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Abstract

Algorithmic Debugging (a.k.a. Declarative Debugging) is a semi-automatic
debugging technique that allows the programmer to isolate the code where
a bug is located without the need to see the source code. To do so, the
programmer answers the questions performed by the debugger until it finds
the bug and shows it to the user. These questions are chosen by the debugger
using a strategy, and thus the reduction of the number of questions is a
main objective of this debugging technique. In practice, the strategy that
performs less questions has been Divide & Query (D&Q for short) since
its definition 30 years ago. This strategy has been considered optimal in
the worst case. In this work we show that D&Q is not optimal and we
introduce two new strategies that have proved to be better. One of them
is a new version of D&Q where its behavior is improved in some situations.
While the other is the first version of a new strategy that is optimal in the
worst case. Moreover, we present new techniques that improve the efficiency
of Algorithmic Debugging, allowing the debugger to speed-up the questions
asked to the user and to reduce the number of questions performed regardless
of the used strategy.



Resumen

La Depuración Algorítmica (también conocida como Depuración Declarati-
va) es una técnica de depuración semi-automática que permite al progra-
mador aislar el código donde se encuentra un bug sin necesidad de ver el
código fuente. Para ello, el programador contesta las preguntas que realiza el
depurador hasta que éste localiza el error mostrándoselo al usuario. Las pre-
guntas realizadas son escogidas por el depurador utilizando una estrategia,
siendo la reducción de la cantidad de preguntas realizadas al usuario uno
de los principales objetivos de esta técnica de depuración. En la práctica,
la estrategia que hasta ahora realizaba menos preguntas es Divide & Query
(D&Q). Esta estrategia ha sido considerada óptima en el peor caso desde su
definición hace tres décadas. En este trabajo demostramos que D&Q no es
óptima y mostramos dos nuevas estrategias que son mejores. Una de ellas es
una nueva versión de D&Q donde mejoramos su comportamiento en algunas
situaciones. Mientras que la otra es la primera versión de una nueva estrate-
gia que sí es óptima en el peor caso. Además, presentamos nuevas técnicas
que mejoran la eficiencia de la Depuración Algorítmica, permitiendo acelerar
las preguntas que se hacen al usuario y que reducen la cantidad de preguntas
realizadas independientemente de la estrategia utilizada.
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Chapter 1

Introduction

1.1 Algorithmic Debugging

Debugging is one of the most important but less automated (and, thus, time-
consuming) tasks in the software development process. It is necessary in all
paradigms and programming languages both during the development and
during the maintenance of software systems. In Shapiro’s words [25]:

“It is evident that a computer can neither construct nor debug
a program without being told (...) what problem the program is
supposed to solve (...). No matter what language we use to convey
this information, we are bound to make mistakes. Not because
we are sloppy and undisciplined, as advocates of some program
development methodologies may say, but because of a much more
fundamental reason: we cannot know, at any finite point in time,
all the consequences of our current assumptions.”

Unfortunately, the efforts of the scientific community in producing us-
able and scalable debuggers has been historically low. The programmer is
often forced to manually explore the code or iterate over it (using, e.g.,
breakpoints that allow us to execute the program step by step and inspect
computations (manually) at a given point), and this process usually requires
a deep understanding of the source code to find the bug.

Algorithmic debugging [25] is a semi-automatic debugging technique that
has been extended to practically all paradigms [27], and many techniques
[18, 4, 26, 8, 6] have been defined to improve the original proposal [25]. Re-
cent research has produced new advances to increase the scalability of the
technique producing new scalable and mature debuggers. The technique pro-
duces a dialogue between the debugger and the programmer to find the bugs.
Essentially, it relies on the programmer having an intended interpretation of
the program. In other words, some computations of the program are correct
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6 CHAPTER 1. INTRODUCTION

and others are wrong with respect to the programmer’s intended semantics.
Therefore, declarative debuggers compare the results of sub-computations
with what the programmer intended. By asking the programmer questions
or using a formal specification the system can identify precisely the location
of a program’s bug.

We show two different Algorithmic Debugging Sessions for two different
sorting algorithm (YES and NO answers are provided by the programmer).
Note that, to debug the programs, the programmer only has to answer ques-
tions. It is not even necessary to see the source code.

Example 1.1.1
Consider this Haskell program inspired in a similar example by [9] that tries
to sort a list using Insertion Sort :

main = insort [2,1,3]

insort [] = []
insort (x:xs) = insert x (insort xs)

insert x [] = [x]
insert x (y:ys) = if x>=y then (x:y:ys)

else (y:(insert x ys))

Starting Debugging Session...
(1) insort [1,3] = [3,1]? NO
(2) insort [3] = [3]? YES
(3) insert 1 [3] = [3,1]? NO
(4) insert 1 [] = [1]? YES

Bug found in rule:
insert x (y:ys) = if x>=y then _ else (y:(insert x ys))

The debugger points out the part of the code that contains the bug. In this
case x>=y should be x<=y.

Example 1.1.2
Consider this Haskell program that tries to sort a list using mergeSort :

main = mergeSort [2,1,3]

merge [] list = list
merge list [] = list
merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = merge (x:xs) ys

mergeSort [] = []
mergeSort [x] = [x]
mergeSort list = merge (mergeSort left) (mergeSort right)

where middle = (div (length list) 2)
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left = take middle list
right = drop middle list

Starting Debugging Session...
(1) mergeSort [2,1] = [2]? NO
(2) merge [2] [1] = [2]? NO
(3) merge [2] [] = [2]? YES

Bug found in rule:
merge (x:xs) (y:ys) | otherwise = merge (x:xs) ys

The debugger points out the part of the code that contains the bug. In this
case otherwise � merge... should be otherwise � y : merge....

Traditionally, declarative debugging consists of two sequential phases:
During the first phase a data structure, the Execution Tree (ET) [22], is
built, which is an intermediate data structure that represents the execution
of the program including all subcomputations; while in the second phase this
structure is traversed by using a strategy and asking questions to an external
oracle until the bug is found.

For instance, the ETs of the programs in Example 1.1.1 and 1.1.2 are
depicted respectively in Figures 1.1 and 1.1.

Figure 1.1: ET of the program in Example 1.1.1

Figure 1.2: ET of the program in Example 1.1.2

The ET contains nodes that represent subcomputations of the program.
Therefore, the information of the ET’s nodes is different for each program-
ming paradigm (e.g., functions, methods, procedures, etc.), but the construc-
tion of the ET is very similar for all of them.
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For instance, in the object-oriented paradigm, an ET is constructed as
follows: Each node of the ET is associated with a method execution. It
contains all the information needed to decide whether the method execution
produced a correct result. This information includes the call to the method
with its parameters and the result, and the values of all the attributes that
are in the scope of this method, before and after the execution (observe,
e.g., that exception objects thrown are also in the scope). This information
allows the programmer to know whether all the effects of the method execu-
tion correspond to her intended semantics. The root node of the ET is the
initial method execution of the program (e.g., main). For each node n with
associated method m, and for each method execution m1 done by m, a new
node associated with m1 is recursively added to the ET as a child of n.

public class Chess {
public static void main(String[] args) {

Chess p = new Chess();
Position tower = new Position();
Position king = new Position();
king.locate(5,1);
tower.locate(8,1);
p.castling(tower,king);

}
void castling(Position t,Position k) {

if (t.x!=8){
for(int i=1; i<=2; i++) {t.left();}
for(int i=1; i<=2; i++) {k.right();}

} else{
for(int i=1; i<=3; i++) {t.right();}
for(int i=1; i<=2; i++) {k.left();}

}
}

}
class Position {

int x, y;
void locate(int a, int b) {x=a; y=b;}
void up() {y=y+1;}
void down() {y=y-1;}
void right() {x=x+1;}
void left() {x=x-1;}

}

Figure 1.3: Chess program

Example 1.1.3
Consider the Java program in Figure 1.1. This program has a bug, and
thus it wrongly simulates some movements on a chessboard. The call of the
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method p.castling(tower,king) produces the (wrong) movement shown
in the boards of the following figures.

The next figure depicts the portion of the ET associated with the execu-
tion of the method p.castling(tower,king).

1.2 Preliminary definitions

In this section we introduce some notation and formalize the notion of ex-
ecution tree. For convenience, we consider ETs as labeled trees. We need
to formally define the notions of context and method execution before we
provide a definition of ET.

Definition 1.2.1 (Context) Let P be a program, and m a method in
P. The context of m is tpa, vq | a is an attribute in the scope of m and v is
the value of au.

Roughly, the context of a method is composed of all the variables of the
program that could be affected by the execution of this method. Clearly,
these variables can be other objects that in turn contain other variables. In
a realistic program, each node contains several data structures that could
change during the execution. All this information (before and after the
execution) should be visualized together with the call to the method so that
the programmer can decide whether it is correct.

Definition 1.2.2 (Method Execution) Let P be a program and X
an execution of P. Then, each method execution done in X is represented
by a triple E � pb,m, aq where m represents the call to the method with its
parameters and the returned value, b is the context of the method in m before
its execution, and a is the context of the method in m after its execution.



10 CHAPTER 1. INTRODUCTION

Thanks to the declarative properties of declarative debugging, we can
ignore the operational details of an execution. From the point of view of
the debugger an execution is a finite tree of method executions. This can be
modeled with the following grammar:

T � pb,mrLs, aq L � ε L � TL

where the terminal m is a method of the program and b and a represent the
context before and after the execution of the method. For instance, the call
p.castling(tower,king) in Example 1.1.3 can be represented by the tree:

pb1, p.castlingptower, kingqrpb2, t.rightpqrs, a1q, pa1, t.rightpqrs, a2q,

pa2, t.rightpqrs, a3q, pb3, k.leftrs, a4q, pa4, k.leftrs, a5qs, a6q

With this tree, we can construct the ET in Example 1.1.3. Roughly speaking,
an ET is a tree whose nodes contain method executions and the parent-child
relation is defined by the tree produced by the grammar. Formally,

Definition 1.2.3 (Execution Tree) Given a program P with a set
of method definitions M , and a method execution E, the execution tree (ET)
of P w.r.t. E is a tree t � pV,Eq where @v P V, v is a method execution, and

• The root of the ET is E.

• For each method execution E1 � pb,m, aq P V , we have a child method
execution E2 � pb1,m1, a1q P V ; m,m1 PM (i.e. pE1 Ñ E2q P E), iff

1. during the execution of E1, E2 is executed, and

2. the method execution E2 is started from the definition of m (i.e.,
m calls m1).

Note that V represents the nodes of the tree and E represents the edges.
If the context before and after the execution of the method is not important,
we use N to represent the nodes of the tree, so we refer a tree as ET � pV,Eq
or ET � pN,Eq depending on the situation. Note also that we use pv Ñ v1q
to denote a directed edge from v to v1.

From now on, we assume that there exists an intended semantics I of
the program being debugged. It corresponds to the model the programmer
had in mind while writing the program, and it contains, for each method m
and each context b of m before its execution, the expected context a after its
execution, that is, pb,m, aq P I. Moreover, given this atomic information, we
are able to deduce judgments of the form pb,m1; . . . ;mn, aq with the inference
rule Tr, that defines the transitivity for the composition of methods

pb,m1, a
1q pa1,m2; . . . ;mn, aq

pb,m1; . . . ;mn, aq
Tr if n ¡ 1

and we say that I |ù pb,m1; . . . ;mn, aq. Using this intended semantics we
can formally define the correctness of method executions:
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Definition 1.2.4 (Correctness of method executions) Given
a method execution E and the intended semantics of the program I, we say
that E is correct if E P I or I |ù E and wrong otherwise.

Once the ET is built, in the second phase the debugger uses a strategy
to traverse the ET asking the programmer about the correctness of the in-
formation stored in each node. If the method execution of a node is wrong,
the answer is NO. Otherwise, the answer is YES. Using the answers, the
debugger identifies a buggy node (a buggy node is associated with the buggy
source code of the program).

Definition 1.2.5 (Buggy node) Given an ET t � pV,Eq, a buggy
node of t is a node v P V such that (i) the method execution of v is wrong
and (ii) @v1 P V , pv Ñ v1q P E, v1 is correct.

According to Definition 1.2.5, when all the children of a node with a
wrong computation (if any) are correct, the node becomes buggy and the
debugger locates the bug in the part of the program associated with this
node [23]. A buggy node detects a buggy method, which informally stands
for methods that return an incorrect context even though all the methods
executions performed by them are correct.

Lemma 1.2.6 (Buggy method) Given an ET t � pV,Eq, and a buggy
node v P V in t with v � pb,m, aq, then m contains a bug.

During the debugging session the user answers questions generated by the
debugger. These answers define the state of the nodes, and we call this tree
Marked Execution Tree (MET), that is an ET where some nodes could have
been removed because they were marked as correct (i.e., answered YES),
some nodes could have been marked as wrong (i.e., answered NO) and the
correctness of the other nodes is undefined.

Definition 1.2.7 (Marked Execution Tree) A marked execution
tree (MET) is a tree T � pN,E,Mq where N are the nodes, E � N �N are
the edges, and M : N Ñ S is a marking total function that assigns to all the
nodes in N a value in the domain S � tWrong ,Undefinedu.

Initially, all nodes in the MET are marked as Undefined . But with every
answer of the user, a new MET is produced. Concretely, given a MET
T � pN,E,Mq and a node n P N , the answer of the user to the question in
n produces a new MET such that: (i) if the answer is YES, then this node
and its subtree is removed from the MET. (ii) If the answer is NO, then, all
the nodes in the MET are removed except this node and its descendants.1

1It is also possible to accept I don’t know as an answer of the user. In this case, the
debugger simply selects another node [12]. For simplicity, we assume here that the user
only answers YES or NO.
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Therefore, note that the only node that can be marked as Wrong is the root.
Moreover, the rest of nodes can only be marked as Undefined because when
the answer is YES, the associated subtree is deleted from the MET.

Therefore, the size of the MET is gradually reduced with the answers.
If we delete all nodes in the MET then the debugger concludes that no bug
has been found. If, contrarily, we finish with a MET composed of a single
node marked as wrong, this node is called the buggy node and it is pointed
to as being responsible for the bug of the program.

All this process is defined in Algorithm 1 where function selectNode se-
lects a node in the MET to be asked to the user with function askNode. In
the following we use E� to refer to the reflexive and transitive closure of E
and E� for the transitive closure.

Algorithm 1 General algorithm for algorithmic debugging
Input: A MET T � pN,E,Mq
Output: A buggy node or K if no buggy node is detected
Preconditions: @n P N , Mpnq � Undefined
Initialization: buggyNode � K

begin

(1) do
(2) node = selectNode(T )
(3) answer = askNode(node)
(4) if (answer = NO)
(5) then M(node) = Wrong
(6) buggyNode = node
(7) N � tn P N | pnode Ñ nq P E�}
(8) else N � Nztn P N | pnode Ñ nq P E�}
(9) while pDn P N,Mpnq � Undefinedq
(10) return buggyNode

end

1.3 Strategies for algorithmic debugging

During the second phase of Algorithmic Debugging a buggy node is searched
asking questions to the user. These questions are related to the nodes of the
ET, and the selection of the node to be asked is done by a strategy.

Due to the fact that questions are asked in a logical order (i.e., consecutive
questions refer to related parts of the computation), Top-Down search is the
strategy that has been traditionally used (see, e.g., [4, 5, 14]) to measure the
performance of different debugging tools and methods. It basically consists
of a top-down (assuming that the root is on top), left-to-right traversal of
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the ET. When the answer to the question of a node is NO, then the next
question is associated with one of its children. When the answer is YES,
the next question is associated with one of its siblings. Therefore, the node
asked is always a child or a sibling of the previous asked node. Hence, the
idea is to follow the path of wrong computations from the root of the tree
to the buggy node.

However, selecting always the leftmost child does not take into account
the size of the subtrees that can be explored. Binks proposed in [2] a variant
of Top-Down search in order to consider this information when selecting a
child. This variant is called Heaviest First because it always selects the child
with the biggest subtree. The objective is to avoid selecting small subtrees
that have a lower probability of containing a bug. Another important strat-
egy is Divide and Query (D&Q) [25], which always selects the node whose
subtree’s size is the closest one to half the size of the tree (we have used this
strategy during the Examples 1.1.1 and 1.1.2). This strategy asks, in general,
fewer questions than Top-Down search because it prunes near half of the tree
with every question. However, its performance is strongly dependent on the
structure of the ET. If the ET is balanced, this strategy is query-optimal.

In general, regardless of the strategy we use, when we ask for a node: If
the answer is YES, this node (and its subtree) is pruned; If the answer is
NO the search continues in the subtree rooted at this node.

There are many other strategies: variants of Top-Down search [19, 8],
variants of D&Q [11], and others [18, 29]. A comparison of strategies can be
found in [27]. In general, all of them are strongly influenced by the structure
of the ET.

Example 1.3.1
A declarative debugging session for the ET in Example 1.1.3 using D&Q is
the following (YES and NO answers are provided by the programmer):

Starting Debugging Session...
(2) t.x=8, t.y=1 t.right() t.x=9, t.y=1 ? YES
(3) t.x=9, t.y=1 t.right() t.x=10, t.y=1 ? YES
(4) t.x=10, t.y=1 t.right() t.x=11, t.y=1 ? YES
(5) k.x=5, k.y=1 k.left() k.x=4, k.y=1 ? YES
(6) k.x=4, k.y=1 k.left() k.x=3, k.y=1 ? YES
(1) king.x=5, king.y=1 p.castling(tower,king) king.x=3, king.y=1 ? NO

tower.x=8, tower.y=1 tower.x=11, tower.y=1
Bug found in method: castling(Position t, Position k) of class Chess

The debugger points out the buggy method, that contains the bug. In this
case, t.x!=8 should be t.x==8.
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Chapter 2

Optimal Divide & Query

The strategy used to decide what nodes of the ET should be asked is crucial
for the performance of the technique. Since the definition of algorithmic
debugging, there has been a lot of research concerning the definition of new
strategies trying to minimize the number of questions [27]. We conducted
several experiments to measure the performance of all current algorithmic
debugging strategies. The results of the experiments are shown in Figure 2,
where the first column contains the names of the benchmarks; column nodes
shows the number of nodes in the ET associated with each benchmark; and
the other columns represent algorithmic debugging strategies [27] that are
ordered according to their performance: Optimal Divide & Query (D&QO),
Divide & Query by Hirunkitti (D&QH), Divide & Query by Shapiro (D&QS),
Divide by Rules & Query (DR&Q), Heaviest First (HF), More Rules First (MRF),
Hat Delta Proportion (HD-P), Top-Down (TD), Hat Delta YES (HD-Y), Hat
Delta NO (HD-N), Single Stepping (SS).

