
 1

	

	

	

	

	

	

Integration	 of	 Quality	 Attributes	 in	
Software	Product	Line	Development.	

	

	

	

	

	

Tesis	de	Máster	en	Ingeniería	del	Software,	

Métodos	Formales	y	Sistemas	de	Información	

(MISMFSI)	

	

Grupo	de	Ingeniería	del	Software	y	Sistemas	de	Información	(ISSI)	

Departamento	de	Sistemas	Informáticos	y	Computación	(DSIC)	

Universidad	Politécnica	de	Valencia	(UPV)	

	

Septiembre	2011	

	

	

	

	

Javier	González	Huerta	

	

Directores:	

	Dr.	Silvia	Mara	Abrahão	Gonzales	

Dr	Emilio	Insfran	Pelozo	

 2

	

	

	

	

	

	

	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Trabajo Final de Máster presentado para cumplir con los requisitos
finales para la obtención del título de Máster en Ingeniería del Software,
Métodos Formales y Sistemas de Información, de la Universidad
Politécnica de Valencia, 2011.

 II

	

	

	

	

	

	

	

	

	

Agradecimientos.	

A	Silvia	y	Emilio	por	su	esfuerzo,	por	su	constancia	por	su	apoyo	y	por	estar	
ahí	siempre	que	les	necesito.	

A	Michel	por	su	acogida,	sus	consejos,	su	actitud	crítica,	sus	ánimos,	por	
estar	siempre	dispuesto	y	sobre	todo	por	haberme	enseñado	a	ver	las	cosas	de	

otro	modo.		

A	Rosa	por	sus	comprensión,	por	su	paciencia,	por	sus	ánimos,	por	apoyarme	
siempre	en	los	buenos	y	no	tan	buenos	momentos	y	por	ayudarme	en	la	ausencia.	

A	Isidro	por	sus	siempre	sabios	consejos	y	críticas.	

A	Adri,	Sonia,	Alex,	Juan	Antonio,	Abel	y	David,	por	su	ayuda,	por	estar	
siempre	ahí,	por	ser	tan	magníficos	compañeros.	

A	Werner,	Hafeez,	Bilal,	Dave,	Christoph,	Luuk,	y	todo	el	equipo	del	LIACS	por	
haberme	hecho	sentir	uno	más..	

A	Ramin	por	su	paciencia	y	sus	consejos	que	han	dado	como	fruto	parte	de	
este	trabajo.	

 i

	 	

 ii

Resumen	

En	 los	 últimos	 años	 se	 han	 propuesto	 diferentes	 aproximaciones	 para	 el	
desarrollo	 de	 sistemas	 complejos.	 Algunos	 esfuerzos	 intentan	 aplicar	 la	
aproximación	de	 Líneas	 de	Producto	 Software	 tratando	 de	 sacar	 partido	 de	 la	
reutilización	masiva	para	producir	sistemas	software	que	comparten	un	conjunto	
común	de	características.	En	general,	el	aseguramiento	de	la	calidad	del	producto	
es	una	actividad	crucial	para	el	éxito	de	la	industria	del	software,	pero	es,	si	cabe,	
más	 importante	 cuando	 se	 trata	del	desarrollo	de	 líneas	de	producto	 software,	
dado	que	 la	 reutilización	masiva	de	activos	 software	hace	que	 los	atributos	de	
calidad	(propiedades	físicas	o	abstractas	de	un	artefacto	software)	de	los	activos	
software	impacten	en	la	calidad	de	todos	los	productos	de	una	línea	de	producto.	

Sin	 embargo,	 a	 pesar	 de	 la	 importancia	 que	 la	 calidad	 tiene	 en	 el	
desarrollo	 de	 líneas	 de	 producto	 de	 software,	 la	mayoría	 de	 las	metodologías	
aplicadas	en	su	desarrollo	se	centran	únicamente	en	la	gestión	de	la	variabilidad	
en	líneas	de	producto,	sin	dar	soporte	a	los	requerimientos	no	funcionales	que	el	
producto	debe	 cumplir.	El	principal	objetivo	de	este	 trabajo	 fin	de	master	es	 la	
introducción	 de	 atributos	 de	 calidad	 en	 fases	 tempranas	 de	 los	 procesos	 de	
desarrollo	 de	 líneas	 de	 producto	 software,	mediante	 la	 definición	 de	 un	multi‐
modelo	que	represente	las	distintas	vistas	de	un	sistema	software	(funcionalidad,	
variabilidad	y	calidad)	e	integre	la	calidad	como	una	vista	más	del	sistema	para	
describir	la	extensión	de	la	línea	de	producto	software	y	de	un	plan	de	producción	
que	 introduzca	 los	atributos	de	calidad	como	un	 factor	de	decisión	a	 la	hora	de	
seleccionar	entre	distintas	alternativas	de	diseño.	

Nuestra	propuesta	ha	sido	definida	siguiendo	el	paradigma	de	Desarrollo	
Dirigido	por	Modelos.	Por	lo	tanto,	todos	los	artefactos	definidos	cuentan	con	sus	
correspondientes	 metamodelos	 y	 todos	 los	 procesos	 descritos	 se	 apoyan	 en	
transformaciones	 de	 modelos.	 Por	 ultimo,	 para	 ilustrar	 la	 factibilidad	 de	 la	
propuesta,	 hemos	 integrado	 la	 vista	 de	 calidad	 en	 un	 ejemplo	 de	 línea	 de	
productos	 en	 el	 contexto	 de	 los	 sistemas	 de	 seguridad	 critica	 en	 el	 dominio	
automovilístico.		

	

	 	

 iii

Resum	

Als	últims	anys	 s’han	proposat	diferents	aproximacions	per	al	desenvolupament	
de	 sistemes	 complexos.	Alguns	 esforços	 han	 intentat	 aplicar	 la	 aproximació	 de	
Línies	 de	 Producte	 de	 Programari	 tractant	 de	 treure	 partit	 de	 la	 reutilització	
massiva	per	a	produir	sistemes	de	programari	que	comparteixen	un	conjunt	comú	
de	característiques.	En	general,	l’assegurament	de	la	qualitat	de	producte	es	una	
activitat	crucial	per	a	l’èxit	de	la	industria	de	la	programaria,	però	es	encara	mes	
important	 quan	 es	 tracta	 del	 desenvolupament	 de	 línies	 de	 producte	 de	
programari,	atès	que	la	reutilització	massiva	d’actius,	el	que	fa	que	els	atributs	de	
qualitat	 (propietats	 físiques	o	abstractes	d’una	artefacte	de	programari	que	 es	
poden	mesurar)	dels	actius	 impacten	 en	 la	 qualitat	de	 tots	 els	productes	de	 la	
línia	de	producte.	

No	 obstant,	 a	 pesar	 de	 la	 importància	 que	 la	 qualitat	 te	 en	 el	
desenvolupament	 de	 les	 línies	 de	 producte	 de	 programari,	 la	 majoria	 de	 les	
metodologies	 aplicades	 en	 el	 seu	 desenvolupament	 es	 centren	 únicament	 en	 la	
gestió	 de	 la	 variabilitat	 en	 la	 línia	 de	 productes,	 sense	 donar	 suport	 als	
requeriments	no	funcionals	que	el	producte	te	que	acomplir.	El	principal	objectiu	
d’aquest	treball	fi	de	màster	es	la	introducció	de	la	vista	dels	atributs	de	qualitat	
des	 de	 les	 primeres	 fases	 del	 desenvolupament	 de	 línies	 de	 producte	 de	
programari,	mitjançant	la	definició	d’un	multi‐model	que	representi	 les	distintes	
vistes	 d’un	 sistema	 de	 programari	 (funcionalitat,	 variabilitat	 i	 qualitat)	 i	 que	
integri	la	qualitat	de	la	línia	de	productes	de	programari	i	d'un	pla	de	producció	
que	 introdueixi	 els	 atributes	 de	 qualitat	 com	 un	 factor	 de	 decisió	 a	 l’hora	 de	
seleccionar	entre	les	distintes	alternatives	de	disseny.	

La	 nostra	 proposta	 ha	 estat	 definida	 seguint	 el	 paradigma	 de	
desenvolupament	dirigit	per	models.	Per	 la	qual	cosa,	tots	els	artefactes	definits	
compten	 amb	 el	 seu	 corresponent	 metamodel	 y	 tots	 els	 processos	 descrits	 es	
recolzen	en	transformacions	de	models.	Per	últim,	per	tal	d’il·lustrar	la	factibilitat	
de	 la	 proposta,	 hem	 integrat	 la	 vista	 de	 qualitat	 en	 un	 eixample	 de	 línia	 de	
productes	 en	 el	 context	 dels	 sistemes	 de	 seguretat	 critica	 en	 el	 domini	
automobilístic.	

	 	

 iv

Abstract	

Different	approaches	for	building	modern	software	systems	in	complex	and	open	
environments	have	been	proposed	in	the	last	few	years.	Some	efforts	try	to	apply	
Software	Product	Line	(SPL)	approach	to	take	advantage	of	the	massive	reuse	for	
producing	 software	 systems	 that	 share	 a	 common	 set	 of	 features.	 In	 general	
quality	assurance	 is	a	 crucial	activity	 for	 success	 in	 software	 industry,	but	 it	 is	
even	 more	 important	 when	 talking	 about	 Software	 Product	 Lines	 since	 the	
massive	 reuse	of	assets	makes	 the	quality	attributes	 (a	measurable	physical	or	
abstract	property	of	an	software	artifact)	of	the	assets	impact	over	the	quality	of	
the	whole	set	of	products	within	the	product	line.	

However,	despite	the	importance	that	quality	has	in	software	product	line	
development,	most	of	the	methodologies	being	applied	 in	Software	Product	Line	
Development	 focus	only	on	managing	 the	 commonalities	and	 variability	within	
the	product	 line	and	not	giving	support	to	the	non‐functional	requirements	that	
the	 products	must	 fit.	 The	main	 goal	 of	 this	master	 final	work	 is	 to	 introduce	
quality	attributes	in	early	stages	of	software	product	line	development	processes	
by	means	of	the	definition	of	a	multi‐model	which	represents	the	different	views	of	
a	software	system	(functionality,	variability	and	quality)	and	integrates	quality	as	
an	additional	view	for	describing	the	extension	of	the	software	product	line,	and	a	
production	plan	that	introduces	the	quality	attributes	as	a	decision	factor	during	
product	configuration	and	when	selecting	among	design	alternatives.	

Our	 approach	 has	 been	 defined	 following	 the	 Model‐	 Driven	 Software	
Development	 paradigm.	 Therefore	 all	 the	 software	 artifacts	 defined	 had	 its	
correspondent	metamodels	and	 the	processes	defined	 rely	on	automated	model	
transformations.	Finally	 in	order	 to	 illustrate	 the	 feasibility	of	 the	approach	we	
have	integrated	the	quality	view	in	an	SPL	example	in	the	context	of	safety	critical	
embedded	systems	on	the	automotive	domain.	

	 	

 v

	 	

 vi

Contents	

Chapter 1.	 Introduction	 1	
1.1.	 Motivation 1	
1.2.	 Objectives 3	
1.3.	 Research Environment 4	
1.4.	 Document Outline 5	

Chapter 2.	 Related	Work	 6	
2.1.	 Multi-modeling Introducing Non Functional Requirements in SPL Development

 6	
2.2.	 Quality in model transformation Processes 8	
2.3.	 Discussion 10	

Chapter 3.	 Software	Product	Lines	Engineering	 13	
3.1.	 Historical Perspective 13	
3.2.	 Software Product Line Engineering 14	

Chapter 4.	 Model	Driven	Engineering	and	Technological	spaces	 21	
4.1.	 Model Driven Engineering 21	
4.2.	 Model Driven Architecture 22	
4.3.	 Technological Spaces 37	

Chapter 5.	 A	Multi‐model	for	Software	Product	Line	Development	40	
5.1.	 The Multi-Model in the Development Process 40	
5.2.	 Multi-model Structure 43	
5.3.	 Variability View 44	
5.4.	 Quality View 50	
5.5.	 Functional View 53	
5.6.	 Relationships among Views and Metamodel Definition 62	

Chapter 6.	 Quality‐Driven	Model	Transformations	and	SPL	 66	
6.1.	 Alternative Model Transformations 66	
6.2.	 A Quality-Driven Model Transformations Architecture. 67	
6.3.	 Transformation Definition 71	

Chapter 7.	 A	Quality‐Driven	Production	Plan	for	SPL	 75	
7.1.	 Production Plan Definition 75	
7.2.	 The Production Plan in the Product Development Activity 79	

Chapter 8.	 Case	Study	 84	
8.1.	 The Vehicle Control System 84	
8.2.	 Definition of the Production Plan for the Vehicle Control System 94	
8.3.	 Product Configuration 99	
8.4.	 Discussion 100	

