
 International Journal of 

Molecular Sciences

Review

Saccharomyces cerevisiae as a Tool to Investigate Plant
Potassium and Sodium Transporters

Antonella Locascio † , Nuria Andrés-Colás †, José Miguel Mulet and Lynne Yenush *

Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de
Investigaciones Científicas, 46022 Valencia, Spain; antonella.locascii@gmail.com (A.L.);
nuanco@btc.upv.es (N.A.-C.); jmmulet@ibmcp.upv.es (J.M.M.)
* Correspondence: lynne@ibmcp.upv.es
† These authors contributed equally.

Received: 9 April 2019; Accepted: 29 April 2019; Published: 30 April 2019
����������
�������

Abstract: Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is
essential for plants and its concentration must be maintained at approximately 150 mM in the plant
cell cytoplasm including under circumstances where its concentration is much lower in soil. On the
other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in
specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental
conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity.
The baker’s yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants
in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that
the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins
can be expressed in yeast and are functional in this unicellular model system, which allows for
productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used
as a high-throughput platform for the identification of genes that confer stress tolerance and for the
study of protein–protein interactions. In this review, we summarize advances regarding potassium
and sodium transport that have been discovered using the yeast model system, the state-of-the-art of
the available techniques and the future directions and opportunities in this field.

Keywords: potassium transport; sodium transport; plant ion channels; yeast; functional
complementation; protein-protein interaction; heterologous expression

1. Introduction

Potassium (K+) and sodium (Na+) are two nutrients essential for plant life. They are absorbed
from the soil through the roots, translocated to the rest of plant organs through movement into the
xylem/phloem, to be finally compartmentalized in the organs where they exert their specific functions.

In particular, K+ is a macronutrient involved in fundamental processes required for plant growth
and development. It is required for the activity of numerous enzymes involved in the generation of
adenosine triphosphate (ATP) and for cellular turgor maintenance [1,2]. It also participates in the
regulation of the opening and closing of stomata [3,4], facilitates protein and starch synthesis and is
involved in the neutralization of inorganic and organic anions and macromolecules, thus maintaining
pH homeostasis and controlling the electrical potential across the plasma membrane [5].

The respiration rate of plants constitutes the determining factor for proper K+ uptake and transport
by plants [6,7]. In fact, it has been observed that the ion concentration in the xylem vessels, which is
directly determined by the transpiration rate, limits the rate of transfer of K+ from the root cells to
the xylem vessels [8]. It has also been observed that low K+ concentrations in the soil during a long
growth period will produce plants with a higher transpiration rate and increased stomata frequency
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per leaf area; while, higher internal K+ is correlated with a lower transpiration rate and fewer stomata
per leaf area [6].

Na+ is considered to be a micronutrient since it is not necessary in high amounts for plant growth.
It is not required for C3 plants, but is essential for C4 species, where it participates in the carbon cycle,
chlorophyll synthesis and photosystem II activity [9]. Nevertheless, Na+ ions become important in
small amounts for C3 species when exogenous K+ is present at low concentrations in the soil. It has
been shown that Na+ can replace K+-specific functions due to the fact that in their hydrated forms,
Na+ and K+ are chemically and structurally very similar [10,11]. On the other hand, K+ homeostasis is
severely affected by salt stress and high salt concentrations are toxic for plants. For this reason, plants
have developed specific mechanisms to sense, transport and store both K+ and Na+ [12].

In order to avoid and/or limit Na+ toxicity, plants have evolved several uptake systems consisting
of multiple channel types able to discriminate and coordinate the influx of these two different cations.
For instance, it has been shown that Na+-permeable channels present certain flexibility in their
Na+:K+ selectivity depending on the external concentration of salt, cooperating with other inward
cation channels at the plasma membrane [10]. Under saline conditions, reducing the activity of these
non-selective channels is thought to increase salt tolerance by impeding Na+ accumulation.

In addition, plants have evolved uptake mechanisms able to adapt to large variations in the
external concentrations of K+. In 1973, Epstein and collaborators proposed the presence of two
mechanisms of K+ uptake that work simultaneously [1]. The first is a high-affinity system, mediated by
carriers that are active when K+ concentrations are low (micromolar range), which was subsequently
shown to operate through the coupled movement of K+ with other cations, such as H+ or Na+ [13,14].
The second is a low-affinity system that functions as a “passive” transporter, working when K+

concentrations are relatively high (millimolar range).
Since then, many other studies have been published describing the molecular details regarding

different K+ channels and transporters, which have been cloned and characterized in several plant
species [15–21]. Most of our current knowledge on the physiological impact of K+ channel activities
derives from studies carried out in model plants, such as Arabidopsis thaliana. Other organisms have
been successfully used as tools for the functional characterization of these ion transport proteins, such
as Xenopus oocytes and the baker’s yeast, Saccharomyces cerevisiae.

The power of the budding yeast, S. cerevisiae in these kinds of studies resides not only in the
multiple properties that make it an efficient, easy and attractive system in which to screen and select
genes conferring certain phenotypes, but also in the fact that the majority of the subcellular processes
governing cellular ion homeostasis in yeast cells are largely conserved in higher eukaryotes. Thus,
insights from yeast can be easily translated to other organisms. In addition, S. cerevisiae allows for
large-scale, genome-wide analyses in a fast and economically efficient manner. Work with S. cerevisiae
allows for the discovery and/or characterization of many aspects of ion transporter function and
regulation, but obviously the final physiological proof of yeast-based hypotheses need to be validated
in planta. However, yeast remains an incredibly productive system to discover and study a multitude of
aspects related plant ion transporter function and provides a platform for the generation of knowledge
that can serve as the basis for experimental designs in more complex and time-consuming plant
model systems.

For details on the studies of the physiological characterization of plant K+ channels both in vivo
and in the Xenopus oocyte model, we refer the reader to other thorough reviews [22–25]. In this
review, we will describe and summarize results obtained using four general experimental approaches
employing S. cerevisiae that have been successfully applied to identify and/or characterize plant
K+ and Na+ transport proteins and their regulators: Functional complementation using mutants,
high-throughput protein–protein interaction assays, reconstitution of functional transport systems and
identification of plant genes able to confer salt tolerance upon overexpression.
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2. Functional Complementation as an Approach to Identify and Characterize Plant K+/Na+
Channels and Transporters

The functional complementation approach has been extremely successful for the identification
and molecular cloning of plant ion channels. In 1992, the first two inward rectifying plant K+ channels
(KAT1 and AKT1) were isolated by functional complementation of a yeast mutant devoid of its
high affinity K+ transporter genes [15,16]. This seminal work set the paradigm for this experimental
approach. Since then, several K+ transporters and regulators have been characterized, not only from
plants, but also from mammals, viruses and bacteria [20,21,26–33].

A brief summary of the major contributors to K+ uptake and Na+ extrusion in yeast will be
useful for understanding the details of the genetic backgrounds that are exploited in the identification
and subsequent functional studies of heterologous ion channels and transporters (Figure 1). For an
extended description of the mechanisms and regulation of Na+ and K+ transport and homeostasis in
yeast, we refer the reader to a comprehensive review [34].
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Figure 1. Schematic representation of the main monovalent channels and transporters in yeast and
plant cells. (A) In a yeast cell, channels and transporters are present in almost all the organelles and
cellular compartments. The introduction of positively charged ions and the expulsion of the negative
ones maintains the negative plasma membrane potential. All the ion transporter proteins cited in
the main text are represented. Inward/outward ion traffic is represented by arrows. (B) A schematic
representation of a plant cell (without the cell wall). The KAT1 channel is represented in the known
forms of homo-tetramer and hetero-tetramers with KAT2. All the transporters and channels cited in
the text are represented. Organelle size is not to scale.

Nutritional uptake of K+ in S. cerevisiae depends mainly on two K+ transporters, named Trk1 and
Trk2 [35–37]. These transporters use the electrochemical gradient generated by the plasma membrane
H+-ATPase encoded by the PMA1 gene to mediate high affinity uptake against the concentration
gradient accumulating concentrations of approximately 200 mM in the cytosol even when the external
concentration is as low as 10 µM. Trk1 contains 1235 amino acids and has been proposed to contain
four repetitions of an M1PM2 motif based on its homology to the KcsA K+ channel from Streptomyces
lividans [38]. M1 and M2 are transmembrane segments that are connected by the P helix (Figure 2).
Residues in the second transmembrane helix (M2) of the fourth M1PM2 repetition (M2D) have been
shown to be crucial for Trk1-mediated K+ transport [39]. Structural prediction models suggest that the
Trk1 monomer assembles into a dimer or possibly a tetramer, which would lead to the formation of a
“metapore” that could be responsible for Cl− currents that have been observed in electrophysiology
experiments [38,40,41]. Trk2 encodes a protein that is 55% identical to Trk1 [37], sharing the same
topology, but differing in the length of the second cytosolic segment, which is considerably shorter
in Trk2 (Figure 2). Trk1 and Trk2 allow yeast cells to grow under low K+ conditions and low pH.
Trk1 is largely responsible for high affinity K+ influx, but is not considered as essential since the trk1
simple mutant and even the trk1 trk2 double mutant can grow in media supplemented with millimolar
concentrations of K+. Deletion of the TRK2 gene has little effect on yeast growth on its own but
increases by 10-fold the concentration of K+ required for growth of the trk1 trk2 double mutant [37].
Thus, the trk1 trk2 mutant cannot grow in limiting K+ concentrations (below 1 mM). This phenotype
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can be rescued by the heterologous expression of different types of functional K+ channels, as will be
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Figure 2. Schematic representation of selected K+ transporter proteins from yeast and plants. Top
row: Yeast Trk1 and Trk2 transporters. The 4 M1PM2 structure is depicted. Bottom row: KAT1
and KAT2 channel monomers. CNB: cyclic nucleotide binding domain; KHA: KHA domain; ANK:
Ankyrin repeat.