For each benchmark, we produced its associated ET and assumed that
the buggy node could be any node of the ET (i.e., any subcomputation in
the execution of the program could be buggy). Therefore, we performed a
different experiment for each possible case and, hence, each cell of the table
summarizes a number of experiments that were automatized. In particular,
benchmark Factoricer has been debugged 62 times with each strategy; each
time we selected a different node and simulated that it was buggy, thus
the results shown are the average number of questions performed by each
strategy with respect to the number of nodes (i.e., the mean percentage of
nodes asked). Similarly, benchmark Cglib has been debugged 1216 times
with each strategy, and so on.

Observe that the best algorithmic debugging strategies in practice are
the two variants of Divide and Query (ignoring our new technique D&QO).
Moreover, from a theoretical point of view, this strategy has been thought
optimal in the worst case for almost 30 years, and it has been implemented
in almost all current algorithmic debuggers (see, e.g., [7, 8, 12, 24]). In this
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Figure 2.1: Performance of algorithmic debugging strategies

paper we show that current algorithms for D&Q are suboptimal. We show
the problems of D&Q and solve them in a new improved algorithm that is
proven optimal. Moreover, the original strategy was only defined for ETs
where all the nodes have an individual weight of 1. In contrast, we allow
our algorithms to work with different individual weights that can be integer,
but also decimal. An individual weight of zero means that this node cannot
contain the bug. A positive individual weight approximates the probability
of being buggy. The higher the individual weight, the higher the probability.
This generalization strongly influences the technique and allows us to assign
different probabilities of being buggy to different parts of the program. For
instance, a recursive function with higher-order calls should be assigned a
higher individual weight than a function implementing a simple base case
[27]. The weight of the nodes can also be reassigned dynamically during the
debugging session in order to take into account the oracle’s answers [8].

We show that the original algorithms are inefficient with ETs where nodes
can have different individual weights in the domain of the positive real num-
bers (including zero) and we redefine the technique for these generalized
ETs.

2.1 D&Q by Shapiro vs. D&Q by Hirunkitti

In this section we formalize the strategy D&Q to show the differences between
the original version by Shapiro [25] and the improved version by Hirunkitti
and Hogger [11].
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Both D&Q by Shapiro and D&Q by Hirunkitti assume that the individual
weight of a node is always 1. Therefore, given a MET T � pN,E,Mq, the
weight of the subtree rooted at node n P N , wn, is defined recursively as its
number of descendants including itself (i.e., 1�

°
twn1 | pnÑ n1q P Euq.

D&Q tries to simulate a dichotomic search by selecting the node that
better divides the MET into two subMETs with a weight as similar as possi-
ble. Therefore, given a MET with n nodes, D&Q searches for the node whose
weight is closer to n

2 . The original algorithm by Shapiro always selects:

• the heaviest node n1 whose weight is as close as possible to n
2 with

wn1 ¤ n
2

Hirunkitti and Hogger noted that this is not enough to divide the MET by
half and their improved version always selects the node whose weight is closer
to n

2 between:

• the heaviest node n1 whose weight is as close as possible to n
2 with

wn1 ¤ n
2 , or

• the lightest node n1 whose weight is as close as possible to n
2 with

wn1 ¥ n
2

Because it is better, in the rest of the chapter we only consider Hirunk-
itti’s D&Q and refer to it as D&Q.

2.1.1 Limitations of current D&Q

In this section we show that D&Q is suboptimal when the MET does not
contain a wrong node (i.e., all nodes are marked as undefined) 1. The intu-
ition beyond this limitation is that the objective of D&Q is to divide the tree
by two, but the real objective should be to reduce the number of questions to
be asked to the programmer. For instance, consider the MET in Figure 2.2
(left) where the black node is marked as wrong and D&Q would select the
gray node. The objective of D&Q is to divide the 8 nodes into two groups of
4. Nevertheless, the real motivation of dividing the tree should be to divide
the tree into two parts that would produce the same number of remaining
questions (in this case 3).

The problem comes from the fact that D&Q does not take into account
the marking of wrong nodes. For instance, observe the two METs in Fig-
ure 2.2 (center) where each node is labeled with its weight and the black
node is marked as wrong. In both cases D&Q would behave exactly in the
same way, because it completely ignores the marking of the root. Neverthe-
less, it is evident that we do not need to ask again for a node that is already

1Modern debuggers [12] allow the programmer to debug the MET while it is being
generated. Thus the root node of the subtree being debugged is not necessarily marked
as Wrong.
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marked as wrong to determine whether it is buggy. However, D&Q counts
the nodes marked as wrong as part of their own weight, and this is a source
of inefficiency.

Figure 2.2: Behavior of Divide and Query

In the METs of Figure 2.2 (center) we have two METs. In the one at
the right nodes with weight 1 and 2 are optimal, but in the one at the left,
only the node with weight 2 is optimal. In both METs D&Q would select
either the node with weight 1 or the node with weight 2 (both are equally
close to 3

2). However, we show in Figure 2.2 (right) that selecting node 1 is
suboptimal, and the strategy should always select node 2. Considering that
the gray node is the first node selected by the strategy, then the number at
the side of a node represents the number of questions needed to find the bug
if the buggy node is this node. The number at the top of the figure represents
the number of questions needed to determine that there is not a bug. Clearly,
as an average, it is better to select first the node with weight 2 because we
would perform less questions (84 vs. 9

4 considering all four possible cases).
Therefore, D&Q returns a set of nodes that contains the best node, but

it is not able to determine which of them is the best node, thus being sub-
optimal when it is not selected. In addition, the METs in Figure 2.3 show
that D&Q is incomplete. Observe that the METs have 5 nodes, thus D&Q
would always select the node with weight 2. However, the node with weight
4 is equally optimal (both need 16

6 questions as an average to find the bug)
but it will be never selected by D&Q because its weight is far from the half
of the tree 5

2 .
Another limitation of D&Q is that it was designed to work with METs

where all the nodes have the same individual weight, and moreover, this
weight is assumed to be 1. If we work with METs where nodes can have
different individual weights and these weights can be any value greater or
equal to zero, then D&Q is suboptimal as it is demonstrated by the MET in
Figure 2.4. In this MET, D&Q would select node n1 because its weight is
closer to 21

2 than any other node. However, node n2 is the node that better
divides the tree in two parts with the same probability of containing the bug.

In summary, (1) D&Q is suboptimal when the MET is free of wrong
nodes, (2) D&Q is correct when the MET contains wrong nodes and all the
nodes of the MET have the same weight, but (3) D&Q is suboptimal when
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Figure 2.3: Incompleteness of Divide and Query

Figure 2.4: MET with decimal individual weights

the MET contains wrong nodes and the nodes of the MET have different
individual weights.

2.2 Optimal D&Q

In this section we introduce a new version of D&Q that tries to divide the
MET into two parts with the same probability of containing the bug (instead
of two parts with the same weight). We introduce new algorithms that
are correct and complete even if the MET contains nodes with different
individual weights. For this, we define the search area of a MET as the set
of undefined nodes.

Definition 2.2.1 (Search area) Let T � pN,E,Mq be a MET. The
search area of T , SeapT q, is defined as {n P N |Mpnq � Undefined}.

While D&Q uses the whole T , we only use SeapT q, because answering
all nodes in SeapT q guarantees that we can discover all buggy nodes [15].
Moreover, in the following we refer to the individual weight of a node n with
win; and we refer to the weight of a (sub)tree rooted at n with wn that is
recursively defined as:

wn �

" °
twn1 | pnÑ n1q P Eu if Mpnq � Undefined

win �
°
twn1 | pnÑ n1q P Eu otherwise
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Figure 2.5: Functions Up and Down

Note that, contrarily to standard D&Q, the definition of wn excludes
those nodes that are not in the search area (i.e., the root node when it is
wrong). Note also that win allows us to assign any individual weight to the
nodes. This is an important generalization of D&Q where it is assumed that
all nodes have the same individual weight and it is always 1.

2.2.1 Debugging METs where all nodes have the same indi-
vidual weight wi P R�

For the sake of clarity, given a node n P SeapT q, we distinguish between
three subareas of SeapT q induced by n: (1) n itself, whose individual weight
is win; (2) descendants of n, whose weight is

Downpnq �
°
twin1 | n1 P SeapT q ^ pnÑ n1q P E�u

and (3) the rest of nodes, whose weight is

Uppnq �
°
twin1 | n1 P SeapT q ^ pnÑ n1q R E�u

Example 2.2.2
Consider the MET in Figure 2.5. Assuming that the root n is marked as
wrong and all nodes have an individual weight of 1, then SeapT q contains all
nodes except n, Uppn1q � 4 (total weight of the gray nodes), and Downpn1q �
3 (total weight of the white nodes).

Clearly, for any MET whose root is n and a node n1,Mpn1q � Undefined ,
we have that:

wn � Uppn1q �Downpn1q � win1 (Equation 1)
wn1 � Downpn1q � win1 (Equation 2)

Intuitively, given a node n, what we want to divide by half is the area
formed by Uppnq � Downpnq. That is, n will not be part of SeapT q after it
has been answered, thus the objective is to make Uppnq equal to Downpnq.
This is another important difference with traditional D&Q: win should not
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be considered when dividing the MET. We use the notation n1 " n2 to
express that n1 divides SeapT q better than n2 (i.e., |Downpn1q �Uppn1q|  
|Downpn2q � Uppn2q|). And we use n1 � n2 to express that n1 and n2
equally divide SeapT q. If we find a node n such that Uppnq � Downpnq then
n produces an optimal division, and should be selected by the strategy. If
an optimal solution cannot be found, the following theorem states how to
compare the nodes in order to decide which of them should be selected.

Theorem 2.2.3 Given a MET T � pN,E,Mq whose root is n P N , where
@n1, n2 P N,win1 � win2 and @n1 P N,win1 ¡ 0, and given two nodes n1, n2 P
SeapT q, with wn1 ¡ wn2, n1 " n2 if and only if wn ¡ wn1 � wn2 � win.

Theorem 2.2.4 Given a MET T � pN,E,Mq whose root is n P N , where
@n1, n2 P N,win1 � win2 and @n1 P N,win1 ¡ 0, and given two nodes n1, n2 P
SeapT q, with wn1 ¡ wn2, n1 � n2 if and only if wn � wn1 � wn2 � win.

Theorem 2.2.3 is useful when one node is heavier than the other. In
the case that both nodes have the same weight, then the following theorem
guarantees that they both equally divide the MET in all situations.

Theorem 2.2.5 Let T � pN,E,Mq be a MET where @n, n1 P N,win �
win1 and @n P N,win ¡ 0, and let n1, n2 P SeapT q be two nodes, if wn1 � wn2

then n1 � n2.

Corollary 2.2.6 Given a MET T � pN,E,Mq where @n, n1 P N,win �
win1 and @n P N,win ¡ 0, and given a node n P SeapT q, then n optimally
divides SeapT q if and only if Uppnq � Downpnq.

While Corollary 2.2.6 states the objective of optimal D&Q (finding a node
n such that Uppnq � Downpnq), Theorems 2.2.3, 2.2.4 and 2.2.5 provide a
method to approximate this objective (finding a node n such that |Downpnq�
Uppnq| is minimum in SeapT q).

An algorithm for Optimal D&Q

Theorems 2.2.3 and 2.2.4 provide equation wn ¥ wn1�wn2�win to compare
two nodes n1, n2 by efficiently determining n1 " n2, n1 � n2 or n1 ! n2.
However, with only this equation, we should compare all nodes to select the
best of them (i.e., n such that En1, n1 " n). Hence, in this section we provide
an algorithm that allows us to find the best node in a MET with a minimum
set of node comparisons.

Given a MET, Algorithm 2 efficiently determines the best node to divide
SeapT q by half (in the following the optimal node). In order to find this node,
the algorithm does not need to compare all nodes in the MET. It follows a
path of nodes from the root to the optimal node which is closer to the root
producing a minimum set of comparisons.
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Algorithm 2 Optimal D&Q —SelectNode—
Input: A MET T � pN,E,Mq whose root is n P N ,

@n1, n2 P N,win1 � win2 and @n1 P N,win1 ¡ 0
Output: A node nOptimal P N
Preconditions: Dn1 P N , Mpn1q � Undefined

begin
(1) Candidate � n
(2) do
(3) Best = Candidate
(4) Children = tm | pBest Ñ mq P Eu
(5) if (Children = H) then return Best
(6) Candidate = n1 | @n2 with n1, n2 P Children, wn1 ¥ wn2

(7) while pwCandidate ¡ wn
2 q

(8) if pMpBestq � Wrongq then return Candidate
(9) if pwn ¥ wBest � wCandidate � winq then return Best
(10) else return Candidate
end

Example 2.2.7
Consider the MET in Figure 2.6 where @n P N,win � 1 and Mpnq �
Undefined . Observe that Algorithm 2 only needs to apply the equation in

Figure 2.6: Defining a path in a MET to find the optimal node

Theorem 2.2.3 once to identify an optimal node. Firstly, it traverses the
MET top-down from the root selecting at each level the heaviest node until
we find a node whose weight is smaller than the half of the MET (wn

2 ), thus,
defining a path in the MET that is colored in gray. Then, the algorithm uses
the equation wn ¥ wn1 � wn2 � win to compare nodes n1 and n2. Finally,
the algorithm selects n1.

In order to prove the correctness of Algorithm 2, we need to prove that (1)
the node returned is really an optimal node, and (2) this node will always
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be found by the algorithm (i.e., it is always in the path defined by the
algorithm).

The first point can be proven with Theorems 2.2.3, 2.2.4 and 2.2.5. The
second point is the key idea of the algorithm and it relies on an interesting
property of the path defined: while defining the path in the MET, only four
cases are possible, and all of them coincide in that the subtree of the heaviest
node will contain an optimal node.

In particular, when we use Algorithm 2 and compare two nodes n1, n2 in
a MET whose root is n, we find four possible cases:

Case 1: n1 and n2 are brothers.
Case 2: wn1 ¡ wn2 ^ wn2 ¡

wn
2 .

Case 3: wn1 ¡
wn
2 ^ wn2 ¤

wn
2 .

Case 4: wn1 ¡ wn2 ^ wn1 ¤
wn
2 .

Case 1 Case 2 Case 3 Case 4

Figure 2.7: Determining the best node in a MET (four possible cases)

We have proven—the individual proofs are part of the proof of Theo-
rem 2.2.8—that in cases 1 and 4, the heaviest node is better (i.e., if wn1 ¡ wn2

then n1 " n2); In case 2, the lightest node is better; and in case 3, the best
node must be determined with the equations of Theorems 2.2.3, 2.2.4 and
2.2.5. Observe that these results allow the algorithm to determine the path
to the optimal node that is closer to the root. For instance, in Example 2.2.7
case 1 is used to select a child, e.g., node 12 instead of node 5 or node 2,
and node 8 instead of node 3. Case 2 is used to go down and select node 12
instead of node 20. Case 4 is used to stop going down at node 8 because it is
better than all its descendants. And it is also used to determine that nodes
2, 3 and 5 are better than all their descendants. Finally, case 3 is used to
select the optimal node, 12 instead of 8. Note that D&Q could have selected
node 8 that is equally close to 20

2 than node 12; but it is suboptimal because
Upp8q � 12 and Downp8q � 7 whereas Upp12q � 8 and Downp12q � 11.

The correctness of Algorithm 2 is stated by the following theorem.
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Theorem 2.2.8 (Correctness) Let T � pN,E,Mq be a MET where
@n, n1 P N,win � win1 and @n P N,win ¡ 0, then the execution of Al-
gorithm 2 with T as input always terminates producing as output a node
n P SeapT q such that En1 P SeapT q | n1 " n.

Algorithm 2 always returns a single optimal node. However, the equation
in Theorem 2.2.3 in combination with the equation in Theorem 2.2.4 can
be used to identify all optimal nodes in the MET. This is implemented in
Algorithm 3 that is complete, and thus it returns nodes 2 and 4 in the MET
of Figure 2.3 where D&Q can only detect node 2 as optimal.

Algorithm 3 Optimal D&Q (Complete) —SelectNode—
Input: A MET T � pN,E,Mq whose root is n P N ,

@n1, n2 P N,win1 � win2 and @n1 P N,win1 ¡ 0
Output: A set of nodes O � N
Preconditions: Dn1 P N , Mpn1q � Undefined

begin
(1) Candidate � n
(2) do
(3) Best = Candidate
(4) Children = tm | pBest Ñ mq P Eu
(5) if (Children = H) then return tBestu
(6) Candidate = n1 | @n2 with n1, n2 P Children, wn1 ¥ wn2

(7) while pwCandidate ¡ wn
2 q

(8) Candidates = tn1 | @n2 with n1, n2 P Children, wn1 ¥ wn2u
(9) if pMpBestq � Wrongq then return Candidates
(10) if pwn ¡ wBest � wCandidate � winq then return tBestu
(11) if pwn � wBest�wCandidate�winq then return tBestu Y Candidates
(12) else return Candidates
end

2.2.2 Debugging METs where nodes can have different indi-
vidual weights in R� Y t0u

In this section we generalize Divide and Query to the case where nodes can
have different individual weights and these weights can be any value greater
or equal to zero. As shown in Figure 2.4, in this general case traditional D&Q
fails to identify the optimal node (it selects node n1 but the optimal node
is n2). The algorithm presented in the previous section is also suboptimal
when the individual weights can be different. For instance, in the MET
of Figure 2.4, it would select node n3. For this reason, in this section we
introduce Algorithm 4, a general algorithm able to identify an optimal node
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in all cases. It does not mean that Algorithm 2 is useless. Algorithm 2
is optimal when all nodes have the same weight, and in that case, it is
more efficient than Algorithm 4. Theorem 2.2.9 ensures the finiteness and
correctness of Algorithm 4.