Chapter 9.	 Conclusions	and	Future	work	 102	

 vii

9.1.	 Conclusions 102	
9.2.	 Future Works 104	
9.3.	 Related Publications 105	

References:	 	 	 108	

Annex	I.	 Vehicle	Control	AADL	Specification	 113	

Annex	II.	 Cruise	Control	AADL	Specification	 119	
	

	

 ix

List	of	figures	

Figure	1.	Main	activities	in	SPL	Engineering	...	15	
Figure	2.	Core	Asset	Development	...	16	
Figure	3.	Attached	processes	and	production	plan	..	17	
Figure	4.	Product	Development	...	19	
Figure	5.	MOF	layered	architecture	...	27	
Figure	6.	Model	Transformation	Definition	...	28	
Figure	7.	Relationships	between	QVT	Metamodels	..	29	
Figure	8.	QVT	Graphical	notation	for	UML2Rel	Class	to	Relational	Table	
Relation	..	35	
Figure	9.	The	Multi‐model	in	the	SPL	development	process	42	
Figure	10.	Application	of	the	Proxy	Pattern	in	the	Multi‐model	44	
Figure	11.	Features	Model	following	the	FODA	notation	...	46	
Figure	12.	Comparison	of	two	valid	configurations	of	a	features	model	47	
Figure	13.	Example	of	Cardinality	Based	Features	Model	...	49	
Figure	14.	Cardinality‐Based	Features	Model	Metamodel	..	50	
Figure	15.	Quality	in	the	life	cycle	..	51	
Figure	16.	SQuaRE	Software	Product	Quality	Decomposition...................................	52	
Figure	17.	Quality	View	Metamodel	..	53	
Figure	18.	Type	Declaration	Subclauses	..	58	
Figure	19.	Type	Implementation	Subclauses	..	58	
Figure	20.	AADL	Graphical	Notation	[22]	...	61	
Figure	21.	Multi‐Package	Metamodel	Structure	..	62	
Figure	22.	EComponent	Type	Subclases	(Excerpt	of	the	Multi‐Model’s	
Metamodel)	..	64	
Figure	23.	Impacting	Elements	Sub‐classes	(Excerpt	of	the	Multi‐Model’s	
Metamodel)	..	65	
Figure	24.	Phases	and	artifacts	of	the	quality‐driven	model	transformation	
architecture	..	69	
Figure	25.	Quality	Driven	Model	Transformations	Transformation	Metamodel
	..	70	
Figure	26.	Quality	Driven	Model	Transformations	Quality	Metamodel	71	
Figure	27.	Quality	Driven	Model	Transformations	Active‐Rules	Metamodel	71	
Figure	28.	A	generic	top‐level	and	non‐top	level	with	the	QVT	graphical	
notation	..	73	
Figure	29.	Integration	of	the	Quality‐Driven	Model	Transformations	in	the	Core	
Asset	Development	Activity	..	76	
Figure	30.	Transformation	for	Populating	the	Views	..	77	
Figure	31.	The	Production‐Plan	in	the	Product	Development	80	
Figure	32.	Quality‐Driven	Product	Configuration	...	81	
Figure	33.	Generation	of	the	architectural	view	of	a	product	83	
Figure	34.	Main	Components	of	the	Vehicle‐Control	System	87	
Figure	35.	Vehicle	Control	System	Features	Diagram	...	87	
Figure	36.	Basic	Cruise	Control	System	Context	Diagram	...	89	
Figure	37.	Basic	Cruise	Control	System	Implementation	Diagram	90	
Figure	38.	Adaptive	Cruise	Control	System	Context	Diagram	91	

 x

Figure	39.	Adaptive	Cruise	Control	System	Implementation	Diagram	91	
Figure	40.	Fully	Adaptive	Cruise	Control	System	Context	Diagram	93	
Figure	41.	AADL	Implementation	of	the	Fully	Adaptive	Cruise	Control	94	
Figure	42.	Definition	of	the	Relationships	in	the	Eclipse‐Based	Multi‐Model	
Editor	...	97	
Figure	43.	Definition	of	impacts	in	the	Multi‐Model	Editor	..	98	
Figure	44.	Example	of	a	Model	Transformation	Rule	for	Extracting	the	
Architectural	View	...	100	
	

	

 xi

List	of	Tables	

Table	1.	QVT	Diagramatic	elements	..	36	
Table	2.	Symbols	used	in	cardinality‐based	feature	modeling	[26]	49	
Table	3.	AADL	Textual	notation...	60	
Table	4.	Relationships	between	Functional	and	Variability	Views	96	
Table	5.	Excerpt	of	the	Main	Impacts	Detected	..	98	

	

 xii

Acronyms	

AADL	 Architecture	Analysis	and	Design	Language

MDA	 Model	Driven	Architecture

MDE	 Model	Driven	Engineering

MDSD	 Model	Driven	Software	Development

OCL	 Object	Constraint	Language

OMG	 Object	Management	Group

QVT	 Query	View	Transformation

SPL	 Software	Product	Line

SPLE	 Software	Product	Line	Engineering

SQuaRE	 Software	product	Quality	Requirements	and	Evaluation	

SysML	 Systems	Modeling	Language

UML	 Unified	Modeling	Language

	

	

	

	

	

	

	

 13

	

	

	

	

	

	

Integration	 of	 Quality	 Attributes	 in	
Software	Product	Line	Development	

	

	

	

	

	

Tesis	de	Máster	en	Ingeniería	del	Software,	

Métodos	Formales	y	Sistemas	de	Información	

(MISMFSI)	

	

Grupo	de	Ingeniería	del	Software	y	Sistemas	de	Información	(ISSI)	

Departamento	de	Sistemas	Informáticos	y	Computación	(DSIC)	

Universidad	Politécnica	de	Valencia	(UPV)	

	

Septiembre	2011	

	

	

	

	

Javier	González	Huerta	

	

Directores:	

	Dr.	Silvia	Mara	Abrahão	Gonzales	

	Dr	Emilio	Insfran	Pelozo	

 14

	

 I

	

	

	

	

	

	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Trabajo Final de Máster presentado para cumplir con los requisitos
finales para la obtención del título de Máster en Ingeniería del Software,
Métodos Formales y Sistemas de Información, de la Universidad
Politécnica de Valencia, 2011.

 II

	

	

	

	

	

	

	

	

Agradecimientos.	

A	Silvia	y	Emilio	por	su	esfuerzo,	por	su	constancia	por	su	apoyo	y	por	estar	
ahí	siempre	que	les	necesito.	

A	Michel	por	su	acogida,	sus	consejos,	su	actitud	critica,	sus	ánimos,	por	
estar	siempre	dispuesto	y	sobre	todo	por	haberme	enseñado	a	ver	las	cosas	de	

otro	modo.		

A	Rosa	por	sus	comprensión,	por	su	paciencia,	por	sus	ánimos,	por	apoyarme	
siempre	en	los	buenos	y	no	tan	buenos	momentos	y	por	ayudarme	en	la	ausencia.	

A	Isidro	por	sus	siempre	sabios	consejos	y	criticas	

A	Adri,	Sonia,	Alex,	Juan	Antonio,	Abel	y	David,	por	su	ayuda,	por	estar	
siempre	ahí,	por	ser	tan	magníficos	compañeros.	

A	Werner,	Hafeez,	Bilal,	Dave,	Christoph,	Luuk,	y	todo	el	equipo	del	LIACS	por	
haberme	hecho	sentir	uno	mas.	

A	Ramin	por	su	paciencia	y	sus	consejos	que	han	dado	como	fruto	parte	de	
este	trabajo.	

 i

	 	

 ii

	

Resumen	

En	 los	 últimos	 años	 se	 han	 propuesto	 diferentes	 aproximaciones	 para	 el	
desarrollo	 de	 sistemas	 complejos.	 Algunos	 esfuerzos	 intentan	 aplicar	 la	
aproximación	de	 Líneas	 de	Producto	 Software	 tratando	 de	 sacar	 partido	 de	 la	
reutilización	masiva	para	producir	sistemas	software	que	comparten	un	conjunto	
común	de	características.	En	general,	el	aseguramiento	de	la	calidad	del	producto	
es	una	actividad	crucial	para	el	éxito	de	la	industria	del	software,	pero	es,	si	cabe,	
más	 importante	 cuando	 se	 trata	del	desarrollo	de	 líneas	de	producto	 software,	
dado	que	 la	 reutilización	masiva	de	activos	 software	hace	que	 los	atributos	de	
calidad	(propiedades	físicas	o	abstractas	de	un	artefacto	software)	de	los	activos	
software	impacten	en	la	calidad	de	todos	los	productos	de	una	línea	de	producto.	

Sin	 embargo,	 a	 pesar	 de	 la	 importancia	 que	 la	 calidad	 tiene	 en	 el	
desarrollo	 de	 líneas	 de	 producto	 de	 software,	 la	mayoría	 de	 las	metodologías	
aplicadas	en	su	desarrollo	se	centran	únicamente	en	la	gestión	de	la	variabilidad	
en	líneas	de	producto,	sin	dar	soporte	a	los	requerimientos	no	funcionales	que	el	
producto	debe	 cumplir.	El	principal	objetivo	de	este	 trabajo	 fin	de	master	es	 la	
introducción	 de	 atributos	 de	 calidad	 en	 fases	 tempranas	 de	 los	 procesos	 de	
desarrollo	 de	 líneas	 de	 producto	 software,	mediante	 la	 definición	 de	 un	multi‐
modelo	que	represente	las	distintas	vistas	de	un	sistema	software	(funcionalidad,	
variabilidad,	calidad)	e	 integre	 la	calidad	como	una	vista	más	del	 sistema	para	
describir	la	extensión	de	la	línea	de	producto	software	y	de	un	plan	de	producción	
que	que	introduzca	los	atributos	de	calidad	como	un	factor	de	decisión	a	la	hora	
de	seleccionar	entre	distintas	alternativas	de	diseño.	

Nuestra	propuesta	ha	sido	definida	siguiendo	el	paradigma	de	Desarrollo	
Dirigido	por	Modelos.	Por	lo	tanto,	todos	los	artefactos	definidos	cuentan	con	sus	
correspondientes	 metamodelos	 y	 todos	 los	 procesos	 descritos	 se	 apoyan	 en	
transformaciones	 de	 modelos.	 Por	 ultimo,	 para	 ilustrar	 la	 factibilidad	 de	 la	
propuesta,	 hemos	 integrado	 la	 vista	 de	 calidad	 en	 un	 ejemplo	 de	 línea	 de	
productos	 en	 el	 contexto	 de	 los	 sistemas	 de	 seguridad	 critica	 en	 el	 dominio	
automovilístico.		

	

	 	

 iii

Resum	

Als	últims	anys	 s’han	proposat	diferents	aproximacions	per	al	desenvolupament	
de	 sistemes	 complexos.	Alguns	 esforços	 han	 intentat	 aplicar	 la	 aproximació	 de	
Línies	 de	 Producte	 de	 Programari	 tractant	 de	 treure	 partit	 de	 la	 reutilització	
massiva	per	a	produir	sistemes	de	programari	que	comparteixen	un	conjunt	comú	
de	característiques.	En	general,	l’assegurament	de	la	qualitat	de	producte	es	una	
activitat	crucial	per	a	l’èxit	de	la	industria	de	la	programaria,	però	es	encara	mes	
important	 quan	 es	 tracta	 del	 desenvolupament	 de	 línies	 de	 producte	 de	
programari,	atès	que	la	reutilització	intensiva	d’actius,	el	que	fa	que	els	atributs	
de	qualitat	(propietats	físiques	o	abstractes	d’una	entitat	que	es	poden	mesurar)	
dels	actius	seran	transmeses	a	tot	l’abast	de	la	línia	de	producte.	

No	 obstant,	 a	 pesar	 de	 la	 importància	 que	 la	 qualitat	 te	 en	 el	
desenvolupament	 de	 les	 línies	 de	 producte	 de	 programari,	 la	 majoria	 de	 les	
metodologies	 aplicades	 en	 el	 seu	 desenvolupament	 es	 centren	 únicament	 en	 la	
gestió	 de	 la	 variabilitat	 en	 la	 línia	 de	 productes,	 sense	 donar	 suport	 als	
requeriments	no	 funcionals	que	 el	producte	 te	que	acomplir.	La	principal	meta	
d’aquest	treball	fi	de	màster	es	s	la	introducció	de	la	vista	dels	atributs	de	qualitat	
des	 de	 les	 primeres	 fases	 del	 desenvolupament	 de	 línies	 de	 producte	 de	
programari,	 mitjançant	 la	 definició	 d'un	 pla	 de	 producció	 que	 per	 un	 costat	
integri	 la	 qualitat	 como	 una	 vista	 addicional	 del	 sistema	 per	 a	 descriure	 la	
extensió	 de	 la	 línia	 de	 producte,	 y	 per	 l’altre	 que	 introdueixi	 els	 atributes	 de	
qualitat	 com	 un	 factor	 de	 decisió	 a	 l’hora	 de	 seleccionar	 entre	 les	 distintes	
alternatives	de	disseny.	

La	 nostra	 proposta	 ha	 estat	 definida	 seguint	 el	 paradigma	 de	
desenvolupament	dirigit	per	models.	Per	 la	qual	cosa,	tots	els	artefactes	definits	
compten	 amb	 el	 seu	 corresponent	 metamodel	 y	 tots	 els	 processos	 descrits	 es	
recolzen	en	transformacions	de	models.	Per	últim,	per	tal	d’il·lustrar	la	factibilitat	
de	 la	 proposta,	 hem	 integrat	 la	 vista	 de	 qualitat	 en	 un	 eixample	 de	 línia	 de	
productes	 en	 el	 context	 dels	 sistemes	 de	 seguretat	 critica	 en	 el	 domini	
automobilístic.	

	 	

 iv

Abstract	

Different	approaches	for	building	modern	software	systems	in	complex	and	open	
environments	have	been	proposed	in	the	last	few	years.	Some	efforts	try	to	apply	
Software	Product	Line	(SPL)	approach	to	take	advantage	of	the	massive	reuse	for	
producing	 software	 systems	 that	 share	 a	 common	 set	 of	 features.	 In	 general	
quality	assurance	 is	a	 crucial	activity	 for	 success	 in	 software	 industry,	but	 it	 is	
even	 more	 important	 when	 talking	 about	 Software	 Product	 Lines	 since	 the	
intensive	reuse	of	assets	makes	 the	quality	attributes	 (a	measurable	physical	or	
abstract	property	of	an	entity)	of	 the	assets	 to	be	 transmitted	 to	 the	whole	SPL	
scope.	

However,	despite	the	importance	that	quality	has	in	software	product	line	
development,	most	of	the	methodologies	being	applied	 in	Software	Product	Line	
Development	 focus	only	on	managing	 the	 commonalities	and	 variability	within	
the	product	 line	and	not	giving	support	to	the	non‐functional	requirements	that	
the	 products	must	 fit.	 The	main	 goal	 of	 this	master	 final	work	 is	 to	 introduce	
quality	attributes	in	early	stages	of	software	product	line	development	processes	
by	means	 of	 the	 definition	 of	 a	 production	 plan	 that,	 on	 one	 hand,	 integrates	
quality	as	an	additional	view	for	describing	the	extension	of	the	software	product	
line	and,	on	the	other	hand	introduces	the	quality	attributes	as	a	decision	factor	
during	product	configuration	and	when	selecting	among	design	alternatives.	

Our	 approach	 has	 been	 defined	 following	 the	 Model‐	 Driven	 Software	
Development	 paradigm.	 Therefore	 all	 the	 software	 artifacts	 defined	 had	 its	
correspondent	metamodels	and	 the	processes	defined	 rely	on	automated	model	
transformations.	Finally	 in	order	 to	 illustrate	 the	 feasibility	of	 the	approach	we	
have	integrated	the	quality	view	in	an	SPL	example	in	the	context	of	safety	critical	
embedded	systems	on	the	automotive	domain.	