As previously described, Trk1 and Trk2 are responsible for high affinity K+ uptake.
These transporters have been shown to be relatively specific for K+ vs. Na+ ions [42]. However,
under conditions of salt stress, Na+ can enter the cell through these transporters and through other
non-specific transporters (reviewed in [43]). Under conditions of high external K+ or Na+ concentrations,
two major transporters are responsible for the extrusion of these ions across the plasma membrane.
The ENA1 gene encodes for a P-type ATPase whose expression is markedly induced upon salt or
alkaline stress (reviewed in [44]). ENA transporters are localized to the plasma membrane and use
the energy generated from ATP hydrolysis to extrude K+ or Na+ out of the cell [45–47]. Most yeast
genomes contain three to five tandem copies of the ENA ATPases, thus requiring the deletion of the
entire cluster to eliminate this cation extrusion function (for reviews, see [43,48,49]). At acidic pH,
a second Na+/K+ extrusion system becomes important for yeast salt tolerance, the Nha1 antiporter.
Nha1 is localized at the plasma membrane and acts as a dimeric, electrogenic proton antiporter with
similar affinity for both K+ and Na+ [50–52]. Therefore, strains lacking the ENA cluster and the NHA1
gene are highly salt sensitive and have been used extensively to identify and characterize plant genes
involved in cation extrusion and salt tolerance in general, as will be discussed in the upcoming sections.

Tok1 is the only known outward rectifying K+ channel in yeast [53]. It is a plasma membrane
protein and its activity contributes significantly to the maintenance of the membrane potential [54].
However, the tok1 simple mutant does not have obvious growth phenotypes in high or low K+ media,
but the mutant is tolerant to killer toxins [55].

Additional K+ transporters are present in the yeast vacuolar membrane. This category of
transporters includes Vnx1 and Vhc1. Vnx1 works as an antiporter, exchanging vacuolar protons



Int. J. Mol. Sci. 2019, 20, 2133 6 of 37

for cytosolic K+ or Na+. Accordingly, Vnx1 is involved in Na+ compartmentalization and thus,
cytosol detoxification [56]. The VHC1 gene encodes for a vacuolar transporter that participates in K+

homeostasis [57]. It functions as a vacuolar K+/Cl− symporter, contributing to the maintenance of
intracellular K+ concentrations and vacuole morphology [57,58].

In addition, there are several ion transport proteins in other compartments and organelles. For
example, in the endosome membrane of yeast cells, there is a K+/Na+ transporter, Nhx1. It is a H+

antiporter that operates specifically compartmentalizing the cations and extruding H+ to the cytosol.
Together with Vnx1, the Nhx1 transporter contributes to the vacuolar and endosomal sequestration
of excess cations present in the cytosol, thus maintaining luminal pH of the vacuole and endosomes,
respectively [59]. Kha1, works as a K+/H+ antiporter in the Golgi apparatus [60] and Mkh1 constitutes
the system of exchanging protons for K+ in the mitochondria. Mkh1 is essential for mitochondrial
homeostasis and consequently for respiratory growth of yeast cells [61].

3. Milestones in the Identification of K+ Channels and Transporters in Plants

The trk1 trk2 mutant has been extensively used in several studies involving K+ channel
identification, characterization and regulation, not only for plant genes, but also for mammalian and
bacterial ion transporters. As mentioned, Trk1 transporters use the electrochemical gradient generated
by the Pma1 H+-ATPase to mediate high affinity K+ uptake. In fact, these transporters are the major
consumers of this electrochemical gradient [62]. The membrane potential of the trk1 trk2 double
mutant is more negative than the wild type strain, presumably because the positive charges in the
form of protons extruded by Pma1 are not efficiently replaced by K+ ions via the Trk transporters [63].
Thus, this increased negative potential allows for intracellular K+ accumulation through functional
heterologous K+ channels, which can be easily monitored by growth assays in low K+ media.

The identification of new genes involved in K+ uptake (K+ channels and transporters) has been
mainly based on yeast mutant complementation assays. Briefly, in this procedure a cDNA library (or a
candidate gene) from a specific organism is cloned into a yeast plasmid and subsequently transformed
into a yeast strain that can be used to select for the function of the transport protein. Table 1 lists
the yeast strains lacking the TRK1 and TRK2 genes that have been used in this type of approach.
The identification of positive clones is rapid and with minimal bias. The expression of a functional,
heterologous K+ channel rescues the poor growth phenotype of the mutant strain under limiting K+

concentrations. In the specific case of plasma membrane localized transporters, the genetic background
preferentially used for the screening is the trk1 trk2 double mutant. This strain has also been employed
in other studies, whenever the slow growth phenotype readout in low K+ media is useful.

Here, we will describe in more detail a few major examples of plant K+ channels and transporters
identified by yeast complementation. As previously mentioned, the first plant K+ channel cloned was
KAT1, an inward rectifying channel primarily involved in stomatal opening. KAT1 was cloned by
functional complementation of the high affinity K+ transport-defective trk1 trk2 mutant by screening
an Arabidopsis cDNA library. The expression of AtKAT1 in the yeast rescued growth on 50 µM KCl,
where the mutant normally requires at least 50 mM KCl for growth [64]. Subsequently, the injection of
rRNA encoding AtKAT1 into Xenopus oocytes confirmed an inward K+ current, displaying a pattern
characteristic of an inward rectifying channel with a high selectivity for K+ ions [27]. KAT1 belongs to
the Shaker-family of transporters and resides in the plasma membrane of guard cells. This category of
K+-selective channels typically consists of six trans-membrane domains, a cyclic nucleotide binding
domain, a KHA domain rich in hydrophobic and acidic residues and some have an ankyrin repeat
domain (Figure 2) [4,15,27,65–68]. Based on the structural data obtained from bacterial and animal
Shaker channels, this family has been proposed to adopt a tetrameric pore forming structure, which can
be composed of homo or hetero-tetramers [69,70]. In particular, KAT1 is able to form hetero-tetrameric
channels at the guard cell plasma membrane with KAT2 [71]. Further characterization of the key KAT1
structural components has been carried out by random mutagenesis and complementation of the yeast
trk1 trk2 mutant. These studies helped to define the positions in the pore that are determinant for
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K+ selectivity [72–76]. KAT1 isoforms from other plant species, such as potato [21], maize [77] and
rice [78] have also been identified and functionally characterized.

Table 1. Yeast stains used for cloning and functional complementation of plant K+ channels. All strains
lack the TRK1 and TRK2 gene.

Mutant Name Genetic Background Relevant Genotype

W∆3 W303-1A MAT a ade2-1 canl-100 trpl-1 ura3-1 trk1::LEU2
trk2::HIS3

CY162 R757 MAT a ura3–52 his3∆200 his44–15
trk1∆trk2::pCK64

9.3 W303-1A MAT a ena1-4∆:HIS3::ena4∆ leu2 ura3–1 trp1–1
ade2–1 trk1∆ trk2::pCK64

SGY1528 W303-1A MAT a ade2-1 canl-100 his3-11,15 leu2-3,112 trpl-1
ura3-1 trk1::HIS3 trk2::TRP1

BYT12 BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 trk1∆::loxP
trk2∆::loxP

PLY240 JRY379 MAT a his3-∆200 leu2-3,112 trp1-∆901 ura3-52
suc2-∆9 trk1∆51 trk2∆50::kanMX

PLY246 JRY379 MAT a his3-∆200 leu2-3,112 trp1-∆901 ura3-52
suc2-∆9 trk1∆51 trk2∆50::kanMX tok1∆1::HIS3

The AKT1 channel was isolated almost simultaneously to KAT1 [16]. The strategy adopted was
the same: Functional complementation screening of an Arabidopsis cDNA library in the trk1 trk2 yeast
strain. Neither KAT1 nor AKT1 are homologous to the yeast TRK1 gene product, but both are able to
rescue the slow growth phenotype of the mutant under limiting K+ conditions. AKT1 also belongs
to the Shaker family and shares sequence homology with KAT1, but it is mainly expressed in roots
and has been shown to be largely responsible for K+ uptake from the soil. The complex kinetics of
K+ uptake observed in the complemented yeast mutant were in good agreement with those observed
for K+ root transporters, corroborating this conclusion [16,79–82]. The selective pore positions in this
channel were later characterized by random mutagenesis and functional complementation in yeast,
again using the trk1 trk2 mutant [83]. AKT1 homologues were subsequently isolated from higher plant
species, such as barley (HvAKT1), maize (ZMK1), wheat (TaAKT1), potato (SKT1) and tomato (LKT1),
and it was demonstrated that the function, and to varying extents, the sequence, are conserved, as well
as the plasma membrane localization in root cells. In these cases, the characterization experiments
were carried out in other heterologous non-yeast systems [28,84–88].