Algorithm 4 Optimal D&Q General —SelectNode—
Input: A MET T � pN,E,Mq whose root is n P N and @n1 P N,win1 ¥ 0

Output: A node nOptimal P N
Preconditions: Dn1 P N , Mpn1q � Undefined

begin
(1) Candidate = n
(2) do
(3) Best = Candidate
(4) Children = tm | pBest Ñ mq P Eu
(5) if (Children = H) then return Best
(6) Candidate = n1 | @n2 with n1, n2 P Children, wn1 ¥ wn2

(7) while pwCandidate �
wiCandidate

2 ¡ wn
2 q

(8) Candidate = n1 | @n2 with n1, n2 P Children, wn1 �
win1
2 ¥ wn2 �

win2
2

(9) if pMpBestq � Wrongq then return Candidate
(10) if pwn ¥ wBest � wCandidate �

wiBest
2 � wiCandidate

2 q then return Best
(11) else return Candidate
end

Theorem 2.2.9 (Correctness) Let T � pN,E,Mq be a MET where
@n P N,win ¥ 0, then the execution of Algorithm 4 with T as input always
terminates producing as output a node n P SeapT q such that En1 P SeapT q |
n1 " n.

2.2.3 Debugging METs where nodes can have different indi-
vidual weights in R�

In the previous section we provided an algorithm that optimally selects an
optimal node of the MET with a minimum set of node comparisons. But this
algorithm is not complete due to the fact that we allow the nodes to have an
individual weight of zero. For instance, when all nodes have an individual
weight of zero, Algorithm 4 returns a single optimal node, but it is not able
to find all optimal nodes.

Given a node (say n), the difference between having an individual weight
of zero, win, and having a (total) weight of zero, wn, should be clear. The
former means that this node did not cause the bug, the later means that
none of the descendants of this node (neither the node itself) caused the
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bug. Surprisingly, the use of nodes with individual weights of zero has not
been exploited in the literature. Assigning a (total) weight of zero to a
node has been used for instance in the technique called Trusting [16]. This
technique allows the user to trust a method. When this happens all the
nodes related to this method and their descendants are pruned from the tree
(i.e., these nodes have a (total) weight of zero).

If we add the restriction that nodes cannot be assigned with an individual
weight of zero, then we can refine Algorithm 4 to ensure completeness. This
refined version is Algorithm 5.

Algorithm 5 Optimal D&Q General (Complete) —SelectNode—
Input: A MET T � pN,E,Mq whose root is n P N and @n1 P N,win1 ¡ 0

Output: A set of nodes O � N
Preconditions: Dn1 P N , Mpn1q � Undefined

begin
(1) Candidate = n
(2) do
(3) Best = Candidate
(4) Children = tm | pBest Ñ mq P Eu
(5) if (Children = H) then return tBestu
(6) Candidate = n1 | @n2 with n1, n2 P Children, wn1 ¥ wn2

(7) while pwCandidate �
wiCandidate

2 ¡ wn
2 q

(8) Candidates = tn1 | @n2 with n1, n2 P Children, wn1�
win1
2 ¥ wn2�

win2
2 u

(9) Candidate = n1 P Candidates
(10) if pMpBestq � Wrongq then return Candidates
(11) if pwn ¡ wBest�wCandidate�

wiBest
2 � wiCandidate

2 q then return tBestu
(12) if pwn � wBest � wCandidate �

wiBest
2 � wiCandidate

2 q then
return tBestu Y Candidates

(13) else return Candidates
end
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2.3 Proofs of technical results

In this section, for the sake of clarity, we use un and dn instead of Uppnq
and Downpnq respectively. Moreover, we distinguish between two kinds of
METs to prove the theorems of sections 2.2.1 and 2.2.2 respectively.

Definition 2.3.1 (Uniform MET) A uniform MET T � pN,E,Mq
is a MET, where @n, n1 P N,win � win1 and @n P N,win ¡ 0.

Definition 2.3.2 (Variable MET) A variable MET T � pN,E,Mq
is a MET, where @n P N,win ¥ 0.

2.3.1 Proofs of Theorems 2.2.3, 2.2.4 and 2.2.5

Here, we prove Theorems 2.2.3, 2.2.4 and 2.2.5 that are used in Algorithm 2
to compare nodes of the MET and determine which of them is better. For
the proof of Theorem 2.2.3, we need to prove first the following lemma.

Lemma 2.3.3 Let T � pN,E,Mq be a uniform MET whose root is n P
N , and let n1, n2 P SeapT q be two nodes. Then, n1 " n2 if and only if
un1 � dn1 ¡ un2 � dn2.

Proof. We prove that un1 � dn1 ¡ un2 � dn2 implies that |dn1 � un1 |  
|dn2 � un2 | and vice versa. This can be shown by developing the equation
un1 � dn1 ¡ un2 � dn2 .
Firstly, note that wn �

°
twin1 | n1 P SeapT qu, then by Equation 1 we know

that wn � un1�dn1�win1 � un2�dn2�win2 . Therefore, as win1 � win2 �
win the optimal division of SeapT q happens when un1 � dn1 �

wn�win
2 . For

the sake of simplicity in the notation, let c � wn�win
2 and let h1 � c� dn1 �

un1 � c and h2 � c� dn2 � un2 � c. Then,
un1 � dn1 ¡ un2 � dn2

Therefore, we replace un1 , dn1 , un2 and dn2 :
pc� h1q � pc� h1q ¡ pc� h2q � pc� h2q
c2 � h1 � c� h1 � c� h2

1 ¡ c2 � h2 � c� h2 � c� h2
2

We simplify:
c2 � h2

1 ¡ c2 � h2
2

�h2
1 ¡ �h2

2

h2
1   h2

2

And finally we obtain that:
|h1|   |h2|

Hence, if the product un1 � dn1 is greater than un2 � dn2 then |h1|   |h2| and
thus, because h1 and h2 represent distances to the center, n1 " n2.

Theorem 2.2.3. Given a uniform MET T � pN,E,Mq whose root is
n P N , and given two nodes n1, n2 P SeapT q, with wn1 ¡ wn2, n1 " n2 if
and only if wn ¡ wn1 � wn2 � win.
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Proof. By Lemma 2.3.3 we know that if un1 �dn1 ¡ un2 �dn2 then n1 " n2.
Thus it is enough to prove that wn ¡ wn1 � wn2 � win implies un1 � dn1 ¡
un2 � dn2 and vice versa when wn1 ¡ wn2 .

wn ¡ wn1 � wn2 � win
Adding win � win:
wn ¡ wn1 � wn2 � 2 � win � win
We replace wn1 , wn2 by Equation 2:
wn ¡ dn1 � dn2 � win
Adding win � d� win � d:
wn ¡ dn1 � dn2 � win � d� win � win � d
wn ¡ dn1 � dn2 � win � d� winp1� dq
Using d �

dn1
dn1�dn2

we get:

wn ¡ dn1 � dn2 � win
dn1

dn1
�dn2

� winp1�
dn1

dn1
�dn2

q

wn ¡ dn1 � dn2 � win
dn1

dn1�dn2
� winp

dn1�dn2
dn1�dn2

�
dn1

dn1�dn2
q

wn ¡ dn1 � dn2 � win
dn1

dn1
�dn2

� win
�dn2

dn1
�dn2

wn ¡ dn1 � dn2 � win
dn1

dn1�dn2
� win

dn2
dn1�dn2

Because dn1 � dn2 �
d2n1

�d2n2
dn1�dn2

then:

wn ¡
d2n1

�d2n2
dn1

�dn2
�

dn1
�win

dn1
�dn2

�
dn2

�win
dn1

�dn2

Because wn1 ¡ wn2 we know by Equation 2 that dn1 � dn2 ¡ 0, thus:
pdn1 � dn2q � wn ¡ d2n1

� d2n2
� dn1 � win � dn2 � win

dn1 � wn � dn2 � wn ¡ d2n1
� d2n2

� dn1 � win � dn2 � win
dn1 � wn � d2n1

� dn1 � win ¡ dn2 � wn � d2n2
� dn2 � win

dn1 � pwn � dn1 � winq ¡ dn2 � pwn � dn2 � winq
As win � win1 � win2 we replace wn � dn1 � win, wn � dn2 � win by Equation 1:
dn1 � un1 ¡ dn2 � un2

Theorem 2.2.4. Given a uniform MET T � pN,E,Mq whose root is
n P N , and given two nodes n1, n2 P SeapT q, with wn1 ¡ wn2, n1 � n2 if
and only if wn � wn1 � wn2 � win.

Proof. The proof is completely analogous to the proof of Theorem 2.2.3.
The only difference is that the equation that is developed should be wn �
wn1 � wn2 � win.

Theorem 2.2.5. Let T � pN,E,Mq be a uniform MET, and let n1, n2 P
SeapT q be two nodes, if wn1 � wn2 then n1 � n2.

Proof. We prove that wn1 � wn2 implies |dn1 � un1 | � |dn2 � un2 | and
thus n1 � n2:

wn1 � wn2 we replace wn1 , wn2 by Equation 2
dn1 � win1 � dn2 � win2 using win1 � win2

dn1 � dn2 using wn1 � wn2

wn1 � wn � dn1 � wn2 � wn � dn2 replacing wn1 , wn2 by Equation 2
pdn1 � win1q � pun1 � dn1 � win1q � dn1 and wn by Equation 1

� pdn2 � win2q � pun2 � dn2 � win2q � dn2 we simplify
dn1 � un1 � dn2 � un2

|dn1 � un1 | � |dn2 � un2 |
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Corollary 2.2.6. Given a uniform MET T � pN,E,Mq, and given a node
n P SeapT q, then n optimally divides SeapT q if and only if un � dn.

Proof. If n optimally divides SeapT q then the product un�dn is maximum,
and there does not exist other node n1 P SeapT q such that un1 �dn1 ¡ un �dn.
This can be easily shown taking into account that the figure of the product is
a parabola whose vertex is the maximum value. Therefore, we can compute
the maximum by deriving the product.

For simplicity, let prod � un � dn and sum � un� dn. Then, we start by
transforming the equation un � dn in such a way that it only depends on one
of the factors (e.g., un):

un � dn � prod
We replace dn :
un � psum� unq � prod
un � sum� u2

n � prod
We derive the equation and equate it to zero:
d

dun
pun � sum� u2

nq � 0

sum� 2un � 0
And finally we get the value of un in the vertex:
un � sum

2

Now, we can infer dn from un by simply replacing the value of un in the
equation un � dn � sum:

sum
2 � dn � sum

dn � sum� sum
2

dn � sum
2

dn � un
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2.3.2 Proof of Theorem 2.2.8

Theorem 2.2.8 states the correctness of Algorithm 2 used when all nodes
have the same individual weight. Firstly, we proof the following auxiliary
lemma.

Lemma 2.3.4 Let T � pN,E,Mq be a uniform MET whose root is n P N
and n1, n2 P SeapT q with wn1 ¡ wn2, if wn ¥ wn1 � wn2 then n1 " n2.

Proof. Firstly, by Theorem 2.2.3 we know that if wn ¡ wn1 � wn2 � win
when wn1 ¡ wn2 then n1 " n2. Therefore, as win ¡ 0, if wn ¥ wn1 � wn2

then wn ¡ wn1 � wn2 � win and hence n1 " n2.

In order to prove the correctness of Algorithm 2, we also need to prove
the four cases presented in Section 2.2.1 that are used in the algorithm:

Case 1: n1 and n2 are brothers.
Case 2: wn1 ¡ wn2 ^ wn2 ¡

wn
2 .

Case 3: wn1 ¡
wn
2 ^ wn2 ¤

wn
2 .

Case 4: wn1 ¡ wn2 ^ wn1 ¤
wn
2 .

We prove each case in a separate lemma. In case 1, the following lemma
shows that given two brother nodes n1 and n2, then the heaviest node is
better.

Lemma 2.3.5 Given a uniform MET T � pN,E,Mq whose root is n P N
and given three nodes n1 P N and n2, n3 P SeapT q with pnÑ n1q P E�,pn1 Ñ
n2q, pn1 Ñ n3q P E, n2 " n3 _ n2 � n3 if and only if wn2 ¥ wn3.

Proof. We prove first that wn2 ¥ wn3 implies n2 " n3_n2 � n3: Trivially,
wn ¥ wn2 � wn3 because n2 and n3 are children of n1 and n1 is descendant
of n. Therefore, by Lemma 2.3.4 and Theorem 2.2.5, n2 " n3 _ n2 � n3.
Now, we prove that n2 " n3 _ n2 � n3 implies wn2 ¥ wn3 : We prove it by
contradiction assuming that wn2   wn3 when n2 " n3_n2 � n3, and proving
that when wn2   wn3 and n2 " n3_n2 � n3, neither wn ¡ wn2 �wn3 �win
nor wn ¤ wn2�wn3�win holds. By Theorem 2.2.3 wn ¡ wn2�wn3�win is
false because n2 " n3_n2 � n3. Moreover, because n2 and n3 are brothers,
we know that wn ¥ wn2�wn3 , and hence wn ¤ wn2�wn3�win is also false.

In case 2, the following lemma ensures that given two nodes n1 and n2
such that n1 Ñ n2, if wn2 ¡

wn
2 then n2 is better.

Lemma 2.3.6 Given a uniform MET T � pN,E,Mq whose root is n P N ,
and given two nodes n1, n2 P SeapT q, with pn1 Ñ n2q P E, if wn2 ¡

wn
2 then

n2 " n1.
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Proof. We prove the lemma by contradiction assuming that n1 " n2 or
n1 � n2. First, we know that wn2 �

wn
2 � incn2 with incn2 ¡ 0. And we

know that wn1 � wn
2 � incn2 � win � incn1 with incn1 ¥ 0, where incn1

represents the weight of the possible brothers of n2. By Theorems 2.2.3
and 2.2.4 we know that wn ¥ wn1 � wn2 � win when wn1 ¡ wn2 implies
n1 " n2 _ n1 � n2.

wn ¥ wn1 � wn2 � win We replace wn1 , wn2

wn ¥ pwn
2
� incn2 � win � incn1q � pwn

2
� incn2q � win we simplify

wn ¥ wn
2
� incn2 � incn1 �

wn
2
� incn2

wn ¥ wn
2
� wn

2
� 2 � incn2 � incn1

wn ¥ wn � 2 � incn2 � incn1

0 ¥ 2 � incn2 � incn1

But, this is a contradiction with incn2 ¡ 0. Hence, n2 " n1.

In case 4, the following lemma ensures that given two nodes whose weight
is smaller than wn

2 then the heaviest node is better.

Lemma 2.3.7 Given a uniform MET T � pN,E,Mq whose root is n P N ,
and two nodes n1, n2 P SeapT q, where wn

2 ¥ wn1 ¡ wn2 then n1 " n2.

Proof. We can assume that wn1 � wn
2 � decn1 and wn2 � wn

2 � decn2

where decn2 ¡ decn1 ¥ 0. Moreover, we know that wn1 � wn2 � wn
2 �

decn1 �
wn
2 � decn2 and thus wn1 � wn2 � wn � decn1 � decn2 . Therefore,

because decn2 ¡ decn1 ¥ 0, we deduce that wn ¡ wn1 � wn2 . And as
wn1 ¡ wn2 then, by Lemma 2.3.4, n1 " n2.

If two nodes n1 and n2 are brothers and n1 is better than n2 then n1 is
better than any descendant of n2. The following lemma proves this property
that is complementary to Lemma 2.3.5 for case 1.

Lemma 2.3.8 Given a uniform MET T � pN,E,Mq whose root is n P N
and four nodes n1 P N and n2, n3, n4 P SeapT q with pn Ñ n1q P E�, pn1 Ñ
n2q, pn1 Ñ n3q P E, pn3 Ñ n4q P E�, if n2 " n3 _ n2 � n3 then n2 " n4.

Proof. First, n2 and n3 are brothers and n2 " n3 _ n2 � n3 then, by
Lemma 2.3.5, we know that wn2 ¥ wn3 . We distinguish two cases wn2 ¡

wn
2

and wn
2 ¥ wn2 .

If wn
2 ¥ wn2 then wn

2 ¥ wn3 and by Lemma 2.3.7 n3 " n4.
If wn2 ¡

wn
2 then we only have to demonstrate that wn

2 ¡ wn3 and then (as
before) by Lemma 2.3.7 n3 " n4.
This can be easily proved having into account that wn ¥ wn2�wn3 because n2
and n3 are children of n1 and n1 is descendant of n, and that wn2 �

wn
2 �incn2

with incn2 ¡ 0.
wn ¥ wn2 � wn3 we replace wn2

wn ¥ pwn
2
� incn2q � wn3

wn � wn
2
¥ incn2 � wn3

wn
2
¥ incn2 � wn3 as incn2 ¡ 0

wn
2
¡ wn3
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Therefore as n2 " n3 _ n2 � n3 and n3 " n4 then n2 " n4.

The previous lemmas allow Algorithm 2 to find a path between the root
node and an optimal node. The correctness of this algorithm is proved by
the following theorem.

Theorem 2.2.8. Let T � pN,E,Mq be a uniform MET, then the execution
of Algorithm 2 with T as input always terminates producing as output a node
n P SeapT q such that En1 P SeapT q | n1 " n.

Proof. The finiteness of the algorithm is proved thanks to the following
invariant: wCandidate strictly decreases in each iteration. Therefore, because
N is finite, wCandidate will eventually become smaller or equal to wn

2 and the
loop will terminate.