	 	

 v

Contents	

Chapter 1.	 Introduction	 1	
1.1.	 Motivation 1	
1.2.	 Objectives 3	
1.3.	 Research Environment 4	
1.4.	 Document Outline 5	

Chapter 2.	 Related	Work	 6	
2.1.	 Multi-modeling Introducing Non Functional Requirements in SPL Development

 6	
2.2.	 Quality in model transformation Processes 8	
2.3.	 Discussion 10	

Chapter 3.	 Software	Product	Lines	Engineering	 13	
3.1.	 Historical Perspective 13	
3.2.	 Software Product Line Engineering 14	

Chapter 4.	 Model	Driven	Engineering	and	Technological	spaces	 21	
4.1.	 Model Driven Engineering 21	
4.2.	 Model Driven Architecture 22	
4.3.	 Technological Spaces 37	

Chapter 5.	 A	Multi‐model	for	Software	Product	Line	Development	40	
5.1.	 The Multi-Model in the Development Process 40	
5.2.	 Multi-model Structure 43	
5.3.	 Variability View 44	
5.4.	 Quality View 50	
5.5.	 Functional View 53	
5.6.	 Relationships among Views and Metamodel Definition 62	

Chapter 6.	 Quality‐Driven	Model	Transformations	and	SPL	 66	
6.1.	 Alternative Model Transformations 66	
6.2.	 A Quality-Driven Model Transformations Architecture. 67	
6.3.	 Transformation Definition 71	

Chapter 7.	 A	Quality‐Driven	Production	Plan	for	SPL	 75	
7.1.	 Production Plan Definition 75	
7.2.	 The Production Plan in the Product Development Activity 79	

Chapter 8.	 Case	Study	 84	
8.1.	 The Vehicle Control System 84	
8.2.	 Definition of the Production Plan for the Vehicle Control System 94	
8.3.	 Product Configuration 99	
8.4.	 Discussion 100	

Chapter 9.	 Conclusions	and	Future	work	 102	

 vi

9.1.	 Conclusions 102	
9.2.	 Future Works 104	
9.3.	 Related Publications 105	

References:	 	 	 108	

Annex	I.	 Vehicle	Control	AADL	Specification	 113	

Annex	II.	 Cruise	Control	AADL	Specification	 119	
	

	

 vii

List	of	figures	

Figure	1.	Main	activities	in	SPL	Engineering	...	15	
Figure	2.	Core	Asset	Development	...	16	
Figure	3.	Attached	processes	and	production	plan	..	17	
Figure	4.	Product	Development	...	19	
Figure	5.	MOF	layered	architecture	...	27	
Figure	6.	Model	Transformation	Definition	...	28	
Figure	7.	Relationships	between	QVT	Metamodels	..	29	
Figure	8.	QVT	Graphical	notation	for	UML2Rel	Class	to	Relational	Table	
Relation	..	35	
Figure	9.	The	Multi‐model	in	the	SPL	development	process	42	
Figure	10.	Application	of	the	Proxy	Pattern	in	the	Multi‐model	44	
Figure	11.	Features	Model	following	the	FODA	notation	...	46	
Figure	12.	Comparison	of	two	valid	configurations	of	a	features	model	47	
Figure	13.	Example	of	Cardinality	Based	Features	Model	...	49	
Figure	14.	Cardinality‐Based	Features	Model	Metamodel	..	50	
Figure	15.	Quality	in	the	life	cycle	..	51	
Figure	16.	SQuaRE	Software	Product	Quality	Decomposition...................................	52	
Figure	17.	Quality	View	Metamodel	..	53	
Figure	18.	Type	Declaration	Subclauses	..	58	
Figure	19.	Type	Implementation	Subclauses	..	58	
Figure	20.	AADL	Graphical	Notation	[22]	...	61	
Figure	21.	Multi‐Package	Metamodel	Structure	..	62	
Figure	22.	EComponent	Type	Subclases	(Excerpt	of	the	Multi‐Model’s	
Metamodel)	..	64	
Figure	23.	Impacting	Elements	Sub‐classes	(Excerpt	of	the	Multi‐Model’s	
Metamodel)	..	65	
Figure	24.	Phases	and	artifacts	of	the	quality‐driven	model	transformation	
architecture	..	69	
Figure	25.	Quality	Driven	Model	Transformations	Transformation	Metamodel
	..	70	
Figure	26.	Quality	Driven	Model	Transformations	Quality	Metamodel	71	
Figure	27.	Quality	Driven	Model	Transformations	Active‐Rules	Metamodel	71	
Figure	28.	A	generic	top‐level	and	non‐top	level	with	the	QVT	graphical	
notation	..	73	
Figure	29.	Integration	of	the	Quality‐Driven	Model	Transformations	in	the	Core	
Asset	Development	Activity	..	76	
Figure	30.	Transformation	for	Populating	the	Views	..	77	
Figure	31.	The	Production‐Plan	in	the	Product	Development	80	
Figure	32.	Quality‐Driven	Product	Configuration	...	81	
Figure	33.	Generation	of	the	architectural	view	of	a	product	83	
Figure	34.	Main	Components	of	the	Vehicle‐Control	System	87	
Figure	35.	Vehicle	Control	System	Features	Diagram	...	87	
Figure	36.	Basic	Cruise	Control	System	Context	Diagram	...	89	
Figure	37.	Basic	Cruise	Control	System	Implementation	Diagram	90	
Figure	38.	Adaptive	Cruise	Control	System	Context	Diagram	91	

 viii

Figure	39.	Adaptive	Cruise	Control	System	Implementation	Diagram	91	
Figure	40.	Fully	Adaptive	Cruise	Control	System	Context	Diagram	93	
Figure	41.	AADL	Implementation	of	the	Fully	Adaptive	Cruise	Control	94	
Figure	42.	Definition	of	the	Relationships	in	the	Eclipse‐Based	Multi‐Model	
Editor	...	97	
Figure	43.	Definition	of	impacts	in	the	Multi‐Model	Editor	..	98	
Figure	44.	Example	of	a	Model	Transformation	Rule	for	Extracting	the	
Architectural	View	...	100	
	

	

 ix

List	of	Tables	

Table	1.	QVT	Diagramatic	elements	..	36	
Table	2.	Symbols	used	in	cardinality‐based	feature	modeling	[26]	49	
Table	3.	AADL	Textual	notation...	60	
Table	4.	Relationships	between	Functional	and	Variability	Views	96	
Table	5.	Excerpt	of	the	Main	Impacts	Detected	..	98	

	

 x

Acronyms	

AADL	 Architecture	Analysis	and	Design	Language

MDA	 Model	Driven	Architecture

MDE	 Model	Driven	Engineering

MDSD	 Model	Driven	Software	Development

OCL	 Object	Constraint	Language

OMG	 Object	Management	Group

QVT	 Query	View	Transformation

SPL	 Software	Product	Line

SPLE	 Software	Product	Line	Engineering

SQuaRE	 Software	product	Quality	Requirements	and	Evaluation	

SysML	 Systems	Modeling	Language

UML	 Unified	Modeling	Language

	

	

	

	

	

	

	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 1

Chapter 1. Introduction

Different	 approaches	 for	 building	 modern	 software	 systems	 in	 complex	 and	
open	environments	have	been	proposed	in	the	last	few	years.	Some	efforts	try	
to	 apply	 the	 Software	 Product	 Line	 (SPL)	 approach	 to	 take	 advantage	 of	 the	
massive	 reuse	 for	 producing	 software	 systems	 that	 share	 a	 common	 set	 of	
features.	However,	most	of	the	existing	methodologies	focus	only	on	managing	
the	commonalities	and	variability	within	the	product	and	they	do	not	give	the	
appropriate	support	to	the	non‐functional	requirements	that	the	products	must	
meet.	

As	 a	 means	 for	 improving	 the	 quality	 of	 current	 practices	 in	 the	
development	of	Software	Product	Lines,	the	main	goal	of	this	Master’s	Thesis	is	
to	 introduce	 quality	 attributes	 in	 early	 stages	 of	 Software	 Product	 Line	
Development	 by	 means	 of	 the	 definition	 of	 a	 multi‐model	 and	 a	 production	
plan,	 conducted	 by	 this	 multi‐model	 [9],	 that	 together	 integrates	 quality	 as	
another	 view	of	 the	 system	 and	 applies	 the	 quality	 attributes	 as	 the	 decision	
factor	 during	 the	 product	 configuration	 and	 when	 selecting	 among	 design	
alternatives.		

1.1. Motivation

The	 challenge	 in	 today’s	 software	 engineering	 is	 to	 deliver	 high‐quality	
software	on‐time	and	within	budget	to	the	customers	[56].	This	challenge	has	
been	 addressed	 from	 many	 different	 approaches.	 In	 recent	 years,	 Software	
Product	Lines	(SPL)	has	emerged	as	a	promising	approach	to	improve	software	
development	productivity	in	IT	industry.		

Software	 Product	 Line	 Engineering	 (SPLE)	 [14],	 [59]	 is	 a	 development	
paradigm	for	producing	a	set	of	software‐intensive	systems	sharing	a	common	
set	of	managed	features	that	are	developed	from	a	common	set	of	core	assets	in	
a	prescribe	way.	These	core	assets	are	going	to	be	reused	systematically	in	the	
product	development	when	configuring	specific	products.	The	SPLE	comprises	
two	 main	 development	 phases:	 core	 asset	 development	 that	 deals	 with	 the	
development	of	the	different	software	artifacts	that	will	be	used	for	production	
of	products	and	product	development	 that	reuses	these	core	asses	to	configure	
the	multiple	products	that	constitute	the	software	product	line.	The	application	
of	this	strategy	improves	productivity,	time	to	market	for	 individual	products,	
decreases	the	cost	and	labor	needs	and	increase	quality	of	individual	products.		

It	 is	worth	noting	that	the	application	of	SPL	quite	often	relies	on	Model‐
Driven	Software	Development	(MDSD),	at	least	partially,	for	raising	the	level	of	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 2

abstraction	and	 representing	different	models,	 i.e.	 the	variability	models,	 that	
are	 present	 in	 almost	 all	 SPL	 development	 process.	 MDSD	 is	 a	 proposal	 to	
maximize	 productivity,	 enhancing	 aspects	 such	 as	 software	 reusability,	
interoperability	 and	 improved	 adaptation	 of	 technological	 change.	One	 of	 the	
most	popular	approaches	is	the	Model	Driven	Architecture	(MDA)	[51],	which	
is	 based	 on	 the	 set	 of	 standards	 proposed	 by	 the	 Object	Management	 Group	
(OMG).	 MDA	 advocates	 taking	 models	 as	 the	 main	 artifacts	 of	 software	
development	and	deriving	the	product	as	a	series	of	model	transformations.		

Software	Quality	is	the	capability	of	the	software	product	to	satisfy	stated	
and	 implied	 needs	 (requirements)	when	 used	 under	 specific	 conditions	 [26].	
The	 assessment	 of	 quality	 in	 software	products	 is	 also	 a	 reflection	of	diverse	
points	of	view	and	it	is	addressed	in	different	phases	of	software	development	
product	 life	 cycle.	 Quality	 assurance	 is	 a	 crucial	 activity	 for	 success	 in	 the	
software	 industry,	but	 it	 is	even	more	 important	 in	Software	Product	Lines	 in	
SPL	 because	 an	 error	 in	 the	 common	 architecture	 or	 in	 core	 assets	 may	 be	
propagated	to	the	final	products..		

However,	despite	the	importance	that	quality	has	in	software	product	line	
development,	 research	 works	 dealing	 with	 SPL	 usually	 focuses	 mainly	 on	
managing	 a	 single	 view	 of	 the	 system:	 the	 variability	 view.	 Managing	 the	
variability	 of	 a	 SPL	 implies,	 on	 one	 hand	 managing	 the	 domain	 features	
expressed	 by	 means	 of	 a	 feature	 model	 and,	 on	 the	 other	 hand,	 that	 this	
variability	 must	 be	 supported	 by	 core	 assets.	 However,	 the	 success	 of	 a	
software	product	relies	not	only	in	the	fulfillment	of	its	functional	requirements	
but	also	the	quality	attributes	(a	measurable	physical	or	abstract	property	of	an	
entity)	 that	 the	 product	must	 fulfill.	 Describing	 a	 SPL	 only	 with	 a	 variability	
view	(even	when	extended	with	non‐functional	attributes)	does	not	reflect	the	
real	extension	of	the	product	line.	

The	adoption	of	the	Software	Product	Line	approach	must	focus	not	only	
on	 managing	 the	 variability	 but	 also	 on	 expressing,	 on	 one	 hand,	 how	 the	
quality	attributes	of	the	core	assets	impact	over	the	quality	of	the	SPL,	and	on	
the	other	hand,	how	the	selection	of	features	or	core	assets	impact	the	quality	
of	the	products	during	product	configuration.	If	we	can	establish	and	express	in	
a	 model	 the	 relationships	 between	 features	 and/or	 core	 assets	 and	 quality	
attributes,	these	quality	attributes	can	become	a	decision	factor	when	selecting	
among	design	alternatives.	This	selection	can	be	made	automatically	by	using	
model	transformation	techniques.		

Although	addressing	the	quality	attributes	when	assembling	a	product	is	a	
way	of	introducing	the	quality	perspective	on	the	product	development	phase,	
our	 goal	 is	 to	 introduce	 these	 concepts	 at	 early	 stages	 of	 the	 product	 line	
development	process.	During	a	model	transformation,	which	may	occur	in	any	
stage	 of	 the	 product	 line	 development	 process,	 usually	 we	 can	 identify	
alternative	transformations	(entities	 in	the	source	model	 that	have	more	than	
one	 representation	 in	 the	 target	model)	 that	produce	 alternative	models	 that	
have	 the	 same	 functionality	 but	 are	 different	 with	 regard	 to	 its	 quality	
attributes.	 In	 those	 cases,	 the	 transformation	 designers	 need	 to	 identify	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 3

possible	 alternative	 transformations	 and	 choose	 those	 alternatives	 that	
produce	 the	 target	 model	 with	 the	 desired	 quality	 attributes.	 This	 can	 be	
improved	 by	 defining	 model	 transformation	 processes	 where	 the	 quality	
attributes	 are	 the	 decision	 factor	 among	 those	 alternatives,	 obtaining	 target	
models	that	satisfy	the	quality	attributes	selected	by	the	software	engineer.	

This	 work	 has	 been	 defined	 taking	 into	 account	 the	 needs	 of	 Software	
Product	Line	Development	in	the	domain	of	Safety‐Critical	Embedded	Systems.	
In	 this	 domain,	 some	 quality	 attributes	must	 be	 ensured	 in	 the	 final	 product	
and	 for	 achieving	 this,	 both	 the	 variability	 and	 the	 functional	 requirements	
must	be	 related	with	quality	 attributes	 to	 ensure	 that	 every	possible	product	
derived	 from	 the	 product	 line	 fulfills	 its	 quality	 requirements.	 However,	 the	
concepts	 and	 solutions	described	 in	 this	 approach	 can	 also	 be	 applied	 to	 any	
software	product	line	context	regardless	to	the	domain,	since	the	Safety‐Critical	
Embedded	Systems	is	one	of	the	most	restrictive	domains	when	talking	about	
the	quality	of	the	software	products.	

1.2. Objectives

The	main	objective	of	this	Master’s	final	work	is	to	introduce	quality	attributes	
in	early	stages	of	the	software	product	line	development	processes	by	means	of	
the	definition	of	a	multi‐model	and	a	production	plan	that	integrates	the	quality	
attributes	 as	 an	 additional	 view	 for	 describing	 the	 extension	 of	 the	 software	
product	 line.	 This	 approach	 requires	 the	 definition	 of	 additional	 artifacts	 (a	
multi‐model)	that	allows	us	to	express	the	relationships	and	constraints	among	
the	different	system	views	and	guide	the	development	of	software	products.	