HAK genes encode for high-affinity K+ transporters expressed in root cells, where they contribute
to the K+ uptake from the soil. The first HAKs isolated in plants were obtained from barley root
cDNA, using an RT-PCR approach based on amino acid homology between the sequences of two
K+ transporters known to belong to the HAK family, Kup of Escherichia coli [89] and HAK1 of
Schwanniomyces occidentalis [90]. The characterization of these genes (HvHAK1 and HvHAK2) was
carried out in trk1 trk2 yeast mutants, where the authors concluded that only HvHAK1 was able to
rescue the growth phenotype, confirming the high affinity K+ transporter function [91].

AtHAK5 shares structural and functional characteristics with AKT1 [13,92]. This gene encodes a
transporter cloned from Arabidopsis using degenerate primers deduced from the conserved regions
DNG(D/E)GGTFA and FADLGHF, respectively present in the HAK1 sequence previously cloned from
Hordeum vulgaris, HvHAK1 [91]. After cloning by RT-PCR, the full-length cDNA was inserted into
a yeast expression vector and its functionality was tested by complementation of the growth defect
of the trk1 trk2 mutant [93]. Other AtHAK family members have been cloned and tested for yeast
complementation, but they do not rescue the growth phenotype of the yeast K+-deficient mutant.

Another category of K+ transporters identified using the yeast model system is represented by the
KT/KUP family. They include AtKUP1 [26,94], AtKT2/KUP2 [95] and AtKT3/KUP4 [96], which were
isolated by screening an Arabidopsis cDNA library in the trk1 trk2 mutant strain and selecting for
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growth under low K+ conditions. Analysis of the tissue expression of these transporters revealed that
KT/KUP transporters are expressed in roots and in aerial parts of the plant [80].

KUP1 seems to work in both high- and low-affinity modes, which is characteristic of plant root
K+ transporters, such as AKT1. The transition from the high-affinity to the low-affinity mode occurs
at 100 µM to 200 µM external KCl. Given that K+ uptake via AtKUP1 was inhibited by NaCl and
other K+ channel blockers, the authors suggested that KUP1 was possibly participating in K+ uptake
from the soil. However, AtKUP1 could not be expressed in Xenopus oocytes, leaving the molecular
characterization of the currents mediated by this channel unresolved [94]. In addition, we were not
able to find any other study on this transporter in literature, thus the mechanism of K+ uptake by
AtKUP1 seems to be still undefined.

AtKT2 mediates low-affinity K+ transport, likely facilitating passive diffusion of K+, while AtKUP4
mediates high-affinity K+ uptake. Recently, it has been reported that KUP4 is also involved in the
process of embryo development during seed maturation [97].

High-affinity K+ transporters (HKT) transporters are structurally related to fungal and bacterial
K+ transporters from the Trk/Ktr families. Phylogenetic and functional analyses indicate that HKT
transporters can be classified into two sub-groups: Group I HKT transporters that are mainly Na+

selective, while group II HKT transporters can operate as Na+-K+ symporters or as K+-selective
uniporters. Selective permeability to K+ relies on the glycine residues present in the middle of the pore
of HKT/Trk/Ktr transporters. In fact, a substitution of at least one of the conserved glycine residues for
a serine abolishes the selectivity to K+ and renders these transporters Na+-selective [98,99]. The HKT
proteins are of particular interest to plant biologists, as some members of this class play an important
role in salinity tolerance [100]. The first HKT1 gene characterized as a Na+-K+ symporter using the
yeast functional complementation strategy in the trk1 trk2 mutant was from wheat [101]. Detailed
molecular studies revealed that the transporter presents specific binding sites for each of the ions. In
particular, when K+ and Na+ are present at similar concentrations, HKT1 functions as a Na+-coupled
K+ transporter. Nevertheless, when Na+ is present at toxic concentrations (millimolar), the ion binds
to the high-affinity K+-coupling sites, resulting in a low-affinity Na+-Na+ uptake [102–104]. The fact
that Na+ competes with K+ when it is present at high concentrations suggests that HKT1 may be one
of the Na+ transporters in plant roots, which is relevant for salt toxicity in plants. A genetic selection of
mutations of HKT1 revealed some relevant positions conferring salt resistance to yeast and oocytes; for
instance, N365S and Q270L are the most effective. The approach used in this study was based on yeast
complementation of trk1 trk2 and ena1-4 trk1 trk2 strains [105].

In plants, it was shown that HKT1 is present in the plasma membrane of xylem parenchyma cells
and participates in the extraction of Na+ ions from xylem vessels, thus contributing to the salt tolerance
response [106]. The majority of the HKT transporters characterized later from other plant species (i.e.,
eucalyptus, rice, wheat) are all permeable to Na+ as well [107–109]. It is interesting to note that not
all the HKTs isolated are able to rescue the yeast K+-deficiency phenotype. For instance, two out of
the five HKT cDNAs isolated from rice (OsHKT1 and OsHKT4) were confirmed to be Na+-specific by
functional complementation of the trk1 trk2 mutant [110].

More recently, an Arabidopsis AKT1-like channel was cloned from Lilium longiflorum pollen
(LilKT1). The authors described the identification of this sequence from a pollen cDNA library by PCR
amplification using degenerate primers derived from conserved regions of K+-channels. Ion currents
are extremely relevant for pollen tube growth and thus for ovule fertilization. LilKT1 was subsequently
characterized using the yeast functional complementation assay [111]. LilKT1 was expressed in two
different yeast mutant strains lacking the TRK1 and TRK2 genes. Although overexpression of this
channel did not fully complement the growth of these mutant strains, the authors demonstrated
that this was because the K+ channel was unable to efficiently reach the plasma membrane in this
heterologous system. Until the appearance of this report, the only inward rectifying K+ channel
characterized in pollen grain was AtAKT6, which was characterized using the classical patch-clamp
approach [22,112].
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For studies of K+ channels that are not localized at the plasma membrane, alternative yeast
mutant strains can also be employed. For example, yeast strains lacking the YVC1 gene have been
used to study the function of TPKs (also known as KCO), which are tonoplast K+ channels [113,114].
The TPKs are a two-pore K+-channel family, with four transmembrane and two pore domains. They
localize mainly in the vacuolar membrane in yeast and in the tonoplast in plants [115,116], with the
exception of AtTPK4, which has been localized in the pollen tube plasma membrane. This channel
contributes to K+ conductance, as demonstrated by the complementation of the K+-transport deficient
yeast mutant PLY246, carrying trk1, trk2 and tok1 mutations [117]. In the case of the vacuolar channels,
to use the yeast functional complementation approach, plant genes are expressed in yvc1 mutants and
their activity is analyzed in isolated vacuoles. Using this strategy, the AtTPK1 gene product showed
ion channel activity expected for an SV-type channel, with a strong selectivity for K+ over Na+ [113].
In addition, a TPK2-like transporter from Nicotiana tabaccum (NtTPK1), isolated by querying a tobacco
database for sequences homologous to the AtTPK-family, was functionally characterized by whole
cell patch clamp recordings on isolated vacuolar membranes from the yeast strain SH1006 lacking the
YVC1 gene [114].

By using yeast strains defective in nhx1, the A. thaliana NHX1 homologue, AtNHX1, was
characterized. The sequence was deduced from homologies with ScNHX1 and cloned using degenerate
primers [118]. AtNHX1 complemented the yeast nhx1 mutant as shown by suppression of its extreme
sensitivity to hygromycin and NaCl under conditions in which the K+ availability was reduced [119].
Subsequently, the Na+/H+ antiporters AtNHX1/2/5 and AtNHX6 were cloned and have been described
as regulators of growth, flower development and reproduction, through the control of vacuolar pH
and K+ homeostasis [120,121].

A few other examples of NHX genes identified in higher plants using yeast mutants have been
described in the literature. For example, in 2002, based on the sequence homologies of Nhx1 cloned
in yeast, rat, human, nematode and Arabidopsis, BvNHX1 (from Beta vulgaris) was cloned [122].
It was able to complement the nhx1 mutation in yeast, recovering the salt sensitive phenotype of the
strain. In planta, mRNA transcript and protein levels correlated with an increase in vacuolar Na+/H+

antiporter activity in response to salinity treatment. With the same approach, LeNHX2 was cloned from
tomato [18]. The gene was able to rescue the salt and hygromycin sensitivity phenotype of the yeast
nhx1 mutant. It was confirmed that LeNHX2 mediates K+/H+ exchange, and to a lesser extent, Na+/H+

exchange in vitro. In addition, the NHX1 protein from Eutrema salsugineum, formerly Thellungiella
halophilae, has also been functionally expressed in yeast [123].

The utility of yeast in the study of K+ channels not only includes the discovery of new heterologous
K+ channels. In fact, there are examples in which the recovery of the phenotype of a yeast mutant
defective in high affinity K+ transport has been used as a “proof of concept” for newly engineered K+

channels. This is the case of BLINK1, a blue light-gated K+ channel engineered by connecting the light
sensor module of Avena sativa phototropin LOV2 to the N-terminus of Kcv, the smallest K+ channel
known from chlorella virus [124,125]. The authors created a new method to combine a yeast-based
screening system with light-activated K+ conductance. Finally, yeast has also been used as a chassis
to improve the salt vacuolar accumulation capabilities of NHX1 by directed evolution using random
mutagenesis and DNA shuffling [126].