The correctness can be proved showing that after any number of itera-
tions the algorithm always finishes with an optimal node. We prove it by
induction on the number of iterations performed.

(Base Case) In the base case, only one iteration is executed. If the condition
in Line (5) is satisfied then the root is marked as undefined and it is trivially
the optimal node. This optimal node is returned in Line (5). Otherwise,
Lines (4) and (6) select the heaviest child of the root, the loop terminates
and Lines (9) or (10) return the optimal node.

Note that the root node—when it is marked as Wrong—can only be
selected in the first iteration. But even in this case, this node is never selected
because the root node must have at least one child marked as Undefined .
Thus Line (5) is not satisfied and Line (6) selects this node. If the condition
of the loop is not satisfied, then Line (8) returns the roots’ child.

(Induction Hypothesis) We assume as the induction hypothesis that after
i iterations, the algorithm has a candidate node Best P SeapT q such that
@n1 P SeapT q, pBestÑ n1q R E�, Best " n1.

(Inductive Case) We now prove that the iteration i � 1 of the algorithm
will select a new candidate node Candidate such that Candidate " Best,
or it will terminate selecting an optimal node.

Firstly, when the condition in Line (5) is satisfied Best and Candidate are
the same node (say n1). According to the induction hypothesis, this node is
better than any other of the nodes in the set tn2 P SeapT q|pn1 Ñ n2q R E�u.
Therefore, because n1 has no children, then it is an optimal node; and it is
returned in Line (5). Otherwise, if the condition in Line (5) is not satisfied,
Line (7) in the algorithm ensures that wBest ¡ wn

2 being n the root of T
because in the iteration i the loop did not terminate or because Best is the
root. Moreover, according to Lines (4) and (6), we know that Candidate is
the heaviest child of Best. We have two possibilities:

• wCandidate ¡
wn

2 : In this case the loop does not terminate and @n1 P SeapT q,
pCandidate Ñ n1q R E�,Candidate " n1. Firstly, by Lemma 2.3.6 we know
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that Candidate " Best , and thus, by the induction hypothesis we know
that @n1 P SeapT q, pBest Ñ n1q R E�,Candidate " n1. By Lemma 2.3.5
Candidate " n1 _ Candidate � n1 being n1 a brother of Candidate. But as we
know that wCandidate ¡

wn

2 then Candidate � n1. Moreover, by Lemma 2.3.8
we can ensure that Candidate " n1 being n1 a descendant of a candidate’s
brother.

• wCandidate ¤
wn

2 : In this case the loop terminates (Line (7)) and by Lemma 2.3.5
we know that Candidate " n1 _ Candidate � n1 being n1 a brother of
Candidate. Moreover, by Lemma 2.3.8 we can ensure that Candidate " n1

being n1 a descendant of a candidate’s brother. Then equation pwn ¥
wBest � wCandidate � winq is applied in Line (9) to select an optimal node.
Theorems 2.2.3 and 2.2.4 ensures that the node selected is an optimal node
because, according to Lemma 2.3.7, for all descendant n1 of Candidate,
Candidate " n1.
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2.3.3 Proof of Theorem 2.2.9

Theorem 2.2.9 states the correctness of Algorithm 4 used in the general
case when nodes can have different individual weights. For the proof of this
theorem we define first some auxiliary lemmas. The following lemma ensures
that wn1 �

win1
2 ¡ wn

2 used in the condition of the loop implies dn1 ¡ un1 .

Lemma 2.3.9 Given a variable MET T � pN,E,Mq whose root is n P N
and a node n1 P SeapT q, dn1 ¡ un1 if and only if wn1 �

win1
2 ¡ wn

2 .

Proof. We prove that wn1 �
win1
2 ¡ wn

2 implies dn1 ¡ un1 and vice versa.
wn1 �

win1
2

¡ wn
2

2wn1 � win1 ¡ wn

We replace wn1 using Equation 2:
2pdn1 � win1q � win1 ¡ wn

2dn1 � win1 ¡ wn

dn1 ¡ wn � dn1 � win1

We replace wn � dn1 � win1 using Equation 1:
dn1 ¡ un1

The following lemma ensures that given two nodes n1 and n2 where
dn ¥ un in both nodes and n1 Ñ n2 then n2 " n1 _ n2 � n1.

Lemma 2.3.10 Given a variable MET T � pN,E,Mq and given two nodes
n1, n2 P SeapT q, with pn1 Ñ n2q P E, if dn2 ¥ un2 then n2 " n1 _ n2 � n1.

Proof. We prove that |dn2 �un2 | ¤ |dn1 �un1 | holds. First, we know that
dn1 � dn2 �win2 � inc and un1 � un2 �win1 � inc with inc ¥ 0, where inc
represents the weight of the possible brothers of n2.

|dn2 � un2 | ¤ |dn1 � un1 |
As we know that dn ¥ un in both nodes:
dn2 � un2 ¤ dn1 � un1

We replace dn1 and un1 :
dn2 � un2 ¤ pdn2 � win2 � incq � pun2 � win1 � incq
dn2 � un2 ¤ dn2 � un2 � win1 � win2 � 2inc
0 ¤ win1 � win2 � 2inc

Hence, because win1 , win2 , inc ¥ 0 then |dn2 �un2 | ¤ |dn1 �un1 | is satisfied
and thus n2 " n1 _ n2 � n1.

The following lemma ensures that given two nodes n1 and n2 where
dn ¤ un in both nodes and n1 Ñ n2 then n1 " n2 _ n1 � n2.

Lemma 2.3.11 Given a variable MET T � pN,E,Mq and given two nodes
n1, n2 P SeapT q, with pn1 Ñ n2q P E, if dn1 ¤ un1 then n1 " n2 _ n1 � n2.

Proof. We prove that |dn1 �un1 | ¤ |dn2 �un2 | holds. First, we know that
dn2 � dn1 �win2 � inc and un2 � un1 �win1 � inc with inc ¥ 0, where inc
represents the weight of the possible brothers of n2.
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|dn1 � un1 | ¤ |dn2 � un2 |
As we know that un ¥ dn in both nodes:
un1 � dn1 ¤ un2 � dn2

We replace dn2 and un2 :
un1 � dn1 ¤ pun1 � win1 � incq � pdn1 � win2 � incq
un1 � dn1 ¤ un1 � dn1 � win1 � win2 � 2inc
0 ¤ win1 � win2 � 2inc

Hence, because win1 , win2 , inc ¥ 0 then |dn1 �un1 | ¤ |dn2 �un2 | is satisfied
and thus n1 " n2 _ n1 � n2.

The following lemma ensures that given two brother nodes n1 and n2, if
dn1 ¥ un1 then dn2 ¤ un2 .

Lemma 2.3.12 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given three nodes n1 P N and n2, n3 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, if dn2 ¥ un2 then dn3 ¤ un3.

Proof. We prove it by contradiction assuming that dn3 ¡ un3 when dn2 ¥
un2 and they are brothers. First, we know that as n2 and n3 are brothers
then un2 ¥ wn3 and un3 ¥ wn2 . Therefore, if dn3 ¡ un3 then dn2 ¥ un2 ¥
wn3 ¥ dn3 ¡ un3 ¥ wn2 ¥ dn2 that implies dn2 ¡ dn2 that is a contradiction
itself.

If two nodes n1 and n2 are brothers and dn1 ¥ un1 then n1 " n2_n1 � n2.
The following lemma proves this property.

Lemma 2.3.13 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given three nodes n1 P N and n2, n3 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, if dn2 ¥ un2 then n2 " n3 _ n2 � n3.

Proof. We prove that |dn2 � un2 | ¤ |dn3 � un3 | holds. First, as n2 and
n3 are brothers we know that wn ¥ dn2 � dn3 � win2 � win3 , then wn �
dn2 � dn3 � win2 � win3 � inc with inc ¥ 0.

|dn2 � un2 | ¤ |dn3 � un3 |
As dn2 ¥ un2 by Lemma 2.3.12 we know that un3 ¥ dn3 :
dn2 � un2 ¤ un3 � dn3

We replace un2 and un3 using Equation 1:
dn2 � pwn � dn2 � win2q ¤ pwn � dn3 � win3q � dn3

�wn � 2dn2 � win2 ¤ wn � 2dn3 � win3

�2wn ¤ �2dn2 � 2dn3 � win2 � win3

2wn ¥ 2dn2 � 2dn3 � win2 � win3

wn ¥ dn2 � dn3 �
win2

2
�

win3
2

We replace wn:
dn2 � dn3 � win2 � win3 � inc ¥ dn2 � dn3 �

win2
2

�
win3

2

win2 � win3 � inc ¥
win2

2
�

win3
2

win2
2

�
win3

2
� inc ¥ 0

Hence, because win2 , win3 , inc ¥ 0 then |dn2 �un2 | ¤ |dn3 �un3 | is satisfied
and thus n2 " n3 _ n2 � n3.
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The following lemma ensures that given two brother nodes n1 and n2, if
wn1 ¥ wn2 and dn1 ¤ un1 then dn2 ¤ un2 .

Lemma 2.3.14 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given three nodes n1 P N and n2, n3 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, if wn2 ¥ wn3 and dn2 ¤ un2 then dn3 ¤ un3.

Proof. We prove it by contradiction assuming that dn3 ¡ un3 when wn2 ¥
wn3 and dn2 ¤ un2 and they are brothers. First, we know that as n2 and n3
are brothers then un2 ¥ wn3 and un3 ¥ wn2 . Therefore, if dn3 ¡ un3 then
dn3 ¡ un3 ¥ wn2 ¥ wn3 ¥ dn3 that implies dn3 ¡ dn3 that is a contradiction
itself.

If two nodes n1 and n2 are brothers and un1 ¥ dn1 ^ un2 ¥ dn2 then, if
wn1 �

win1
2 ¥ wn2 �

win2
2 is satisfied then n1 " n2 _ n1 � n2. The following

lemma proves this property.

Lemma 2.3.15 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given three nodes n1 P N and n2, n3 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, and un2 ¥ dn2 and un3 ¥ dn3, n2 " n3_n2 � n3
if and only if wn2 �

win2
2 ¥ wn3 �

win3
2 .

Proof. First, if |dn2�un2 | ¤ |dn3�un3 | then n2 " n3_n2 � n3. Thus it is
enough to prove that wn2�

win2
2 ¥ wn3�

win3
2 implies |dn2�un2 | ¤ |dn3�un3 |

and vice versa when un ¥ dn in both nodes and they are brothers.
wn2 �

win2
2

¥ wn3 �
win3

2

2wn2 � win2 ¥ 2wn3 � win3

We replace wn2 and wn3 using Equation 2:
2pdn2 � win2q � win2 ¥ 2pdn3 � win3q � win3

2dn2 � win2 ¥ 2dn3 � win3

We add �wn:
�wn � 2dn2 � win2 ¥ �wn � 2dn3 � win3

wn � 2dn2 � win2 ¤ wn � 2dn3 � win3

We replace wn using Equation 1:
pdn2 � un2 � win2q � 2dn2 � win2 ¤ pdn3 � un3 � win3q � 2dn3 � win3

�dn2 � un2 ¤ �dn3 � un3

un2 � dn2 ¤ un3 � dn3

As un ¥ dn in both nodes:
|un2 � dn2 | ¤ |un3 � dn3 |
|dn2 � un2 | ¤ |dn3 � un3 |

If two nodes n1 and n2 are brothers and dn1 ¥ un1 and n2 Ñ� n3 then, if
n1 � n2 then n1 " n3_n1 � n3. The following lemma proves this property.

Lemma 2.3.16 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given four nodes n1 P N and n2, n3, n4 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, pn3 Ñ n4q P E�, if dn2 ¥ un2 and n2 � n3 then
n2 " n4 _ n2 � n4.
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Proof. This can be trivially proved having into account that dn3 ¤ un3

when dn2 ¥ un2 by Lemma 2.3.12 and then by Lemma 2.3.11 we know that
n3 " n4 _ n3 � n4 and as n2 � n3 then n2 " n4 _ n2 � n4.

If two nodes n1 and n2 are brothers and dn1 ¤ un1 ^ dn2 ¤ un2 and
n2 Ñ� n3 then, if n1 � n2 then n1 " n3 _ n1 � n3. The following lemma
proves this property.

Lemma 2.3.17 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given four nodes n1 P N and n2, n3, n4 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, pn3 Ñ n4q P E�, if dn2 ¤ un2 and dn3 ¤ un3 and
n2 � n3 then n2 " n4 _ n2 � n4.

Proof. This can be trivially proved having into account that dn3 ¤ un3

and then by Lemma 2.3.11 we know that n3 " n4 _ n3 � n4 and as n2 � n3
then n2 " n4 _ n2 � n4.

If two nodes n1 and n2 are brothers and n1 " n2 and n2 Ñ� n3 then
n1 " n3. The following lemma proves this property.

Lemma 2.3.18 Given a variable MET T � pN,E,Mq whose root is n P N ,
and given four nodes n1 P N and n2, n3, n4 P SeapT q, with pn Ñ n1q P E�,
pn1 Ñ n2q, pn1 Ñ n3q P E, pn3 Ñ n4q P E�, if n2 " n3 then n2 " n4.

Proof. We show that if n2 " n3 then dn3   un3 . We prove it by con-
tradiction assuming that dn3 ¥ un3 when n2 " n3. First, as n2 and n3
are brothers we know that wn ¥ dn2 � dn3 � win2 � win3 , then wn �
dn2�dn3�win2�win3�inc with inc ¥ 0. Therefore, if |dn2�un2 |   |dn3�un3 |
then n2 " n3. Thus it is enough to prove that |dn2 � un2 |   |dn3 � un3 | is
not satisfied when dn3 ¥ un3 and n2 and n3 are brothers.

|dn2 � un2 |   |dn3 � un3 |
As dn3 ¥ un3 by Lemma 2.3.12 we know that un2 ¥ dn2 :
un2 � dn2   dn3 � un3

We replace un2 and un3 using Equation 1:
pwn � dn2 � win2q � dn2   dn3 � pwn � dn3 � win3q
wn � 2dn2 � win2   2dn3 � wn � win3

2wn   2dn2 � 2dn3 � win2 � win3

wn   dn2 � dn3 �
win2

2
�

win3
2

We replace wn:
dn2 � dn3 � win2 � win3 � inc   dn2 � dn3 �

win2
2

�
win3

2

win2 � win3 � inc  
win2

2
�

win3
2

win2
2

�
win3

2
� inc   0

But, this is a contradiction with win2 , win3 , inc ¥ 0. Hence, dn3   un3 .
Now we show that, if n2 " n3 then n2 " n4. We prove it by contradiction

assuming that n4 " n2 _ n4 � n2 when n2 " n3. First, we know that dn3  
un3 . Therefore we know that dn4 � dn3�win4�dec and un4 � un3�win3�dec
with dec ¥ 0, where dec represents the weight of the possible brothers of n4.
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|dn3 � un3 | ¡ |dn2 � un2 | ¥ |dn4 � un4 |
We replace dn4 and un4 :
|dn3 � un3 | ¡ |dn2 � un2 | ¥ |pdn3 � win4 � decq � pun3 � win3 � decq|
|dn3 � un3 | ¡ |dn2 � un2 | ¥ |dn3 � win4 � dec� un3 � win3 � dec|
|dn3 � un3 | ¡ |dn2 � un2 | ¥ |dn3 � un3 � win3 � win4 � 2dec|

Note that dn3 � un3 must be positive, thus dn3 ¡ un3 . But this is a contra-
diction with dn3   un3 .

The following lemma ensures that given two nodes n1 and n2 where
dn1 ¥ un1 and dn2 ¤ un2 and n1 Ñ n2 then if wn ¥ wn1 �wn2 �

win1
2 � win2

2
is satisfied then n1 " n2 _ n1 � n2.

Lemma 2.3.19 Given a variable MET T � pN,E,Mq and given two nodes
n1, n2 P SeapT q, with pn1 Ñ n2q P E, and dn1 ¥ un1, and dn2 ¤ un2,
n1 " n2 _ n1 � n2 if and only if wn ¥ wn1 � wn2 �

win1
2 � win2

2 .

Proof. First, if |dn1 � un1 | ¤ |dn2 � un2 | then n1 " n2 or n1 � n2.
Thus it is enough to prove that wn ¥ wn1 � wn2 �

win1
2 � win2

2 implies
|dn1 � un1 | ¤ |dn2 � un2 | and vice versa when dn1 ¥ un1 and dn2 ¤ un2 .

wn ¥ wn1 � wn2 �
win1

2
�

win2
2

We replace wn1 , wn2 using Equation 2:
wn ¥ pdn1 � win1q � pdn2 � win2q �

win1
2

�
win2

2

wn ¥ dn1 � dn2 �
win1

2
�

win2
2

2wn ¥ 2dn1 � 2dn2 � win1 � win2

�2wn ¤ �2dn1 � 2dn2 � win1 � win2

�wn � 2dn1 � win1 ¤ wn � 2dn2 � win2

We replace wn using Equation 1:
�pdn1 � un1 � win1q � 2dn1 � win1 ¤ pdn2 � un2 � win2q � 2dn2 � win2

�dn1 � un1 � win1 � 2dn1 � win1 ¤ dn2 � un2 � win2 � 2dn2 � win2

�un1 � dn1 ¤ �dn2 � un2

dn1 � un1 ¤ un2 � dn2

As dn1 ¥ un1 and dn2 ¤ un2 :
|dn1 � un1 | ¤ |un2 � dn2 |
|dn1 � un1 | ¤ |dn2 � un2 |

Finally, we prove the correctness of Algorithm 4.

Theorem 2.2.9. Let T � pN,E,Mq be a variable MET, then the execution
of Algorithm 4 with T as input always terminates producing as output a node
n P SeapT q such that En1 P SeapT q | n1 " n.

Proof. The finiteness of the algorithm is proved thanks to the following
invariant: each iteration processes one single node, and the same node is
never processed again. Therefore, becauseN is finite, the loop will terminate.