A	 multi‐model	 is	 a	 collection	 of	 models	 supporting	 different	 views	 of	 a	
system,	characterized	by	the	existence	of	relationships	among	elements	of	their	
correspondent	 metamodels	 [9].	 The	 multi‐model	 will	 comprise	 three	 main	
views	of	the	SPL:	

 The	 Functional	 View	 for	 expressing	 the	 base	 architecture	 of	 the	
SPL	as	well	 as	 the	different	 core	 assets	 (or	 components)	 that	 are	
going	to	be	“plugged”	into	the	base	architecture.	This	view	should	
be	considered	 in	 the	different	 stages	of	 the	software	product	 line	
production	 process	 by	 means	 of	 different	 architectural	 models	
(e.g.,	modular,	component‐connector).	

 The	 Variability	 View	 for	 expressing	 the	 features	 (user‐visible	
aspects	 or	 characteristics	 of	 a	 system)	 that	 are	 common	 and	
variable	within	the	system.		

 The	 Quality	 View	 where	 the	 different	 quality	 attributes	 for	 the	
whole	software	product	line	and	the	individual	software	products	
as	 well	 as	 the	 relationships	 among	 them	 are	 expressed	 in	 a	
hierarchical	decomposition.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 4

The	production	 plan	describes	 how	 the	products	 are	produced	 from	 the	
core	assets.	Core	assets	should	each	have	an	attached	process	that	defines	how	
it	will	be	used	in	product	development.	The	production	plan	is	essentially	a	set	
of	 these	 attached	 processes	 with	 the	 necessary	 glue.	 It	 describes	 the	 overall	
scheme	 for	 how	 these	 individual	 processes	 can	 be	 fit	 together	 to	 build	 a	
product.	 It	 is,	 in	 effect,	 the	 reuser's	 guide	 to	product	development	within	 the	
product	line	[Clements].	

In	our	approach,	 the	production	plan	provides	support	 for	the	use	of	 the	
multi‐model	 in	 the	development	of	 specific	products.	 It	also	provides	 support	
for	 the	 definition	 of	 model	 transformation	 processes	 where	 different	
alternative	 transformations	 appear.	 The	 quality	 attributes	 that	 the	 product	
must	fulfill	will	be	used	as	the	decision	factor	for	selecting	among	alternatives	
in	those	processes.		

In	 order	 to	 reach	 the	 main	 objective,	 the	 following	 sub‐objectives	 have	
been	formulated:	

1. Study	the	approaches	that	try	to	cover	the	problems	that	arise	when	
developing	SPLs	in	the	domain	of	safety‐critical	embedded	systems,	
paying	special	attention	to	approaches	trying	to	apply	multi‐view	or	
multi‐modeling	 techniques,	 or	 that	 which	 introduces	 quality	 in	
model	transformation	processes.	

2. Study	 the	different	 standards	 that	 can	be	used	 for	 expressing	 each	
one	of	the	different	system	views.		

3. Define	 the	 system	 views	 and	 identify	 the	 relationships	 among	 the	
elements	of	the	different	system	views.		

4. Define	 a	 multi‐model	 that	 is	 able	 to	 express	 those	 relationships.	
Populate	 the	multi‐model	 with	 a	 set	 of	 quality	 attributes	 that	 has	
been	 identified	 as	 relevant	 for	 the	 domain	 of	 safety‐critical	
embedded	systems.	

5. Analyze	 the	 alternative	 transformations,	 which	 can	 appear	 in	 the	
PIM‐To‐PIM,	 and	 PIM‐To‐PSM	 model	 transformations	 that	 occur	
within	 of	 the	 two	 phases	 of	 the	 SPL	 development	 and	 its	 possible	
impact	on	the	quality	attributes.		

6. Define	 a	 set	 of	 artifacts	 (mainly	 composed	 of	 model	 and	
metamodels)	 and	 a	 process,	 which	 allows	 the	 definition,	 and	
execution	 of	 model	 transformations	 in	 which	 the	 selection	 of	
alternative	 model	 transformations	 is	 done	 based	 on	 quality	
attributes.	

7. Define	how	to	integrate	the	quality	view	in	the	different	activities	of	
a	 production	 plan.	 Establish	 which	 are	 the	 activities	 that	 affect	 a	
single	core	asset	and	which	ones	are	 transversal	 to	 the	core	assets	
(affect	the	different	core	assets	or	should	be	taken	into	account	after	
the	product	has	been	configured).	

8. Illustrate	the	feasibility	of	the	approach	in	case	study	in	the	domain	
of	safety‐critical	systems	for	the	automotive	industry.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 5

1.3. Research Environment

This	 research	 has	 been	 developed	 within	 the	 Software	 Engineering	 and	
Information	 Systems	 (ISSI)	 research	 group	 and	 contributes	 to	 the	 following	
research	projects:	

 CALIMO	 Project:	 Integration	 of	 quality	 in	Model	 Driven	 Software	
Development	(January	2009‐Enero	2010).	Founded	by	Generalitat	
Valenciana,	Conselleria	de	Educación	‐	GV/2009/103.	

 MULTIPLE	 Project:	 Multi‐modeling	 Approach	 for	 Quality‐Aware	
Software	Product	Lines	(October	2009‐September	2013).	Founded	
by:	Ministerio	de	Ciencia	e	Innovación	‐	TIN2009‐13838.	

 TwinTIDE	 Project:	 Towards	 the	 Integration	 of	 Transectorial	 IT	
Design	 and	 Evaluation	 (November	 2009‐November	 2013).	
Founded	by:	European	Union	COST	action	IC0904.	

This	 research	has	been	granted	with	a	 “Becas	de	Movilidad	para	Alumnos	
de	Master”	 (Master’s	Mobility	 Scholarship)	 allowing	 the	Master’s	 candidate	 to	
develop	 part	 of	 the	 research	 in	 the	 Leiden	 Institute	 of	 Advanced	 Computer	
Science	(LIACS)	at	the	Leiden	University,	The	Netherlands.	The	scholarship	was	
funded	by	the	Ministry	of	Science	and	Innovation.	

1.4. Document Outline

The	 remainder	 of	 this	 Master’s	 Thesis	 is	 organized	 in	 the	 following	
chapters:	

Chapter	2	describes	the	state‐of‐the‐art	about	the	research	topics	related	
to	 this	work:	multi‐modeling	 in	 the	 context	 of	 SPL,	 quality	 assurance	 in	 SPL,	
quality	 in	 model	 transformations,	 and	 quality	 in	 model‐driven	 software	
development.	

Chapter	3	describes	the	main	concepts	related	to	Software	Product	Lines	
and	Software	Product	Lines	Engineering.	

Chapter	 4	 provides	 an	 overview	 about	 the	 model‐driven	 software	
development	 context,	 focusing	 on	MDA,	 the	 OMG	 proposed	 architecture,	 and	
other	related	standards.	Finally,	it	introduces	the	technological	space	related	to	
this	work:	the	Eclipse	environment	[67],	Eclipse	Modeling	Framework	and	QVT.	

Chapter	 5	 describes	 our	multi‐model	 for	 integrating	 the	 quality	 view	 in	
software	 product	 line	 development.	 The	 chapter	 describes	 the	 multi‐model	
structure,	its	views	and	the	relationships	that	have	been	identified.	

Chapter	 6	 describes	 our	 approach	 for	 dealing	 with	 alternative	 model	
transformations.	This	includes	the	description	of	an	architecture	for	supporting	
quality‐driven	 model	 transformation	 and	 a	 section	 that	 describes	 how	 those	
transformations	should	be	defined.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 6

Chapter	7	describes	a	production	plan	that	gives	support	to	both	the	core	
asset	development,	and	the	product	development	phases.			

Chapter	8	describes	a	case	study	in	the	automotive	domain	(a	Car	Control	
System).	The	case	study	is	intended	to	illustrate	the	feasibility	of	our	proposal	
and	was	developed	by	applying	the	process	presented	in	the	previous	chapters.	

Finally,	 Chapter	 9	 concludes	with	 the	main	 contributions	 of	 the	work.	 It	
also	introduces	future	research	work	and	presents	the	related	publications.	

	 	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 7

Chapter 2. Related Work

This	chapter	describes	related	research	addressing	the	integration	of	quality	as	
an	 additional	 view	 in	 both	 the	 SPL	 development	 and	 model	 transformation	
processes.	

In	 Section	 0	 we	 analyze	 and	 discuss	 the	 different	 works	 in	 the	 field	 of	
applying	multi‐modeling	 techniques	 for	 introducing	the	quality	perspective	 in	
software	product	line	development.	

In	Section	2.2	we	analyze	and	discuss	the	research	works	addressing	the	
introduction	of	quality	attributes	as	a	decision	factor	 in	model	transformation	
processes.	

2.1. Multi‐modeling Techniques for Introducing Non

Functional Requirements in SPL Development

In	this	section	we	analyze	some	proposals	that	try	to	introduce	the	quality	view	
in	software	product	line	development.		

Zhang	et	al.	(2003)	[68]	define	an	approach	based	on	the	Bayesian	Belief	
Network	 (BBN)	 to	 quality	 prediction	 and	 assessment	 for	 a	 software	 product	
line.	The	BBN	is	used	to	model	the	impact	of	design	decisions	on	system	quality	
attributes.	 The	 FODA‐based	 feature	 model	 is	 used	 to	 capture	 functional	
requirements	and	the	BBN	model	 to	capture	the	 impact	of	 functional	variants	
on	 quality	 attributes.	 The	 BBN	 method	 requires	 building	 another	 directed	
graph	whose	nodes	 are	 features	 and	NFR.	The	direction	of	 an	 edge	 is	 always	
from	a	feature	to	one	or	more	NFR	to	denote	the	influence	of	a	feature	upon	a	
quality	attribute.	Based	on	expert	knowledge,	each	QA	node	in	the	graph	will	be	
assigned	a	numerical	value,	which	represents	the	conditional	probability	of	that	
node,	given	the	realization	of	the	parent	feature	nodes.	

González	Baixauli	 et	 al	 (2004)	 [27]	propose	 a	Goal‐based	model	 and	 the	
use	 of	 goal‐oriented	 analysis	 in	 software	 product	 lines.	 Goal‐oriented	
requirement	 engineering	 is	 an	 approach	 that	 deals	with	 quality	 attributes	 or	
non‐functional	requirements	in	single	systems.	Two	sub‐models	are	proposed:	
A	 functional	 goal	 model	 and	 a	 softgoal	 model.	 Quality	 attributes	 are	
represented	 as	 soft‐goals	 and	 the	 operation	 of	 those	 quality	 attributes	 is	
encoded	in	the	functional	goal	sub‐model	as	tasks.	Priorities	are	given	to	each	
softgoal	on	a	percentile	scale	to	perform	the	analysis.	And	correlations	are	used	
to	 represent	 the	 links	 among	 functional	 goals	 and	 softgoals.	 Correlation	 links	
have	 different	 influence	 labels	 (‐‐,‐,?,+,++).	 Those	 qualitative	 labels	 are	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 8

converted	 to	 quantitative	 values:	 one	 value	 for	 satisfiability	 and	 another	 for	
deniability.	

Benavides	 et	 al	 (2005)	 [6]	 define	 a	 feature	 model’s	 extension	 with	 so‐
called	extra‐functional	features	representing	non‐functional	features.	Proposes	
a	 notation	 that	 extends	 feature	 models	 with	 attributes,	 characteristics	 of	 a	
feature	that	can	be	measured	such	as	availability,	cost,	latency,	bandwidth	and	
relations	 among	 attributes.	 Every	 feature	 may	 have	 one	 or	 more	 attribute	
relations	 taking	a	range	of	values	 in	either	discrete	or	continuous	domains.	 It	
also	provides	automatic	reasoning	on	those	extended	feature	models	using	CSP	
(Constraint	Satisfaction	Problems).		

Jarzabek	et	al	(2006)	[38]	propose	the	Feature‐Softgoal	 Interdependency	
Graph	 (F‐SIG),	 which	 provides	 a	 framework	 to	 record	 design	 rationale	 by	
expressing	 dependencies	 between	 variable	 features	 and	 quality	 attributes.	
They	propose	a	new	graph:	F‐SIG,	a	union	of	a	feature	model	and	a	SIG	(Softgoal	
interdependency	 graph).	 In	 F‐SIG	 explicit	 and	 implicit	 contributions	 from	
features	to	quality	attributes	are	modeled.	To	express	the	degree	of	 influence,	
correlations	may	also	have	a	label	(break:	‐‐,	hurt:	‐,	unknown:	?,	Help:	+,	Make:	
++).	

Etxebarria	et	al	(2008)	[20]	proposes	an	approach	extending	the	features	
model	consisting	on	a	features	model	that	merges	functional	requirements	and	
quality	attributes,	and	allows	expressing	variability	of	quality	attributes	(define	
quality	attributes	 that	can	be	mandatory	 for	each	product	of	 the	product	 line,	
the	 levels	 that	 those	 quality	 attributes	 can	 achieve	 and	 the	 impact	 among	
functional	variants	and	quality	attributes).	

Raaitikainen	 et	 al	 (2008)	 [60]	 define	 the	 Svamp	 approach	 to	 model	
functional	 and	 non‐functional	 variability	 at	 the	 architectural	 level	 of	 the	 SPL.	
This	is	achieved	by	defining	a	multi‐model	with	three	main	views:	a	Kumbaug	
model	to	represent	the	functional	and	structural	variability	in	the	architecture;	
a	quality	model	 to	specify	 the	quality	attributes	and	a	quality	variability	view	
for	expressing	the	variability	in	these	quality	attributes.	

Tawhid	and	Petriu	(2011)	[66]	define	an	approach	that	introduce	a	multi‐
model	 that	 includes	 the	 quality	 perspective	 to	 a	 multi‐view	 UML	 model	
representing	the	core	family	assets	of	a	SPL,	called	the	SPL	model.	This	quality	
perspective	is	achieved	by	annotating	the	UML	using	the	MARTE	profile.	They	
apply	ATL	transformations	to	obtain	first	the	UML	model	of	a	specific	product	
with	 the	 MARTE	 annotations.	 A	 second	 transformation	 generates	 the	
performance	model	for	analyzing	its	performance.		