4. High-Throughput and Directed Protein-Protein Interaction Assays Used to Identify Plant
K+/Na+ Transporter Regulators

As reviewed in the previous section, yeast represents a powerful tool to study plant ion channels
and transporters. Yeast can also be used as a high-throughput platform for the identification and
subsequent study of protein–protein interactions (PPIs). Here we describe the state-of-the-art of the
available PPI techniques and discuss the K+Na+ transporters/channels interactors identified using
these approaches.
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5. State-of-the-Art of the Available Techniques for Detecting Protein–Protein Interactions in Yeast

Since the classic yeast two-hybrid (Y2H) assay, new techniques to detect PPIs have been developed.
These new techniques solve some of the limitations of the previous ones and offer a broader spectrum
of possible baits or proteins that can be analyzed, mainly, according to their topology or subcellular
localization. A summary of the important features of these techniques is shown in Table 2.

Table 2. Techniques for detecting protein–protein interaction in yeast (* Cellular compartment where
the interaction takes place).

Possible Baits Year Technique Response Cellular
Compartment * References

Proteins
capable of
entering
nucleus

Non-transactivating
proteins

1989 Classic Y2H system
(Y2H)

Transcriptional
activation Nucleus [127]

1996 Reverse Y2H system
(rY2H)

Transcriptional
activation Nucleus [128,129]

1996 Yeast three-hybrid
system (Y3H)

Transcriptional
activation Nucleus [130]

1999 Dual-bait system Transcriptional
activation Nucleus [131]

Transactivating
proteins

2001
Repressed

transactivator
system (RTA)

Inhibition of
transcriptional

activation
Nucleus [132]

2001 RNA polymerase III
system (Pol III)

Transcriptional
activation Nucleus [133]

Membrane proteins

1998
Membrane

split-ubiquitin
system (MbY2H)

Transcriptional
activation

Membrane
periphery [134–136]

2000
Heterotrimeric

G-protein fusion
system

Inhibition of
protein G
signaling

Membrane
periphery [137]

2001
Reverse Ras

recruitment system
(rRRS)

Ras
signaling

Membrane
periphery [138]

Cytosolic proteins

1997 SOS recruitment
system (SRS)

Ras
signaling

Membrane
periphery [139]

1998 Ras recruitment
system (RRS)

Ras
signaling

Membrane
periphery [140]

2007
Cytosolic

split-ubiquitin
system (CytoY2H)

Transcriptional
activation

Endoplasmic
reticulum
membrane
periphery

[134,141]

Extracellular and secretory
pathway proteins

1997 Yeast surface system
(YS2H)

Extracellular
surface [142]

2003 SCINEX-P system

Downstream
signaling &

transcriptional
activation

Endoplasmic
reticulum [143]

2010 Golgi Y2H system
(GY2H)

Och1
activity Golgi lumen [144]

Nuclear, membrane and
cytosolic proteins

1994
Generally applicable

split-ubiquitin
system

Uracil
auxotrophy
and 5-FOA
resistance

Cytosol [134,145]

1998 Split-mDHFR
system

DHFR
activity

Native
compartment [146]

2001 Split-luciferase
system

Luminescent
signal

Native
compartment [147]

2004 Split-Trp system Trp1 activity Cytosol; Native
compartment [148]

2005 Split-FP system Fluorescent
signal

Native
compartment [149,150]

Basically, all these techniques are different variants of functional reconstitution assays, where a
reporter protein is separated into domains or fragments and upon interaction of the test proteins, the
function of the reporter protein is reconstituted. The Y2H system has, without doubt, represented a
revolution in the field, allowing for the detection of interactions in vivo in a true cellular environment.
The classic Y2H technique is currently the most commonly used method for investigating PPIs.
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Among the different variants, the ones that are preferentially used in the plant sciences are the
classic Y2H and the membrane split-ubiquitin system (reviewed in [151]). Below, we describe briefly
selected Y2H variants. More detailed descriptions are provided in several publications [152–154].
A schematic diagram of these techniques is shown in Figure 3.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 36 
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Figure 3. Diagram of the techniques for detecting protein–protein interactions in yeast. (A) Classic Y2H
system. (B) Reverse Y2H system. (C) Repressed transactivator system. (D) RNA polymerase III system
(the τ138 subunit is encoded by the TFC3 gene). (E) Reverse Ras recruitment system. (F) Heterotrimeric
G-protein fusion system. (G) Membrane split-ubiquitin system. (H) SOS recruitment system. (I) Ras
recruitment system. (J) Cytosol split-ubiquitin system. (K) SCINEX-P system. (L) Golgi complex system
(CAT: Catalytic domain Och1; LOC: Och1 domain required for membrane attachment). (M) Generally
applicable split-ubiquitin system. (N) Split-Trp system. The subcellular location within a yeast cell and
the operating mode (at the moment of bait-prey interaction) is represented. See text for more details.

5.1. Classic Y2H System (Y2H)

In this system, one protein is fused to the DNA-binding domain of a transcription factor, while the
other protein is fused to a transcriptional activation domain [127]. Interaction between the bait and
prey proteins reconstitutes the function of the transcription factor, leading to transcriptional activation
of a reporter gene. Interacting proteins are identified by growing the yeast cells under conditions where
cell survival is dependent on the transcription of the reporter gene. The most common reporter genes
are HIS3 and ADE2, which reconstitute histidine and adenine biosynthesis, respectively. The bacterial
lacZ gene is also commonly used as a reporter gene. In this case, upon interaction expression of the
lacZ gene leads to the accumulation of the β-galactosidase enzyme that produces a blue product when
X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) is added to the media.

It is also possible to first transform a set of different bait constructs in one mating type and a set of
preys in the other mating type; then, by generating diploids by mating the two haploid strains, large
numbers of binary interactions can be evaluated by growing in selective media (reviewed in [152]).
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Limitations: Proteins have to enter the nucleus in order to induce the expression of a reporter
gene; many false positives and negatives; lack of interaction dynamics and transactivating proteins
cannot be properly analyzed. The reasons behind these shortcomings and some minor modifications
to solve them have been recently reviewed and some of them will be discussed below [152].

5.2. Reverse Y2H System (rY2H)

This system is based on the classic Y2H assay, but in this case the interaction of two proteins
leads to expression of a gene that confers toxicity to the yeast cells. The most commonly used is the
URA3 gene that encodes a decarboxylase which produces a toxic intermediate in media containing
5-Fluoroorotic acid (5-FOA) leading to yeast cell death. This assay is used to identify inhibitors of
protein–protein interactions or to select for mutants encoding proteins that have lost their ability to
interact, thus providing a high-throughput system to identify inhibitors and key residues mediating
protein–protein interactions. Removal of 5-FOA converts this assay to classic Y2H (reviewed in [152]).

Two additional systems using CYH2 or GAL1 instead of URA3 plus 5-FOA have been developed
(reviewed in [152] and [153]). In the first case, a mutant background containing a cyclohexamide-resistant
cyh2 allele is used. The interacting proteins drive the expression of the wild type copy of CYH2, which
promotes sensitivity to cycloheximide. In the second system, the screening takes place in a strain that
lacks the GAL7 gene, which catalyzes the conversion of galactose-1-phosphate into glucose-1-phosphate.
The protein–protein interaction drives the expression of the galactokinase-encoding GAL1 reporter
gene. In this system, when the protein–protein interaction occurs, galactose accumulates and reaches
toxic concentrations [155].

Application: Detection of inhibitors or essential amino acids for the PPI.

5.3. Repressed Transactivator System (RTA)

The principle is similar to the rY2H system, however, instead of a transcriptional activation
domain, the prey protein is fused to a transcriptional repression domain. Interaction of the two proteins
leads to repression of the URA3 gene and consequently resistance to media containing 5-FOA [132].
This system was extended to screen for inhibitors of protein–protein interactions or to select for mutants
encoding proteins that have lost their ability to interact. In this case, interaction of the two proteins
leads to repression of a positive selection marker (reviewed in [154]). For example, upon interaction of
bait and prey, the transcriptional repression domain of Tup1 would lead to repression of HIS3 and
consequent growth deficiency on medium without histidine.

Advantages: The original version eliminates false positives by proteins that are transcriptional
activators. The alternative versions can be used to identify inhibitors or essential amino acids for
the PPI.

5.4. RNA Polymerase III System (Pol III)

This technique also derives from the classic Y2H system, however, the second protein is fused
to Tfc3 (aka τ138), a subunit of the multimeric protein complex TFIIIC (one of the two transcription
factors involved in RNA polymerase III-mediated transcription). After interaction of both proteins,
the TFIIIC complex is bound to DNA and recruits a second transcription factor (TFIIIB) and Pol III.
This will activate transcription of the reporter gene (reviewed in [153,154]).

Advantages: Elimination of false positives by proteins that are able to autoactivate RNA pol II on
their own.

5.5. Small-G-Protein-Based Methods

These methods make use of the Ras pathway, which is essential in yeast. They are based on the
reconstitution of the function of the Ras pathway by bringing the Ras-GEF protein, SOS or Ras itself to
the membrane for activation.
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- SOS recruitment system (SRS): One protein is fused to a modified human Sos protein (hSos),
which can functionally replace its yeast counterpart Cdc25, but only if it is targeted to the
plasma membrane. The other protein is fused to the C-terminus of the v-Src myristoylation
sequence, which targets proteins to the membrane. Interactions between both proteins leads
to the recruitment of hSos to the membrane and activation of the yeast Ras pathway that
complements the temperature-sensitive cdc25 mutation at the restrictive temperature (36 ◦C) [139].
Advantages: Can be applied to cytosolic proteins that are unable to enter the nucleus or that
require post-translational modifications in the cytoplasm.