The proof of correctness is completely analogous to the proof of Theo-
rem 2.2.8. The only difference is the induction hypothesis and the inductive
case:
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(Induction Hypothesis) After i iterations, the algorithm has a candidate
node Best P SeapT q such that @n1 P SeapT q, pBest Ñ n1q R E�, Best "
n1 _Best � n1.

(Inductive Case) We prove that the iteration i � 1 of the algorithm will
select a new candidate node Candidate such that Candidate " Best _
Candidate � Best, or it will terminate selecting an optimal node.
Firstly, when the condition in Line (5) is satisfied Best and Candidate are
the same node (say n1). According to the induction hypothesis, this node is
better or equal than any other of the nodes in the set tn2 P SeapT q|pn1 Ñ
n2q R E�u. Therefore, because n1 has no children, then it is an optimal
node; and it is returned in Line (5). Otherwise, if the condition in Line (5)
is not satisfied, Line (7) in the algorithm ensures that wBest �

wiBest
2 ¡ wn

2
being n the root of T because in the iteration i the loop did not terminate
or because Best is the root (observe that an exception can happen when all
nodes have an individual weight of 0. But in this case all nodes are optimal,
and thus the node returned by the algorithm is optimal). Then we know
that dBest ¡ uBest by Lemma 2.3.9. Moreover, according to Lines (4) and
(6), we know that Candidate is the heaviest child of Best. We have two
possibilities:

• dCandidate ¡ uCandidate : In this case the loop does not terminate and @n1 P
SeapT q, pCandidate Ñ n1q R E�,Candidate " n1 _ Candidate � n1. Firstly,
by Lemma 2.3.10 we know that Candidate " Best _ Candidate � Best ,
and thus, by the induction hypothesis we know that @n1 P SeapT q, pBest Ñ
n1q R E�,Candidate " n1 _ Candidate � n1. By Lemma 2.3.13 we know
that Candidate " n1 _ Candidate � n1 being n1 a brother of Candidate.
Moreover, by Lemma 2.3.16 and 2.3.18 we can ensure that Candidate "
n1 _ Candidate � n1 being n1 a descendant of a candidate’s brother.

• dCandidate ¤ uCandidate : In this case the loop terminates (Line (7)) and we
know by Lemma 2.3.14 that dn1 ¤ un1 being n1 any brother of Candidate.
In Line (8) according to Lemma 2.3.15 we select the Candidate such that
Candidate " n1 _ Candidate � n1 being n1 a brother of Candidate. More-
over, by Lemma 2.3.17 and 2.3.18 we can ensure that Candidate " n1 _
Candidate � n1 being n1 a descendant of a candidate’s brother. Then equa-
tion pwn ¥ wBest �wCandidate �

wiBest

2 � wiCandidate

2 q is applied in Line (10)
to select an optimal node. Lemma 2.3.19 ensure that the node selected is an
optimal node because, according to Lemma 2.3.11, for all descendant n1 of
Candidate, Candidate " n1 _ Candidate � n1.
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Chapter 3

Divide by Queries

An strategy should be consider optimal with respect to the number of ques-
tions generated if and only if the average number of questions asked with any
MET is minimum. Note that we can compute this average by assuming that
the bug can be in any node of the MET, and thus computing the number of
questions asked for each node using Algorithm 1.

3.1 An optimal strategy for algorithmic debugging

In this section we call optimal node to the first node asked by an optimal
strategy (instead of the node that better divides the MET by the half).

Definition 3.1.1 (Optimal strategy) Let ε be an algorithmic de-
bugging strategy. Given a MET T � pN,E,Mq, let sεn the sequence of ques-
tions made by Algorithm 1 with strategy ε and considering that the only buggy
node in T is n P N . Let tε �

°
niPN

|sεni
|. We say that ε is optimal if and only

if for any MET Eε1 . tε ¡ tε1 .

In this section we show that any version of D&Q is and will be subopti-
mal. The reason is that D&Q tries to prune the biggest possible subtree of
the MET without considering the structure of this subtree. In practice, prun-
ing complex subtrees that are more difficult to explore is very important, but
this is ignored by D&Q. This means that our version of D&Q (Algorithm 4)
is optimal in the sense that it optimally divides the MET by the half. But it
is not an optimal strategy because in total (considering all questions needed
to find the bug) it can perform more questions than necessary.

Because we compute the cost of a strategy based on the number of ques-
tions asked, we need a formal definition for sequence of questions.

Definition 3.1.2 (Sequence of questions) Given a MET T � pN,
E,Mq and two nodes n1, n2 P N , a sequence of questions of n1 with respect

41
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Figure 3.1: MET where D&Q cannot find an optimal node

to n2, sqpn1, n2q, is formed by all nodes asked by Algorithm 1 when the first
node selected by function selectNodepT q is n2 and the only buggy node in T
is n1.

This means that the sequence of questions is completely dependent on
the used strategy. For instance, using standard D&Q with the MET in
Figure 2.2 (left) and assuming that all nodes are marked as undefined:

sqpn, n3q � rn3, n1, n2, n7, ns sqpn3, nq � rn, n3, n4, n5, n6s

sqpn, nq � rn, n3, n1, n2, n7s sqpn3, n3q � rn3, n4, n5, n6s

We now show a counterexample where D&Q cannot find an optimal node.

Example 3.1.3
Consider the MET in Figure 3.1 (left) where the number at the right of the
node represents |sqpn, n1q| being n the node itself and n1 the gray node. D&Q
would select node n1 because its weight is closer to 114

2 � 57. However, n2 is
the only optimal node, and it produces less questions than n1 even though
its weight is far from 57.

In the MET at the left we start asking node n1. If the bug is located in
the subtree of node n1, because it is a deep subtree, we would ask an average
of log2 57 � 5, 83 questions to each node (�1 because we have initially asked
node n1). If the bug were not in this subtree, then after asking node n1 we
would explore the subtree of node n2. If the bug is located in this subtree we
must ask all nodes until we find the bug, and all these nodes have to consider
the question already asked to node n1; in total we ask p

°51
i�3 iq � 51 � 1374

questions. If the bug were not located in the right brach, there only remain
the 7 top nodes in the left branch (including the root). There we ask an
average of log2 7 � 2, 8 questions to each node (�2 because we already asked
nodes n1 and n2). In total we ask 57 � 6, 83 � 1374 � 7 � 4, 8 � 1796, 91
questions, and an average of 1796,91

114 � 15, 76 questions.
If, contrarily, we start asking node n2 (see the MET at the right) and the

bug is located in this subtree, we ask p
°50
i�2 iq � 50 � 1324 questions. If the

bug is located in the other branch, after asking node n2 we still have 64 nodes
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in depth; therefore, with log2 64 � 6 questions (�1 because we have initially
asked node n2) we will find the bug. In total, we ask 1324 � 64 � 7 � 1772
questions, and an average of 1772

114 � 15, 54 questions.

Example 3.1.3 showed that D&Q is not an optimal strategy. The question
now is whether an optimal strategy exists: is the problem decidable?

Theorem 3.1.4 (Decidability) Given a MET, finding all optimal nodes
is a decidable problem.

Proof. We show that at least one finite method exists to find all optimal
nodes. Firstly, we know that the size of the MET is finite because the
question in the root can only be completed if the execution terminated, and
hence the number of subcomputations—and nodes—is finite [12]. Because
the tree is finite, we know (according to Algorithm 1) that any sequence of
questions asked by the debugger (no matter the strategy used) is also finite
because at most all nodes of the tree are asked once. Therefore, the number
of possible sequences is also finite. This guarantees that we can compute all
possible sequences and select the best sequences according to the equation in
Definition 3.1.1. The optimal nodes will be the first of the selected sequences.

Even though the method described in the proof of Theorem 3.1.4 is ef-
fective, it is too expensive because it needs to compute all possible sequences
of questions. In the rest of this section we present a more efficient method
to compute all optimal nodes.

3.1.1 Selecting the best sequences of questions (sqn)

For the sake of clarity, in the following when we talk about the sequence
of questions of a node, we assume that this node is wrong and that the
sequence contains a set of nodes that after they have been asked, they allow
us to know whether the node is buggy or not.

In order to formalize the method described in the proof of Theorem 3.1.4
we first define the notion of valid sequence of questions.

Definition 3.1.5 (Valid sequences of questions of a node)
Let T � pN,E,Mq be a MET whose root is n P N . A sequence of questions
sqn � rn1, . . . , nms for n is valid if:

1. @ni, nj P sqn, 1 ¤ i   j ¤ m, pni Ñ njq R E�

2. Nztnj | pni Ñ njq P E� ^ ni P sqnu � tnu

We denote with SQn the set of valid sequences of questions of n.
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Intuitively, the valid sequences of questions of a root node n are all those
sequences formed with non-repeated nodes that (1) a node in the sequence
cannot be descendant of a previous node in the sequence, and (2) after having
pruned all the subtrees whose roots are the nodes of the sequence, node n
has not descendants.

The next example shows that if we label each node of a MET with a
valid sequence of questions, then it is possible to know how many questions
do we need to ask to find the buggy node.

Example 3.1.6
Consider the next tree:

Here, nodes are labeled with their weight (inside) their identifier (top
left), an optimal sequence of questions for this node (top right), |sqpn, n1q|
where n is the node (bottom right), and the sum of |sqpn1, nq| for all node
n1 of the subtree of this node (n) (bottom left).

There exist many valid sequences for the root node n1, (e.g. rn2, n7, n10s,
rn2, n10, n7s, rn3, n2, n7, n10s, etc.). If we consider the sequence of the figure
(rn2, n7, n10s) and taking into account that we start asking in the root node1,
then we can easily determine the number of questions needed to find the bug
in any node n. We refer to this number with qn. For instance, we need 4
questions to find the bug in node n1 (rn1, n2, n7, n10s). Similarly, qn4 � 4
(rn1, n2, n3, n4s) and qn7 � 5 (rn1, n2, n7, n8, n9s). Observe that when we
reach node n7 and mark it as wrong we continue the sequence of questions
of this node (rn8, n9s).

Once we have computed q for all descendants of node n, we can also
compute the n’s number at bottom left (referred to as Qn) by adding all qs.
In the figure, we see that Qn1 � 46, Qn2 � 19 and (trivially) the leafs only
need one question (the node itself).

Therefore, to find the optimal nodes, we only have to: (i) Compute
Qn for all nodes in the MET, (ii) add to the MET a fictitious root node,
(iii) compute all valid sequences of the root node, (iv) compute the cost
associated to each sequence (with Algorithm 6), and (v) select the first node
of the sequences with the minimum cost.

1Note that this does not mean that valid sequences must necessarily start asking the
root node. Given any MET we can add a new fictitious parent of the root and compute
the optimal sequence of questions associated to this new node.
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Essentially, Algorithm 6 is used to compute Qn of a given node. For this,
it compositionally computes the number of questions that should be asked
to each node. This is done by taking into account the individual weight of
each node that, as with Algorithm 4, can be any number greater than or
equal to 0.

Example 3.1.7
Consider the following tree at the left with depth 4, where we want to com-
pute the cost Qn1 associated to the sequence rn3, n6, n2s.

Function ComputeQ takes the first element of the sequence (n3) and
computes the number of questions to be done if the bug is located in its
subtree. This is Qn3 � 8. Therefore, no matter where the bug is, we have
to ask one extra question for each node (the one in the root n1). Thus we
have a total of 8+3=11 questions. If the bug is not located in the subtree of
n3, then we should continue asking questions of the sequence having pruned
this subtree. Therefore, we should prune this tree and recalculate Q for the
ancestors of node n3. This is done with function AdjustIntermediateNodes
producing the tree with a depth of 3 in the middle of the figure above. In
this new tree, Qn2 has been recomputed and its value is 1.

Then, we proceed with the next question in the sequence (n6). Now we
have Qn6=4 questions. But now we have to take into account two extra ques-
tions (one for n1 and one for n3) for each node in the subtree of n6: 2*2=4
questions. Hence we have a total of (8+3)+(4+4)=19 questions. If the bug
is not located in the subtree of node n6 we prune it producing the tree at the
right of the figure and we ask the next question in the sequence: n2. If the
bug is n2, then we have to ask one question (n2) plus the extra questions done
before (n1, n3 and n6). Thus we have a total of (8+3)+(4+4)+(1+3)=23
questions. Finally, if the bug is located in the root, we have to ask 4 ques-
tions: the root node itself and all questions in the sequence. Thus, the final
value of Qn1 is (8+3)+(4+4)+(1+3)+(4)=27.

The previous example illustrates the work done by Algorithm 6 to com-
pute Q. It basically computes and sums the number of questions asked for
each node. For this, it has to take into account the sequence of questions in
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order to decide how many questions are cumulated when a new subtree is
explored.

Algorithm 6 uses function computeSQpT, nq to compute all possible valid
sequences of questions associated to node n. Therefore, because this func-
tion returns all possible sequences for the node, then the strategy is opti-
mal. However, note that this function could be restricted to behave as other
strategies of the literature. For instance, we could adapt it to work as the
strategy Top-Down [1] if we restrict the sequences returned to those where
all elements in the sequence are children of n.

3) @n1 P sqn, pnÑ n1q P E
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Algorithm 6 Compute Qn
Input: A MET T � pN,E,Mq and a node n P N
Output: Qn

(1) psqn, Qnq � ComputeOptimalSequencepT, nq
(2) return Qn

function ComputeOptimalSequencepT, nq
begin
(1) SQn � computeSQpT, nq
(2) sqOptimal � sqn P SQn | Esq1n P SQn .

ComputeQpT, n, sqnq ¡ ComputeQpT, n, sq1nq
(3) QOptimal � ComputeQpT, n, sqOptimalq
(4) return psqOptimal,QOptimalq
end

function ComputeQpT, n, sqnq
begin
(1) questions � 0
(2) indexNode � 0
(3) accumNodes � 1
(4) while ptn1|pn Ñ n1q P E�u � tnuq
(5) node � sqnrindexNodes
(6) indexNode � indexNode � 1
(7) questions � questions � pQnode � accumNodes � wnodeq
(8) accumNodes � accumNodes � 1
(9) T � AdjustIntermediateNodespT, n, nodeq

end while
(10) questions � questions � paccumNodes � winq
(11) return questions
end

function AdjustIntermediateNodespT, n, n1q
begin
(1) O � tn2 P N | pn1 Ñ n2q P E�u
(2) N � NzO
(3) n1 � n2 | pn2 Ñ n1q P E
(4) while pn1 �� nq
(5) p_, Qn1q � ComputeOptimalSequencepT, n1q
(6) wn1 � wn1 � |O|
(7) n1 � n2 | pn2 Ñ n1q P E

end while
(8) return T
end
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Chapter 4

An Algorithmic Debugger for
JAVA

Algorithmic Debugging has the drawback that the data structure used (the
ET) can be huge with realistic programs. This is due to the fact that the
ET records all the information needed to answer the questions, and this
information includes many data structures that can appear in different points
of the execution. That is, it needs to store all the changes produced in the
value of all the variables used during the execution of the program. As it can
be guessed, if the execution is large (e.g., in the object-oriented paradigm
a lot of method invocations are performed), this information can imply the
storage of gigabytes of data. Therefore, it can be necessary to use a database
to store all this information. In addition, the performance of a debugging
session is strongly dependent on the strategy used. It selects nodes to be
asked to the user in order to direct the search of the bug. The objective
of the strategy is to reduce the number of questions that are asked to the
user. The less nodes asked, the better. Moreover, the structure of the ET is
crucial to reduce this number of questions.

In this section we introduce two new techniques that allow the debug-
ger to optimize the debugging session, solving the two drawbacks presented
above. On the one hand we introduce the Virtual Execution Tree, a tree
that represents an instant of the Execution Tree while it is being generated,
together with the arquitecture of the algorithmic debugger that allows us to
start the debugging session almost instantly using this tree. On the other
hand we also introduce the Balancing Execution Tree technique. This tech-
nique adds new nodes to the tree in such a way that the structure of the
resulting tree is improved, allowing the strategies to perform less questions
to find the buggy node.

49
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4.1 Virtual execution trees

Algorithmic Debugging is very powerful thanks to the ET, because it guar-
antees that the bug will be found whenever the programmer answers the
questions of the debugger. Unfortunately, with realistic programs, the ET
can be huge (indeed gigabytes) and this is the main drawback of this de-
bugging technique, because scalability has not been solved yet: If the ET is
stored in main memory, the debugger is out of memory with big ETs that do
not fit. If, on the other hand, it is stored in a database, debugging becomes
a slow task because some questions need to explore a big part of the ET;
and also because storing the ET in the database is a time-consuming task.

Modern declarative debuggers allow the programmer to freely explore
the ET with graphical user interfaces (GUI) that represent computations [5].
The scalability problem also translates to these features, because showing the
whole ET (or even the part of the ET that participates in a subcomputation)
is often not possible due to memory overflow reasons.

In some languages, the scalability problem is inherent to the current tech-
nology that supports the language and cannot be avoided with more accurate
implementations. For instance, in Java, current declarative debuggers (e.g.,
JavaDD [10] and DDJ [5]) are based on the Java Platform Debugger Ar-
chitecture (JPDA) [20] to generate the ET. This architecture uses the Java
Virtual Machine Tools Interface, a native interface which helps to inspect the
state and to control the execution of applications running in the Java Vir-
tual Machine (JVM). Unfortunately, the time scalability problem described
before also translates to this architecture, and hence, any debugger imple-
mented with the JPDA will suffer the scalability problems. For instance,
we conducted some experiments to measure the time needed by JPDA to
produce the ET1 of a collection of medium/large benchmarks. Results are
shown in column ET time of Table 4.1.3. Note that, in order to generate the
ET, the JVM with JPDA needs some minutes, thus the debugging session
would not be able to generate the first question until this time.

In this work we propose a new implementation model that solves the
three scalability problems, namely, memory, time and graphical visualization
of the ET. Clearly, the ET is the bottleneck of the technique, and sometimes
(e.g., in Java) it is not possible to generate it fast. Therefore, our model is
based on the following question: Is it possible to start the debugging session
before having computed the whole ET? The answer is yes.