In	Summary,	The	majority	of	the	approaches	consider	only	the	variability	
view	 as	 the	 way	 of	 expressing	 the	 functionality	 of	 an	 SPL,	 establishing	
relationships	 between	 quality	 and	 variability	 view.	 In	 those	 approaches	 the	
quality	 is	 not	 addressed	 at	 core	 asset	 so	 we	 cannot	 define	 relationships	
between	 quality	 attributes	 of	 the	 core	 assets	 and	 quality	 attributes	 of	 the	
product.	 Only	 the	 approach	 Tawhid	 and	 Petriu	 (2011)	 considers	 the	
relationships	 with	 core	 assets,	 however	 only	 allows	 the	 definition	 of	 quality	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 9

attributes	 through	 MARTE	 annotations,	 which	 means	 that	 only	 simple	
relationships	 and	 with	 a	 reduced	 set	 of	 performance	 attributes	 can	 be	
addressed.	 Only	 the	 work	 from	 Benavides	 et	 al	 (2005)	 has	 the	 purpose	 of	
describing	 the	 product	 line	 for	 analyzing	 and	 also	 for	 providing	 guidance	
during	 product	 configuration,	 obtaining	 the	 product	 that	 meet	 some	
constraints.	The	FAMA	tool	based	in	this	approach	is	quite	useful	for	analyzing	
feature	models	(i.e.	if	a	given	features	model	annotated	with	quality	attributes	
and	constraint	has	valid	configurations	etc.)	

2.2. Quality in model transformation Processes

In	this	section	we	analyze	some	proposals	that	deal	with	the	quality	of	model	
transformations	from	the	perspective	of	a	quality	attribute		

Zou	 and	 Kontogiannis	 (2003)	 [69]	 proposed	 a	 quality‐driven	
reengineering	 framework	 for	 object‐oriented	 migration.	 Analysis	 tools,	
transformation	rules,	and	non‐functional	requirements	for	the	target	migration	
systems	characterize	this	framework.	During	the	migration	process,	the	source‐
code	 transformation	 rules	 are	 associated	 with	 quality	 features	 of	 the	 target	
system	(i.e.,	coupling	and	cohesion).	This	approach	was	applied	to	transform	a	
set	of	GNU	AVL	libraries	into	an	UML	class	diagram.		

Röttger	and	Zschaler	(2004)	[61]	proposed	an	approach	for	refining	non‐
functional	 requirements	 based	 on	 the	 definition	 of	 context	 models	 and	 their	
transformations.	 This	 approach	 has	 been	 defined	 in	 a	 software	 development	
process	 that	 separates	 the	 roles	 of	 the	 measurement	 designer	 and	 the	
application	designer.	It	is	the	measurement	designer’s	responsibility	to	specify	
measurements,	 context	 models	 and	 transformations	 among	 these	 models.	
Then,	the	application	designer	can	apply	the	transformations	when	developing	
a	 system.	 They	 defined	 a	 XML‐based	 language	 for	 the	 specification	 of	
transformations	 between	 abstract	 and	 concrete	 context	 models.	 The	
transformations	used	the	response	time	quality	attribute		

Merilinna	 (2005)	 [49]	 proposed	 a	 tool	 for	 quality‐driven	 model	
transformations	for	software	architectures.	Two	types	of	quality	attributes	are	
considered:	 attributes	 related	 to	 software	 execution	 (e.g.,	 performance,	
availability,	 reliability)	 and	 attributes	 related	 to	 software	 evolution	 (e.g.,	
maintenance,	 modifiability,	 reusability).	 The	 transformations	 are	 described	
according	 to	 MDA	 and	 a	 proprietary	 transformation	 rule	 language.	 The	
approach	 only	 considers	 horizontal	 transformations	 (PIM‐to‐PIM	
transformations).	

Kurtev	 (2005)	 [43]	 proposed	 a	 formal	 technique	 for	 the	 definition	 of	
transformation	spaces	that	support	the	analysis	of	alternative	transformations	
for	a	given	source	model.	This	technique	provides	operations	for	the	selection	
and	 reduction	 of	 transformation	 spaces	 based	 on	 certain	 desirable	 quality	
properties	of	 the	resulting	target	model.	Specifically,	 this	approach	deals	with	
the	 adaptability	 of	 model	 transformations.	 To	 generate	 the	 transformation	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 10

space,	 the	 process	 takes	 a	 source	 model	 and	 its	 metamodel,	 the	 target	
metamodel,	and	the	quality	properties	as	input.	The	proposal	has	been	applied	
to	a	set	of	transformations	to	obtain	XML	schemas	from	UML	class	diagrams.	

Markovic	 and	Baar	 (2005)	 [44]	defined	a	 set	 of	 transformation	 rules	 for	
the	 refactoring	of	UML	class	diagrams.	The	rules	have	been	defined	using	 the	
Query/View/Transformation	 (QVT)	 standard	 of	 OMG	 (OMG,	 2005).	 The	
refactoring	 is	 applied	 to	 UML	 class	 diagrams	 containing	 annotated	 OCL	
constraints	 that	 are	 preserved	 when	 the	 transformations	 are	 applied.	
Therefore,	the	syntactical	correctness	of	the	target	model	is	preserved.	

Similar	 to	 this	proposal,	 Ivkovic	and	Kontogiannis	(2006)	[37]	presented	
an	 approach	 for	 the	 refactoring	 of	 software	 architectures	 using	 model	
transformations	and	semantic	 annotations.	 In	 this	 approach,	 the	architectural	
view	 of	 a	 software	 system	 is	 represented	 as	 a	 UML	 profile	 with	 its	
corresponding	 stereotypes.	 Then,	 the	 instantiated	 architectural	 models	 are	
annotated	 using	 elements	 of	 the	 refactoring	 context,	 including	 soft	 goals,	
metrics,	 and	 constraints.	 Finally,	 the	 actions	 that	 are	 most	 advisable	 for	 a	
refactoring	 context	 are	 applied	 after	 being	 selected	 from	 a	 set	 of	 possible	
refactorings.	The	proposal	has	been	applied	to	a	case	study	to	demonstrate	that	
the	refactoring	transformations	improve	the	maintenance,	performance	and	the	
security	of	a	software	system.	

Kerhervé	 et	 al.	 (2006)	 [40]	 proposed	 a	 general	 framework	 for	 quality‐
driven	delivery	of	distributed	multimedia	systems.	The	 framework	focuses	on	
Quality	 of	 Services	 (QoS)	 information	 modeling	 and	 transformations.	 The	
transformations	between	models	express	the	relationships	among	the	concepts	
of	the	different	quality	 information	models.	These	relationships	are	defined	in	
quality	dimensions	and	are	used	to	transform	instances	of	a	source	model	to	a	
target	model.	Different	types	of	transformations	are	applied	to	different	layers	
and	 services:	 vertical	 transformations	 are	 applied	 to	 transform	 information	
between	 the	 different	 layers	 (user,	 service,	 system,	 and	 resource),	 and	
horizontal	 transformation	 is	 applied	 to	 interchange	 information	 between	
services	of	the	same	layer.	

Maswar	 et	 al.	 (2007)	 [45]	 define	 an	 approach	 to	 refactoring	 software	
architectures	using	model	transformations.	The	approach	is	based	on	applying	
architectural	 patterns	 to	 refine	 architecture	 elements	 such	 that	 the	 overall	
system	 quality	 properties	 (e.g.	 reliability,	 performance,	 etc.)	 are	 improved	
while	 the	 system’s	 external	 behavior	 is	 preserved.	 The	 process	 consist	 on	
measure	the	levels	of	some	quality	attributes,	and	if	those	levels	are	below	the	
requirements,	 then	 apply	 a	 transformation	 and	 reevaluate.	 This	 process	
continues	until	the	levels	meet	the	requirements.	

Abrahão	 et	 al.	 (2008)	 [1]	 had	 proposed	 an	 approach	 to	 drive	 the	model	
transformations	 based	 on	 quality	 attributes.	 This	 approach	 has	 been	
empirically	validated	in	a	specific	set	of	transformation	rules	in	order	to	obtain	
UML	Class	diagrams	starting	from	a	requirements	model.	The	main	objective	of	
the	experiments	was	obtaining	empirical	evidence	about	 the	appropriate	 rule	
selection	 and	 how	 this	 selection	 can	 improve	 the	 understandability	 of	 the	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 11

obtained	UML	Class	Diagrams.	The	 transformation	 rules	where	 defined	 using	
MOMENT	platform.	In	this	work,	the	authors	present	a	generic	architecture	for	
quality‐driven	 model	 transformations.	 Using	 a	 controlled	 experiment	
empirically	validates	 that	alternative	 transformations	can	affect	 to	 the	quality	
of	 the	 output	 artifacts	 and	 uses	 the	 information	 gathered	 during	 these	
controlled	experiments	as	additional	inputs	of	the	transformation	process.	This	
information	will	feed	the	transformation	process	with	the	criteria	to	choose	the	
alternative	transformation	that	maximize	the	selected	quality	attribute.	

Finally	Drago	 et	 al	 (2011)	 [19]	 presents	 and	 approach	 for	 searching	 the	
solution	 space	 in	model	 transformation	 processes,	 where	 design	 alternatives	
exist,	trying	to	find	solution	that	satisfies	some	quality	attributes.	The	work	is	
an	 extends	 a	 previous	 work,	 in	 this	 case,	 the	 authors	 had	 extend	 QVT‐
Operational	adding	the	variation	point	(alternative	transformations	exist)	and	
variant	(one	alternative	transformation)	concepts	and	the	ability	of	evaluating	
quality	attributes	through	the	operationalization	of	metrics.	The	output	of	 the	
transformation	process	is	a	set	of	models	that	fits	the	quality	attributes,	and	the	
user	must	decide	which	one	satisfies	his	needs.	

In	summary,	some	proposals	focus	on	defining	horizontal	transformations	
for	 model	 refactoring	 (Merilinna	 2005)	 (Markovic	 &	 Baar	 2005)	 (Ivkovic	 &	
Kontogiannis	 2006)	 (Maswar	 et	 al.	 2007).	 Other	 proposals	 are	 aimed	 at	
providing	 vertical	 transformations	 for	model	 refinement	 (Rottger	&	 Zschaler,	
2004),	synthesis	(Kerhervé	et	al.,	2006)	(Kurtev,	2005),	or	reverse	engineering	
(Zou	 &Kontogiannis,	 2003).	 Of	 these	 studies,	 only	 the	 one	 by	 Kurtev	 (2005)	
presents	a	more	systematic	approach	for	selecting	alternative	transformations	
according	to	a	given	quality	attribute.	

All	these	approaches	propose	quality	criteria	that	can	be	used	to	drive	the	
transformations,	but	very	few	of	these	approaches	(Kurtev,	2005)	(Markovic	&	
Baar,	2005)	(Maswar,	2007)	(Drago	2011)	illustrate	them	by	means	of	practical	
examples.	With	 the	 exception	 of	 (Markovic,	 Baar	 ,2005),	 (Kurtev,	 2005)	 and	
(Maswar	 2007)	 the	 transformations	 are	 poorly	 defined.	 Therefore,	 more	
systematic	approaches	to	ensure	quality	in	MDA	processes	are	needed.	Another	
weakness	 of	 these	 proposals	 is	 that	 they	 are	 not	 empirically	 validated.	 The	
practical	 applicability	 of	 model	 transformations	 is	 reported	 based	 on	 the	
intuition	of	the	researcher.		

2.3. Discussion

From	a	general	interpretation	of	the	state	of	the	art	of	the	interrelated	field	of	
software	 product	 line	 development,	 quality	 assurance	 and	 evaluation	 and	
MDSD,	the	conclusions	that	influence	our	work	are	the	following:	

 Most	of	the	works	trying	to	introduce	quality	in	SPL	development	
make	a	partial	coverage	of	the	development	process	focusing	only	
in	the	description	of	the	impact	that	the	features	have	over	quality	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 12

attributes.	 Those	 approaches	 do	 not	 address	 the	 impact	 that	 the	
quality	of	core	assets	has	over	the	final	product.	

 In	general	the	works	dealing	with	quality	attributes	in	SPL	have	the	
purpose	 of	 analyzing	 the	 properties	 of	 the	 products	 rather	 than	
trying	 to	 offer	 a	 integrated	 solution	 for	 obtaining	 the	 final	
products,	or	at	least	models	that	describe	the	final	product	and	that	
are	 the	 input	 of	 other	 model	 transformation	 or	 code	 generation	
processes.	

 Works	 covering	 the	 introduction	 of	 quality	 attributes	 as	 decision	
factor	 when	 selecting	 among	 alternatives	 very	 often	 are	 quite	
specific,	 focusing	 only	 in	 a	 concrete	 transformation	 or	 trying	 to	
improve	one	quality	attribute.	

The	global	state	of	 the	art	 in	 the	 field	motivates	our	work	to	propose	an	
approach	introducing	the	quality	as	an	additional	active	view	in	SPL.	In	addition	
the	 revision	 of	 the	 different	 research	 works	 has	 guided	 us	 regarding	 the	
concepts	and	notations	to	be	used	for	modeling	that	view	and	for	 introducing	
the	quality	attributes	as	decision	factor	for	selecting	among	design	alternatives	
in	SPL	development.		

	 	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 13

Chapter 3. Software Product Lines
Engineering

The	 production	 of	 quality	 software,	 on	 time,	 and	 within	 budget,	 remains	 an	
open	problem	of	Software	Engineering	that	has	been	addressed	from	different	
approaches.	An	industrial	approach	to	this	problem	is	to	use	Software	Product	
Lines	 (SPL).	 Software	 product	 lines	 engineering	 (SPLE)	 is	 a	 software	
engineering	 paradigm	 institutionalizing	 reuse	 throughout	 the	 software	
lifecycle.		

This	 chapter	describes	 the	Software	Product	Line	Engineering	paradigm,	
its	main	activities,	the	inputs	and	outputs	of	each	activity,	production	plans	and	
variation	mechanisms.		

The	 chapter	 is	 organized	 as	 follows:	 In	 Section	 3.1	 we	 introduce	 the	
historical	perspective	of	the	Product	Line	paradigm.	In	Section	3.2	we	describe	
the	 Software	 Product	 Line	 Engineering	 paradigm,	 its	 main	 activity	 and	 its	
variation	mechanisms	for	SPL	development.		

3.1. Historical Perspective

Until	the	days	of	industrial	revolution	the	production	of	goods	was	based	on	the	
craftsmanship	and	produced	for	individual	customers.	This	production	method	
increases	dramatically	the	cost	of	 the	 final	product	due	to	 the	time	consumed	
and	 the	 specialization	 needed	 in	 each	 process.	 After	 the	 first	 industrial	
revolution,	 with	 the	 introduction	 of	 production	 machinery	 and	 the	 batch	
production,	the	production	of	series	of	products	became	more	and	more	cheap.	
By	 and	 by	 the	 number	 of	 people	who	 could	 afford	 those	 products	 increased,	
and	with	this,	the	number	of	goods	produced.		

