

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/158177

Anzt, H.; Dongarra, J.; Flegar, G.; Quintana Ortí, ES. (2019). Variable-size batched Gauss-
Jordan elimination for block-Jacobi preconditioning on graphics processors. Parallel
Computing. 81:131-146. https://doi.org/10.1016/j.parco.2017.12.006

https://doi.org/10.1016/j.parco.2017.12.006

Elsevier

Variable-Size Batched Gauss-Jordan Elimination for
Block-Jacobi Preconditioning on Graphics Processors

Hartwig Anzta,b, Jack Dongarrab,c,d, Goran Flegare,
Enrique S. Quintana-Ort́ıe

aKarlsruhe Institute of Technology, Germany
bInnovative Computing Lab (ICL), University of Tennessee, Knoxville, Tennessee, USA

cOak Ridge National Laboratory, USA
dSchool of Computer Science, University of Manchester, United Kingdom

eDept. Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, Castellón, Spain

Abstract

In this work, we address the efficient realization of block-Jacobi precondi-
tioning on graphics processing units (GPUs). This task requires the solution
of a collection of small and independent linear systems. To fully realize this
implementation, we develop a variable-size batched matrix inversion ker-
nel that uses Gauss-Jordan elimination (GJE) along with a variable-size
batched matrix–vector multiplication kernel that transforms the linear sys-
tems’ right-hand sides into the solution vectors. Our kernels make heavy
use of the increased register count and the warp-local communication asso-
ciated with newer GPU architectures. Moreover, in the matrix inversion,
we employ an implicit pivoting strategy that migrates the workload (i.e.,
operations) to the place where the data resides instead of moving the data
to the executing cores. We complement the matrix inversion with extrac-
tion and insertion strategies that allow the block-Jacobi preconditioner to be
set up rapidly. The experiments on NVIDIA’s K40 and P100 architectures
reveal that our variable-size batched matrix inversion routine outperforms
the CUDA basic linear algebra subroutine (cuBLAS) library functions that
provide the same (or even less) functionality. We also show that the precon-
ditioner setup and preconditioner application cost can be somewhat offset
by the faster convergence of the iterative solver.

∗Corresponding author
Email addresses: hanzt@icl.utk.edu (Hartwig Anzt), dongarra@icl.utk.edu

(Jack Dongarra), flegar@uji.es (Goran Flegar), quintana@uji.es
(Enrique S. Quintana-Ort́ı)

Preprint submitted to Journal of LATEX Templates January 3, 2018

Keywords: Batched algorithms, matrix inversion, Gauss-Jordan
elimination, block-Jacobi, sparse linear systems, graphics processor.

1. Introduction

Solving large, sparse-linear systems of equations is a prevailing problem
in scientific and engineering applications that involve the discretization of
partial differential equations (PDEs). A standard approach to tackle these
problems combines a Krylov method with a preconditioner that accelerates5

the iterative solution process [1]. In the context of high-performance com-
puting, the efficiency of the preconditioner depends on the parallel scalability
of both the preconditioner generation (prior to the iterative solve) and the
preconditioner application (at each step of the iterative solve).

Using preconditioners based on Jacobi (diagonal scaling) and block-10

Jacobi typically renders moderate improvements to the convergence of the
iterative solver [1]. These acceleration techniques are nevertheless reason-
ably attractive as block-diagonal scaling introduces very small computa-
tional overhead to the solver iteration. Furthermore, the application of a
Jacobi-type preconditioner is inherently parallel and, therefore, highly ap-15

pealing for massively parallel architectures.
In [2] we proposed a batched routine for the generation of a block-Jacobi

preconditioner using the explicit inversion of the diagonal blocks. Precisely,
we designed a variable-size batched routine for matrix inversion on graphics
processing units (GPUs) based on Gauss-Jordan elimination (GJE) [3]. Fur-20

thermore, we introduced an implicit pivoting strategy in the GJE procedure
that replaces row-swapping with a migration of the workload (i.e., opera-
tions) to the thread that owns the necessary data, which allowed us to realize
the complete inversion process in thread-local registers. For the block-Jacobi
preconditioner generation, the inversion process needs to be combined with25

routines that extract the diagonal blocks from the sparse data structure that
stores the coefficient matrix. This extraction step can be costly, particularly
for matrices with an unbalanced nonzero distribution. In response, we de-
veloped an extraction routine that balances coalescent data access, workload
imbalance, and use of shared memory.30

In this paper, we extend our previous work in [2] with new contributions,
listed below.

• We propose a modified version of our variable-size batched GJE (BGJE)
inversion routine for GPUs that can invert several blocks per warp.
This avoids idle CUDA cores and operations on dummy values when35

2

processing a matrix batch where each matrix is less than or equal to
16 × 16.

• We introduce a new variant of the extraction procedure that requires
a much smaller amount of shared memory. This strategy transposes
the diagonal blocks at the time they are extracted from the sparse co-40

efficient matrix, inverts the transposed diagonal block, and ultimately
writes the inverse of the transpose in transposed mode. The result
provides a functionality equivalent to the original block inversion but
reduces the amount of shared memory in the block size, utilized during
the inversion procedure, from quadratic to linear only.45

• We replace the general sparse matrix–vector multiplication kernel in
the preconditioner application with a specialized variant that exploits
the block-diagonal structure of the preconditioner matrix. This accel-
erates the application of the block-Jacobi preconditioner in the itera-
tive solution process.50

Our results revealed that these modifications can render significant per-
formance improvements, particularly when targeting batches consisting of
small blocks like those appearing in block-Jacobi preconditioning for prob-
lems arising from finite element method (FEM) discretizations.

The rest of the paper is structured as follows. In Section 2 we offer a55

short review of Jacobi-type iterative solvers and batched routines for linear
algebra. In Section 3 we further elaborate on the batched Gauss-Jordan
elimination (BGJE) procedure presented in [2], and we describe the batched
kernels and highlight the major improvements in the block-Jacobi generation
step, extraction step, and preconditioner application. In Section 4 we report60

on our extensive evaluation of the new BGJE routine on NVIDIA’s K40
and P100 GPUs. Particularly, we focus on the performance acceleration
produced by the modifications of the original BGJE. Finally, in Section 5 we
summarize our contributions and the insights gained from the experimental
evaluation.65

2. Background and Related Work

2.1. Block-Jacobi preconditioning

Consider the linear system Ax = b, with the coefficient matrix A ∈ Rn×n,
the right-hand side vector b ∈ Rn, and the sought-after solution x ∈ Rn.
The block-Jacobi method partitions the entries of the coefficient matrix as
A = L+D+U , where D = (D1, D2, . . . , DN) contains a collection of blocks

3

(of variable-size) located on the diagonal of A, while L and U comprise the
entries of A below and above those in D, respectively. For a starting solution
guess x{0}, the iterative Jacobi solver can then be formulated as:

x{k} := D−1
(
b− (A−D)x{k−1}

)
= D−1b + Mx{k−1}, k = 1, 2, . . . ,

(1)

where the convergence is ensured if the spectral radius of the iteration ma-
trix M = I − D−1A is smaller than one [1]. This occurs, for instance, in
diagonally-dominant systems [1].70

In case it is well-defined, the (block-)Jacobi matrix can be used as pre-
conditioner, transforming the original system Ax = b into either the left-
preconditioned system

D−1Ax = c (= D−1b), (2)

or the right-preconditioned system

AD−1y = b, (3)

with x = D−1y. Hereafter, we will consider the left-preconditioned case.75

When integrated into a Krylov subspace-based solver, the application
of a block-Jacobi preconditioner in (2) requires the solution of the block-
diagonal linear system (i.e., a linear system for each block Di). Alternatively,
assuming the block-inverse matrix D̂ = D−1 is available, the block-diagonal
scaling in (2) can be realized in terms of a matrix-vector multiplication with80

the inverse blocks D̂i = D−1i , i = 1, 2, . . . , N . In general, pre-computing

explicitly the block-inverse D̂ during the preconditioner setup allows for
faster preconditioner application in the iterative solver. However, when
dealing with large blocks and sparse data structures, the inversion of matrix
D can become a bottleneck. On parallel architectures, it is possible to85

exploit the pairwise independence of the diagonal blocks in D by generating
their individual inverses in parallel.