We propose a framework in which the debugger uses the (incomplete) ET
while it is being dynamically generated. Roughly speaking, two processes
run in parallel. The first process generates the ET and stores it into both a
database (the whole ET) and main memory (a part of the ET). The other

1These times corresponds to the execution of the program, the production of the ET
and its storage in a database.
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process starts the debugging session by only using the part of the ET already
generated. Moreover, we use a three-cache memories system to speedup the
generation of questions and to guarantee that the debugger is never out of
memory (including the GUI components).

4.1.1 A new architecture for Declarative Debuggers

This section presents a new architecture in which declarative debugging is not
done in two sequential phases, but in two concurrent phases; that is, while
the ET is being generated, the debugger is able to produce questions. This
new architecture solves the scalability problems of declarative debugging. In
particular, we use a database to store the whole ET, and only a part of it is
loaded to main memory.

Moreover, in order to make the algorithms that traverse the ET inde-
pendent of the database caching problems, we use a three-tier architecture
where all the components have access to a virtual execution tree (VET).
The VET is a data structure which is identical to the ET except that some
nodes are missing (not generated yet) or incomplete (they only store a part
of the method invocation) Hence, standard strategies can traverse the VET
because the structure of the ET is kept.

The VET is produced while running the program. For each method
invocation, a new node is added to it with the method parameters and the
context before the call. The result and the context after the call are only
added to the node when the method execution finishes.

Let us explain the components of the architecture with the diagram in
Figure 4.1. Observe that each tier contains a cache that can be seen as a
view of the VET. Each cache is used for a different task:

Persistence cache. It is used to store the nodes of the VET in the database.
Therefore, when the whole VET is in the database, the persistence
cache is not used anymore. Basically, it specifies the maximum num-
ber of completed nodes that can be stored in the VET. This bound
is called persistence bound and it ensures that main memory is never
overflowed.

Logic cache. It defines a subset of the VET. This subset contains a limited
number of nodes (in the following, logic bound), and these nodes are
those with the highest probability of being asked, therefore, they should
be retrieved from the database. This allows us to load in a single
database transaction those nodes that are going to be probably asked
and thus reducing the number of accesses to the database.

Presentation cache. It contains the part of the VET that is shown to the
user in the GUI. The number of nodes in this cache should be limited
to ensure that the GUI is not out of memory or it is too slow. The
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Figure 4.1: Architecture of a scalable declarative debugger

presentation cache defines a subtree inside the logic cache. Therefore,
all the nodes in the presentation cache are also nodes of the logic cache.
Here, the subtree is defined by selecting one root node and a depth (in
the following, presentation bound).

The whole VET does not usually fit in main memory. Therefore, a mech-
anism to remove nodes from it and store them in a database is needed. When
the number of complete nodes in the VET is close to the persistence bound,
some of them are moved to the database, and only their identifiers remain
in the VET. This allows the debugger to keep the whole ET structure in
main memory and use identifiers to retrieve nodes from the database when
needed.

Example 4.1.1
Consider the following trees:
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The tree at the left is the VET of a debugging session where gray nodes
are those already completed (their associated method execution already fin-
ished); black nodes are completed nodes that are only stored in the database
(only their identifiers are stored in the VET), and white nodes are nodes
that have not been completed yet (they represent a method execution that
has not finished yet). It could be possible that some of the white nodes
had a children not generated yet. Note that this VET is associated with an
instant of the execution; and new nodes could be generated later. The tree
in the middle is the part of the VET referenced by the logic cache, in this
case it is a tree, being n the root node and a depth of four, but in general it
could contain unconnected nodes. Similarly, the tree at the right is the part
of the VET referenced by the presentation cache, with m the root node and
a depth of three. Note that the presentation cache is a subset of the logic
cache.

The behavior of the debugger is controlled by four threads that run in par-
allel, one for the presentation tier (Thread 3), two for the logic tier (threads
1 and 4) and one for the persistence tier (Thread 2). Threads 1 and 2 control
the generation of the VET and its storage in the database. They collaborate
via synchronizations and message passing. Threads 3 and 4 communicate
with the user and generate the questions. They also collaborate and are
independent of Threads 1 and 2. A description of the threads and their
behavior specified with pseudo-code follows:

Thread 1 (Contruction of the VET) This thread is in charge of con-
structing the VET. It is the only one that communicates with the
JPDA and JVM. Therefore, we could easily construct a declarative de-
bugger for another language (e.g., C++) by only replacing this thread.
Basically, this thread executes the program and for every method invo-
cation performed, it constructs a new node stored in the VET. When
the number of complete nodes (given by function completeNodes) is
close to the persistence bound, this thread sends to Thread 2 the wake
up signal. Then, Thread 2 moves some nodes to the database. If the
persistence bound is reached, Thread 1 sleeps until enough nodes have
been removed from the VET and it can continue generating new nodes.

Thread 2 (Controlling the size of the VET) This thread ensures that
the VET always fits in main memory. It controls what nodes of the
VET should be stored in main memory, and what nodes should be
stored in the database.

When the number of completed nodes in the VET is close to the per-
sistence bound Thread 1 wakes up Thread 2 that removes some2 nodes

2In our implementation, it removes half of the nodes. Our experiments reveal that this
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Algorithm 7 Contruction of the VET (Thread 1)
Input: A source program P
Output: A VET V
Initialization: V � H

repeat
(1) Run P with JPDA and catch event e

case e of
new method invocation I:

(2) create a new node N with I
(3) add N to V

method invocation I ended:
(4) complete node N associated with I
(5) If completeNodes(V) == persistenceBound/2
(6) then send to Thread 2 the wake up signal
(7) If completeNodes(V) == persistenceBound
(8) then sleep
until P finishes or the bug is found

from the VET and copies them to the database. It uses the logic cache
to decide what nodes to store in the database. Concretely, it tries to
store in the database as many nodes as possible that are not in the
logic cache. When it finishes, it sends to Thread 1 the wake up signal
and sleeps.

Algorithm 8 Controlling the size of the VET (Thread 2)
Input: A VET V
Output: An ET stored in a database

repeat
1) Sleep until wake up signal is received

repeat
2) Look into the persistence cache for the next completed node N of
the VET
3) if N is not found
4) then wake up Thread 1
5) break
6) else store N in the database
7) if N is the root node then exit

Thread 3 (Interface communication) This thread is the only one that

is a good choice because it keeps Threads 1 and 2 continuously running in a producer-
consumer manner.
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communicates with the user. It controls the information shown in the
GUI with the presentation cache. According to the user’s answers,
the strategy selected, and the presentation bound, this thread selects
the root node of the presentation cache. This task is done question
after question according to the programmer answers, ensuring that the
question asked (using function AskQuestion), its parent, and as many
descendants as the presentation bound allows, are shown in the GUI.

Algorithm 9 Interface communication (Thread 3)
Input: Answers of the user
Output: A buggy node

repeat
(1) ask Thread 4 to produce a question
(2) update presentation cache and GUI visualization
(3) answer = AskQuestion(question)
(4) send answer to Thread 4
until a buggy node is found

Thread 4 (Selecting questions) This thread chooses the next question
according to a given strategy using function SelectNextQuestion that
implements standard strategies. With the node selected, the logic
cache is updated and all the nodes in the logic cache are loaded from
the database. This is done with function UpdateLogicCache that uses
the node selected as the root, and the logic bound to compute the logic
cache. All the nodes that belong to the new logic cache and that do
not belong to the previous logic cache are loaded from the database
using function FromDatabaseToET.

Algorithm 10 Selecting questions (Thread 4)
Input: A strategy S and a VET V
Output: A buggy node

repeat
(1) question = SelectNextQuestion(V,S)
(2) missingNodes = UpdateLogicCache()
(3) If (question R V) then V = FromDatabaseToET(V,missingNodes)
(4) send question to Thread 3
(5) get answer from Thread 3
until a buggy node is found
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4.1.2 Redefining the strategies for Declarative Debugging

In Algorithm 10, a strategy is used to generate the sequence of questions by
selecting nodes in the VET. Nevertheless, all declarative debugging strate-
gies in the literature have been defined for ETs and not for VETs where
incomplete nodes can exist. All of them assume that the information of all
ET nodes is available. Clearly, this is not true in our context and thus, the
strategies would fail. For instance, the first node asked by the strategy Top-
Down and its variants is always the root node of the ET. However, this node
is the last node completed by Algorithm 9. Hence, these strategies could not
even start until the whole ET is completed, and this is exactly the problem
that we want to avoid.

Therefore, in this section we propose a redefinition of the strategies for
declarative debugging so that they can work with VETs.

A first solution could be to define a transformation from a VET with
incomplete nodes to a VET where all nodes are completed. This can be done
by inserting a new root node with the equation 1 � 0. Then, the children
of this node would be all the completed nodes whose parent is incomplete.
In this way, (i) all nodes of the produced ET would be completed and could
be asked; (ii) the parent-child relation is kept in all the subtrees of the ET;
and (iii) it is guaranteed that at least one bug (the root node) exists. If the
debugging session finishes with the root node as buggy, it means that the
node with the “real” bug (if any) has not been completed yet.

Example 4.1.2
Consider the following VETs:

In the VET at the left, gray nodes are completed, and white nodes are
incomplete. This VET can be transformed into the VET at the right where
all nodes are completed. The new artificial root is the black node which
ensures that at least one buggy node exists.

From an implementation point of view, this transformation is inefficient
and costly because the VET is being generated continuously by Thread 1,
and hence, this transformation should be done repeatedly question after
question. In contrast, a more efficient solution is to redefine the strategies
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so that they ignore incomplete nodes. For instance, Top-Down [1] only asks
for the descendants of a node that are completed and that do not have a
completed ancestor. Similarly, Binks Top-Down [2] would ask first for the
completed descendant that in turn contains more completed descendants.
D&Q [25] would ask for the node that divides the VET in two subtrees with
the same number of nodes (completed or not), and so on. We refer the
interested reader to the source code of our implementation that is publicly
available and where all strategies have been reimplemented for VETs.

Even though the architecture presented has been discussed in the context
of Java, it can work for other languages with very few changes. Observe that
the part of an algorithmic debugger that is language-dependent is the front-
end, and our technique relies on the back-end. Once the VET is generated,
the back-end can handle the VET mostly independent of the language. In
particular, the strategies can traverse the VET being unaware of the meaning
of the questions.

4.1.3 Implementation

We have implemented the technique presented in this paper and integrated
it into DDJ 2.4. The implementation has been tested with a collection of
real applications (e.g., an interpreter, a parser, a debugger, etc).

Table 4.1.3 summarizes the results of the experiments performed. These
experiments have been done in an Intel Core2 Quad 2.67 GHz with 2GB
RAM.

Benchmark var. num. ET size ET time node time cache lim. ET depth
argparser 8.812 2 MB 22 s. 407 ms. 7/7 7
cglib 216.931 200 MB 230 s. 719 ms. 11/14 18
kxml2 194.879 85 MB 1318 s. 1844 ms. 6/6 9
javassist 650.314 459 MB 556 s. 844 ms. 7/7 16
jtstcase 1.859.043 893 MB 1913 s. 1531 ms. 17/26 57
HTMLcleaner 3.575.513 2909 MB 4828 s. 609 ms. 4/4 17

Table 4.1: Benchmark results

The first column contains the names of the benchmarks. For each bench-
mark, the second and third columns give an idea of the size of the execu-
tion. Fourth and fifth columns are time measures. Finally, sixth and sev-
enth columns show memory bounds. Concretely, column variables number
shows the number of variables participating (possibly repeated) in the exe-
cution considered. Column ET size shows the size in MB of the ET when
it is completed, this measure has been taken from the size of the ET in the
database (of course, it includes compaction). Column ET time is the time
needed to finish the ET. Column node time is the time needed to complete
the first node of the ET. Column cache limit shows the presentation bound
and the depth of the logic cache of these benchmarks. After these bounds,
the computer was out of memory. Finally, column ET depth shows the depth
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of the ET after it was constructed.
Observe that a standard declarative debugger is hardly scalable to these

real programs. With the standard technique, even if the ET fits in main
memory or we use a database, the programmer must wait for a long time
until the ET is completed and the first question can be asked. In the worst
case, this time is more than one hour. Contrarily, with the new technique,
the debugger can start to ask questions before the ET is completed. Note
that the time needed to complete the first node is always less than two
seconds. Therefore, the debugging session can start almost instantaneously.

The last two columns of the table give an idea of how big is the ET
shown in the GUI before it is out of memory. In general, five levels of depth
is enough to see the question asked and the part of the computation closely
related to this question. In the experiments only HTMLcleaner was out of
memory when showing five levels of the ET in the GUI.

All the information related to the experiments, the source code of the
benchmarks, the bugs, the source code of the tool and other material can be
found at http://www.dsic.upv.es/~jsilva/DDJ.

http://www.dsic.upv.es/~jsilva/DDJ
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4.2 Balancing execution trees

The debugger explores the ET with a strategy in order to find the compu-
tation (i.e., the node) that caused the bug. The performance of all search
strategies depends on the size and the structure of the ET and this is the
reason why many efforts in the literature try to reduce the size of the ET
with strategies that prune a big part of it (e.g., [11, 29]), or with techniques
that eliminate redundant and correct nodes (e.g., tree compression [8] and
trusting [16]).

In contrast, in this work we show that reducing the size of the ET is
as important as optimizing its structure.3 We introduce a technique that
changes the structure of the ET in such a way that the search strategies
present an almost optimal behavior. The objective of the technique is to
balance the ET (i.e., to transform the ET into a binomial tree) in such a way
that search strategies prune half of the ET at every step, because they can
always find a node that divides the search area in half. Our experiments with
real programs show that the technique reduces (as an average) the number
of questions to the programmer by around 30%. Moreover, since the newly
introduced nodes try to reproduce the intended behavior of the program the
user had in mind, the difficult of the new questions is not critically increased.

Our technique presents three important advantages that make it useful
for any declarative debugger. First, it can be easily adapted to other pro-
gramming languages. We have implemented it for Java, but we have used
it with languages such as Haskell or Prolog. Second, the technique is quite
simple to implement and can be integrated into any existing declarative de-
bugger with small changes. And third, the technique is conservative. If
the questions triggered by the new nodes introduced by the technique are
difficult to answer, the user can answer “I don’t know”, and continue the
debugging session as in the standard ETs. Moreover, the user can naturally
get back to the original ET in case it is needed.

4.2.1 Collapsing and projecting nodes

Even though the strategy Heaviest First significantly improves Top-Down
search, its performance strongly depends on the structure of the ET. The
more balanced the ET is, the better. Clearly, when the ET is balanced,
Heaviest First is much more efficient because it prunes more nodes after
every question. If the ET is completely balanced, heaviest first is equivalent
to Divide and Query and both are query-optimal.

3However, it should be clear that our technique is not incompatible with any of these
works. An ET could be first compressed [8] and then balanced with our technique.
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Advantages of collapsing and projecting nodes

Our technique is based on a series of transformations that allows us to col-
lapse/project some nodes of the ET. A collapsed node is a new node that
replaces some nodes that are then removed from the ET. In contrast, a pro-
jected node is a new node that is placed as the parent of a set of nodes that
remain in the ET. This section describes the main advantages of collaps-
ing/projecting nodes in the ET:
Balancing execution trees. If we augment an ET with projected nodes, we
can strategically place the new projected nodes in such a way that the ET
becomes balanced. In this way, the debugger speeds up the debugging session
by reducing the number of asked questions.

Example 4.2.1

Figure 4.2: Balanced ET of the Example 1.1.3

Consider again the program in Figure 1.1. The portion of the ET as-
sociated with the method execution p.castling(tower,king) is shown in
Example 1.1.3. We can add projected nodes to this ET as depicted in Fig-
ure 4.2.1. Note that now the ET becomes balanced, and hence, many strate-
gies ask fewer questions. For instance, in the worst case, using the ET of
Figure 1.1.3 the debugger would ask about all the nodes before the bug is
found. This is due to the broad nature of this ET that prevents strategies
from pruning any nodes. In contrast, using the ET of Figure 4.2.1 the debug-
ger prunes almost half of the tree with every question. In this example, with
the standard ET of Example 1.1.3, D&Q produces the following debugging
session (numbers refer to the codes of the nodes in the figure):

Starting Debugging Session...
(2) YES (3) YES (4) YES (5) YES (6) YES (1) NO
Bug found in method: castling(Position t, Position k) of class Chess

In contrast, with the ET of Figure 4.2.1, D&Q produces the following
session:

Starting Debugging Session...
(2) YES (3) YES (1) NO
Bug found in method: castling(Position t, Position k) of class Chess
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Skipping repetitive questions. Declarative debuggers tend to repeat the same
(or very similar) question several times when it is associated with a method
execution that is inside a loop. In our example, this happens in for(int
i=1; i<=3; i++) {t.right();}, which is used to move the tower three po-
sitions to the right. In this case, the nodes

{t.x=8, t.y=1} t.right() {t.x=9, t.y=1}

{t.x=9, t.y=1} t.right() {t.x=10, t.y=1}

{t.x=10, t.y=1} t.right() {t.x=11, t.y=1}

could be projected to the node

{t.x=8, t.y=1} t.right(); t.right(); t.right() {t.x=11, t.y=1}

This kind of projection, where all the projecting nodes refer to the same
method, has an interesting property: If the projecting nodes are leaves, then
they can be deleted from the ET. The reason is that the new projected node
and the projecting nodes refer to the same method. Therefore, it does not
matter what computation produced the bug, because the bug will necessarily
be in this method. Hence, if the projected node is wrong, then the bug is
in the method pointed to by this node. When the children of the projected
node are removed, we call it collapsed node.