- Ras recruitment system (RRS): The principle is similar to the SRS, however, hSos is substituted
by a mutant form of mammalian Ras (mRas). This Ras protein (Ras(61)∆F), is a constitutively
active form of mammalian Ras, which lacks the CAAX box required for its lipid modification
and subsequent localization to the plasma membrane [140]. The bait protein is fused to this
version of mRas. The prey proteins are fused to a membrane localization sequence. In this way,
if the bait and prey proteins interact, the constitutively active form of Ras is recruited to the
plasma membrane and can complement the cdc25 temperature-sensitive mutant. Advantages:
Reduction of false positives; furthermore, the smaller size of mRas compared with hSOS reduces
the steric hindrance problem observed with the large hSos protein.

- Reverse Ras recruitment system (rRRS): The principle is similar to the RRS, however, mRas is
fused to the prey protein and the bait protein contains its own membrane localization signal or
is an intrinsic membrane protein [138]. Advantages: Can be applied to membrane proteins.

5.6. Heterotrimeric G-Protein Fusion System

Interaction between integral membrane bait and a soluble prey protein, fused to the γ-subunit
(Ste18) of a heterotrimeric G-protein, will sequester the β-subunit, thus disrupting formation of
heterotrimeric G-protein complex and subsequent downstream signaling, leading to growth arrest
in a pheromone-dependent growth inhibition assay (halo assay) and reduced expression of a
pheromone-controlled reporter in a ste18 strain [137].

Advantages: Can be applied to membrane proteins; furthermore, only one of the two proteins is a
fusion protein.

5.7. Screening for Interactions Between Extracellular Proteins (SCINEX-P)

The two proteins to be tested are N-terminally fused to the endoplasmic reticulum (ER)
transmembrane protein mutants Ire1K702R and Ire1∆tail, respectively. Interaction between the two
proteins, leads to dimerization of both Ire1 mutant forms at the ER membrane and functional
complementation of the Ire1 dimer, which is the principle mediator of the unfolded protein response
(UPR) in yeast. Upon Ire1 activation, the Hac1 transcription factor is activated and, in this system,
leads to the transcriptional activation of reporter genes containing Hac1-responsive promoters [143].

Advantages: Can be applied to proteins located in the lumen of the ER, including extracellular
and secreted proteins.

5.8. Golgi Y2H System (GY2H)

The two proteins of interest are fused to both modular domains of the Golgi-resident
glycosyltransferase Och1: The N-terminal LOC domain for membrane attachment and the C-terminal
CAT domain that performs the mannose transfer reaction within the Golgi lumen. This is an essential
reaction for the production of the high mannose structure that covers the cell wall of wild-type yeast.
The absence of this mannose structure renders yeast cells sensitive to high temperatures and to cell
wall damaging agents, such as the benzidine-type dye Congo red. Upon interaction of both proteins,
the function of the Och1 protein is reconstituted and the och1 mutant will be able to grow at the
non-permissive temperature (37 ◦C) or in the presence of Congo red [144].
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Advantages: Can be applied to proteins located in the Golgi lumen. It has been used to characterize
interactions between transactivating transcription factors that cannot be studied using traditional
Y2H approaches.

5.9. Dual-Bait System

The principle is similar to the classic Y2H system, however, two known interactors of a protein of
interest are each fused to a different DNA-binding domain, each of which targets the promoter of a
different reporter, while the (mutated) prey protein is attached to an activation domain [131]. With this
system, mutations that specifically target only one interaction, leaving the other interaction intact,
can be identified.

Application: Analysis of specific binding sites for proteins with multiple interactors.

5.10. Split-Ubiquitin System

In this system, the protein that is reconstituted is ubiquitin. The carboxy-terminal fragment of
ubiquitin (Cub) is fused in frame to a fully functional yeast transcription factor, which is in turn fused
to a protein that is excluded from the nucleus (usually an integral membrane protein). The prey protein
is fused to a mutated version (I13G) of the N-terminal region of ubiquitin (NubG), which has very
low propensity to bind to the Cub fragment. Upon protein–protein interaction, the ubiquitin protein
is reconstituted, and ubiquitin-specific proteases cleave the transcription factor from the Cub fusion,
which then travels to the nucleus to activate the transcription of reporter genes.

- Membrane split-ubiquitin system (MbY2H): The bait protein needs to be excluded from the
nucleus and the topology must be such that the fusions are in the cytosol. This system has been
successfully applied to integral membrane proteins. It can also be used for proteins that are
resident in other membrane systems or those that have lipid modifications [135]. Advantages:
Can be applied to membrane proteins.

Moreover, mating type a and alpha two-hybrid strains have been developed that enable very
efficient mating-based screenings using yeast strains already containing high coverage cDNA libraries
from different organisms [156]. The prey protein is cloned into the appropriate Cub vector and
transformed into the correct mating type, which can then be mated with high efficiency to a strain of
the opposite mating type containing Nub-fused cDNA libraries.

- Cytosolic split-ubiquitin system (CytoY2H): The same strategy as that used for the MbY2H
system is employed but, in this case, the bait protein does not have to be a membrane-bound
protein by itself, because the integral ER membrane protein Ost4 is added at the N-terminal end
of the bait to impede its entry into the nucleus (reviewed in [152–154]). Advantages: Can be
applied to cytosolic proteins that require post-translational modifications in the cytoplasm.

- Generally applicable split-ubiquitin system: In this case, the transcription factor is replaced
by the reporter protein Ura3, with an arginine residue (R-Ura3) between Ura3 and Cub. After
interaction of bait and prey, which can reside in membranes or the cytosol, Ura3 is cleaved
off and it is quickly degraded due to the exposed N-terminal arginine residue. Consequently,
the cells become resistant to 5-FOA. The R-Ura3 method is especially suitable for finding
transcription factor partners, both activators and repressors (reviewed in [153]). Advantages:
Careful optimization of 5-FOA levels reduces false discovery rates.

Application: Studies on protein conformations changes. Significant changes in the conformation
of a protein can be expected to alter the distance between the N-terminus and the C-terminus of most
proteins. By attaching Nub to the N terminus and Cub to the C terminus of a single polypeptide,
changes in the time-averaged distance between the N and the C terminus can be measured according
to the efficiency of the Nub-Cub reconstitution [157].
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5.11. Split-Trp System

The two proteins are fused to the C-terminal (CTrp) and the N-terminal (NTrp) fragments of the
Trp1 protein required for tryptophan biosynthesis. Upon interaction, a quasi-native Trp1 protein is
reconstituted and allows trp1 deficient yeast strains to grow on medium lacking tryptophan (reviewed
in [154]).

Advantages: Can be applied to all types of proteins, independently of their subcellular localization.

5.12. Split-mDHFR System

The two proteins are fused to two dihydrofolate reductase (DHFR) fragments. After interaction of
both proteins, DHFR is reconstituted and catalyzes the reduction of dihydrofolate into tetrahydrofolate,
which is essential for cell proliferation, growth and survival.

The murine DHFR (mDHFR) can serve as a reporter protein in bacterial and fungal DHFR systems
in which a PPI is detected by survival of the cell in the presence of methotrexate or trimethoprim,
with mDHFR taking over the function of the host DHFR protein [146].

Advantages: Can be applied to all types of proteins, independently of their subcellular localization.
As reviewed in [152], new challenges are to devise novel yeast systems which can provide real-time

data and more reliable outputs. It may be useful to design alternatives that can report PPIs more
specifically and sensitively than yeast growth phenotypes, but with the same level of simplicity. In this
sense, fluorescence-based systems for high-throughput screening in yeast could be an alternative,
although adaptation for single cell detection and automation will be required for these types of
techniques to compete with current growth-based selection systems [158].

6. Interactors of K+/Na+ Transporters/Channels Detected Using Protein–Protein Interaction
Techniques in Yeast

Many PPIs have been described for K+/Na+ transporters/channels in plants (reviewed in [159]).
In this review, we will focus on those detected using the yeast-based methods described above (Table 3).

Table 3. Interactors of K+/Na+ transporters/channels detected using protein–protein interaction
techniques in yeast.

Na+/K+

Transporter/Channel Interactors Technique References

AKT1
KAT1, AtKC1 MbY2H, mating-based [156]

KDC1 MbY2H [160]

AKT2
MRH1/MDIS2 MbY2H, mating-based [161]

SLAC1 MbY2H, mating-based [162]

OsHKT1 OsCNIH1 MbY2H, mating-based [163]

KAT1
KAT1, AKT1, PUP11 MbY2H, mating-based [156]

SLAC1 MbY2H, mating-based [162]
VAMP721 MbY2H, mating-based [164]

KAT2 SLAC1 MbY2H, mating-based [162]

AtKC1

AKT1, NRT2.7, ROP1 MbY2H, mating-based [156]
SLAC1 MbY2H, mating-based [162]
SYP121 MbY2H, mating-based [165,166]

VAMP721 MbY2H, mating-based [164]

KDC1 AKT1 MbY2H [160]
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Table 3. Cont.