2.2. GJE for matrix inversion

GJE has been proposed in the last years as an efficient method for ma-
trix inversion on clusters of multicore processors and many-core hardware90

accelerators [4, 5]. In addition, in [2] we demonstrate the benefits of leverag-
ing GJE for block-Jacobi preconditioning on GPUs. When combined with
partial pivoting, GJE is as stable as matrix inversion via the LU factoriza-
tion. At the same time, GJE avoids the workload imbalance that occurs in
the LU-based approach due to computations with triangular factors.95

4

1 % Inpu t : m x m non s i n g u l a r mat r i x b l o ck Di .
2 % Output : Mat r i x b l o ck Di o v e rw r i t t e n by i t s i n v e r s e
3 p = [1:m];

4 for k = 1 : m

5 % e x p l i c i t p i v o t i n g
6 [abs_ipiv , ipiv] = max(abs(Di(k:m,k)));
7 ipiv = ipiv+k-1;

8 [Di(k,:), Di(ipiv ,:)] = swap(Di(ipiv ,:), Di(k,:));

9 [p(k), p(ipiv)] = swap(p(ipiv), p(k));

10
11 % Jordan t r a n s f o rma t i o n
12 d = Di(k,k);

13 Di(:,k) =-[Di(1:k-1,k); 0; Di(k+1:m,k)] / d;% SCAL
14 Di = Di + Di(:,k) * Di(k,:); % GER
15 Di(k,:) = [Di(k,1:k-1), 1, Di(k,k+1:m)] / d;% SCAL
16 end
17 % Undo pe rmuta t i on s
18 Di(:,p) = Di;

Figure 1: Simplified loop-body of the basic GJE implementation in Matlab notation using
standard pivoting.

The basic algorithm for matrix inversion via GJE consists of a loop that
comprises a pair of vector scalings (scal) and a rank-1 update (ger); see
Figure 1. The unblocked version of the GJE algorithm in this figure, based
on Level-2 BLAS operations, generally yields a poor exploitation of the
memory hierarchy on current processors. However, this formulation can de-100

liver good performance when computing the inverses of small matrices, like
those that usually appear in the context of block-Jacobi preconditioning. Fi-
nally, the Level-2 BLAS version of GJE allows the integration of an implicit
pivoting strategy, which dramatically reduces explicit data movements.

2.3. GJE with implicit pivoting105

To ensure numerical stability, GJE needs to include a pivoting strategy.
On parallel architectures, the row swaps required in the standard partial
pivoting technique (Figure 1, line 8) can be costly. This is particularly the
case if the data is distributed row-wise among the processor cores. In this
scenario, the two cores holding rows k and ipiv need to exchange their data,110

while the other cores remain idle. Although distributing the matrix column-
wise resolves this problem, the load imbalance is then just shifted to the pivot
selection (line 6). As a response, in [2] we presented an implicit pivoting
procedure which avoids explicitly swapping data. Instead, it accumulates
all swaps, and combines them when completing the GJE algorithm. The115

5

1 % Inpu t : m x m non s i n g u l a r mat r i x b l o ck Di .
2 % Output : Mat r i x b l o ck Di o v e rw r i t t e n by i t s i n v e r s e
3 p = zeros(1, m);

4 for k = 1 : m

5 % im p l i c i t s p i v o t i n g
6 abs_elems = abs(Di(:, k));

7 abs_elems(p > 0) = -1; % exc l ud e a l r e a d y p i v o t e d rows
8 [abs_ipiv , ipiv] = max(abs_elems);
9 p(ipiv) = k;

10
11 % Jordan t r a n s f o rma t i o n
12 d = Di(ipiv , k);

13 Di(:,k) =-[Di(1:ipiv -1,k); 0; Di(ipiv +1:m,k)] / d;% SCAL
14 Di = Di + Di(:,k) * Di(ipiv ,:); % GER
15 Di(ipiv ,:) = [Di(ipiv ,1:k-1), 1, Di(ipiv ,k+1:m)] / d;% SCAL
16 end
17 % Undo pe rmuta t i on s
18 Di(p,:) = Di(:,p);

Figure 2: Simplified loop-body of the basic GJE implementation in Matlab notation using
implicit pivoting.

paradigm underlying implicit pivoting is to move the workload to the thread
owning the data, instead of keeping the workload fixed to the thread index
and reshuffling the data.

In standard GJE with explicit pivoting, the data required for operations
performed on each row at iteration k (lines 12–15) is located only in that120

particular row and the current pivot row ipiv (which was swapped with
row k at the beginning of the iteration). The operation applied on the
distinct rows only depends on whether or not a certain row is the current
pivot row. Concretely, if a row is the current pivot (i.e., it lies on position
k) the operation involves diagonal scaling; otherwise, it requires the scaling125

of element k followed by an AXPY of the remaining elements. Hence, the
actual order of the rows is not important during the application of the
Gauss-Jordan transformations, and the swaps can be postponed until the
algorithm is completed. This idea is illustrated in Figure 2.

The selection of the pivot entry has to be modified when pivoting im-130

plicitly. In explicit pivoting, at iteration k, all previous pivots are located
above the k-th entry of the diagonal, and the potential pivot rows for the
current iteration lie in positions k:m. When using implicit pivoting, none
of the rows have been swapped, so we need to keep track of the previously
chosen pivots. At step k, the next pivot is chosen among the set of rows135

that were not yet selected as pivots. In Figure 2, the potential pivots are

6

the entries in rows i with “p(i) = 0” in lines 6–9.
Since implicit pivoting does not change the execution order of the oper-

ations applied or the numerical values, this variant of pivoting preserves the
numerical properties of the algorithm.140

2.4. Batched GPU routines

The qualifier “batched” identifies a procedure that applies the same op-
eration to a large collection of data entities. In general, the subproblems
(i.e., the data entities) are all small and independent, asking for a parallel
formulation that simultaneously performs the operation on several/all sub-145

problems in order to yield a more efficient exploitation of the computational
resources. Batched routines are especially attractive in order to reduce the
overall kernel launch overhead on GPUs, as they replace a sequence of ker-
nel calls with a single kernel invocation. In addition, if the data for the
subproblems is conveniently stored in the GPU memory, a batched routine150

can orchestrate a more efficient (coalesced) memory access.
In recent years, the development of batched routines for linear algebra

operations has received considerable interest because of their application
in machine learning, astrophysics, quantum chemistry, hydrodynamics, and
hyperspectral image processing, among others. Examples of batched kernels155

for the dense BLAS appear in [6, 7], and there exists a strong community
effort on designing a interface standard for these routines [8]. Aside from
block-Jacobi, the adoption of batched routines for efficient preconditioner
generation has also been recently studied in the context of using approximate
triangular solves for incomplete factorization preconditioning [9, 2].160

3. Design of CUDA Kernels

In [2] we designed a set of routines for the generation and application
of block-Jacobi preconditioners via variable-size BGJE. In this section we
review the key concepts in [2], and introduce several improvements to further
accelerate both the generation and application of the preconditioner.165

The generation of an inversion-based block-Jacobi preconditioner can be
decomposed into three distinct steps: 1) extraction of the diagonal blocks;
2) inversion of these blocks; and 3) insertion of the inverse blocks into the
preconditioner matrix. We visualize these steps for non-uniform block sizes
in Figure 3. The three steps can be realized as three separate CUDA kernels,170

or in terms of a single kernel doing all steps in sequence. The experimental
results in [2] suggest that, in general, merging all operations into a sin-
gle kernel results in higher performance. A reason for this is the reduced

7

Extract	diagonal	block	from
sparse	data	structure.

Invert	diagonal	block.

Insert	inverse	as	diagonal	block	
into	preconditioner	matrix.

…

1.

2.

3.

Figure 3: Generation of the block-Jacobi preconditioner: 1) data extraction; 2) variable-
size BGJE; 3) data insertion. The block structure is indicated with orange circles, the
original nonzero pattern with blue dots, and the block inverses with purple circles.

memory transfer, as realizing the operations in a single kernel avoids the
main memory accesses that are necessary to transfer data between separate175

kernels. In this paper we therefore focus on merged kernels for generating
block-inverse matrices.

The question of how to identify a convenient block structure for a given
coefficient matrix and an upper bound limiting the size of the diagonal blocks
remains outside the focus of this paper. Here, for all experiments we use the180

supervariable blocking routine available in MAGMA-sparse [10].

