leave a location

through the gate. Function gateOut first validates that the container is currently in the location that

called the function. Then, current location is updated to zero, meaning that the container is in transit,

and previous location to the address that called the function; transport mode is updated with the value

“truck”. Note that one ether is added to the vendorDebt variable.

Function gateIn validates that the container is being carried on a truck and that the previous

location is not the same that calls the function. If both validations are false, current location is updated

with the address that called the function, transport mode is set to none and location vendor debt is

increased by one ether.

Fig.7. Smart contract functions gateOut and gateIn.

 Functions stuffing and stripping change the container status, full or empty, accordingly. Both

functions validate that the container is in the location that calls the function and current container

status, the container must be full to be stripped and vice versa. Both events have a cost of one ether

to the container owner.

17 Decentralized Container Tracking System

Fig. 8. Smart contract functions stuffing and stripping.

Discharge function records container arrivals to terminals through a vessel. It validates that the

container transport mode is “vessel” and that the previous location is different from the one calling

the function. Similarly, load function records events of containers leaving the terminal on a vessel.

It validates that the container is in the same location that called the function. Both functions have a

of cost two ether to the container owner.

Fig.9. Smart contract functions load and discharge.

 Finally, the function initializeDemo has been created to register four locations and add two

containers to the pool. Ganache generates ten testing accounts with 100 ether each. First account is

reserved for the container owner. The next four accounts are registered as the locations that will

handle the containers.

Fig.10. Smart contract, function initializeDemo.

Decentralized Container Tracking System 18

 In Fig.11, Ganache user interface shows the five accounts that have been registered to run the

demo. Container owner’s account has been used to deploy the smart contract, note that its balance

has been decreased in few decimals.

Fig.11. Ganache, locations accounts.

III.3. Demo

In this section, a demo of the prototype will be run following the business scenario described in

previous sections. Initially, both empty containers are in Terminal VLC. The terminal can take two

actions, either load the empty containers onto a vessel or gate them out on a truck. The containers

are visible only to the container owner and Terminal VLC.

Fig.11. Terminal VLC, empty containers.

In order to follow our business scenario, the containers will be taken to a warehouse for stuffing.

All transactions must be confirmed in MetaMask to be recorded in the blockchain. As shown in Fig.

12, there is no currency transfer in this transaction, but only changes on containers variables.

19 Decentralized Container Tracking System

Fig.13. MetaMask, transaction confirmation.

Once the transactions are confirmed, gate out events are recorded in the blockchain and the

containers are no longer in Terminal VLC, but in transit on a truck. At this point, the containers are

visible to the container owner and the service providers located close to the terminal. Notice that the

amount of ether owed to Terminal VLC has been increased by two, one ether per gate out event.

Fig.14. Warehouse VLC, empty containers in transit (truck).

Ganache user interface allows to review the block mined and the transaction included in the

block as shown in Fig. 4.13. In Ganache, the process of mining a new block takes few seconds,

each block usually includes only one transaction.

Decentralized Container Tracking System 20

Fig.15. Ganache. Block 5.

When the two containers gate into Warehouse VLC, the amount of debt to the location increases

in two ether. Containers are now visible to Warehouse VLC and the container owner.

Fig.16. Warehouse VLC, empty containers gated in.

The containers are stuffed inside Warehouse VLC. Each stuffing event increases the debt count

in one ether. Once full, the containers gate out from Warehouse VLC on a truck and gate in Terminal

VLC to be loaded onto a vessel. Each gate event increases the debt by one ether.

Fig.17. Terminal VLC, full containers in transit (truck).

21 Decentralized Container Tracking System

Fig.18. Terminal VLC, full containers gated in.

Containers are loaded on a vessel in Terminal VLC. Each load move has a cost of two ether

to the container owner. The containers are now visible to the container owner and Terminal CTG.

Fig.19. Terminal CTG, containers in transit (vessel).

The containers are discharged in Terminal CTG, each discharge move has a cost of two ether to

the container owner. On this stage, the containers are only visible to the container owner and the

Terminal CTG.

Fig.20. Terminal CTG, full containers discharged.