Na+/K+

Transporter/Channel Interactors Technique References

KUP6 SnRK2.6 , SnRK2.2 MbY2H, mating-based [167]

AIP1, CIPK6, CIPK16 Y2H [168]
AKT1, AKT2, AtKC1 Y2H [169]
CBL10 (CBL5, CBL7) Y2H [170]

Y2H [171–173]
AKT1

CIPK23 Y2H competition assay [170]

AKT1, OsAKT1,
PutAKT1 KPutB1, OsKOB1 Y2H [174]

AKT1, AKT2, AtKC1 Y2H [169]
CIPK6 Y2H [175]

MRH1/MDIS2 Y2H Matchmaker Gold [161]AKT2

PP2CA Y2H [176]

AKT3 AtPP2CA Y2H [177]

AtPP2CA Y2H [178]
GORK GORK, SKOR Y2H [179]

OsHAK1 OsRUPO Y2H [180]

KAT1 KDC1 Y2H [181]

VvKAT1 VvSnRK2.4 Y2H [182]

OsKAT2 OsKAT2, OsKAT3 Y2H [183]

OsKAT3 OsKAT2, OsKAT3 Y2H [183]

AtKC1 AKT1 Y2H [169]

KDC1 KAT1 Y2H [181]

OsKOB1 AKT1, OsAKT1,
PutAKT1 Y2H [174]

KPutB1 AKT1, OsAKT1,
PutAKT1 Y2H [174]

KST1 SKT2, SKT3 Y2H [184]

SKOR SKOR, GORK Y2H [179]

SKT2 KST1 Y2H [184]

SKT3 KST1 Y2H [184]

TRH1 TRH1 Y2H [185]

Briefly, interactors have been detected for the three families of genes encoding plant plasma
membrane K+ transporters: The HKT family, the HAK/KUP/KT K+ transporter family and the Shaker
K+ channel family. Within the Shaker K+ channel family, interactors have been detected for almost
all of the members. Specifically, interactors have been detected for HKT1, HAK1, KUP6, AKT1/2/3,
KAT1/2 AtKC1, GORK, SKOR, as well as carrot KDC1, potato SKT2/3, OsKAT3 and subunits OsKOB1,
KPutB1KST1 and TRH1.

Among the detected interactors of these K+ transporters/channels, several homo- or
hetero-oligomerization events have been detected and are summarized in Table 4.

Moreover, putative regulatory proteins such as kinases, phosphatases, GTPases, as well as anion
channels, purine and nitrate transporters, targeting-related proteins and calcium sensors have been
identified. The detected interactors and their proposed regulatory function are detailed in Table 5.
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Table 4. Oligomers of K+/Na+ transporters/channels detected using protein–protein interaction
techniques in yeast.

Oligomer References

AKT1

AKT1, AKT2 [169]
KAT1 [156]
AtKC1 [156,169]
KDC1 [160]

AKT1, OsAKT1, PutAKT1 KPutB1, OsKOB1 [174]

AKT1, AKT2 [169]
AKT2 AtKC1 [169]

GORK GORK, SKOR [179]

AKT1 [156]
KAT1 [156]KAT1
KDC1 [181]

OsKAT2 OsKAT2, OsKAT3 [183]

OsKAT3 OsKAT2, OsKAT3 [183]

AtKC1 AKT1 [156,169]

AKT1 [160]
KDC1 KAT1 [181]

OsKOB1 AKT1, OsAKT1, PutAKT1 [174]

KPutB1 AKT1, OsAKT1, PutAKT1 [174]

KST1 SKT2, SKT3 [184]

SKOR SKOR, GORK [179]

SKT2 KST1 [184]

SKT3 KST1 [184]

TRH1 TRH1 [185]

Table 5. Regulatory proteins of K+/Na+ transporters/channels detected using protein–protein interaction
techniques in yeast. Light gray, kinases and phosphatases; medium gray, channels and transporters;
dark gray targeting-related proteins.

Na+/K+

Transporter/Channel Regulatory Protein Na+/K+ Transporter/Channel Regulation References

AKT1

AIP1 Reduces AKT1 activity [168]
CBL10 (CBL5, CBL7) Impairs AKT1 activity [170]

CIPK6, CIPK16 Phosphorylates and activates AKT1 [168]
CIPK23 Phosphorylates and activates AKT1 [170–173]

AKT2

CIPK6 Upon interaction with CIPK6, CBL4 mediates ER-to-PM
translocation of AKT2 and enhances AKT2 activity [175]

MRH1/MDIS2 [161]

PP2CA Dephosphorylates and inhibits AKT2, regulated by
ABA signaling [176]

SLAC1 [162]

AKT3 AtPP2CA [177]

GORK AtPP2CA Dephosphorylation-independent inactivation of GORK [178]

OsHAK1 OsRUPO Disruption of RUPO leads to K+ over-accumulation
in pollen [180]

OsHKT1 OsCNIH1 Golgi-localization of OsHKT1 [163]

KAT1

PUP11 [156]

SLAC1 Inhibits KAT1 activity [162]

VAMP721 Suppresses KAT1 and KC1 activity [164]

VvKAT1 VvSnRK2.4 [182]

KAT2 SLAC1 [162]

AtKC1

NRT2.7 K+ is known to increase nitrate (NO3
− ) uptake from soil [156]

ROP1 Actin filament reorganization affects K+ channel activities
in stomata. ROP1 regulates pollen tip growth [156]

SLAC1 [162]

SYP121 Promotes KAT1 activity, in the presence of KC1 [165,166]

VAMP721 Suppresses KAT1 and KC1 activity [164]

KUP6 SnRK2.6, SnRK2.2 SnRK2.6 phosphorylates KUP6, regulated by ABA
signaling (drought stress) [167]
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Indeed, at least two classes of kinases have been implicated in KAT1 channel regulation.
For example, Open Stomata 1 (OST1, also called SnRK2.6 or SRK2E) is a Snf1-related kinase involved
in abscisic acid (ABA) signaling that has been shown to phosphorylate KAT1 leading to channel
inhibition in oocytes and yeast model systems [186]. These observations are in agreement with a more
recent study showing a physical interaction between Ost1 and KAT1 (but not KAT2) in planta and
Ost1-dependent regulation of ABA-mediated Kin currents in Arabidopsis guard cells [187].

Finally, two types of SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment
protein receptor) proteins, the Q-SNARE SYP121 and the R-SNARE VAMP721, have been shown to
physically interact with KC1 and KAT1 and to modulate channel activity [164–166,188,189]. In this
case, these proteins have been postulated to directly regulate KAT1 gating in opposing manners
(SYP121 activates/VAMP721 inhibits) and, in fact, mutational studies have indicated that the trafficking
and gating functions of SYP121 can be physically separated [164,189]. Moreover, primary evidence
for the functional coupling of the SNARE SYP121 with Ca2+ channels underscores a mechanism
for integration of SNARE- and Ca2+-mediated control of K+ channel currents in guard cells [189].
Furthermore, calcineurin B-like calcium sensors (CBLs) and a target kinase (CBL-interacting protein
kinase 23 or CIPK23) appear to phosphorylate and activate AKT1 [168], and CBL4 mediates ER-to-PM
translocation of AKT2 and enhances AKT2 activity upon interaction with CIPK6 although in a
phosphorylation-independent manner [175].

As shown in Table 3, only classic Y2H and membrane split-ubiquitin techniques have been
used as yeast-based techniques for the detection of PPIs of K+/Na+ transporters/channels in plants.
Both techniques are limited to proteins capable of entering the nucleus and membrane proteins,
respectively. In the future, the use of yeast-based techniques for detection of PPI of other type of
proteins, such as those listed in Table 2, may reveal new interactors and expand the knowledge of
K+/Na+ transporters/channel structure and their regulation.

7. Reconstitution of Functional Plant Ion Transport Systems in Yeast: The SOS Pathway Paradigm

In previous sections, we have summarized the use of yeast to clone and characterize ion transport
proteins and yeast-based protein-protein interaction assays that have been employed to identify
regulators of these channels and transporters. Another very powerful approach is the reconstitution of
ion transport systems in yeast. In these cases, the transporter alone may have limited function and the
co-expression of regulatory proteins is required to observe more robust phenotypes.

One canonical example of the use of yeast as a system to reconstitute a functional ion transport
system is the SOS signaling pathway. The Arabidopsis sos (salt overly sensitive) genes were isolated in a
genetic screen for plant mutants hypersensitive to NaCl [190]. SOS1 was the first plasma membrane
Na+/H+ antiporter described in plants [191]. SOS2 is a Ser/Thr protein kinase, which belongs to the
SnRK3 family and contains two functional domains [192]. SOS2 can also be found in the literature as
calcineurin B-like protein-interacting protein kinase (CIPKs). SOS3, on the other hand, is a calcium
sensor [193]. There is also a SOS4, involved in vitamin B6 metabolism [194] important for root hair
development [195] and for vitamin-B6 mediated processes in the chloroplast [196].

Heterologous expression of SOS1-3 in yeast was instrumental in the characterization of the
mechanism of action and the interplay among these proteins. SOS3 is a calcium sensor and was the
first member characterized of the SCaBPs (SOS3-like calcium-binding protein) family, also named as
calcineurin B-like/CBL. SOS3 recruits the SOS2 protein kinase to the plasma membrane upon activation
by calcium. SOS2, once activated by SOS3, is able to phosphorylate SOS1 and increase its Na+ transport
activity [197].