3.1. Variable-size batched Gauss-Jordan elimination

The central operation in the generation of an inversion-based block-
Jacobi preconditioner is the inversion of the diagonal blocks in D. These
blocks are all square, of small dimension, and independent. In [2] we de-185

signed a variable-size BGJE routine that assigns one CUDA warp (a group
of 32 threads) to invert each diagonal block. The kernel is launched on a grid
with the number of warps covering the number of diagonal blocks. Within a
warp, parallelism is realized by each thread handling one row of the diagonal
block. This limits the scope of the kernel to matrix batches where no matrix190

8

is of dimension larger than 32. As blocks of larger dimension are rarely en-
countered in the context of block-Jacobi preconditioning, the variable-size
batched GJE kernel perfectly fits this application scope [2].

Handling the inversion with a single warp allows us to use two recent
features of NVIDIA’s GPU architectures: increased register count and warp195

shuffle instructions. In some detail, the data required by each thread (up to
32 data elements belonging to the matrix row) is first read into registers; the
inversion is then computed using this data and communication occurs via the
warp shuffle instruction (avoiding main memory access during the inversion
process); and finally, the computed inverse is written back to main memory.200

In general, even though the diagonal blocks are sparse, their inverses are
dense. We therefore handle and store the diagonal blocks in dense format
during the complete inversion process.

The pivoting process ensuring numerical stability requires to identify the
pivot element, see line 8 in Figure 2. Since the matrix is distributed row-wise205

among the threads, this requires a parallel reduction. We realize this step
via warp shuffles. The same type of shuffles is also used to distribute the
contents of the current pivot row Di(ipiv, k) required for the operations
in lines 12–15.

Multiple problems per warp. The variable-size BGJE presented in [2]210

assigns one warp to each diagonal block. In that work, diagonal blocks of size
k < 32 were padded with dummy values to that dimension and the threads
only execute the first k iterations of the GJE algorithm. Obviously, for
small blocks, this wastes a significant part of the computational resources,
as most of the threads then operate on dummy data. In this work, we im-215

prove the algorithm by allowing one warp to handle multiple small problems
simultaneously. Concretely, let km denote the size of the largest block in the
matrix batch and pm stand for the smallest power of 2 such that pm ≥ km;
then, in our new approach, each warp processes 32/pm blocks. Proceeding
in this manner, each group of pm threads – we call it sub-warp – is assigned220

to one problem. The first km threads in the sub-warp compute the inverse
of a block of size k ≤ km by padding it with dummy values to size km, and
computing only the first k steps of the inversion procedure. The rest of the
threads in the sub-warp remain idle. The reason for choosing pm as the sub-
warp size is that the CUDA ecosystem supports warp shuffles for these sizes.225

Using km instead of pm would require additional operations to calculate the
thread index. Finally, we do not consider “packing” blocks of different sizes
into one warp (e.g., one warp could process blocks of sizes 15 and 17), as
this would require a preprocessing step in order to determine which warp

9

can process which set of blocks. Furthermore, it would also result in thread230

divergence between the two parts of the warp.

3.2. Data extraction from the sparse coefficient matrix

As BGJE expects a collection of small dense blocks as input, these blocks
need to be extracted from the sparse coefficient matrix stored in CSR for-
mat [1]. We next review the two extraction strategies we implemented and235

compared in [2].
The first approach, named cached extraction, is a straight-forward method

where each thread traverses a single matrix row, (specifically, the row whose
values will be required by this thread during inversion process,) and ex-
tracts the elements that lie on the corresponding diagonal block. Since the240

CSR format is designed to favor accessing sparse matrix by rows, (i.e., it
keeps the matrix entries in row-major order,) this will most likely result in
non-coalescent memory access. Furthermore, an unbalanced nonzero distri-
bution in the coefficient matrix inevitably incurs load imbalance, as threads
operating on short rows will remain idle while the remaining threads ex-245

tract the data from their rows. Both effects impair the performance of the
extraction step.

As a response to these issues, in [2] we proposed an alternative shared
extraction method. The key idea is to eliminate non-coalescent memory
access and (potential) load imbalance at the cost of using shared memory.250

Precisely, all threads of the warp collaborate on the extraction of the block
by accessing each row containing part of the block in a coalesced mode (see
Figure 4). The diagonal block is then converted to dense format and stored
into shared memory by writing the extracted values into the appropriate
locations in shared memory, see right-hand side in Figure 4. Once the ex-255

traction of a block is completed, each thread reads the values of the row
assigned to it from shared memory. This strategy makes all memory ac-
cesses coalescent and alleviates load imbalance. The shared memory usage,
however, can constrain the number of warps active per multiprocessor. On
“older” GPU architectures we observed that the shared extraction strategy260

can result in lower performance due to this issue.

Reduced usage of shared memory. We improve the situation by rad-
ically reducing the amount of shared memory employed in the shared ex-
traction step. This is possible because the inverse of a matrix A can be
computed by first obtaining the inverse of AT and then transposing the re-265

sult (i.e., ((AT)−1)T = A−1). Extracting the transpose of the diagonal block
is much easier as the i-th elements of all columns are available as soon as

10

the i-th row is extracted to shared memory. This means that all threads
can already read the i-th row-value of the transposed block into registers
before proceeding with the extraction of the next row. Thus, the extraction270

of the transpose block from the sparse matrix structure can be “interleaved”
with the retrieval of the values from shared memory into the registers. As a
result, the same shared memory locations used to store row k of the diagonal
block can be re-used in the following step of the extraction. This reduces
the total amount of shared memory required to that necessary to keep a275

single row of the diagonal block.
In case multiple blocks are assigned to each warp, a straight-forward

extension of the strategy is to let each sub-warp extract the block assigned to
it. This would, however, result in non-coalesced memory access. Coalesced
memory access can be preserved by extracting all blocks handled by the280

warp in sequence, using all threads of the warp and enough shared memory
to store one row of the largest matrix in the batch.

After the inversion of a diagonal block is completed, the result is written
back to main memory. Realizing the afore-described extraction step in re-
verse order, we store the inverse of the transposed block in transposed mode285

– which is the inverse of the original block.

3.3. Preconditioner application

Once the block-inverse is generated, the block-Jacobi preconditioner can
be applied in terms of a sparse matrix-vector product (spmv).

Structure-aware spmv. We improve the performance of the block-Jacobi290

preconditioner by replacing the generic sparse matrix-vector product with
a specialized kernel that exploits the block structure of the preconditioner
matrix. In detail, we use a variable-size batched dense matrix-vector mul-
tiplication (gemv) to multiply the distinct block inverses D−1i with the ap-
propriate vector segments. As in the preconditioner generation, the blocks295

are distributed among the (sub-)warps, with each (sub-)warp handling the
multiplication for one vector segment. In contrast to the elements of the
matrix, which are all used for only a single multiplication, the elements in
the vector segment are reused in the multiplication with the distinct rows
of the block. Hence, it is beneficial to read the elements of the vector seg-300

ment into the registers of the distinct threads of the (sub-)warp (one element
per thread) at the beginning of the routine. The performance of gemv is
constrained by the memory bandwidth. It is therefore essential to ensure
coalesced memory accesses by forcing each (sub-)warp to read the diagonal
blocks row-wise (the block-diagonal matrix is stored in the row-major based305

11

Thread

Element in
diagonal block

Element being
extracted

Element already
extracted

Current memory
transaction

Memory
requests

Shared extraction
(multiple threads per row)

1

2

3

4

5

row-ptr col-indices Shared memoryrow-ptr col-indices

Cached extraction
(1 thread per row)

Figure 4: Illustration of the memory requests for the cached extraction and shared extrac-
tion (left and right, respectively). We assume warps of 4 threads and memory transactions
of 4 values. We only show the accesses to the vector storing the col-indices of the CSR ma-
trix structure; the access to the actual values induces far less overhead, as these memory
locations are accessed only if a location belonging to a diagonal block is found. In that
case, the access pattern is equivalent to the one used for col-indices.

12

CSR matrix format). For each row of the block, the threads of the (sub-
)warp then use warp shuffles to compute the dot product of the matrix row
and the vector entries they keep in registers. Finally, the result is written
to the appropriate position in the output vector.