Decentralized Container Tracking System 22

Later, both containers are taken to Warehouse CTG for stripping. Each gate transaction

increases the amount of debt by one ether. Containers go first on an intermediate state, in transit,

where they are only visible to the owner and the facilities near the terminal.

Fig.21. Warehouse CTG, full containers in transit (truck).

Fig.22. Warehouse CTG, full containers gated in.

Fig.23. Warehouse CTG, empty containers after stripping.

Once the containers are empty, they are sent back to Terminal CTG. In Terminal CTG, the

containers are stored waiting for the next shipment. Each gate transaction increased the debt count

in one ether. Final debt count is 28 ether, container owner owes eight ether to each terminal and

6 ether to each warehouse.

23 Decentralized Container Tracking System

Fig.24. Terminal CTG, containers in transit.

Fig.25. Container Owner, empty containers located in Terminal CTG.

 Each container move generates an event that is recorded in the blockchain. All container events

are visible to the container owner from the decentralized application UI selecting the button Show

Events. Reviewing the records, the container owner can track each container from its inclusion to

container pool.

 Fig.26. User Interface. Containers events (Show Events).

Decentralized Container Tracking System 24

Container owner can use the Pay Services button to pay to the service providers for the costs

incurred during the container journey. Each payment, as any other transaction, will require to be

confirmed in MetaMask before executing. Container owner must pay eight ether to each terminal

and 6 ether to each warehouse.

Fig.27. MetaMask, transaction confirmation (payment).

 Block 29 shows one of the payment transactions, it transfers 8 ether to Terminal VLC for the

services provided to containers MSKU1239016 and MRKU0046221.

Fig.28. Ganache. Block 29 containing payment transaction.

Fig.29. Ganache. Payment transaction.

25 Decentralized Container Tracking System

V. Conclusions

Throughout this work, a prototype of a decentralized application has been implemented to track cargo

containers and pay for the services incurred during the containers journey. Instead of recording

container status on different systems, this thesis proposes the use of blockchain technology to record

container events into a single immutable ledger. Additionally, using Ethereum built-in

cryptocurrency, ether, container owners can pay for the services provided inside of the same

application, automatically and in a decentralized way. This means that the payments are done

transferring the amount of ether from one Ethereum account to another without the intervention of

any central entity. The architecture described in this document demonstrates that blockchain

technology is a suitable solution to track cargo containers facilitating transparency and traceability.

The inclusion of IoT technologies appears to be an obvious further step on this research. Sensors

can give more information in real time about the container status, being particularly relevant on reefer

containers, used to transport perishables and dangerous goods. Following the same path, it is possible

to add more layers of data to the smart contract to have more detailed information about the cargo

carried by the container. Data related to type of cargo, temperature, customs, sanitary documentation,

etc. can also be tracked along with the containers.

In other to broaden the scope of the solution, other stakeholders can be invited to participate such

as customs and sanitary authorities to facilitate cargo customs clearance. Finally, the creation of a

custom cryptocurrency to pay for the services provided to avoid variations on ether valuation can be

also considered to continue this work.

Decentralized Container Tracking System 26

REFERENCES

[1] S. Nakamoto. Bitcoin: A Peer to Peer Electronic Cash System. 2008.

[2] V. Buterin. A Next Generation Smart Contract and Decentralized Application Platform. 2013.

[3] N. Szabo. Smart Contracts: Building Blocks for Digital Markets. 1996.

[4] A. Narayanan. J. Clark. Bitcoin’s Academic Pedigree: The concept of cryptocurrencies is built from

forgotten ideas in research literature. Communications of the ACM, December 2017.

[5] Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li1, Rui Qin, Fei-Yue Wang. An Overview of Smart

Contract: Architecture, Applications, and Future Trends. IEEE Intelligent Vehicles Symposium,

2018.

[6] A. M. Antonopoulos. G. Wood, Mastering Ethereum: Building Smart Contracts and DApps. 2018.

https://www.google.es/search?tbo=p&tbm=bks&q=inauthor:%22Andreas+M.+Antonopoulos%22
https://www.google.es/search?tbo=p&tbm=bks&q=inauthor:%22Gavin+Wood+Ph.D.%22