S. cerevisiae has demonstrated to be a very useful tool to reveal the molecular mechanisms
governing the SOS system and their targets and specificities. As explained above, the complete
system SOS1-3 can be reconstituted in yeast. SOS1 confers a weak phenotype of Na+ tolerance
when expressed in yeast mutants lacking the endogenous Na+ extrusion systems (Ena1-4 and Nha1,
see above). Overexpression of SOS2 and SOS3 in the yeast ena1-4 nha1 mutant strain overexpressing
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SOS1 dramatically rescues the Na+ sensitivity phenotype, while overexpression of SOS2 or SOS3
in yeast in the absence of SOS1 does not confer any phenotype [197]. This explains why the SOS
proteins have never been identified in a heterologous expression screening of plant genes in yeast.
SOS1 overexpression confers a very weak phenotype and salt tolerance conferred by SOS2 and SOS3
requires SOS1. Nevertheless, yeast is an ideal platform that provides a fast and easy way to test
putative SOS proteins. In the Arabidopsis genome, there are nine genes that encode putative SOS3
calcium sensors and 24 that encode putative SOS2 protein kinases [198]. This reconstitution system
has facilitated the characterization of some of them as bona fide participants in the Na+ homeostasis
machinery and has provided a system to determine their varying degrees of specificity and the
combinatorial diversity of the complex. For instance, SOS2 may be activated by SOS3 or by its
homologue SCaBP8/CBL10 [199], after the Ca2+-dependent binding to the FISL motif in the SOS2 NAF
domain, which probably acts as an autoinhibitory domain. SOS3 is also phosphorylated by SOS2 [200]
and this stabilizes the interaction and increases salt tolerance [201]. The SOS2/SOS3 module also
activates the antiporter activity of the tonoplast NHX K+-Na+/H+ antiporters [202] and the H+/Ca2+

antiporter CAX1 [203]. The yeast model system also allows the cartography of the functional domains
by using deletions or to analyze the effect of post-translational modifications like phosphorylation [204].
Therefore, the yeast reconstitution strategy has been a useful tool to identify and characterize plant
proteins, which are upstream regulators of the SOS system, and therefore participate in the molecular
response to salt stress [205].

Arabidopsis is the most popular model system for plant molecular biology, but yeast has also been
used to characterize SOS proteins from other plants. In Table 6, the SOS orthologues whose function
has been shown in yeast are summarized.

Table 6. SOS genes from various plant species characterized in yeast.

Plant Species Genes Characterized Reference

Arabidopsis thaliana SOS1-3 [197]
Chrysanthemum crassum SOS1 [206]

Cymodocea nodosa SOS1 [207]
Eutrema salsugineum SOS1 [208]

Glycine max SOS1 [209]
Oryza sativa SOS1-3 [210]

Phragmites australis Trinius SOS1 [211]
Physcomitrella patens SOS1 [212]
Populus trichocarpa SOS1-3 [213]
Schrenkiella parvula SOS1 [208]

Sesuvium portulacastrum SOS1 [214]
Solanum lycopersicum SOS2 [215]

Triticum aestivum SOS1 [216]
Triticum durum SOS1 [217]

It is also important to note that yeast is an optimal system to study the SOS pathway as the
sodium extrusion ability of the SOS system, when heterologously expressed in yeast, is dependent
on the proton gradient generated by the yeast proton pump Pma1 [218]. The SOS system would not
likely be functional in an animal-based system, given that animal cells use sodium to energize the
plasma membrane. In fact, yeast is also a good system to investigate the plant plasma membrane
proton ATPase. In plants, the formation of the proton gradient depends on a multigene family [219].
In Arabidopsis, there are three major isoforms (AHA1–3). AHA2 was the first to be functionally
expressed in yeast. The full version of the protein was retained in internal membranes and weakly
complemented the growth defect of a conditional pma1 mutant, but a truncated version in which the
last 94 amino acids of AHA2 were deleted was able to partially localize to the plasma membrane and
fully complemented the growth defect, suggesting an autoinhibitory function for this region [220].
The functional evaluation of the three isoforms in yeast indicates that the major differences among
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them are quantitative rather than qualitative, although the heterologous expression is not as efficient as
other plant membrane proteins and most of it is retained in the endoplasmic reticulum [221]. The fact
that AHA proteins are properly expressed and are functional in yeast enables the design of mutational
approaches in order to identify versions with improved transport coupling efficiency [222].

Another example of reconstitution of a plant signaling pathway is related to ABA signaling. Upon
abiotic stress, plants produce ABA. This hormone enters the cell and elicits plant responses by binding
to soluble PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS
OF ABA RECEPTORS (RCAR) receptors, a family of proteins with 14 members. PYR/PYL/RCAR
receptors perceive ABA intracellularly and, as a result, form ternary complexes and inactivate clade
A PP2C phosphatases [223,224]. This activates downstream targets of the PP2Cs, like proteins
belonging to the sucrose non-fermenting 1-related protein kinase (SnRK) subfamily 2, which regulate
the transcriptional response to ABA and stomatal aperture. Additional targets of clade A PP2Cs include
SOS2 members such as SnRK1, SnRK3s/calcineurin B-like (CBL)-interacting protein kinases (CIPKs),
calcium-dependent protein kinases (CDPKs/CPKs), ion transporters such as the K+ channel AKT1
and AKT2 or the slow anion channel 1 (SLAC1) and SLAC1 homolog 3 (SLAH3), and transcriptional
regulators, such as bZIP transcription factors and chromatin-remodeling complexes [225]. The point
is that there is a multiplicity of possible interactions, as not all PYR/PYL/RCAR receptors interact
with PP2C phosphatases and not all the interactions are ABA-dependent. In addition, C2-domain
abscisic acid-related (CAR) proteins regulate the interaction of the hormone receptors with the plasma
membrane [226]. Many of these interactions have been characterized by yeast two-hybrid, and the
presence or the absence of the hormone in the yeast growth media can modulate this binding, therefore
these ternary complexes (two proteins and ABA) can be reconstituted using yeast [227]. This system has
been employed to carry out screenings to identify chemicals that can act as ABA agonists. These novel
molecules may induce plant tolerance to abiotic stress by increasing ABA-mediated response [228].

8. Identification of Plant Genes Involved in K+/Na+ Homeostasis by Heterologous Expression

As described above, a classical approach utilizing the yeast model system is to use mutant strains
deficient in potassium uptake or in sodium extrusion and introducing plant cDNAs to complement a
given phenotype, a strategy which is still in use [229]. This strategy is a way to identify transporters, to
confirm their function and/or to perform molecular characterization by carrying out structure-function
studies. This is possible because in yeast the quantification of the transport activity can be easily
assayed by growth tests or defined in more detail by measuring ion transport and ion content. Another
highly exploited approach is the use of yeast as a heterologous system to screen for plant genes
involved in potassium and sodium homeostasis by screening for tolerance to salt stress induced by
NaCl. The predecessor that set the paradigm for this strategy was a very successful screen carried out
in the Serrano laboratory. In this case, instead of plant genes, yeast halotolerant (HAL) genes were
identified by overexpressing a yeast genomic library and selecting clones able to grow in media with
1.2 M NaCl or 0.2 M or 0.4 M LiCl. In this screening procedure, the investigators identified Hal1 [230],
Hal3, a regulator of the Ppz1 protein phosphatase, which regulates Trk1 and Trk2 [231], Hal4 and
Hal5, two protein kinases that regulate Trk1 [232], Crz1 the calcineurin-regulated transcription factor,
which controls the expression of ENA1 [233] and Qdr2, an ABC multidrug transporter able to transport
monovalent and divalent cations [234], among others. Some of these genes proved to confer salt
tolerance when overexpressed in plants [235,236].

The key point regarding this technique is that it allows for the identification of genes related to
K+/Na+ homeostasis. The main advantage of using this kind of approach is that it is fast and can
identify genes previously unrelated to ion homeostasis. Since these initial studies using a yeast genomic
library, this approach has been carried out by several groups using plant cDNA libraries (Table 7).
There are several strategies to increase the chances of success, for instance, the cDNA library can be
obtained from plants after a stress treatment to increase the number of transcripts related to the abiotic
stress response. The screening can be performed in a wild type yeast or in a stress-sensitive mutant,
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such as those described above. The use of mutants is a way to enhance the sensitivity of the screening
and increase the chances of identifying plant genes conferring tolerance. For genes conferring weak or
mild phenotypes, the yeast stress defense system could mask the effect, but by using stress-sensitive
mutants, functional genes can be isolated. The most typical strain for performing screenings is the
ena1-4 mutant that harbors a deletion in the genes encoding the Na+ extrusion pumps.

One striking feature of this kind of screening is that most of the isolated genes are not conserved
in yeast. One would expect that plant genes could confer salt stress tolerance in yeast by increasing
K+ uptake, Na+ extrusion or Na+ accumulation in the vacuole, but what happens instead is that
in many cases there is no change in the ion content. The tolerance is attained by complementing a
molecular process, which becomes limiting upon a decrease in the K+/Na+ ratio, such as gene splicing,
or by counteracting some of the side effects of the salt stress, like the osmotic stress induced by high
concentrations of Na+ in the medium or the concomitant oxidation [237]. In Table 7, we have compiled
the results found in the literature for plant genes isolated in heterologous screenings in yeast that
confer salt tolerance upon overexpression, with information on the origin of the cDNA library, the
yeast strain used and the screening conditions. This review is focused on the use of the baker’s yeast S.
cerevisiae, but some laboratories have also used the fission yeast, Schizosaccharomyces pombe, in a similar
manner with positive results [238].

Table 7. A summary of the heterologous overexpression screenings performed in yeast using plant
cDNA libraries.