4. Experimental Evaluation310

In this section, we (1) benchmark gigaFLOPS enhanced version of the
variable-size batched matrix inversion routine based on GJE; (2) analyze the
performance of the complete block-Jacobi preconditioner (generation and
application); and (3) assess the efficiency of block-Jacobi preconditioning in
an iterative solver setting.315

We begin by comparing the new BGJE kernel against the version pre-
sented in [2] and against two batched inversion routines available in NVIDIA’s
cuBLAS library: getriBatched and matinvBatched. We note that both
cuBLAS routines can only operate on batches of problems where all matri-
ces are of the same size.320

Next, to evaluate the the performance benefits for the block-Jacobi
preconditioner generation stage, in isolation, we combine our variable-size
BGJE routines with the improved extraction and insertion procedures, and
we test the block-inverse generation for different sparsity structures and
block sizes. For this purpose, we consider a set of test matrices from the325

SuiteSparse Matrix Collection1 (formerly known as the University of Florida
Sparse Matrix Collection). In addition to the preconditioner generation,
we also compare the specialized block-Jacobi application kernel based on
variable-size batched gemv with the generic spmv routine from MAGMA-
sparse [10].330

Finally, to analyze the practical effects of the block-Jacobi precondi-
tioning on an iterative solver, we integrate the block-Jacobi preconditioner
into an Induced Dimension Reduction Krylov solver with shadow space di-
mension 4 (IDR(4)) and demonstrate the time-to-solution improvements
obtained by replacing a scalar-Jacobi preconditioner with a block-Jacobi335

variant.

4.1. Hardware and software framework

For the experiments, we use the two most recent NVIDIA GPU architec-
tures, which have full support for double-precision computations: the Kepler

1Visit http://www.cise.ufl.edu/research/sparse/matrices/.

13

http://www.cise.ufl.edu/research/sparse/matrices/

K40 P100
Problem size 32

0 2 4 6 8 10

Batch size ×10
5

0

20

40

60

80

100

120

140

G
F

L
O

P
S

BGJE

BGJE-MPW

getriBatched

matinvBatched

0 2 4 6 8 10

Batch size ×10
5

0

100

200

300

400

500

600

700

G
F

L
O

P
S

BGJE

BGJE-MPW

getriBatched

matinvBatched

Problem size 16

0 2 4 6 8 10

Batch size ×10
5

0

50

100

150

200

G
F

L
O

P
S

BGJE

BGJE-MPW

getriBatched

matinvBatched

0 2 4 6 8 10

Batch size ×10
5

0

100

200

300

400

500

600

G
F

L
O

P
S

BGJE

BGJE-MPW

getriBatched

matinvBatched

Figure 5: Performance comparison of batched matrix inversion routines for various batch
sizes. Top row shows matrices of size 32 × 32 and the bottom row shows matrices of size
16 × 16.

K40 (Compute Capability 3.5) and the Pascal P100 (Compute Capability340

6.0). We do not consider the older Fermi and Maxwell architectures, as the
former lacks support for warp shuffle instructions, and the latter does not
implement full double-precision support. Because the batched matrix inver-
sion routines, the block-Jacobi generation kernel, and the iterative solvers
proceed exclusively on the GPU, details about the node’s broader hardware345

specifications are irrelevant in the following experiments.
Our kernels are implemented using CUDA 8.0 and are designed to be

integrated into the MAGMA-sparse library [10]. MAGMA-sparse also pro-
vides the testing environment, the block-pattern generation, and the sparse
solvers used in our experiments. All computations use double-precision350

arithmetic—the standard in linear algebra.

4.2. Batched matrix inversion

This section analyzes the performance of four batched routines for matrix
inversion on GPUs; BGJE, BGJE-MPW, getriBatched, and matinvBatched.

14

K40 P100

0 4 8 12 16 20 24 28 32

Block size

0

50

100

150

200
G

F
L
O

P
S

BGJE

BGJE-MPW

getriBatched

matinvBatched

0 4 8 12 16 20 24 28 32

Block size

0

100

200

300

400

500

600

700

G
F

L
O

P
S

BGJE

BGJE-MPW

getriBatched

matinvBatched

Figure 6: Performance comparison of batched matrix inversion routines for various matrix
sizes.

1. BGJE is the variable-size BGJE inversion kernel from [2].355

2. BGJE-MPW is the enhanced kernel that incorporates the BGJE improve-
ments described in this paper.

3. getriBatched renders the batched matrix inversion using two func-
tions from NVIDIA’s cuBLAS library: (1) getrfBatched computes
the LU factorization of the matrix batch, then (2) getriBatched ob-360

tains the inverses using the results of the previous routine. All matrices
in the batch are required to be of the same size.

4. matinvBatched is NVIDIA’s routine that merges the two calls of the
getriBatched routine into a single kernel. Its functionality is limited
to operating on batches of equal-size matrices with an upper bound of365

32 × 32.

We note that the scope of the distinct batched inversion routines is
slightly different: BGJE, BGJE-MPW, and matinvBatched only support
matrices of size up to 32× 32; and neither matinvBatched nor getriBatched
support batches containing matrices of different sizes. Therefore, we limit370

the performance comparison to batches composed of equal-size matrices of
up to 32 × 32. While this upper bound is usually not a problem in the con-
text of block-Jacobi preconditioning, handling batches that contain variable-
size matrices is essential to accommodating the inherent block structure of
FEM discretizations. Consequently, the cuBLAS routines will not be consid-375

ered in the complete preconditioner generation and application experiments.
Figure 5 compares the performance, in terms of gigaFLOPS (billions of

arithmetic floating-point operations per second), for two fixed matrix sizes
(32 × 32 and 16 × 16) while increasing the matrix count (batch size). In
a case where the matrix order is 32, both BGJE and BGJE-MPW deliver the380

15

same performance because, in this scenario, BGJE-MPW also schedules a single
problem per warp. For this matrix size, the performance of both variable-
size BGJE routines exceeds 600 gigaFLOPS (13% of the theoretical peak)
on P100 and around 125 gigaFLOPS (9% of peak) on K40. These rates
correspond to a 6× speedup over the batched inversion using getriBatched,385

and at least a 12× speedup over matinvBatched.
The older K40 architecture has a significantly lower register-per-core ra-

tio compared to the P100. Because our BGJE and BGJE-MPW routines make
heavy use of registers, a reduced register count limits the number of thread-
s/warps that can be active on a multiprocessor, which explains the large390

performance gap between the K40 and P100 GPUs.
The two graphs on the left side of Figure 5 clearly show that the registers

are indeed a performance bottleneck on the K40. For batched problems
consisting of 16 × 16 matrices, each thread only utilizes 16 registers (instead
of 32 registers for 32 × 32 matrices), allowing more active threads—and395

therefore more active warps—per multiprocessor. As a result, the BGJE-MPW

kernel delivers about 160 gigaFLOPS for the smaller matrix sizes but only
around 125 gigaFLOPS for the larger matrices. In comparison, the BGJE

kernel, which can only handle a single problem per warp, achieves a scant
40 gigaFLOPS for the small case. Moreover, both cuBLAS batched inversion400

routines, getriBatched and matinvBatched, deliver a meager 8 gigaFLOPS
for this problem.

Again, note that the BGJE kernel pads the matrices with dummy elements
to size 32 × 32 and inverts one system per warp. On the P100, this delivers
less than 150 gigaFLOPS for a batch composed of matrices of size 16× 16. In405

contrast, the performance of the BGJE-MPW routine exceeds 550 gigaFLOPS
in similar conditions. Thus, although the performance of BGJE-MPW is lower
for a 16 × 16 matrix than for a 32 × 32 matrix (which was expected because
the data-movement-to-floating-point-operation ratio grows with the matrix
size), BGJE-MPW is about one order of magnitude faster than the matrix410

inversion functions provided in NVIDIA’s cuBLAS.
A detailed analysis for different matrix sizes is given in Figure 6. In

this experiment we fixed the batch size to 500,000 matrix problems and
varied the dimension of the matrices in the batch from 1 × 1 to 32 × 32.
For both architectures, BGJE exhibits a superlinear performance drop as the415

matrix size is reduced. This is because, for a batch with matrices of size
k, each warp performs 2k3 useful operations, while the total volume of op-
erations (including those on dummy data used for padding) is 2k × 322.
In contrast, BGJE-MPW avoids most dummy operations and experiences only
a linear performance loss—owing to inactive threads—between consecutive420

16

0 5 10 15 20 25 30 35 40

Test matrices

0

1

2

3

4

S
p
e
e
d
u
p

block size 12

block size 24

block size 32

Figure 7: Performance improvement from reducing the shared memory size in the block-
Jacobi generation using shared extraction/insertion.