The	 solution	 to	 this	 problem	 was	 the	 assembly	 line	 introduced	 by	 Eli	
Whitney,	and	its	adoption	as	production	line	by	Ford	Motor	Company	between	
1908	 and	 1915	 for	 its	 new	 Ford	Model	 T.	 These	 new	 production	 techniques	
enabled	 mass	 production	 much	 more	 cheaply	 than	 individual	 handcrafted	
product	 creation.	 However	 the	 production	 line	 reduced	 the	 customization	
possibilities.	People	were	content	with	standardized	mass	products	for	a	while	
–	but	not	all	people	want	the	same	kind	of	product	for	any	purpose.	If	we	return	
to	 the	 automotive	 industry,	 it’s	 easy	 to	 realize	 that	 different	 customers	 need	
different	 cars	 that	 fit	 their	 needs	 (familiar,	 sportive,	 and	 so	 on).	 The	market	
needs	 introduced	 the	 need	 for	 individual	 customized	 products.	 This	 was	 the	
beginning	 of	 mass	 customization.	 Mass	 customization	 is	 the	 large‐scale	
production	 of	 goods	 tailored	 to	 individual	 customers’	 needs.	 This	 can	 be	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 14

achieved	in	many	different	ways,	for	example	by	reusing	parts	by	combination,	
in	 order	 to	 obtain	 different	 products	 in	 close	 accordance	 with	 customers’	
wishes.	 Customization	 under	 the	 customer	 perspective	 means	 the	 ability	 of	
having	individualized	products.	Customization	under	the	company	perspective	
means	 higher	 technological	 investments,	which	 leads	 to	 higher	 prices	 for	 the	
individual	 products	 and/or	 to	 lower	 profit	 margins	 for	 the	 company.	 Both	
effects	 are	 undesirable.	 The	 solution	 adopted	 in	 the	 automotive	 industry	was	
the	 introduction	 of	 common	 platforms	 for	 their	 different	 types	 of	 cars	 by	
planning	beforehand	which	parts	will	be	used	in	different	car	types.	The	idea	is	
to	have	an	skeleton	where	 later	more	parts	will	be	added,	obtaining	different	
configurations	of	products.		

Software	 Industry	 suffered	 of	 the	 same	 problems	 than	 any	 other	
production	 industry.	 It	 requires	 the	 ability	 of	 producing	 highly	 customized	
products,	which	cannot	be	created	using	mass	production.	The	combination	of	
mass	customization	and	a	common	platform	allows	us	to	reuse	a	common	base	
of	technology	and,	at	the	same	time,	to	bring	out	products	in	close	accordance	
with	customers’	wishes.	The	systematic	combination	of	mass	customization	and	
the	 use	 of	 a	 common	 platform	 for	 the	 development	 of	 software‐intensive	
systems	 and	 software	 products	 is	 the	 key	 of	 the	 software	 development	
paradigm	software	product	line	engineering	[56].	

3.2. Software Product Line Engineering

A	 software	 product	 line	 is	 a	 set	 of	 software‐intensive	 systems	 sharing	 a	
common,	managed	set	of	features	that	satisfy	the	needs	of	a	particular	market	
segment	or	mission	and	that	are	developed	from	a	common	set	of	core	assets	in	
a	 prescribed	 way.	 Software	 product	 lines	 engineering	 (SPLE)	 is	 a	 software	
engineering	 paradigm	 institutionalizing	 reuse	 throughout	 the	 software	
lifecycle.	

Each	product	is	formed	by	taking	applicable	components	from	the	base	of	
common	 assets,	 tailoring	 them	 as	 necessary	 through	 preplanned	 variation	
mechanisms	such	as	parameterization	or	inheritance,	adding	new	components	
that	may	be	necessary	and	assembling	the	collection	according	to	the	rules	of	a	
common,	 product	 line	 wide	 architecture.	 Building	 a	 new	 product	 (system)	
becomes	more	 a	matter	 of	 assembly	 or	 generation	 than	 one	 of	 creation:	 the	
predominant	 activity	 is	 integration	 rather	 than	 programming.	 For	 each	
software	product	line	there	is	a	predefined	guide	or	plan	that	specifies	the	exact	
product‐building	approach.	

3.2.1. SPL Engineering Essential activities:

The	 development	 of	 Product	 Lines	 involves	 three	main	 activities:	 Core	 Asset	
Development,	 Product	 Development	 and	 Management.	 Figure	 1	 shows	 the	
schemas	 of	 the	 3	 main	 activities	 of	 the	 SPLE,	 the	 three	 activities	 are	 linked	
together,	 in	 perpetual	 motion;	 they	 can	 occur	 in	 any	 order	 and	 are	 highly	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 15

iterative.	Core	assets	and	product	development	have	a	strong	connection	since	
the	 development	 of	 new	 products	 can	 refresh	 the	 core	 assets	 repository	 and	
new	 core	 assets	 or	 modifications	 in	 a	 given	 asset	 may	 allow	 the	 SPL	 the	
production	of	new	products.	The	diagram	is	neutral	in	regard	to	which	activity	
takes	part	first.	It	depends	on	the	nature	of	the	organization	and	the	production	
strategy.	In	some	cases,	the	starting	point	is	a	set	of	products,	mined	for	generic	
assets	which	are	migrated	 into	the	product	 line	core	asset	 inventory.	 In	other	
cases	the	core	assets	may	be	developed	or	procured	for	later	use	in	the	product	
development	activity,	as	will	be	stated	in	section	3.2.1.1.	

	
Figure 1. Main activities in SPL Engineering

	

3.2.1.1. Core Asset Development:

The	 goal	 of	 the	 core	 asset	 development	 activity	 is	 to	 establish	 a	 production	
capability	 for	 products.	 There	 are	 three	 main	 outcomes	 of	 the	 core	 asset	
development	activity.	Figure	2	shows	the	inputs	and	outputs	of	the	core	asset	
development	activity	and	its	main	schema.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 16

	
Figure 2. Core Asset Development

	

 Product	 line	 scope:	 The	 product	 line	 scope	 is	 a	 description	 of	 the	
products	that	will	constitute	the	product	line	or	that	the	product	line	is	
capable	 of	 including.	 At	 its	 simplest,	 scope	 may	 consist	 of	 an	
enumerated	list	of	product	names.	Typically,	this	description	is	cast	in	
terms	of	the	things	that	the	products	all	have	in	common	and	the	ways	
in	which	they	vary	from	one	to	another.	These	might	 include	features	
or	 operations	 they	 provide,	 performance	 or	 other	 quality	 attributes	
they	exhibit,	platforms	on	which	they	run	and	so	on.	The	scope	of	the	
product	 line	 may	 vary	 as	 the	 market	 evolves	 or	 changes	 or	 as	 the	
organizations	plans	change.	Evolving	the	scope	is	the	starting	point	of	
evolving	the	product	line	itself.	

 Core	assets:	Core	assets	are	the	basis	for	production	of	products	in	the	
product	 line.	 Those	 assets	 may	 include	 a	 base	 architecture	 that	 the	
products	in	the	product	line	will	share	as	well	as	software	components	
that	 are	developed	 for	 systematic	 reuse	 across	 the	product	 line.	 Test	
plans,	 test	 cases	 and	 all	 manner	 of	 design	 documentation,	
Requirements	specification	and	domain	models,	are	considered	also	as	
core	assets	under	the	SPL	perspective.	Commercial	off‐the‐self	(COTS)	
components,	if	adopted,	also	constitute	core	assets.	Each	core	asset	has	
associated	with	it	an	attached	process	describing	the	way	it	will	be	used	
in	the	development	of	products.	

Among	those	core	assets,	the	architecture	warrants	special	treatment.	
Product	 Line	Architecture	 is	 a	 software	 architecture	 that	will	 satisfy	
the	need	of	the	product	line	in	general	and	the	individual	products	in	
particular	by	explicitly	admitting	a	set	of	variation	points	required	to	
support	the	spectrum	of	products	within	 the	scope.	The	product	 line	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 17

architecture	 plays	 a	 special	 role	 among	 the	 other	 core	 assets.	 It	
specifies	 the	 structure	 of	 the	 products	 in	 the	 product	 lines	 and	
provides	interface	specifications	for	the	components	that	will	be	in	the	
asset	base.	Producing	a	product	line	architecture	requires	the	product	
line	scope;	a	knowledge	of	relevant	styles,	patterns	and	 frameworks;	
and	any	available	inventory	of	pre‐existing	assets.	

 Production	 plan:	 a	 production	 plan	 describes	 how	 a	 product	 is	
derived	 from	 the	 core	 assets.	 The	 production	 plan	 orchestrates	 the	
core	assets’	attached	processes	for	deriving	a	product.	It	describes	the	
overall	scheme	for	how	these	processes	can	be	fitted	together	to	build	
a	product.	 In	fact	 is	 the	guideline	which	defines	the	way	of	reusing	to	
product	 development	 within	 the	 product	 line.	 The	 production	 plan	
depends	 on	 the	 nature	 that	 the	 core	 assets	 can	 be	 tailored	 when	
deriving	 a	 product.	 There	 different	 variation	 mechanisms	 that	 allow	
core	 assets	 to	 be	 parameterized	 will	 be	 discussed	 in	 section	 3.2.2.	
Figure	3	shows	an	schema	of	the	attached	processes	associated	to	each	
asset	and	its	combination	in	the	production	plan	for	a	specific	product.		

	
Figure 3. Attached processes and production plan

	

The	main	inputs	for	the	core	asset	development	are	five:	

 Product	 constraints:	 Commonalities	 and	 variation	 that	
constitute	 the	 product	 line,	 behavioral	 feature,	 future	
improvements	and	technology	forecasts,	standards	to	accomplish,	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 18

performance	 limits,	 external	 systems	 to	 interface,	 physical	
constraints,	quality	requirements,	and	so	on.	

 Styles	 and	 patterns:	An	 architectural	 pattern	 in	 software,	 also	
known	as	 an	 architectural	 style,	 is	 analogous	 to	 an	 architectural	
style	in	buildings,	such	as	Romanic,	Gothic	or	Greek‐Revival	[4].	It	
consists	 on	 a	 set	 of	 key	 features	 and	 rules	 for	 combining	 them.	
Architectures	are	often	built	by	applying	patterns	and	styles	that	
solve	 specific	 problems	 [63].	 An	 architectural	 style	 defines	 a	
family	 of	 s	 uch	 systems	 in	 terms	 of	 a	 pattern	 or	 structural	
organization.	 Moreover,	 each	 architectural	 style	 has	 its	 own	
properties;	 including	 how	well	 suited	 each	 style	 is	 for	 achieving	
specific	 quality	 attributes.	 Design	 patterns	 play	 a	 similar	 role	 at	
design	 level,	with	 finer	granularity	 [14].	An	architectural	pattern	
expresses	 a	 fundamental	 structural	 organization	 schema	 for	
software	 systems.	 It	 describes	 a	 particular	 recurring	 design	
problem	 that	 arises	 in	 specific	 design	 contexts,	 and	 presents	 a	
well‐proven	 generic	 scheme	 for	 its	 solution.	 Patterns	 are	 more	
detailed	or	less	abstract	than	styles	[11].	

 Production	 Constraints:	 Standards	 that	 must	 accomplish,	
infrastructures	 on	 which	 the	 products	 must	 be	 built,	 time	 to	
market	requirements	and	so	on.	

 Production	 strategy:	 the	 production	 strategy	 specifies	 how	 to	
build	 the	 core	 assets.	 There	 are	 two	 major	 strategies:	 building	
assets	 and	 combining	 them	 for	 deriving	products	 (top‐down)	 or	
starting	with	a	set	of	products	and	generalizing	their	components	
to	 produce	 the	 assets	 (bottom‐up).	 The	 production	 strategy	will	
constrain	 the	 architecture	 and	 the	 product	 line	 itself,	 how	 it	
evolves	and	grows.	

 Inventory	 of	 preexisting	 assets:	 The	 organization	 can	 utilize	
(reuse)	 existing	 libraries,	 frameworks,	 algorithms,	 tools	 and	
component.	 Technical	 management	 processes,	 funding	 models,	
training	 resources	 can	 also	 be	 adapted	 for	 the	product	 line.	 The	
inventory	 includes	 all	 existing	 assets.	 Then	 its	 appropriateness	
must	be	analyzed	in	order	to	decide	whether	or	not	can	be	reused.	

3.2.1.2. Product Development

The	 product	 development	 activity	 depends	 on	 the	 three	 outputs	 of	 the	 core	
asset	 development	 activity:	 the	 product	 line	 scope,	 the	 core	 assets,	 and	 the	
production	plan	(plus	the	requirements	for	individual	products).	

A	software	product	line	is	a	set	of	related	products	but	how	they	are	built	
can	 vary	 greatly	 depending	 on	 the	 assets,	 the	 production	 plan	 and	 the	
organizational	context.	Figure	4	shows	the	schema	of	the	product	development	
activity,	the	different	SPL	inputs	and	the	output,	a	specific	derived	product.		

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 19

	
Figure 4. Product Development

	

3.2.1.3. Management

The	different	 activities	must	 be	 given	 resources,	 coordinated	 and	 supervised.	
Management	activity	can	be	divided	into	technical	(project)	and	organizational	
levels.	Technical	management	takes	care	of	the	core	asset	development	and	the	
product	 development	 activities	 by	 ensuring	 that	 the	 groups	 that	 build	 core	
assets	 and	 the	 groups	 that	 deploy	 the	 products	 are	 following	 the	 right	
procedures	and	track	the	process	in	the	right	way.	Organizational	management	
takes	 care	of	 the	 resource	allocation	 in	 the	different	 activities.	Organizational	
management	 also	 orchestrates	 the	 technical	 activities	 and	 iterations	 between	
essential	 activities	 of	 core	 asset	 development	 and	 product	 development.	
Organization	management	mitigates	 the	 riks	 that	 threaten	 the	 success	 of	 the	
product	line.		

Both	 technical	 and	organizational	management	 also	 contribute	 to	 the	
core	asset	base	by	making	available	for	reuse	those	management	artifacts	used	
in	developing	products	in	the	product	line.	

3.2.2. Variation Mechanisms

As	stated	before	one	of	the	key	concepts	in	SLPE	is	variability.	The	variability	in	
a	 SPL	 is	 not	 restricted	 to	 core	 asset	 combination;	 there	 are	 different	
mechanisms	 for	 achieving	 this	 variability.	 A.	 Nolan	 enumerates	 a	 list	 of	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 20

variability	mechanisms	used	in	Rolls‐Royce	for	supporting	variability	in	Safety	
Critical	Embedded	Systems	[57]:	

 Calibrated	(Constant	Data):	 Component's	behavior	 is	 altered	by	
manipulating	"constant"	data	values	to	 fine‐tune	the	performance	
of	the	component	to	match	the	domain.	This	is	NOT	used	to	switch	
in/out	 functionality,	 only	 to	 shape	 the	 component's	 algorithmic	
response.	