Note that, in this case, the idea is not to add nodes to the ET as in the
previous case, but to delete them. Because the input and output of all the
questions relate to the same attributes (i.e., x and y), then the user can an-
swer them all together, since they are, in fact, a sequence of operations whose
output is the input of the next question (i.e., they are chained). Therefore,
this technique allows us to treat a set of questions as a whole. This is par-
ticularly interesting because it approximates the real behavior intended by
the programmer. For instance, in this example, the intended meaning of the
loop was to move the tower three positions to the right. The intermediate
positions are not interesting for the programmer, only the initial and final
ones are meaningful for the intended meaning.

Example 4.2.2
Consider again the ET of Figure 4.2.1. Observe that, if the projected nodes
are wrong, then the bug must be in the unique method appearing in the
projected node. Thus, we could collapse the node instead of projecting it.
Hence, nodes 4, 5, 6, 7, and 8 could be removed; and thus, with only three
questions we could discover any bug in any node.

Enhancing the search of declarative debugging. One important problem of
declarative debugging strategies is that they must use a given ET without
any possibility of changing it. This often prevents declarative debuggers from
asking questions that prune a big part of the ET, or from asking questions
that concentrate on the regions with a higher probability of containing the
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Figure 4.3: Transformation of ETs

bug. The collapse of some subtrees into a single node can help to solve these
drawbacks.

The initial idea of this section was to use projected nodes to balance
the ET. This idea is very interesting in combination with D&Q, because it
can cause the debugging session to be optimal in the worst case (its query
complexity is Opb�log nq, where b is the branching factor and n is the number
of nodes in the ET). However, this idea could be further extended in order
to force the strategies to ask questions related to parts of the computations
with a higher probability of containing the bug. Concretely, we can replace
parts of the ET with a collapsed node in order to avoid questions related
to this part. If the debugging session determines that the collapsed node is
wrong, we can expand it again to continue the debugging session inside this
node. Therefore, with this idea, the original ET is transformed into a tree
of ETs that can be explored when it is required. Let us illustrate this idea
with an example.

Example 4.2.3
Consider the leftmost ET in Figure 4.3. This ET has a root that started
two subcomputations. The computation on the left performed ten method
executions, while the computation on the right performed only three. Hence,
in this ET, all the existing declarative debugging strategies would explore
first the left subtree.4 If we balance the left branch by inserting projected
nodes we get the new ET shown on the right of the previous one. This
balanced ET requires (on average) fewer questions than the previous one;
but the strategies will still explore the left branch of the root first.

Now, let us assume that the debugger identified the right branch as more
likely to be buggy (e.g., because it contains recursive calls, because it is
non-deterministic, because it contains calls with more arguments involved
or with complex data structures...). We can change the structure of the
ET in order to make declarative debugging strategies start by exploring the
desired branch. In this example we can remove from the ET the nodes that
were projected. The new ET is shown on the right of Figure 4.3. With this
ET the debugger will explore first the right branch of the root. Observe
that it is not necessary that the nodes that were projected refer to the same
method. They can be completely different and independent computations.

4Current strategies assume that all nodes have the same probability of being buggy,
therefore, heavy branches are explored first.
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However, if the debugger determines that they are probably correct, they can
be omitted to direct the search to other parts of the ET. Of course, they can
be expanded again if required by the strategy (e.g., if the debugger cannot
find the bug in the other nodes).

Reducing the size of the ET. One important problem of modern declarative
debuggers is scalability. With realistic programs, the size of the ET can be
huge (indeed gigabytes) and, thus, it does not fit in main memory. The same
scalability problem affects graphical user interfaces (GUI). Loading the whole
ET in the GUI is often too slow as to be useful, and it is often impossible
because, again, all graphical objects do not fit in the graphical memory. Our
experiments show that collapsing nodes allows us to increase the number of
ET levels shown to the user. For instance, for some programs the debugger
is only able to load 4 levels of the ET in the GUI because the next level
would produce a memory overflow. With the collapsing technique, we could
load 5 levels due to the reduction of nodes. In particular, some loops contain
hundreds of nodes that are collapsed into a single one.

Collapsing and projecting algorithms

In this section we define a technique that allows us to balance an ET while
keeping the soundness and completeness of declarative debugging. The tech-
nique is based on two basic transformations for ETs (namely collapse leaf
chain and project chain, described respectively by Algorithms 11 and 12),
and on a new data structure called an Execution Forest (EF) that is a gen-
eralization of an ET.

Definition 4.2.4 (Execution Forest) An execution forest is a tree
t � pV,Eq whose internal vertices V are method executions and whose leaves
are either method executions or execution forests.

Roughly speaking, an EF is an ET where some subtrees have been re-
placed (i.e., collapsed) by a single node. Observe that this recursive definition
of EF is more general than the definition of ET because an ET is an instance
of an EF where no collapsed nodes exist. We can now define the two basic
transformations of our technique. Both transformations are based on the
notion of chain. Informally, a chain is formed by an ordered set of sibling
method executions in which the final context produced by a method of the
chain is the initial context of the next method. Chains often represent a
set of method executions performed one after the other during an execution.
Formally,

Definition 4.2.5 (Chain) Given an EF t � pV,Eq and a set C � V of
n nodes with associated method executions E1, E2, . . . , En we say that C is a
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Algorithm 11 Collapse Leaf Chain
Input: An EF t � pV,Eq and a set of nodes C � V
Output: An EF t1 � pV 1, E1q
Preconditions: C is a chain with nodes pa1,m1, a2q, pa2,m2, a3q, . . .,
pan,mn, an�1q and E v P V . pcÑ vq P E, with c P C
begin
1) parent � u P V such that @c P C, puÑ cq P E
2) colnode � pa1,m, an�1q with m � m1;m2; . . . ;mn

3) V 1 � pV z Cq Y tcolnodeu
4) E1 � ppE z tpparent Ñ vq P E | v P Cuq Y tpparent Ñ colnodequ
end
return t1 � pV 1, E1q

Algorithm 12 Project Chain
Input: An EF t � pV,Eq and a set of nodes C � V
Output: An EF t1 � pV 1, E1q
Preconditions: C is a chain with nodes pa1,m1, a2q, pa2,m2, a3q, . . .,
pan,mn, an�1q
begin
1) parent � u P V such that @c P C, puÑ cq P E
2) projnode � pa1,m, an�1q with m � m1;m2; . . . ;mn

3) V 1 � V Y tprojnodeu
4) E1 � ppE z tpparent Ñ vq P E | v P Cuq Y tpparent Ñ projnodequ
Y tpprojnode Ñ cq | c P Cu
end
return t1 � pV 1, E1q

chain iff (i) Dv P V such that @c P C . pv Ñ cq P E, and (ii) @j, 1 ¤ j ¤ n�1,
if Ej � paj ,mj , aj�1q then Ej�1 � paj�1,mj�1, aj�2q.

The first condition ensures that all the elements in the chain are siblings.
The second one ensures that for all nodes in the chain the final context of
a node is the initial context of the next chained node. It is common to find
chains when one or more methods are executed inside a loop. As explained
in Example 4.2.2, when the chain is formed by a single method without
children that is repeated, all the nodes that form the chain can be collapsed
into a single node and the chain deleted from the EF. This collapsed node
only needs to show to the user the initial and the final context of the chain.

The other transformation for chains is based on the projection of a chain
producing a new (parent) node whose question represents the whole chain
(see Example 4.2.1). In this case, the chain remains in the EF. This trans-
formation is very fitting to balance the EF.
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The basic transformations of chains are described by Algorithms 11 and
12. Algorithm 11 is in charge of collapsing chains, which consists in creating
a new node colnode with initial context the context before applying the
first method of the chain, final context the context after applying the last
method of the chain, and with the composition of the methods in the chain
as associated method. Then, the nodes in the chain (and thus their links)
are removed from the tree and the new node is linked to the parent of the
nodes in C, thus reducing the size of the EF. Algorithm 12 is in charge of
projecting chains, and works in a similar way to the algorithm before. Given
a tree t and a chain C in the tree, it removes from t the links between each
c P C and its parent parent , and then introduces a new node projnode, built
as explained before, which is linked to each c as their new parent, and to
parent as its new child. As explained in the previous section, although this
algorithm introduces a new node it improves the performance of the strategy
by balancing the EF.

Algorithm 13 is in charge of removing the chains of leaves that can be
collapsed. It first computes in the initialization all the chains of nodes that
are leaves and are related to the same methods. Then, for each of these
chains, it applies Algorithm 11 to collapse them by removing the chain from
the tree and adding the corresponding collapsed node.

Our method for balancing EFs is implemented by Algorithm 14. This
algorithm first uses Algorithm 13 to shrink the EF (line 1); and then it
balances this shrunken EF by projecting some nodes. The objective is to
divide the tree into two parts with the same weight. Therefore, we first
compute the half of the size of the EF (lines 4 and 5). If a child of the
root is already heavier than half the size of the tree, then, the weight of
this node is not taken into account in the balancing process because the
question associated to this node will be the first question asked (lines 9-15).
Otherwise, it projects the part of a chain whose weight is as close as possible
to half the weight of the root (lines 16-24). This allows us to prune half
of the subtree when asking a question associated to a projected node. In
the case that the heavier node (lines 13-15) or the projected chain (lines
18-19) belongs to a bigger chain, it must be cut with function cutChain
producing new (smaller) chains that are also processed. Of course, the size
of the chains already processed is not taken into account when dividing the
successive (sub)chains.

The algorithm finishes when no more chains can be projected. Trivially,
because the number of chains and their length are finite, termination is
ensured. In addition, Algorithm 14 is able to balance the EF while it is
being computed. Concretely, the algorithm should be executed for each
node of the EF that is completed (i.e., the result of the method execution
is already calculated, thus all the children of this node are also completed).
Note that this means that the algorithm is applied bottom-up to the nodes of
the EF. Hence, when balancing a node, all the descendants of the node have
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been already balanced. This also means that modern debuggers that are able
to debug programs with uncompleted ETs [12] can also use the technique,
because the ET can be balanced while it is being computed.

We showed in the previous section that collapsing nodes can be very use-
ful. However, collapsing nodes is not always a good idea, because they may
introduce difficult questions that delay the debugging session. After several
experiments, we found a situation where collapsing nodes often produces
good results; this situation happens when the collapsed nodes form a chain.
Therefore, the algorithm only projects and collapses nodes that belong to a
chain.5 When the chain is composed by a single function and all the nodes
of the chain are leaves, the whole chain can be replaced by a single collapsed
node. All the collapsed nodes are computed first, and then the projected
nodes are calculated. If the chain is very long, it can be cut in several sub-
chains to be projected and thus balance the EF. In order to cut chains we
use the function cutChain(chain tc1, ..., cnu, int i, j), that removes from the
chain a subchain delimited by indexes i and j.

Another conclusion of our experiments is that all these transformations
must be done only when the questions about the produced collapsed or
projected nodes are not very hard to answer. A good measure to achieve
this is counting the number of changes in the state produced by the chain.
In our implementation, we took as a design decision that no collapsed nor
projected node contains more than five changes in the state. In particular,
we only collapse/project chains where the number of different attributes
changed is not higher than five. Note that, in object-oriented languages,
attributes can be objects. Therefore, in our implementation, any change in
the state of the object-valued attribute is taken into account as a change
in the chain. Of course, if we drop the 5-changes restriction, the balancing
process would be much more accurate producing very efficient ETs but after
intensive testing with the tool we preferred to produce more conservative
balanced ETs with less projections but ensuring that questions associated
to projections are easy to answer. In any case, the last release of the tool
allows us to change (or even remove) this parameter.

4.2.2 Correctness

Our technique for balancing EFs is based on the transformations presented
in the previous section. We show first that the execution tree is complete
(an ET with a wrong root contains a buggy node) and sound (a buggy node
is associated with a buggy method).

5Note that, since these chains are usually found when a loop or a recursive call is used,
our approach generates nodes whose questions are very close to the intended meaning
the programmer had in mind while developing the program and thus, although the new
questions comprise a bigger context, they may be even easier to answer than the “atomic”
ones.
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Algorithm 13 Shrink EF
Input: An EF t � pV,Eq
Output: An EF t1 � pV 1, E1q
Preconditions: Given a node v, v.method is the name of the method.
Initialization: t1 � t, set S contains all the chains of t s.t.
@s � tc1, . . . , cnu P S, @x, 1 ¤ x ¤ n� 1, cx.method �� cx�1.method , ^
E v P V . pcÑ vq P E, with c P s
begin
1) while pS � Hq
2) take a chain s P S
3) S � Sztsu
4) t1 � collapseChainpt1, sq
end while

end
return t1

Theorem 4.2.6 (Completeness and soundness of EFs) Given
an EF with a wrong root, it contains a buggy node which is associated with
a buggy method.

Completeness and soundness are kept after our transformations. We
prove that an EF with a buggy node will still have a buggy node after any
number of collapses or projections.

Theorem 4.2.7 (Chain Collapse Correctness) Let t � pV,Eq
and t1 � pV 1, E1q be two EFs, being the root of t wrong, and let C � V be
a chain such that all nodes in the chain are leaves and they have the same
associated method. Given t1 � collapseChain(t,C),

1. t1 contains a buggy node.

2. Every buggy node in t1 is associated with a buggy method.

Theorem 4.2.8 (Chain Projection Correctness) Let t � pV,Eq
and t1 � pV 1, E1q be two EFs, and let C � V be a chain such that t1 �
projectChain(t,C).

1. All buggy nodes in t are also buggy nodes in t1.

2. Every buggy node in t1 is associated with a buggy method.

We provide in this section an interesting result related to the projection
of chains. This result is related to the incompleteness of the technique when
it is used intra-session (i.e., in a single debugging session trying to find one
particular bug). Concretely, the following result does not hold: A buggy node
can be found in an EF if and only if it can be found in its balanced version.
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Algorithm 14 Shrink & Balance EF
Input: An EF t � pV,Eq whose root is root P V
Output: An EF t1 � pV 1, E1q
Preconditions: Given a node v, v.weight is the size of the subtree of v.
begin
1) t1 � shrinkptq
2) children � tv P V 1 | proot Ñ vq P E1u
3) S � ts | s is a chain in childrenu
4) rootweight � root .weight
5) weight � rootweight{2
6) while pS � Hq
7) child � c P children | Ec1 P children, c � c1 ^ c1.weight ¡ c.weight
8) distance � |weight � child .weight |
9) if pchild .weight ¥ weight or Es, i, j s.t. s � tc1, . . . , cnu P S ^

p|W � weight |   distanceq with W �
°j
x�i cx.weight)

10) then children � childrenztchildu
11) rootweight � rootweight � child .weight
12) weight � rootweight{2
13) if pDs P S such that s � tc1, . . . , cnu and child � ci, 1 ¤ i ¤ nq
14) then psini , send q � cutChainps, i, iq
15) S � pSztsuq Y sini Y send

end if
else

16) find an s, i, j such that s � tc1, . . . , cnu P S and
°j
x�i cx.weight is

as close as possible to weight
17) s1 � tci, . . . , cju
18) psini , send q � cutChainps, i, jq
19) S � pSztsuq Y sini Y send
20) t1 � projectChainpt1, s1q
21) for each c P s1

22) rootweight � rootweight � c.weight
end for each

23) children � pchildrenzs1q
24) weight � rootweight{2

end if
end while

end
return t1 � pV 1, E1q

In general, our technique ensures that all the bugs that caused the wrong
behavior of the root node (i.e., the wrong final state of the whole program)
can be found in the balanced EF. This means that all the buggy nodes that
are responsible of the wrong behavior are present in the balanced EF.
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Figure 4.4: New buggy nodes revealed

However, declarative debugging can find bugs by a fluke. Those nodes
that are buggy nodes in the EF but did not cause the wrong behavior of the
root node can be undetectable with some strategies in the balanced version of
the EF. The opposite is also true: It is possible to find bugs in the balanced
EF that were undetectable in the original EF:

Example 4.2.9
Consider the EFs in Figure 4.4. The EF on the right is the same as the
one on the left but a new projected node has been added. If we assume the
following intended semantics, then grey nodes are wrong and white nodes
are right:
x � 1 fpq x � 2 x � 4 hpq x � 4 x � 3 hpq x � 3 x � 4 gpq x � 4 x � 1 gpq x � 4

Note that in the EF on the left, only nodes 2 and 3 are buggy. Therefore,
all the strategies will report these nodes as buggy, but never node 1. However,
node 1 contains a bug but it is undetectable by the debugger until nodes 2
and 3 have been corrected. Nevertheless, observe that nodes 2 and 3 did not
produce the wrong behavior of node 1. They simply produced two errors
that, in combination, produced by a fluke a global correct behavior.

Now, observe in the EF on the right that node 1 is buggy and thus de-
tectable by the strategies. In contrast, nodes 2 and 3 are now undetectable
by Top-Down search (they could be detected by D&Q). Thanks to the bal-
ancing process, it has been made explicit that three different bugs are in the
EF.

4.2.3 Implementation

We have implemented the technique presented in this paper and integrated
it into the debugger Declarative Debugger for Java DDJ 2.4 [13]. The im-
plementation allows the programmer to activate the transformations of the
technique and to parameterize them in order to adjust the size of the pro-
jected/collapsed chains. It has been tested with a collection of small to large
programs including real applications (e.g., an interpreter, a compiler, an
XSLT processor, etc.) producing good results, as summarized in Table 4.2.