powers of two. Peaks for 16 × 16 matrices and 8 × 8 matrices clearly mark
the thresholds where multiple small problems can be handled by a single
warp without introducing any computational overhead. The performance
lines for BGJE-MPW are more erratic than those observed for the other rou-
tines. The reason is that BGJE-MPW is implemented using C++ templates425

to generate a specialized version of the kernel for each matrix size. While
this approach succeeds in minimizing the register count and the number of
operations performed by the size-specific kernels, the kernel-specific resource
requirements impact the number of warps that are active per multiprocessor
and, ultimately, the kernel-specific performance.430

4.3. Block-Jacobi generation

We now turn our attention to the complete block-inversion procedure
that produces the block-Jacobi preconditioner. This includes the extraction
of the diagonal blocks from a sparse data structure, followed by the explicit
inversion, and then the insertion of the inverse blocks into the precondi-435

tioner matrix. As previously mentioned, the routines are “merged” into a
single CUDA kernel that performs all three steps: (1) extraction from the
sparse matrix structure, (2) inversion, and (3) insertion into the sparse pre-
conditioner matrix. In this subsection, we compare three strategies for the
generation of the block-Jacobi preconditioner, with the first strategy corre-440

sponding to an implementation that was already proposed in [2], and the
last two strategies realizing the improvements described in section 3:

1. cached: cached extraction/insertion with BGJE;

2. shared: shared extraction/insertion with BGJE; and

3. shared-mpw: shared extraction/insertion with BGJE-MPW.445

17

Arrow structure Tridiagonal structure Random block struct. Laplace structure

Figure 8: Sparsity plots of test matrices used to evaluate the diagonal block extraction.

Both shared and shared-mpw use the reduced memory shared extraction
described in subsection 3.2. Figure 7 reveals that reducing the shared
memory in the shared strategy can make the block-Jacobi generation up
to four times faster. The problem-specific benefits depend on the the upper
bound for the block size, the pattern of the system matrix determining the450

actual size of the distinct diagonal blocks, and the hardware characteris-
tics determining how many thread blocks a multiprocessor can schedule in
parallel.

Because the performance of the extraction strategies depends on the
structure of the problem matrix, we consider four nonzero distributions that455

are characteristic in sparse linear algebra. In Figure 8, the arrow structure
presents all nonzero entries on the (main) diagonal plus the last row/col-
umn of the matrix. In contrast, in the tridiagonal structure all nonzeros
lie on the diagonal plus the diagonal immediately above/below it. These
two structures are interesting, because they share the same nonzero count460

but exhibit different nonzero distributions. The other two examples corre-
spond to a random block-diagonal matrix structure with nonzeros only in
the diagonal blocks. The Laplace structure arises from the five-point stencil
discretization of the Laplace equation.

In Figure 9, we report the total execution time of the three block-Jacobi465

generation strategies applied to the four matrix structures. In this experi-
ment, we fix the size of the matrix to 1,000,000 and increase the size of the
diagonal blocks from 1 to 32.

For the arrow sparsity structure, the shared strategy is much faster
than its cached counterpart; see results in the first row of Figure 9. This470

result was expected because the arrow nonzero pattern contains a single
dense row, which results in dramatic load imbalance if each row is traversed
by a single thread, as is the case for cached. The shared alternative
uses all threads of the warp to traverse this row, which alleviates the load
imbalance and ensures coalescent access. For the other cases, the impact475

18

K40 P100
Arrow structure

0 4 8 12 16 20 24 28 32

Block size

0

0.005

0.01

0.015

0.02

0.025

0.03

R
u
n
ti
m

e
 [
s
]

CACHED

SHARED

SHARED-MPW

0 4 8 12 16 20 24 28 32

Block size

0

0.05

0.1

0.15

0.2

R
u

n
ti
m

e
 [

s
]

CACHED

SHARED

SHARED-MPW

Tridiagonal structure

0 4 8 12 16 20 24 28 32

Block size

0

1

2

3

4

5

R
u
n
ti
m

e
 [
s
]

×10
-3

CACHED

SHARED

SHARED-MPW

0 4 8 12 16 20 24 28 32

Block size

0

0.005

0.01

0.015

0.02

R
u
n
ti
m

e
 [
s
]

CACHED

SHARED

SHARED-MPW

Random block structure

0 4 8 12 16 20 24 28 32

Block size

0

1

2

3

4

5

6

R
u
n
ti
m

e
 [
s
]

×10
-3

CACHED

SHARED

SHARED-MPW

0 4 8 12 16 20 24 28 32

Block size

0

0.005

0.01

0.015

0.02

0.025

R
u
n
ti
m

e
 [
s
]

CACHED

SHARED

SHARED-MPW

Laplace structure

0 4 8 12 16 20 24 28 32

Block size

0

1

2

3

4

5

R
u
n
ti
m

e
 [
s
]

×10
-3

CACHED

SHARED

SHARED-MPW

0 4 8 12 16 20 24 28 32

Block size

0

0.005

0.01

0.015

0.02

R
u
n
ti
m

e
 [
s
]

CACHED

SHARED

SHARED-MPW

Figure 9: Block-Jacobi generation time for increasing block sizes and nonzero distributions
from top to bottom: arrow, tridiagonal, random block and Laplace.

19

Block size 4 Block size 8

0 5 10 15 20 25 30 35 40

Test matrices

10
-5

10
-4

10
-3

10
-2

B
lo

c
k
-J

a
c
o

b
i
g
e

n
e
ra

ti
o

n
 t
im

e
 [

s
] CACHED

SHARED

SHARED-MPW

0 5 10 15 20 25 30 35 40

Test matrices

10
-5

10
-4

10
-3

10
-2

B
lo

c
k
-J

a
c
o

b
i
g
e

n
e
ra

ti
o

n
 t
im

e
 [

s
] CACHED

SHARED

SHARED-MPW

Block size 12 Block size 16

0 5 10 15 20 25 30 35 40

Test matrices

10
-5

10
-4

10
-3

10
-2

B
lo

c
k
-J

a
c
o

b
i
g

e
n

e
ra

ti
o

n
 t

im
e

 [
s
] CACHED

SHARED

SHARED-MPW

0 5 10 15 20 25 30 35 40

Test matrices

10
-5

10
-4

10
-3

10
-2

B
lo

c
k
-J

a
c
o

b
i
g

e
n

e
ra

ti
o

n
 t

im
e

 [
s
] CACHED

SHARED

SHARED-MPW

Block size 24 Block size 32

0 5 10 15 20 25 30 35 40

Test matrices

10
-4

10
-3

10
-2

10
-1

B
lo

c
k
-J

a
c
o

b
i
g

e
n

e
ra

ti
o

n
 t

im
e

 [
s
] CACHED

SHARED

SHARED-MPW

0 5 10 15 20 25 30 35 40

Test matrices

10
-4

10
-3

10
-2

10
-1

B
lo

c
k
-J

a
c
o

b
i
g

e
n

e
ra

ti
o

n
 t

im
e

 [
s
] CACHED

SHARED

SHARED-MPW

Figure 10: Block-Jacobi generation time on NVIDIA P100 for a set of matrices taken from
the SuiteSparse sparse matrix collection and varied block sizes: 4, 8, 12, 16, 24 and 32.

20

K40 P100

0 4 8 12 16 20 24 28 32

Block size

0

5

10

15

20

25

30

35

G
F

L
O

P
S

SpMV

SA-SpMV

0 4 8 12 16 20 24 28 32

Block size

0

20

40

60

80

100

120

G
F

L
O

P
S

SpMV

SA-SpMV

Figure 11: Performance comparison of the block-Jacobi preconditioner application. spmv
is the generic sparse matrix-vector product routine from [2]. sa-spmv is the specialized
batched gemv–based kernel developed as part of this work.

of non-coalescent memory access featured by cached is small as long as
we consider small block sizes. This is because, for small blocks, only a
few threads in each warp read data, which results in a reduced number of
memory requests. Conversely, for large block sizes, the increase in memory
requests impairs performance. Both strategies based on shared extraction480

eliminate load imbalance and non-coalescent memory access. Nonetheless,
the reduced number of idle threads makes the shared-mpw version the
overall winner.

We now asses the performance of the extraction routines for a set of test
matrices from the SuiteSparse matrix collection. For brevity, we display the485

results for the P100 GPU only. The selected test matrices are listed along
with some key properties in Table 1. In Figure 10, we report the runtime of
the block-Jacobi preconditioner generation for different block sizes. In these
tests, the block sizes only correspond to an upper bound, and the blocks
are identified via supervariable blocking. Also, some blocks can be smaller490

to better reflect the block structure of the problem matrix [11]. We again
identify shared-mpw as the overall winner.