Plant Species cDNA Library
[Reference] Yeast Strain Screening

Conditions Isolated Genes Reference

Arabidopsis
thaliana

Leaves from
Arabidopsis

seedlings [239]

ena1-4
(W303-1A) 50 mM LiCl

AtRCY1 (K/T-cyclin with SR domain of
splicing proteins)

AtSRL1 (SR domain of splicing proteins)
[237]

AtLTL1 (GDSL-motif lipase) [240]

[241] cna1cna2YPH499 200 mM NaCl AtSTZ1 (Zinc finger protein)
AtSTO1 (B-Box domain protein 24) [242]

Atriplex
canescens

Young leaves and
stems treated with
400 mM NaCl [243]

WT (INVSc1) 2 M NaCl

KJ026992 (Cyclophilin)
KJ027014 (Glycine-rich protein)

KJ027023 (Cytochrome P450)
KJ027035 (Temperature-induced lipocalin)

KJ027049 (Cysteine proteinase A494)
KJ027057 (Alanine aminotransferase 2)

KJ027061 (Hexose transporter)KJ027088
(RNA-binding family protein)

KJ027102 (Cysteine proteinases)
KJ027110 (calmodulin1)

[244]

Beta vulgaris
Leafs from salt
stressed plants

[245]

ena1-4
nha1(W303-1A) 150 mM NaCl

BvCK2 (catalytic subunit of the
casein kinase) [245]

BveIF1A (Translation initiation factor) [246]

BvSATO1 (RNA binding protein with
RGG and RE/D motifs)

BvSATO2 (homologous to SATO1)
BvSATO4 (RNA binding protein)
BvSATO5 (RNA binding protein)
BvU2AF (U2snRNP AF protein)

[247]

gpd1(W303-1A) 1 M Sorbitol
BvSAT1 (Serine acetyl trasferase 1) [248]

BvGLB2 (Type II non symbiotic plant
hemoglobin) [249]

WT (W303-1A) 10 ◦C BvCOLD1 (TIP-like aquaporin) [250]
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Table 7. Cont.

Plant Species cDNA Library
[Reference] Yeast Strain Screening

Conditions Isolated Genes Reference

Ipomoea
pes-caprae

Growing leaves,
shoots and roots

[251]

ena1-4 nha1
nhx1(W303-1A) 75 mM NaCl

MF680587 (putative abscisic acid, stress,
and ripening-induced protein (ASR))

MF680589 (nudix hydrolase,
chloroplastic)

MF680592 (F-box protein At5g46170-like)
MF680597 (fructokinase)

MF680602 (adenosylhomocysteinase 1)
MF680603 (peptide upstream protein)

MF680604 (catalase)
MF680608 (40S ribosomal protein S25)

MF680611 (phosphomannomutase)
MF765747 (dnaj protein-like protein)

MF680614 (phytosulfokines-like)
MF680616 (sugar carrier protein C)

MF680619 (abscisic acid 8′-hydroxylase 4)
KX426069 (dehydrin)

[251]

Jatropha curcas
3-4 week seedlings

treated with 150
mM NaCl [252]

shs-2
(UV-generated
mutant in the

BY4741
background)

750 mM NaCl

FJ489601 (Allene oxide cyclase)
FJ489602 (Thioredoxin H-type (TRX-h))

FJ489603 (Metallothionein)
FJ489604 (Heterotrophic ferredoxin)

FJ489605 (Defensin)
FJ489606 (Calmodulin-7 (CAM-7))
FJ489608 (S18.A ribosomal protein)

FJ489609 (60S ribosomal protein L18a)
FJ489611 (Unknown protein)

FJ619041 (Membrane protein -2)
FJ619045 (Profilin-like protein)
FJ619048 (Copper chaperone)

FJ619052 (Annexin-like protein)
FJ619053 (Al-induced protein)

FJ619055 (60S ribosomal protein L39)
FJ619056 (Ribosomal protein L37)
FJ619057 (Ribosomal protein L15)

FJ623457 (40S ribosomal protein S15)
FJ623458 (40S ribosomal S18)

[252]

Oryza sativa

Leaves from
seedlings treated

with different
abiotic stresses

[253]

WT (AH109) 900 mM NaCl OsMPG1 (mannose-1-phosphate guanyl
transferase gene) [253]

Paspalum
vaginatum

Cultivated stolons
treated with 250
mM NaCl [254]

ena1-4(G19) 500 mM NaCl

KT203435 (Uncharacterized protein)
KT203436 (Iron-regulated transporter)
KT203439 (Early light-induced protein)

KT203440 (14-3-3-Like protein)
KT203441 (Class 1 HSP)

KT203442 (Cysteine synthase)
KT203443 (Aldo-ketoreductase)

KT203444 (L-Ascorbate peroxidase 2)
KT203447 (Nop14-like family protein)

KT203450 (Protein IQ-DOMAIN 14-like)
KT203451 (Metacaspase-5-like)

[254]

Phoenix
datilifera

Salt-treated roots
[255] WT (INvSc1) 2 M NaCl

XM_008806660.2 (11S globulin seed
storage protein 2-like)

XM_008805834.2 (ABC transporter)
XM_008780694.2 (Aquaporin PIP1-2)

XM_008793314.1 (Aquaporin PIP2-4-like)
XM_008779330.1 (Cysteine desulfurase)
XM_008802947.2 (Cytochrome b5-like)
XM_008783561.2 (Cytospin-A-like 1)
XM_008797620.2 (Hexokinase-2-like)
XM_008780092.2 (Mavicyanin-like 1)
XM_008814440.2 (Peroxidase 3-like)

XM_008786338.2 (Peroxidase 3-like 2)
XR_604439.2 (Uncharacterized)

XM_008800513.2 (Uncharacterized)
XM_017846106.1 (Uncharacterized)
XM_017846788.1 (Uncharacterized)

[255]
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Table 7. Cont.

Plant Species cDNA Library
[Reference] Yeast Strain Screening

Conditions Isolated Genes Reference

Salicornia
europaea 3-month-old plants WT (BY4741) 1.6 M NaCl

SeNN8 (Similar to FKBP5)
SeNN24 (Thaumatin like protein)

SeNN43 (Unknown protein)
[256]

Solanum
tuberosum

Plants grown
in vitro and

subjected to heat
shock at 35 ◦C [257]

WT (BY4741) 39 ◦C StnsLTP1 (Non-specific Lipid Transfer
Protein-1) [258]

Zea mays Maize kernels Not indicated Not indicated MBF1a (Multiprotein bridging factor 1a
transcriptional coactivator) [259]

Zoysia matrella
Cultivated stolons
treated with 300

mM NaCl
ena1-4 (G19) 500 mM NaCl

KM265171 (Uncharacterized protein)
KM265174 (C2H2-type Zinc finger

protein)
KM265176 (Unknown protein)

KM265177 (Alcohol dehydrogenase 1)
KM265179 (Protein disulfide isomerase)

KM265182 (Glyoxylate reductase)
KM265183 (Serine carboxypeptidase)

[260]

The most represented category are genes related to protein post-translational modifications,
including protein folding, sorting and degradation. This suggests that processes related to protein
sorting or protein regulation are inhibited by salt stress or that plant proteins are regulating the yeast
salt stress response proteins. For instance, among the genes identified in this type of screen is a
cyclophilin [244] and an FKBP protein [256]. These proteins have peptidyl-prolyl cis-trans isomerase
activity, and have been described to regulate the H+-ATPase in plants [261]. Another major category is
RNA binding proteins. One of the few commercialized GMO crops with increased salt tolerance is the
Droughtgard® maize by BASF. The gene that confers this tolerance is a bacterial cold shock protein
(CSPb from Bacillus subtilis), which also is an RNA binding protein. Therefore, this protein is likely to be
a target of salt toxicity and overexpression of genes related to this process may complement the growth
defect induced by salt stress [262]. Proteins related to protein translation, mainly ribosomal proteins,
and photosynthesis-related proteins are also among the most common genes identified (Table 7). These
are pivotal processes for plant cell physiology, so genes of both categories are abundant in cDNA
libraries. It is likely that even cDNAs that confer a minor phenotype may be isolated due to the large
number of individual cDNAs in the libraries. Finally, it is also interesting to point out that although
some membrane transporters have been identified, Na+, K+ or Cl− channels have never been recovered
in these screenings. The chances of identifying a complex multimeric integral membrane protein are
low, as not all plant membrane proteins are properly folded, processed, assembled or localized in yeast
due to the absence of the specific machinery [263,264]. In addition, they may lose activity due to the
different composition of the membrane lipids [265]. Among the identified membrane transporters there
is only one protein annotated as a cation/calcium exchanger [260], PIP and TIP aquaporins [250,255]
and an ABC multidrug transporter, among others [255]. In most cases, the phenotype is probably due
to non-specific Na+ or K+ transport.

It is also important to mention that heterologous expression of plant genes in yeast also has several
limitations. For instance, not all plant genes are properly expressed in yeast due to codon-usage
bias [266]. Another possible drawback of these kinds of screenings is the possibility of a dominant
negative effect, so the phenotype observed may not be an indication of the function of the gene in plants,
but represent an indirect effect due to interference with a yeast pathway that induces a phenotype
similar to the one being evaluated [267]. These circumstances could explain the fact that in some
screenings proteins related to signal transduction pathways, such as protein kinases [245] or ABA
signaling-related proteins [260] also appear. Finally, it is also important to recall that at least some
plant ion transport systems may also require multiple genes for complete function of the channel or
transporter. The quintessential example here is the SOS system discussed above, which has never been
identified by a cDNA library screening because only one gene is overexpressed at a time. Despite these
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shortcomings, the yeast heterologous expression strategy has made many important contributions to
our understanding of plant K+ and Na+ homeostasis and will surely continue to provide valuable
information in the future.
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