Each benchmark has been evaluated assuming that the bug could be in
any node. This means that each row of the table is the average of a number of
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Benchmark ET nodes Proj./Col. Proj./Col. nodes Bal. Time Quest. Q. Bal. %

NumReader 12 nodes 0/0 0/0 nodes 0 ms. 6,46 6,46 0,00%
Orderings 72 nodes 2/14 5/45 nodes 0 ms. 11,47 8,89 22,46%
Factoricer 62 nodes 7/0 17/0 nodes 0 ms. 13,89 7,90 43,09%
Sedgewick 41 nodes 3/8 7/24 nodes 0 ms. 18,79 7,52 59,95%
Clasifier 30 nodes 4/7 10/20 nodes 0 ms. 15,52 6,48 58,21%
LegendGame 93 nodes 12/20 28/40 nodes 0 ms. 16,00 9,70 39,36%
Cues 19 nodes 3/1 8/2 nodes 0 ms. 10,40 8,20 21,15%
Romanic 123 nodes 20/0 40/0 nodes 0 ms. 25,06 16,63 33,66%
FibRecursive 6724 nodes 19/1290 70/2593 nodes 344 ms. 38,29 21,47 43,92%
Risk 70 nodes 7/8 19/43 nodes 0 ms. 30,69 10,28 66,50%
FactTrans 198 nodes 5/0 12/0 nodes 0 ms. 18,96 14,25 24,88%
RndQuicksort 88 nodes 3/3 9/0 nodes 0 ms. 12,88 10,40 19,20%
BinaryArrays 132 nodes 7/0 18/0 nodes 0 ms. 15,56 10,58 32,03%
FibFactAna 380 nodes 3/29 9/58 nodes 0 ms. 30,13 29,15 3,27%
NewtonPol 46 nodes 1/3 2/40 nodes 0 ms. 23,09 4,77 79,35%
RegresionTest 18 nodes 1/0 3/0 nodes 0 ms. 6,84 6,26 8,46%
BoubleFibArrays 214 nodes 0/40 0/83 nodes 0 ms. 12,42 12,01 3,33%
ComplexNumbers 68 nodes 17/9 37/18 nodes 16 ms. 20,62 10,20 50,53%
StatsMeanFib 104 nodes 3/20 6/56 nodes 0 ms. 12,33 11,00 10,81%
Integral 25 nodes 0/2 0/22 nodes 0 ms. 8,38 3,38 59,63%
TestMath 51 nodes 1/2 2/5 nodes 0 ms. 12,77 11,65 8,73%
TestMath2 267 nodes 7/13 16/52 nodes 31 ms. 66,47 58,33 12,24%
Figures 116 nodes 8/3 16/6 nodes 0 ms. 13,78 12,17 11,66%
FactCalc 105 nodes 3/11 8/32 nodes 0 ms. 19,81 12,64 36,19%
SpaceLimits 127 nodes 38/0 76/0 nodes 0 ms. 40,85 29,16 28,61%
Argparser 129 nodes 31/9 70/37 nodes 16 ms. 20,78 12,71 38,85%
Cglib 1216 nodes 67/39 166/84 nodes 620 ms. 80,41 65,01 19,15%
Javassist 1357 nodes 10/8 28/24 nodes 4.745 ms. 79,52 77,50 2,54%
Kxml2 1172 nodes 260/21 695/42 nodes 452 ms. 79,61 28,21 64,56%
HTMLcleaner 6047 nodes 394/90 1001/223 nodes 8.266 ms. 169.49 138,85 18,08%
Jtestcase 4151 nodes 299/27 776/54 nodes 1.328 ms. 85,05 80,52 5,32%

Table 4.2: Benchmark results

experiments. For instance, cglib was tested 1.216 times (i.e., the experiment
was repeated choosing a different node as buggy, and all nodes were tried).
For each benchmark, column ET nodes shows the size of the ET evaluated;
column Proj./Col. shows the number of projected/collapsed nodes inserted
into the EF; column Proj./Col. nodes shows the number of nodes that were
projected and collapsed by the debugger; column Bal. time shows the time
needed by the debugger to balance the whole EF; column Quest. shows the
average number of questions done by the debugger before finding the bug
in the original ET; column Q. Bal. shows the average number of questions
done by the debugger before finding the bug in the balanced ET; finally,
column (%) shows the improvement achieved with the balancing technique.
Clearly, the balancing technique has an important impact in the reduction
of questions with a mean reduction of 30% using Top-Down.

Essentially, our debugger produces the EF and transforms it by collaps-
ing and projecting nodes by using Algorithm 14. Finally, it is explored with
standard strategies starting the debugging session at any node selected by
the user. If we observe again Algorithms 11, 12, and 13, a moment of thought
should convince the reader that their cost is linear with the branching fac-
tor of the EF. In contrast, the cost of Algorithm 14 is quadratic with the
branching factor of the EF. On the practical side, our experiments reveal
that the average cost of a single collapse (considering the 1.675 collapses) is
0,77 msec, and the average cost of a single projection (considering the 1.235
projections) is 17,32 msec. Finally, the average cost for balancing an EF is
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2.818,25 msec.
Our algorithm is very conservative because it only collapses or projects

nodes that belong to a chain. Our initial experiments showed that if we do
not apply any restriction in the use of chains or in the size of them, the
results produce EFs that are much more balanced. These results (consider-
ing all 23.257 experiments) produced a query reduction of 42%. However,
this reduction comes with a cost: the complexity of the questions may be
increased. Therefore, we only apply the transformations when the question
produced is not complicated (i.e., using chains of at most five changes, see
Section 4.2.1). This has produced good results, but sometimes the question
of a collapsed/projected node can be still hard to answer. Even in this case,
our implementation ensures that if the programmer is able to find the bug
with the standard ET, she will also be able with the balanced EF. That is,
the introduction of projected nodes cannot cause the debugging session to
stop, because our debugger allows the programmer to answer “I don’t know”,
skipping the current question and continuing the debugging process with the
other questions (e.g., with the children).

4.2.4 Related work

Besides our approach, there exist other transformations devoted to reduc-
ing the size of the ET, and thus the number of questions performed. Our
implementation allows us to balance an already generated ET, or it allows
us to automatically generate the balanced ET. This can be done by collaps-
ing or projecting nodes during their generation. However, conceptually, our
technique is a post-ET generation transformation.

The most similar approach is the Tree Compression technique introduced
by Dave and Chitil [8]. This approach is also a conservative approach that
transforms an ET into an equivalent (smaller) ET where the same bugs can
be detected. The objective of this technique is essentially different: it tries
to reduce the size of the ET by removing redundant nodes, and it is only
applicable to recursive calls.

Another approach which is related to ours was presented in [22], where
a transformation for list comprehensions of functional programs was intro-
duced. In this case, it is a source code (rather than an ET) transformation
to translate list comprehensions into equivalent functions that implement
the iteration. The ET produced can be further transformed to remove the
internal nodes of the ET reducing the size of the final ET as in the tree
compression technique. Both techniques are orthogonal to the balancing of
the ET, thus they both can be applied before balancing.
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4.2.5 Proofs of technical results

We present here the proofs of the results of the Balancing technique.
Lemma 1.2.6 (Buggy method). Given an ET t � pV,Eq, and a buggy
node v P V in t with v � pb,m, aq, then m contains a bug.

Proof. Because v is buggy, then the method execution pb,m, aq is wrong,
thus either pb,m, aq R I or I �|ù pb,m, aq. Moreover, by Definition 1.2.3, we
have a child of v for each call to a method done from the definition of m.
But we know by Definition 1.2.5 that for all child v1 of v, v1 P I or I |ù v1

Hence, m must contain a bug.

Proposition 1 Let t be a EF with a wrong root. Then t contains a buggy
node.

Proof. We prove the claim by induction on the size of t. (Base case) t
only contains one node b. Then b is buggy, because it is wrong and it has no
children. (Induction hypothesis) t contains i nodes and at least one of them
is buggy. (Inductive case) t contains i� 1 nodes. In this case we have a tree
of i nodes that, by the induction hypothesis, does contain a buggy node b
plus one extra node n. If n is not the child of b, then b is buggy. If n is the
child of b, then either n is correct, and thus b is buggy; or n is wrong and
hence, it is buggy because it has no children.

The following lemma ensures that the transformations for collapsing and
projecting nodes are sound.

Lemma 4.2.10 (Soundness of projections and collapses) Let
v � pb,m1; . . . ;mn, aq be a collapsed or projected node in an EF t. If v is
buggy, then it contains a buggy method.

Proof. We have two possibilities: (1) v is a collapsed node. In this case v
has not children, and because v is wrong, pb,m1; . . . ;mn, aq R I; therefore,
trivially, at least one method mi, 1 ¤ i ¤ n, is buggy. (2) v is a projected
node. This case is impossible because a projected node cannot be buggy.
The reason is that if all the children of v are correct, then v is correct by
Definition 1.2.4 using the inference rule Tr. Otherwise, at least one child is
wrong, but then, v cannot be buggy by Definition 1.2.5.

Theorem 4.2.6 (Completeness and soundness of EFs). Given an EF
with a wrong root, it contains a buggy node which is associated with a buggy
method.

Proof. The first point is proved by Proposition 1, while the second one is
proved by Lemmas 1.2.6 and 4.2.10.
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Theorem 4.2.7 (Chain Collapse Correctness). Let t � pV,Eq and
t1 � pV 1, E1q be two EFs, being the root of t wrong, and let C � V be a chain
such that all nodes in the chain are leaves and they have the same associated
method. Given t1 � collapseChainpt, Cq,

1. t1 contains a buggy node.

2. Every buggy node in t1 is associated with a buggy method.

Proof. For the first item, only leaf nodes can be collapsed, therefore, the
root node could only be collapsed if it is the only node of t. However, even
in this case we have that Ev P V such that pv Ñ rq P E being r the root of t.
Therefore, according to Definition 4.2.5, r is not a chain and thus it cannot
be collapsed. Hence, the root of t1 is the same as the root of t, and thus t1

contains a buggy node by Proposition 1.
Now, we prove that any buggy node of t1 is associated with a buggy

method. Let v P V be the parent node of the chain C, and let w P V 1 be the
collapsed node of C. We consider three cases:

• u P V 1, v � u � w is buggy. In this case the collapse does not influence
the buggy node u and thus the claim follows by Lemma 1.2.6.

• v is buggy in t1. This case is trivial, because v is wrong and w is correct
by Definition 1.2.5. Therefore, the new node w can be inferred with the
rule Tr and thus the method in v is wrong according to Lemma 1.2.6.

This case is particularly interesting because it reveals a phenomenon:
node v is not changed by the transformation and thus it belongs to both
trees t and t1. However, it could be possible that v is not buggy in t but
it is buggy in t1. This happens because w has somehow hidden some
error in the chain—some wrong intermediate result that was visible in
the chain is now hidden because only the initial and final contexts are
shown—, revealing a new bug located in v.

• w is buggy in t1. Then, either the result or the final context of w are
wrong. Hence, since both the result and the final context are produced
by the nodes in C, we know that at least one node c P C is also
wrong. Because c is a leaf and it is wrong, then it is a buggy node
in t and it is associated with a buggy method m by Lemma 1.2.6.
According to Algorithm 11 w is associated with a method execution
pb,m0 . . .m . . .mn, aq, and thus it is associated with a buggy method.

The proof for projections is more general because it does not require the
root of the EF to be buggy, and because it proves that all buggy nodes re-
main after the projection.
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Theorem 4.2.8 (Chain Projection Correctness). Let t � pV,Eq
and t1 � pV 1, E1q be two EFs, and let C � V be a chain such that t1 �
projectChain(t,C).

1. All buggy nodes in t are also buggy nodes in t1.

2. Every buggy node in t1 is associated with a buggy method.

Proof. Let v P V be the parent node of the chain C, and let w P V 1 be
the projected node of C. We consider an arbitrary buggy node u P V and
show that it is also buggy in t1. Five cases are possible:

• u is the root of t. It is easy to see that t1 has the same root as t, since
the node added by projectChain requires a parent node in the tree
(i.e., the root cannot be projected). Thus, if the root of t is buggy,
then the root of t1 is also buggy.

• u � v, u � w and u � c P C. In this case the projection does not
influence the buggy node u nor its children and thus u is also buggy in
t1.

• u � v. This means that u is the parent of the chain C. If it is buggy,
then by Definition 1.2.5 all nodes in C are correct. Then, as shown in
the proof of Lemma 4.2.10, w is correct. Hence, u is also buggy in t1.

In the general case, v will be buggy in t, and also in t1 (@c P C, c will be
correct; and thus w is also correct). However, it could be possible that
v is correct in t, two nodes c1, c2 P C were wrong, and their combined
(wrong) effects produced a correct result. In that case, both errors
would be hidden in the projection node (but of course they would
remain in c1 and c2). As a result, a new buggy node (v) not present in
t would appear in t1.

• u � c P C. This means that c is wrong and all its children correct.
Since the children of c have not been modified by projectChain, c was
buggy in t and it is also buggy in t1.

In all cases, the buggy node is associated with a buggy method by Lem-
mas 1.2.6 and 4.2.10.
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Conclusions

Declarative debugging is a powerful debugging technique that has been
adapted to practically all programming languages. During three decades,
Divide & Query has been the more efficient algorithmic debugging strategy.
On the practical side, all current algorithmic debuggers implement D&Q
[3, 5, 8, 12, 17, 18, 21, 22, 24], and experiments [4, 28] (see also http:
//users.dsic.upv.es/~jsilva/DDJ/#Experiments) demonstrate that it
performs on average 2-36% less questions than other strategies. On the the-
oretical side, because D&Q intends a dichotomic search, it has been thought
optimal with respect to the number of questions performed, and thus re-
search on algorithmic debugging strategies has focused on other aspects such
as reducing the complexity of questions.

In this work we show that in some situations current algorithms for D&Q
are incomplete and inefficient because they are not able to find all optimal
nodes, and sometimes they return nodes that are not optimal. We have
identified the sources of inefficiency and provided examples that show both
the incompleteness and incorrectness of the technique.

An important contribution of this work is a new algorithm for D&Q that
is optimal in all cases; including a generalization of the technique where all
nodes of the ET can have different individual weights in R� Y t0u. The
algorithm has been proved terminating and correct. And a slightly modified
version of the algorithm has been provided that returns all optimal solutions,
thus being complete. We have implemented the technique and experiments
show that it is more efficient than all previous algorithms (see column D&QO
in Figure 2).

Other important contributions are the proof that D&Q is not optimal in
the worst case as supposed, and the definition of the first optimal strategy
for algorithmic debugging.

In addition to providing two new strategies that reduce the number of
questions performed by the debugger, we have shown a new arquitecture
that allows the programmer to strart the debugging session almost instantly.
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As we have mentioned a main problem of the technique is its low level of
scalability both in time and memory. With realistic programs the huge size
of the internal data structures handled makes the debugging session imprac-
tical and too slow to be productive. We have proposed the use of VETs as a
suitable solution to these problems. This data structure has two important
advantages: It is prepared to be partially stored in main memory, and com-
pletely stored in secondary memory. This ensures that it will always fit in
main memory and thus solves the memory scalability problem. In addition,
it can be used during a debugging session before it is completed. For this,
we have implemented a version of standard declarative debugging strate-
gies able to work with VETs. This solves the time scalability problem as
demonstrated by our experiments. In our implementation, the programmer
can control how much memory is used by the GUI components, and by the
strategies thanks to the use of three cache memories. The most important
result is that experiments confirm that, even with large programs and long
running computations, a debugging session can start to ask questions after
only few seconds.

Another contribution of this work is a new technique that allows us to
automatically balance standard ETs. This results in fewer questions made
by the debugger regardless of the strategy used. This technique has been
implemented, and experiments with real applications confirm that it has
a positive impact on the performance of declarative debugging. From a
theoretical point of view, two important results have been proved. The
projection and the collapse of nodes do not prevent finding bugs, and the
bugs found after the transformations are always real bugs.

We refer all readers interested in the implementation to the webpage of
the DDJ project: http://users.dsic.upv.es/~jsilva/DDJ. In this page
the reader can see both the source code and the experiments of all the tech-
niques showed during this work.

http://users.dsic.upv.es/~jsilva/DDJ
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Future work

• Divide by Queries: In this work we have described the principles
that an optimal strategy must follow, and we have introduced an ini-
tial version of one of them. This strategy has the property of being
compositional. That is, it can be computed during the generation of
the ET. However, the excesive amount of time and memory needed
with this approach has not been solved yet. The problem is caused
by the high number of possible sequences of questions. Then, a main
future objective is to reduce the amount of these possible sequences.

• Loop Expansion: During the execution of a program a lot of loops
can be executed. When an iterative loop (e.g., in the imperative
paradigm) is executed, an extremely broad tree is generated. These
kinds of trees are more difficult to debug due to their width. In con-
trast, recursive loops generate deep trees that are easier to debug. If
we transform these loops into recursive calls we would obtain trees that
are better structured and, thus, they can be easily explored to find the
buggy node.

• Execution Tree Interface: The debugger presented in this work is
a declarative debugger for Java. Consequently, the ET is composed of
nodes that contain the information related to the execution of methods.
This information is stored in such a way that when it is shown to the
user, she is not aware of the programming language used. The debugger
can be adapted to another language by only changing the front-end.
Thus, a different front-end is necessary for each language. Another
possibility is to create an Execution Tree Interface that contains, in
plain text, all the information stored in the nodes. Thus, if another
debugger transforms its ET in this interface we could debug other
languages without the need of creating a front-end for each language
we want to debug.

• Aproximating nodes weight: A weight is usually associated to a

77



78 CHAPTER 6. FUTURE WORK

node by a strategy. Tipically, this weight represents the amount of de-
scendant nodes, but regardless of their size or their complexity. More-
over, each node is related to the execution of a method, maybe with
the same arguments or not. Therefore other strategies assign the same
individual weight to all the nodes related to the same method, without
having into account that the amount of code executed by each node
is different in each case. In order to accurate these weights, it would
be interesesting to calculate the percentage of code executed by each
node with respect to the number of lines of the method.

• Eclipse plugin: DDJ (the declarative debugger designed during this
work) inputs the Java classes and the arguments of the main method.
Then, DDJ executes all the program and generates the ET that repre-
sents all the computations made during the execution. Next, the user
answers the questions generated by the debugger, and the debugger
considers all the nodes produced during the execution of the program.
Normally, a programmer is not interested in debugging all the pro-
gram, but only the execution of a method and its descendants. We
would like to adapt DDJ to an Eclipse plugin in such a way that it will
allow the user to select a method and debug only the subtree related
to the execution of this method. Of course, if the user is interested
in debugging all the program, she only has to select the main method
and the ET is generated as usual.
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