 Plug	Replaced:	 Multiple	 components	 are	 produced	 to	 the	 same	
interface	specification	to	allow	large‐scale	functional	replacement.	

 Auto‐coded:	Component	has	a	defined	interface	but	its	behavior	is	
specified	 by	 the	 project	 using	 a	 graphical	 programing	 language,	
and	the	component	implementation	is	auto	generated.	

 Composed:	 Component’s	 behavior	 can	 be	 varied	 by	 the	
inclusion/exclusion	 of	 code	 fragments	 and	 operations.	 The	 PL	
asset	 contains	 all	 permissible	 variations	 and	 mechanisms	 for	 a	
project	to	select	and	compose	the	required	behavior.	

 Generated	 (PL	 Generator):	 The	 PL	 assets	 are	 a	 restricted	
definition	 language	 (Domain	 Specific	 Language)	 and	 a	 code	
generator	which	 can	 produce	 components	 for	 a	 specific	 purpose.	
Projects	 define	 the	 required	 behavior	 in	 the	 restricted	 language	
and	 the	component	 is	auto‐generated.	This	 is	a	more	specific	and	
restricted	for	of	the	“Auto‐code”	shown	above	–	here	the	languages	
are	 typically	 mucho	 more	 specialized	 and	 defined	 by	 the	 PL	
organization	 rather	 than	 being	 a	 Commercial	off‐the‐shelf	 (COTS)	
auto‐code	product.	

	

	 	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 21

Chapter 4. Model Driven
Engineering and Technological spaces

Modeling	 is	not	a	new	idea	 in	software	development,	 it	 is	present	 in	software	
development	processes	since	many	years,	and	it	is	used	to	document	software’s	
inner	structure.	Those	models	were	seen	as	a	merely	documents	that	must	be	
fulfilled	during	 the	project	 lifecycle	or	as	reverse	engineering	 tools	 for	source	
code	visualization.	 Sometimes	models	are	 informal,	meaning	 that	 they	 cannot	
be	machine‐processed.	Programmers	use	them	as	guidelines	and	specifications,	
but	 not	 as	 something	 that	 directly	 contributes	 to	 production.	 Consequently	
many	 view	 them	 as	 peripheral	 to	 the	 production	 process.	 Model	 Driven	
Engineering	 is	 a	 discipline	 that	 relies	 on	 models	 not	 only	 as	 documentation	
artifacts	but	also	as	conductors	of	the	software	development	process.	The	effort	
resides	 on	 the	 modeling	 rather	 than	 on	 programing,	 raising	 the	 level	 of	
abstraction.	

This	 chapter	 describes	 all	 the	 concepts,	 standards	 and	 tools	 that	 are	
directly	related	to	the	work	proposed	along	the	work.	Specifically,	we	present	
the	Model	Driven	Engineering	and	Model	Driven	Architecture	paradigms,	and	
the	technology	related	to	the	work.		

The	chapter	is	organized	as	follows:	In	Section	4.1	we	describe	the	Model	
Driven	 Engineering	 discipline.	 In	 Section	 4.2	 we	 describe	 Model	 Driven	
Architecture	 standard.	 Finally,	 in	 Section	 4.3	 we	 describe	 the	 technological	
spaces	and	tools	directly	related	to	the	work	proposed	along	the	work.		

4.1. Model Driven Engineering

Model	Driven	Engineering	 (MDE)	 is	 a	 discipline	 of	 Software	 Engineering	 that	
relies	on	models	as	first	class	artifacts	and	that	aims	to	develop,	maintain	and	
evolve	software	by	means	of	model	transformations.	The	development	process	
under	MDE	is	called	Model	Driven	Software	Development	(MDSD).		

MDE	 offers	 a	 more	 effective	 approach;	 models	 are	 active	 parts	 of	 the	
software	 development	 process.	 Models	 are	 abstract	 and	 formal	 at	 the	 same	
time.	Abstractness	does	not	stand	for	vagueness	here,	but	for	compactness	and	
a	reduction	to	essence.	MDE	models	have	the	exact	meaning	of	program	code,	
in	the	sense	that	the	bulk	of	the	final	implementation,	not	just	class	and	method	
skeletons	can	be	generated	 from	them	[64].	 In	 this	case	models	are	no	 longer	
only	documentation	but	parts	of	the	software,	constituting	a	decisive	factor	 in	
increasing	both	the	speed	and	quality	of	software	development.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 22

A	 Model‐Driven	 approach	 requires	 languages	 for	 model	 specification,	
transformation	definition	and	metamodel	description.	MDE	proposes	the	use	of	
model	transformations	in	order	to	transform	one	model	into	another,	and	also	
to	produce	the	final	product.	

MDE	is	embraced	by	various	organizations	and	companies	including	OMG,	
IBM	and	Microsoft.	

There	are	five	things	an	MDE	supporting	infrastructure	must	define:	

 Concepts	 available	 for	 creating	 models	 and	 clear	 rules	 which	
govern	their	use.	

 The	notation	to	use	in	depicting	models.	

 It	has	to	be	clear,	how	the	model’s	elements	represent	real‐world	
elements	and	software	artifacts.	

 Concepts	to	 facilitate	dynamic	user	extensions	to	model	concepts,	
model	notation,	and	the	models	created	from	them.	

 Concepts	 to	 facilitate	 the	 interchange	 of	 models	 concepts	 and	
notation,	and	the	models	created	 from	concepts	 to	 facilitate	user‐
defined	mappings	from	models	to	other	artifacts.	

4.2. Model Driven Architecture

Model	 Driven	 Architecture	 (MDA),	 as	 stated	 before,	 is	 included	 in	 the	 MDE	
definition.	The	MDA	standard	from	the	Object	Management	Group	(OMG)	is	just	
a	specific	incarnation	of	the	Model	Driven	Engineering.	

MDA	is	a	young	standard	established	by	the	OMG.	The	OMG	was	founded	
in	 1989	 and	 is	 an	 open	 consortium	 currently	 of	 about	 800	 companies	
worldwide.	 The	 OMG	 creates	 manufacturer‐independent	 specifications	 to	
improve	the	interoperability	and	portability	of	software	systems.	

MDA	is	about	using	modeling	languages	as	programming	languages	rather	
than	merely	 as	 design	 languages.	 Programming	with	modeling	 languages	 can	
improve	the	quality	and	the	speed	of	software	development.	

The	objective	of	MDA	is	to	decouple	the	way	that	application	systems	are	
defined	from	the	technology	they	run	on	[47].	

The	 MDA	 starts	 with	 the	 well‐known	 and	 long	 established	 idea	 of	
separating	the	operational	specification	of	a	system	from	the	details	of	the	way	
that	system	uses	the	capabilities	of	its	platform.		

Software‐platform	 independence	 is	 analogous	 to	 hardware‐platform	
independence.	A	hardware‐platform	 independent	 language,	 such	as	C	or	 Java,	
enables	the	writing	of	a	specification	that	can	execute	on	a	variety	of	hardware	
platforms	with	 no	 change.	 In	 the	 same	way	 a	 software‐platform‐independent	
language	enables	the	writing	of	a	specification	that	can	execute	on	a	variety	of	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 23

software	 platforms,	 or	 software	 architecture	 designs,	 with	 no	 change.	 So,	 a	
software‐platform‐independent	 specification	 could	 be	 mapped	 to	 a	
multiprocessor	/	multitasking	CORBA	environment,	or	a	client‐server	relational	
database	environment,	with	no	change	to	the	model.	

In	general,	 the	data	organization	and	processing	 implied	by	a	conceptual	
model	may	not	be	 the	same	as	 the	organization	of	 the	data	and	processing	 in	
implementation.	 If	 we	 consider	 two	 concepts,	 those	 of	 “customer”	 and	
“account,”	modeling	them	as	classes	using	the	UML	suggests	that	the	software	
solution	should	be	expressed	in	terms	of	software	classes	named	Customer	and	
Account.	 However,	 there	 are	 many	 possible	 software	 designs	 that	 can	 meet	
these	 requirements,	 many	 of	 which	 are	 not	 even	 object‐oriented.	 Between	
concept	and	implementation,	an	attribute	may	become	a	reference;	a	class	may	
be	 divided	 into	 sets	 of	 object	 instances	 according	 to	 some	 sorting	 criteria;	
classes	 may	 be	 merged	 or	 split;	 state‐charts	 may	 be	 flattened,	 merged,	 or	
separated;	 and	 so	 on.	 A	 modeling	 language	 that	 enables	 such	 mappings	 is	
software‐platform	independent.	

Raising	the	level	of	abstraction	changes	the	platform	on	which	each	layer	
of	abstractions	depends.	Model‐based	development	 relies	on	 the	 construction	
of	 models	 that	 are	 independent	 of	 their	 software	 platforms,	 which	 include	
client‐server	 relational	 database	 environments,	 and	 the	 very	 structure	 of	 the	
final	code	[48].	

MDA	provides	an	approach	for,	and	enables	tools	to	be	provided	for:	

 specifying	a	system	independently	of	the	platform	that	supports	it,	

 specifying	platforms,	

 choosing	a	particular	platform	for	the	system,		

 And	 finally	 transforming	 the	 system	 specification	 into	 one	 for	 a	
particular	platform.	

The	 three	 primary	 goals	 of	 MDA	 are	 portability,	 interoperability	 and	
reusability	through	architectural	separation	of	concerns.	

The	 MDA	 development	 life	 cycle,	 does	 not	 look	 very	 different	 from	 the	
traditional	 life	 cycle.	 The	 same	 phases	 are	 identified.	 One	 of	 the	 major	
differences	 lies	 on	 the	 nature	 of	 the	 artifacts	 that	 are	 created	 during	 the	
development	process.	The	artifacts	are	formal	models,	 i.e.,	models	that	can	be	
understood	by	computers	[40].		

As	 conclusion	 MDA	 is	 an	 approach	 to	 system	 development,	 which	
increases	 the	 power	 of	 models	 in	 that	 work.	 It	 is	 model‐driven	 because	 it	
provides	 a	 means	 for	 using	 models	 to	 direct	 the	 course	 of	 understanding,	
design,	construction,	deployment,	operation,	maintenance	and	modification.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 24

4.2.1. MDA Viewpoints

A	viewpoint	on	a	 system	 is	 a	 technique	 for	abstraction	using	a	 selected	 set	 of	
architectural	 concepts	 and	 structuring	 rules,	 in	 order	 to	 focus	 on	 particular	
concerns	 within	 that	 system.	 The	 Model‐Driven	 Architecture	 specifies	 three	
viewpoints	 on	 a	 system,	 a	 computation	 independent	 viewpoint,	 a	 platform	
independent	viewpoint	and	a	platform	specific	viewpoint	[51].	

4.2.1.1. Computation Independent Viewpoint

The	 computation	 independent	 viewpoint	 focuses	 on	 the	 environment	 of	 the	
system,	and	 the	 requirements	 for	 the	 system;	 the	details	of	 the	structure	and	
processing	are	hidden	or	as	yet	undetermined.	

4.2.1.2. Platform Independent Viewpoint

The	 platform	 independent	 viewpoint	 focuses	 on	 the	 operation	 of	 a	 system	
while	 hiding	 the	 details	 necessary	 for	 a	 particular	 platform.	 A	 platform	
independent	view	shows	that	part	of	 the	complete	specification	 that	does	not	
change	from	one	platform	to	another.	A	platform	independent	view	may	use	a	
general	purpose	modeling	language,	or	a	language	specific	to	the	area	in	which	
the	system	will	be	used.	

4.2.1.3. Platform Specific Viewpoint

The	platform	specific	viewpoint	combines	the	platform	independent	viewpoint	
with	 an	 additional	 focus	 on	 the	 detail	 of	 the	 use	 of	 a	 specific	 platform	 by	 a	
system.	

4.2.2. Models in MDA

The	first	class	artifacts	in	Model	Driven	Engineering	are	models.	The	first	thing	
to	do	 is	 to	define	what	a	model	 is.	A	model	 is	a	 simplification	 (or	an	abstract	
description)	of	a	part	of	the	world	named	system,	built	with	an	intended	goal	in	
mind.	A	model	should	be	easier	to	use	and	understand	than	the	original	system,	
should	be	able	to	answer	questions	about	the	system.	The	answers	provided	by	
the	model	should	be	exactly	the	same	as	those	given	by	the	system	itself	[62],	
[7].	Models	may	 consist	 of	 a	 set	 of	 elements	with	 a	 graphical	 and/or	 textual	
representation.	While	this	serves	as	a	starting	point,	Kleppe	et	al.	 [40]	gives	a	
definition	even	more	directed	to	MDSD	A	model	 is	a	description	of	a	(part	of)	
systems	 written	 in	 a	 well‐defined	 language.	 A	 well‐defined	 language	 is	 a	
language	with	well‐defined	 form	 (syntax),	 and	meaning	 (semantics),	which	 is	
suitable	for	automated	interpretation	by	a	computer.	

The	idea	of	MDA	is	creating	different	models	of	a	system	at	different	levels	
of	abstraction.	Each	model	represents	a	given	aspect	of	the	system.		

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 25

According	to	those	definitions,	source	code	is	a	model	too.	Source	code	is	a	
simplified	representation	of	the	lower‐machine	structures	and	operations	that	
are	required	to	automate	the	tasks	in	the	real	world.	Moreover,	correct	source	
code	 is	a	very	useful	model	since	 it	 tells	 the	machine	what	actions	need	to	be	
taken	to	maintain	the	system’s	goal.	

4.2.3. Kind of models:

MDA	 standard	 [51]	 defines	 four	 kinds	 of	 models	 into	 the	 lifecycle	 of	 Model	
Driven	Development:	

4.2.3.1. Computation Independent Model (CIM)

A	computation	independent	model	is	a	view	of	a	system	from	the	computation	
independent	 viewpoint,	 which	 it	 focuses	 on	 the	 environment	 and	 the	
requirements	of	the	system;	structural	or	processing	details	of	the	system	are	
hidden	or	as	yet	undetermined.	A	CIM	does	not	show	details	of	the	structure	of	
systems.	A	CIM	 is	 sometimes	 called	a	domain	model	 and	a	 vocabulary	 that	 is	
familiar	 to	 the	 practitioners	 of	 the	 domain	 in	 question	 is	 used	 in	 its	
specification	 [51].	 Focuses	 on	 the	 Environment	 of	 the	 system	 and	 the	
requirements	 the	 user	 has	 on	 the	 system;	 the	 description	 provides	what	 the	
system	is	expected	to	do.	

4.2.3.2. Platform Independent Model (PIM)

The	 platform	 independent	model	 focuses	 on	 the	 operation	 of	 a	 system	while	
hiding	the	details	necessary	for	a	particular	platform.	A	PIM	exhibits	a	specified	
degree	of	platform	independence	so	as	to	be	suitable	for	use	with	a	number	of	
different	 platforms	 of	 similar	 type.	 It	 is	 also	 a	 representation	 of	 business	
functionality	and	behavior,	undistorted	by	technology	details.	It	shows	the	part	
of	 the	 complete	 specification	 that	 does	 not	 change	 from	 one	 platform	 to	
another.	