4.4. Block-Jacobi application

In an iterative solver setting, the efficiency of a preconditioner depends
on the overhead of generating the preconditioner and, to even a larger extent,495

on the cost of applying it during the iterative solution process.
In Figure 11, we assess the performance of the preconditioner applica-

tion using a generic spmv kernel proposed in [2] versus our structure-aware
spmv (sa-spmv) introduced in Section 3.3. On both architectures, sa-spmv

21

1 8 12 16 24 32

Jacobi block size

0

10

20

30

40

N
u

m
b

e
r

o
f

te
s
t

m
a

tr
ic

e
s

Fastest choice

Convergence

Figure 12: IDR(4) convergence and performance comparison for different block sizes
used in the block-Jacobi preconditioner. The problem matrices are listed along with key
characteristics in Table 1.

outperforms the initial spmv kernel for the preconditioner application. For500

a block size of 32, this routine achieves about 32 gigaFLOPS on the K40
architecture, and around 80 gigaFLOPS on the P100 architecture. Local
performance peaks can be identified for block sizes 8 and 16.

4.5. Convergence in the context of an iterative solver

Table 1 in the appendix details the convergence rate and execution time505

of an IDR(4) iterative solver [12] enhanced with either a scalar-Jacobi pre-
conditioner or a block-Jacobi preconditioner for the selected cases from
the SuiteSparse collection. The execution time includes both the precon-
ditioner generation and the iterative solver execution. Detailed analysis
reveals that in 88% of the tests, the preconditioner setup accounts for less510

than 1% of the total execution time. In all other cases, the block-inverse
generation accounts for less than 5%.We combine the best kernels for the
distinct preconditioner building blocks, i.e., SHARED-MPW, BGJE-MPW, and
SA-SPMV. Other kernels are taken from the MAGMA-sparse open-source soft-
ware package [10]. The IDR method [13] is among the most robust Krylov515

solvers [14]. The GPU-implementation of IDR available in MAGMA-sparse
has been proven to achieve performance close to the hardware-imposed
bounds [15]. For brevity, we run these tests on the newer P100 architecture
only. We start the iterative solution process with an initial guess, x0 = 0,
solve for a right-hand side composed of random values in the interval [0, 1],520

and stop the iteration process once the relative residual norm has decreased
by nine orders of magnitude. We allow for up to 50,000 iterations of the
IDR(4) solver. In Figure 12, we summarize the results showing for how
many problems a certain configuration was the best choice (i.e., provided

22

the fastest time to solution), and for how many problems a certain config-525

uration was “successful” (concretely, reduced the relative residual norm by
nine orders of magnitude within the limit of 50,000 iterations).

The results reveal that the scalar version of Jacobi fails to sufficiently
improve the convergence of IDR(4) for a significant fraction of the test ma-
trices. For the test matrices where IDR(4) preconditioned with the scalar530

Jacobi converges, the faster convergence obtained from using a block-Jacobi
preconditioner typically compensates for the higher costs of preconditioner
setup and application. In Figure 13, we offer a head-to-head comparison
of different block-size bounds for the block-Jacobi preconditioner used in
IDR(4). The orange area in the plot at position “row Jacobi(x) vs. col-535

umn Jacobi(y)” visualizes the number of matrices for which IDR(4) pre-
conditioned with block-Jacobi of block size x converged, while it failed to
converge with block size y. The opposite scenario, where block size y con-
verged but block size x did not, is shown in green. Finally, the yellow area
represents the number of matrices for which both methods converged—the540

area to the right of the center represents cases where block size y converges
faster, while the area left of the center represents cases where block size x
converges faster. The results suggest that adopting a larger block size usu-
ally leads to a more robust solver (i.e., convergence is achieved for a larger
number of problems), and that a larger block size also improves the over-545

all time-to-solution performance. However, in order to obtain the optimal
performance for a specific problem, the block size should be tuned to the
underlying block structure of the problem.

Overall, the results presented in this subsection offer strong evidence
that the routines we developed provide an efficient approach to generating550

and applying a block-Jacobi preconditioner.

23

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
3
2
)

Jacobi(32)Jacobi(24)Jacobi(16)Jacobi(12)Jacobi(8)Jacobi(1)

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
1
)

5
0

0
5
0

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
8
)

5
0

0
5
0

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
1
2
)

5
0

0
5
0

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
1
6
)

5
0

0
5
0

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
2
4
)

5
0

0
5
0

J
a
c
o
b
i(
1
)

J
a
c
o
b
i(
3
2
)

5
0

0
5
0

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
1
)

5
0

0
5
0

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
8
)

5
0

0
5
0

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
1
2
)

5
0

0
5
0

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
1
6
)

5
0

0
5
0

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
2
4
)

5
0

0
5
0

J
a
c
o
b
i(
8
)

J
a
c
o
b
i(
3
2
)

5
0

0
5
0

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
1
)

5
0

0
5
0

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
8
)

5
0

0
5
0

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
1
2
)

5
0

0
5
0

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
1
6
)

5
0

0
5
0

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
2
4
)

5
0

0
5
0

J
a
c
o
b
i(
1
2
)

J
a
c
o
b
i(
3
2
)

5
0

0
5
0

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
1
)

5
0

0
5
0

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
8
)

5
0

0
5
0

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
1
2
)

5
0

0
5
0

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
1
6
)

5
0

0
5
0

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
2
4
)

5
0

0
5
0

J
a
c
o
b
i(
1
6
)

J
a
c
o
b
i(
3
2
)

5
0

0
5
0

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
1
)

5
0

0
5
0

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
8
)

5
0

0
5
0

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
1
2
)

5
0

0
5
0

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
1
6
)

5
0

0
5
0

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
2
4
)

5
0

0
5
0

J
a
c
o
b
i(
2
4
)

J
a
c
o
b
i(
3
2
)

5
0

0
5
0

J
a
c
o
b
i(
3
2
)

J
a
c
o
b
i(
1
)

5
0

0
5
0

J
a
c
o
b
i(
3
2
)

J
a
c
o
b
i(
8
)

5
0

0
5
0

J
a
c
o
b
i(
3
2
)

J
a
c
o
b
i(
1
2
)

5
0

0
5
0

J
a
c
o
b
i(
3
2
)

J
a
c
o
b
i(
1
6
)

5
0

0
5
0

J
a
c
o
b
i(
3
2
)

J
a
c
o
b
i(
2
4
)

5
0

0
5
0

J
a
c
o
b
i(
3
2
)

J
a
c
o
b
i(
3
2
)

5
0

0
5
0

F
ig

u
re

1
3
:

D
et

a
il
ed

co
m

p
a
ri

so
n

o
f

ID
R

(4
)

en
h
a
n
ce

d
w

it
h

b
lo

ck
J
a
co

b
i

u
si

n
g

d
iff

er
en

t
b
lo

ck
si

ze
s.

24

5. Concluding Remarks

In this paper, we presented an enhanced, variable-size batched matrix in-
version routine for GPUs based on the GJE process. Our approach replaces
explicit pivoting with a strategy that reassigns the workload instead of shuf-555

fling the data and relies heavily on CUDA’s latest warp-local communication
features. As a result, our matrix inversion kernel is more flexible and signifi-
cantly outperforms its counterparts in the cuBLAS library. In the framework
of block-Jacobi preconditioning, we combined the batched matrix inversion
procedure with efficient routines for extracting the diagonal blocks from the560

sparse data structures (where the problem matrix is stored) and inserting
the inverse blocks back into the preconditioner. We also addressed the ef-
ficient preconditioner application by developing a structure-aware batched
kernel for the sparse matrix-vector product that accommodates variable-size
matrix operands. Finally, we demonstrated that block Jacobi can be sig-565

nificantly more efficient than a scalar Jacobi when preconditioning iterative
solvers.

Acknowledgments

This material is based upon work supported by the U.S. Department of
Energy Office of Science, Office of Advanced Scientific Computing Research,570

Applied Mathematics program under Award Number DE-SC-0010042. H.
Anzt was supported by the “Impuls und Vernetzungsfond of the Helmholtz
Association” under grant VH-NG-1241. G. Flegar and E. S. Quintana-Ort́ı
were supported by project TIN2014-53495-R of the MINECO–FEDER; and
project OPRECOMP (http://oprecomp.eu with the financial support of575

the Future and Emerging Technologies (FET) programme within the Euro-
pean Union’s Horizon 2020 research and innovation programme, under grant
agreement No 732631. The authors would also like to acknowledge the Swiss
National Computing Centre (CSCS) for granting computing resources in the
Small Development Project entitled “Energy-Efficient preconditioning for it-580

erative linear solvers” (#d65).

25

http://oprecomp.eu

J
a
c
o
b
i

B
lo
c
k
-J

a
c
o
b
i
(8

)
B
lo
c
k
-J

a
c
o
b
i
(1

2
)

B
lo
c
k
-J

a
c
o
b
i
(1

6
)

B
lo
c
k
-J

a
c
o
b
i
(2

4
)

B
lo
c
k
-J

a
c
o
b
i
(3

2
)

M
a
tr
ix

si
z
e

#
n
n
z

ID
#
it
e
rs

ti
m
e
[s
]

#
it
e
rs

ti
m
e
[s
]

#
it
e
rs

ti
m
e
[s
]

#
it
e
rs

ti
m
e
[s
]

#
it
e
rs

ti
m
e
[s
]

#
it
e
rs

ti
m
e
[s
]

A
B
A
C
U
S

sh
e
ll

u
d

2
3
,4
1
2

2
1
8
,4
8
4

2
6

3
7
0
3

5
.0
9

2
3
0
5

3
.3

2
2
8
2
9

4
.0
9

3
0
2
8

4
.4
3

2
8
5
8

4
.2
7

2
4
1
8

3
.7
0

b
c
ss
tk

1
7

1
0
,9
7
4

4
2
8
,6
5
0

6
1
9
6
7

2
.8
7

1
1
7
4

1
.7
8

9
0
1

1
.3
8

7
9
2

1
.2
3

7
3
5

1
.2

0
8
7
9

1
.4
0

b
c
ss
tk

1
8

1
1
,9
4
8

1
4
9
,0
9
0

3
9

1
4
9
1

1
.9
0

9
3
3

1
.3
7

6
5
3

0
.9
8

5
9
1

0
.9
2

4
4
0

0
.6

5
5
3
2

0
.8
5

b
c
ss
tk

3
8

8
,0
3
2

3
5
5
,4
6
0

1
0

–
–

–
–

2
4
5
9

4
.2
1

4
2
9
0

7
.3
3

1
8
7
8

3
.2

6
2
0
5
0

3
.6
2

c
b
u
c
k
le

1
3
,6
8
1

6
7
6
,5
1
5

9
4
3
4

0
.8
1

1
1
8

0
.2
2

4
8

0
.1

1
1
0
2

0
.2
3

4
9

0
.1
2

7
5

0
.1
5

C
h
e
b
y
sh

e
v
2

2
,0
5
3

1
8
,4
4
7

5
–

–
1
9
7

0
.5
3

6
2

0
.1
8

5
3

0
.1
5

3
8

0
.1
1

3
5

0
.1

0
C
h
e
b
y
sh

e
v
3

4
,1
0
1

3
6
,8
7
9

1
7

–
–

–
–

1
9
4

0
.6
7

1
7
7

0
.6
6

1
1
3

0
.4
0

7
7

0
.3

1
d
c
3

1
1
6
,8
3
5

7
6
6
,3
9
6

2
8

1
6
8

1
7
.2

9
1
6
9

1
7
.3
6

2
0
3

2
0
.9
3

2
0
3

2
0
.9
2

3
2
0

3
3
.0
0

1
8
3

1
8
.8
7

d
w
1
0
2
4

2
,0
4
8

1
0
,1
1
4

3
0

–
–

1
6
9

0
.2
3

1
4
8

0
.2
7

1
6
3

0
.3
0

9
2

0
.1
8

6
5

0
.1

3
d
w
2
0
4
8

2
,0
4
8

1
0
,1
1
4

7
–

–
1
6
9

0
.2
3

1
4
8

0
.2
7

1
6
3

0
.3
0

9
2

0
.1
7

6
5

0
.1

2
d
w
4
0
9
6

8
,1
9
2

4
1
,7
4
6

1
8

–
–

–
–

–
–

6
9
4
9

8
.9
6

1
7
3
2

2
.3
3

1
0
1
2

1
.4

6
d
w
8
1
9
2

8
,1
9
2

4
1
,7
4
6

3
6

–
–

–
–

–
–

6
9
4
9

8
.9
4

1
7
3
2

2
.3
5

1
0
1
2

1
.4

1
F
1

3
4
3
,7
9
1

2
6
,8
3
7
,1
1
3

2
7

3
8
3
2

2
3
.9
3

–
–

2
4
6
0

1
6
.3
4

2
5
1
1

1
7
.0
0

1
8
9
5

1
3
.2

3
2
0
6
2

1
4
.7
8

G
3

c
ir
c
u
it

1
,5
8
5
,4
7
8

7
,6
6
0
,8
2
6

3
1

2
3
4
6

1
9
.9
4

2
0
6
9

1
9
.5

2
2
2
2
0

2
2
.1
4

1
9
3
5

2
0
.0
9

2
0
8
5

2
4
.1
0

2
1
9
8

2
6
.8
3

g
ri
d
g
e
n
a

4
8
,9
6
2

5
1
2
,0
8
4

3
2

2
2
6
5

3
.5
1

1
3
0
6

2
.0
8

1
7
6
6

2
.8
4

1
4
3
1

2
.3
3

1
0
2
8

1
.7

0
1
3
1
1

2
.2
6

ib
m

m
a
tr
ix

2
5
1
,4
4
8

5
3
7
,0
3
8

2
1

–
–

–
–

2
2
7

0
.4

6
8
9
9
2

1
7
.4
5

2
5
4

0
.5
5

2
9
6
5

6
.0
4

K
u
u

7
,1
0
2

3
4
0
,2
0
0

3
1
6
2

0
.2
9

1
0
3

0
.1
9

9
5

0
.1
8

8
4

0
.1

6
9
4

0
.1
8

8
4

0
.1
7

L
e
G
re

sl
e
y

2
5
0
8

2
,5
0
8

1
6
,7
2
7

2
0

2
3
7

0
.4
0

2
4
7

0
.3
6

2
0
3

0
.3
5

–
–

1
8
5

0
.3
3

1
6
6

0
.3

1
li
n
v
e
rs
e

1
1
,9
9
9

9
5
,9
7
7

3
5

6
1
8
5

7
.8
0

–
–

–
–

6
6
8
5

9
.5
1

2
1
7
5

3
.0
7

9
3
3

1
.4

4
m
a
tr
ix

9
1
0
3
,4
3
0

1
,2
0
5
,5
1
8

2
1
5
1
2

2
.7
2

7
2
7

1
.3
7

9
5

0
.2
1

5
9
8

1
.1
8

8
7

0
.2

0
5
5
8

1
.1
6

n
a
sa

2
9
1
0

2
,9
1
0

1
7
4
,2
9
6

1
2

7
3
8

1
.0
3

5
2
9

0
.7
3

5
0
9

0
.7
4

6
4
8

0
.9
4

4
3
5

0
.6
7

3
9
2

0
.6

4
n
d
1
2
k

3
6
,0
0
0

1
4
,2
2
0
,9
4
6

1
9

–
–

6
8
6
9

2
0
.6
7

3
1
8
3

9
.6
7

2
7
6
4

8
.4
5

1
5
4
3

4
.8

1
1
6
9
3

5
.3
5

n
d
2
4
k

7
2
,0
0
0

2
8
,7
1
5
,6
3
4

1
1

–
–

4
9
1
8

2
3
.2
9

2
9
0
6

1
3
.8
5

2
8
5
8

1
3
.6
9

1
9
1
6

9
.3
5

1
4
5
7

7
.1

6
n
d
3
k

9
,0
0
0

3
,2
7
9
,6
9
0

3
3

–
–

–
–

4
5
5
1

8
.0
5

8
2
7
0

1
4
.5
5

2
6
4
0

4
.7

8
3
1
9
6

5
.8
7

n
d
6
k

1
8
,0
0
0

6
,8
9
7
,3
1
6

2
9

–
–

–
–

5
1
4
2

1
1
.1
4

9
1
7
8

1
9
.9
4

2
5
8
9

5
.7

6
2
5
7
3

5
.8
1

n
e
m
e
th

1
5

9
,5
0
6

5
3
9
,8
0
2

3
4

9
4

0
.1
7

–
–

–
–

1
4
4

0
.2
7

5
0

0
.1
0

4
9

0
.1

0
o
lm

5
0
0
0

5
,0
0
0

1
9
,9
9
6

1
5

–
–

1
1
6
4

1
.5
8

1
0
4
9

1
.4
4

2
5
6

0
.4
1

5
4
5

0
.8
0

1
7
8

0
.3

3
P
re

s
P
o
is
so

n
1
4
,8
2
2

7
1
5
,8
0
4

4
1
9
9

0
.3
8

1
3
0

0
.2
4

1
2
9

0
.2
6

1
1
3

0
.2
3

9
3

0
.1
9

8
2

0
.1

7
ra

il
7
9
8
4
1

7
9
,8
4
1

5
5
3
,9
2
1

1
9
9
5

1
.6
2

9
0
9

1
.5
6

1
0
1
3

1
.7
8

8
8
0

1
.5

2
8
6
2

1
.5
8

8
1
0

1
.5
2

s1
rm

t3
m
1

5
,4
8
9

2
1
7
,6
5
1

2
2

2
9
6

0
.4
3

1
9
1

0
.3
2

1
7
1

0
.2

4
1
5
9

0
.2
8

1
4
8

0
.2
8

1
4
8

0
.2
7

s2
rm

q
4
m
1

5
,4
8
9

2
6
3
,3
5
1

3
7

7
0
8

0
.9
7

2
3
1

0
.3
9

2
2
3

0
.3

6
2
6
2

0
.4
3

2
1
4

0
.3
6

1
9
8

0
.3
6

s2
rm

t3
m
1

5
,4
8
9

2
1
7
,6
8
1

2
5

1
0
1
6

1
.3
5

3
2
7

0
.5
0

2
0
9

0
.3
5

2
1
8

0
.3
6

1
7
8

0
.3

2
2
2
0

0
.4
0

s3
rm

q
4
m
1

5
,4
8
9

2
6
2
,9
4
3

2
4

–
–

1
3
8
7

1
.9
5

5
9
9

0
.8
9

1
9
6
9

2
.8
3

5
1
5

0
.8

0
9
7
2

1
.4
7

s3
rm

t3
m
1

5
,4
8
9

2
1
7
,6
6
9

1
6

–
–

–
–

6
9
3

0
.9
9

2
6
3
7

3
.6
2

5
2
9

0
.7

5
1
1
4
2

1
.7
1

s3
rm

t3
m
3

5
,3
5
7

2
0
7
,1
2
3

2
3

–
–

–
–

1
9
9
5

2
.7
4

2
0
8
7

2
.8
6

2
2
2
9

3
.1
4

7
8
4

1
.1

8
sa

y
lr
4

3
,5
6
4

2
2
,3
1
6

3
8

1
9
0
7

2
.4
6

3
8
7

0
.5
9

2
4
6

0
.4
0

2
8
1

0
.3
8

1
6
3

0
.3

0
1
7
0

0
.3
2

sh
ip

0
0
3

1
2
1
,7
2
8

3
,7
7
7
,0
3
6

1
3

–
–

2
0
5
8

4
.8
9

1
9
2
7

4
.6
2

2
8
4
9

6
.9
7

1
6
8
3

4
.2

6
2
1
6
0

5
.7
5

sm
e
3
D
c

4
2
,9
3
0

3
,1
4
8
,6
5
6

8
2
6
8
0

5
.6

6
4
9
5
3

1
0
.5
9

3
1
0
1

6
.7
4

3
0
1
4

6
.5
3

3
5
6
6

7
.9
2

4
9
9
0

1
1
.1
9

st
s4

0
9
8

4
,0
9
8

7
2
,3
5
6

1
4

1
3
5

0
.2
6

1
1
3

0
.2
3

7
8

0
.1
2

9
4

0
.1
9

7
6

0
.1
6

6
4

0
.1

1

T
a
b
le

1
:

It
er

a
ti

o
n
s

a
n
d

ex
ec

u
ti

o
n

ti
m

e
o
f

ID
R

(4
)

en
h
a
n
ce

d
w

it
h

sc
a
la

r
J
a
co

b
i

p
re

co
n
d
it

io
n
in

g
o
r

b
lo

ck
-J

a
co

b
i

p
re

co
n
d
it

io
n
in

g
.

T
h
e

ru
n
ti

m
e

co
m

b
in

es
th

e
p
re

co
n
d
it

io
n
er

se
tu

p
ti

m
e

a
n
d

th
e

it
er

a
ti

v
e

so
lv

er
ex

ec
u
ti

o
n

ti
m

e.

26

References

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2003.585

[2] H. Anzt, J. Dongarra, G. Flegar, E. S. Quintana-Ort́ı, Batched Gauss-
jordan Elimination for block-jacobi preconditioner generation on GPUs,
in: Proc. 8th Int. Workshop on Programming Models and Applications
for Multicores and Manycores, PMAM’17, ACM, New York, NY, USA,
2017, pp. 1–10. doi:10.1145/3026937.3026940.590

URL http://doi.acm.org/10.1145/3026937.3026940

[3] A. S. Householder, The Theory of Matrices in Numerical Analysis,
Dover, New York, 1964.

[4] E. S. Quintana-Ort́ı, G. Quintana-Ort́ı, X. Sun, R. van de Geijn, A note
on parallel matrix inversion, SIAM Journal on Scientific Computing595

22 (5) (2001) 1762–1771.

[5] P. Benner, P. Ezzatti, E. Quintana-Ort́ı, A. Remón, Matrix inversion on
CPU-GPU platforms with applications in control theory, Concurrency
and Computation: Practice and Experience 25 (8) (2013) 1170–1182.

[6] J. Kurzak, H. Anzt, M. Gates, J. Dongarra, Implementation and tuning600

of batched cholesky factorization and solve for NVIDIA GPUs, IEEE
Trans. on Parallel and Distributed Systems 27 (7) (2016) 2036–2048.
doi:10.1109/TPDS.2015.2481890.

[7] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Batched
matrix computations on hardware accelerators based on GPUs, Int. J.605

High Performance Computing & Applications 29 (2) (2015) 193–208.

[8] J. Dongarra, I. S. Duff, M. Gates, A. Haidar, S. Hammerling,
J. Higham, J. Hogg, P. Valero-Lara, D. Relton, S. Tomov, M. Zounon,
A proposed api for batched basic linear algebra subprograms, Technical
Report 2016.25, The University of Manchester, ISSN 1749-9097 (2016).610

[9] H. Anzt, E. Chow, T. Huckle, J. Dongarra, Batched generation of in-
complete sparse approximate inverses on GPUs, in: Proc. 7th Workshop
on Scalable Algorithms for Large-scale Systems, ScalA’16, 2016.

[10] Innovative Computing Lab, Software distribution of MAGMA version
2.0, http://icl.cs.utk.edu/magma/ (2016).615

27

http://doi.acm.org/10.1145/3026937.3026940
http://doi.acm.org/10.1145/3026937.3026940
http://doi.acm.org/10.1145/3026937.3026940
http://dx.doi.org/10.1145/3026937.3026940
http://doi.acm.org/10.1145/3026937.3026940
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://icl.cs.utk.edu/magma/

[11] E. Chow, J. Scott, On the use of iterative methods and blocking for
solving sparse triangular systems in incomplete factorization precondi-
tioning, SIAM Journal on Scientific Computing.

[12] P. Sonneveld, M. B. van Gijzen, IDR(s): A Family of Simple and Fast
Algorithms for Solving Large Nonsymmetric Systems of Linear Equa-620

tions, SIAM Journal on Scientific Computing 31 (2) (2009) 1035–1062.

[13] H. Anzt, E. Ponce, G. D. Peterson, J. Dongarra, GPU-accelerated co-
design of induced dimension reduction: Algorithmic fusion and ker-
nel overlap, in: Proceedings of the 2nd International Workshop on
Hardware-Software Co-Design for High Performance Computing, Co-625

HPC ’15, ACM, New York, NY, USA, 2015, pp. 5:1–5:8.

[14] H. Anzt, J. Dongarra, M. Kreutzer, G. Wellein, M. Koehler, Efficiency
of General Krylov Methods on GPUs – An Experimental Study, in:
2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), 2016, pp. 683–691.630

[15] H. Anzt, M. Kreutzer, E. Ponce, G. D. Peterson, G. Wellein, J. Don-
garra, Optimization and performance evaluation of the IDR iterative
Krylov solver on GPUs, Int. J. High Performance Computing & Appli-
cations.

28