The	 objective	 is	 to	 postpone	 in	 the	 development	 process	 the	 creation	 of	
models	 that	 take	 into	 account	 technological	 aspects	of	 a	platform	as	much	as	
possible.	The	main	advantage	is	to	be	able	to	react	efficiently	and	with	low	costs	
to	technology	changes.		

4.2.3.3. Platform Specific Model

A	Platform	Specific	Model	 Is	a	combination	of	a	PIM	with	additional	details	of	
the	system’s	specific	platform.	

4.2.3.4. Platform Model

Finally	 platform	 models	 are	 the	 representation	 of	 technical	 concepts	 of	
platform’s	parts,	the	services	provided	by	that	platform,	and	for	further	use	in	
PSM’s,	concepts	which	models	the	use	of	the	platform	by	the	applications.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 26

4.2.4. Metamodels

The	word	 “meta”	 is	Greek	and	means	 “above”,	 therefore	 the	 term	metamodel	
can	 be	 interpreted	 as	 a	model	 describing	 another	model.	 To	 understand	 the	
term	metamodel	a	simple	analogy	to	languages	is	drawn.	A	language	consists	of	
words	 whose	 combination	 is	 constraint	 by	 a	 grammar.	 If	 a	 sentence	 in	 a	
language	 is	 seen	 as	 one	 possible	 model,	 the	 definition	 of	 its	 structure,	 the	
grammar,	 can	 be	 seen	 as	 its	 metamodel.	 Earlier	 it	 was	 said	 that	 in	 MDSD	 a	
metamodel	 defines	 how	 a	 model	 can	 lookalike,	 this	 can	 be	 more	 precisely	
formulated	as:	a	metamodel	defines	the	constructs	and	rules	usable	to	create	a	
class	of	models.	This	is	consistent	with	the	following	definitions:	

 A	metamodel	is	a	model	of	a	set	of	models	[51].	

 A	metamodel	is	a	model	that	defines	the	language	for	expressing	a	
model	[20].	

A	metamodel	is	a	specification	model	that	describes	its	models	in	a	certain	
modeling	language.	A	metamodel	says	what	can	be	expressed	in	a	valid	model	
of	the	modeling	language.	

The	 interpretation	 of	 a	 metamodel	 is	 a	 mapping	 of	 elements	 of	 the	
metamodel	 to	 elements	 of	 the	 modeling	 language.	 The	 truth‐value	 of	
statements	in	the	metamodel	can	be	determined	for	any	model	expressed	in	the	
modeling	language.	Since	the	metamodel	is	the	models	specification,	a	model	in	
the	modeling	language	is	valid	only	if	none	of	these	statements	are	false.	Precise	
metamodels	 are	 a	 prerequisite	 for	 performing	 automated	 model	
Transformation	and	for	defining	accurate	models.	

Since	a	metamodel	is	also	a	model,	could	be	expressed	in	some	modeling	
language.	A	metamodel	 for	a	modeling	 language	could	use	 the	same	modeling	
language.	The	statements	in	the	metamodel	are	expressed	in	the	same	language	
as	is	being	described	by	the	metamodel.	This	is	called	reflexive	metamodel.		

4.2.5. Meta‐Object Facility (MOF)

Meta‐Object	Facility	(MOF)	is	a	standard	proposed	and	defined	by	OMG	[52]for	
supporting	 MDA.	 This	 standard	 proposes	 four	 levels	 meta‐modeling	
architecture	with	four	meta‐layers	as	shown	in	Figure	5.	Each	meta‐layer	is	the	
metamodel	 of	 the	 constructs	 in	 the	 layers	 above.	 Layers	 are	 described	 as	
follows:	

1. M3	 meta‐metamodel	 layer:	 In	 this	 layer	 resides	 the	 meta‐
metamodel,	a	language	for	defining	level	M2	metamodels.	In	OMG	
standard,	MOF	is	the	language	defined	in	this	layer.	

2. M2	Metamodel	 layer:	M2	Metamodels	are	used	 for	describing	M1	
Models.	OMG’s	UML	Metamodel	will	describe	UML	constructs.	

3. M1	Model	layer:	At	these	level	models	is	where	we	define	models.	
A	 model	 is	 an	 instance	 of	 a	 M2	 metamodel.	 I.e.,	 if	 in	 M2	 layer	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 27

resides	 UML	metamodel	 in	M1	we	 could	 have	 one	 of	 its	models:	
Class	Diagram,	Activity	Diagram,	Sequence	Diagram	and	so	on.	

4. M0	 Instance	 layer:	 in	 this	 layer	 objects	 of	 the	 real	 world	 are	
defined.	

	
Figure 5. MOF layered architecture

	

MOF	is	closed	metamodeling	architecture.	This	means	that	M3	level	could	
be	defined	with	 instances	of	M3	elements.	This	 implies	that	whit	MOF	we	can	
define	MOF.	

In	addition	MOF	provides	concepts	to	define	a	language:	

 Classes,	which	model	MOF	metaobjects.	

 DataTypes	 (property),	which	model	 needed	 descriptive	 data	 (i.e.,	
primitive	types).	

 Associations	 (property),	 which	 model	 binary	 relationships	
between	metaobjects.	

 Packages,	which	modularize	the	models.	

4.2.6. Model Transformations

Model	 Transformation:	 is	 the	 process	 of	 converting	 one	 model	 to	 another	
model	 of	 the	 same	 system	 [51].	 One	 model	 may	 be	 transformed	 to	 several	
alternative	models	 that	 can	maintain	 the	 semantics	but	with	different	 syntax.	
The	mappings	and	relations	are	defined	as	 specializations	of	 transformations.	
Figure	6	shows	the	two	different	levels	in	which	the	transformation	is	defined	
(Metamodel	level)	and	executed	(Model	level).	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 28

	

	
Figure 6. Model Transformation Definition

	

A	transformation	definition	consists	of	a	collection	of	transformation	rules	
which	are	unambiguous	specifications	of	the	way	that	(a	part	of)	one	model	can	
be	used	to	create	a	part	of	another	model.	The	transformations	are	defined	in	
terms	 of	 the	 metamodels	 involved	 in	 the	 transformation	 process.	
Transformation,	transformation	definition	and	transformation	rule	can	now	be	
defined	as	follows	[40]:	

 “A	 transformation	 is	 the	 automatic	 generation	 of	 a	 target	 model	
from	a	source	model,	according	to	a	transformation	definition”.	

 “A	 transformation	 definition	 is	 a	 set	 of	 transformation	 rules	 that	
together	 describe	 how	 a	 model	 in	 the	 source	 language	 can	 be	
transformed	into	a	model	in	the	target	language”.	

 “A	 transformation	 rule	 is	 a	 description	 of	 how	 one	 or	 more	
constructs	 in	the	source	 language	can	be	 transformed	 into	one	or	
more	constructs	in	the	target	language”	.	

The	most	important	characteristic	of	a	transformation	it	 is	the	fact	that	a	
model	 transformation	 should	maintain	 the	meaning	 between	 the	 source	 and	
the	target	model.	At	this	point	it	must	be	said	that	the	meaning	of	the	model	can	
only	be	preserved	as	it	can	be	expressed	in	both	source	and	target	model.	Part	
of	 information	should	be	 lost	 if	 target	 language	 is	 less	expressive	 than	source	
language.	

A	mapping	 is	 defined	 as	 a	 unidirectional	 transformation	 in	 contrast	 to	 a	
relation	that	defines	a	bi‐directional	transformation.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 29

4.2.7. QVT (Query/View/Transformation)

QVT	 is	 a	 Model	 Transformation	 standard	 [53]	 defined	 by	 the	 Object	
Management	Group	and	related	to	the	MOF	architecture.	

The	 QVT	 specification	 has	 a	 hybrid	 declarative/imperative	 nature,	 with	
the	 declarative	 part	 being	 split	 into	 two‐level	 architecture.	 The	 two‐level	
architecture	 of	 the	 declarative	 part	 forms	 the	 framework	 for	 the	 execution	
semantics	of	the	imperative	part.	

4.2.7.1. QVT Two Level Declarative Architecture

The	 declarative	 parts	 of	 this	 specification	 are	 structured	 into	 a	 two‐layer	
architecture.	The	layers	are:	

 A	 user‐friendly	 Relations	metamodel	 and	 language	 that	 supports	
complex	 object	 pattern	 matching	 and	 object	 template	 creation.	
Traces	between	model	elements	 involved	 in	a	 transformation	are	
created	implicitly.	

 A	Core	metamodel	and	language	defined	using	minimal	extensions	
to	 EMOF	and	OCL.	All	 trace	 classes	 are	 explicitly	 defined	 as	MOF	
models,	and	trace	 instance	creation	and	deletion	 is	defined	 in	the	
same	way	as	the	creation	and	deletion	of	any	other	object.	

Figure	 7	 shows	 the	 relationships	 between	 the	 QVT	 metamodels	 that	
configure	the	QVT	Architecture.	

	
Figure 7. Relationships between QVT Metamodels

	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 30

4.2.7.2. QVT Relations

The	 Relations	 language	 supports	 complex	 object	 pattern	 matching,	 and	
implicitly	 creates	 trace	 classes	 and	 their	 instances	 to	 record	 what	 occurred	
during	 a	 transformation	 execution.	 Relations	 can	 assert	 that	 other	 relations	
also	 hold	 between	 particular	model	 elements	matched	 by	 their	 patterns.	 The	
semantics	of	Relations	are	defined	 in	a	combination	of	English	and	first	order	
predicate	logic,	as	well	as	by	a	standard	transformation	for	any	Relations	model	
to	 trace	models	 and	 a	 Core	model	 with	 equivalent	 semantics.	 It	 can	 be	 used	
purely	as	a	formal	semantics	for	Relations,	or	as	a	way	of	translating	a	Relations	
model	 to	 a	 Core	 model	 for	 execution	 on	 an	 engine	 implementing	 the	 Core	
semantics.	

4.2.7.3. QVT Core

The	 Core	 language	 is	 a	 small	 model/language	 that	 only	 supports	 pattern	
matching	 over	 a	 flat	 set	 of	 variables	 by	 evaluating	 conditions	 over	 those	
variables	against	a	set	of	models.	It	treats	all	of	the	model	elements	of	source,	
target,	and	trace	models	symmetrically.	 It	 is	equally	powerful	 to	the	Relations	
language,	 and	 because	 of	 its	 relative	 simplicity,	 its	 semantics	 can	 be	 defined	
more	 simply,	 although	 transformation	 descriptions	 described	 using	 the	 Core	
are	 therefore	more	 verbose.	 In	 addition,	 the	 trace	models	must	 be	 explicitly	
defined,	and	are	not	deduced	from	the	transformation	description,	as	is	the	case	
with	Relations.	The	core	model	may	be	implemented	directly,	or	simply	used	as	
a	reference	for	the	semantics	of	Relations,	which	are	mapped	to	the	Core,	using	
the	transformation	language	itself.	

4.2.7.4. QVT Imperative Implementations

In	 addition	 to	 the	declarative	Relations	 and	Core	Languages	 that	 embody	 the	
same	 semantics	 at	 two	 different	 levels	 of	 abstraction,	 there	 are	 two	
mechanisms	for	invoking	imperative	implementations	of	transformations	from	
Relations	 or	 Core:	 one	 standard	 language,	 Operational	 Mappings,	 as	 well	 as	
non‐standard	Black‐box	MOF	Operation	implementations.	Each	relation	defines	
a	 class	 that	 will	 be	 instantiated	 to	 trace	 between	 model	 elements	 being	
transformed,	 and	 it	 has	 a	 one‐to‐one	mapping	 to	 an	Operation	 signature	 that	
the	Operational	Mapping	or	Black‐box	implements.	

This	 language	 is	 specified	 as	 a	 standard	 way	 of	 providing	 imperative	
implementations,	 which	 populate	 the	 same	 trace	 models	 as	 the	 Relations	
Language.	 It	 provides	 OCL	 extensions	 with	 side	 effects	 that	 allow	 a	 more	
procedural	 style,	 and	 a	 concrete	 syntax	 that	 looks	 familiar	 to	 imperative	
programmers.	

4.2.7.5. Operational Mappings

Operational	 Mappings	 Language	 can	 be	 used	 to	 implement	 one	 or	 more	
Relations	from	a	Relations	specification	when	it	is	difficult	to	provide	a	purely	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 31

declarative	 specification	 of	 how	 a	 Relation	 is	 to	 be	 populated.	 Mappings	
Operations	invoking	other	Mappings	Operations	always	involves	a	Relation	for	
the	 purposes	 of	 creating	 a	 trace	 between	 model	 elements,	 but	 this	 can	 be	
implicit,	 and	 an	 entire	 transformation	 can	 be	 written	 in	 this	 language	 in	 the	
imperative	style.	A	 transformation	entirely	written	using	Mapping	Operations	
is	called	an	operational	transformation.	

4.2.7.6. The QVT Relations Language

In	 the	 relations	 language,	 a	 transformation	 between	 candidate	 models	 is	
specified	 as	 a	 set	 of	 relations	 that	 must	 hold	 for	 the	 transformation	 to	 be	
successful.	 A	 candidate	 model	 is	 any	 model	 that	 conforms	 to	 a	 model	 type,	
which	is	a	specification	of	what	kind	of	model	elements	any	conforming	model	
can	have,	similar	to	a	variable	type	specifying	what	kind	of	values	a	conforming	
variable	can	have	in	a	program.	Candidate	models	are	named,	and	the	types	of	
elements	 they	 can	 contain	 are	 restricted	 to	 those	 within	 a	 set	 of	 referenced	
packages.		

In	order	to	illustrate	the	definitions	we	will	an	example	extracted	from	the	
QVT	specification	(OMG,	2008)	(OMG,	2008)	(OMG,	2008)	(OMG,	2008)	which	
shows	 the	 relations	 between	 elements	 fron	 the	 “UML”	 domain	 and	 “RDBMS”	
domain.	

transformation	umlRdbms	(uml	:	SimpleUML,	rdbms	:	SimpleRDBMS)		
	
In	 this	 declaration	 named	 “umlRdbms,”	 there	 are	 two	 typed	 candidate	

models:	“uml”	and	“rdbms.”	The	package	named	“uml”	and	the	package	named	
“rdbms”	declare	the	SimpleUML	and	SimpleRDBMS	package	as	its	metamodels,	
respectively.	A	 transformation	can	be	 invoked	either	 to	check	 two	models	 for	
consistency	or	to	modify	one	model	to	enforce	consistency.	

4.2.7.6.1. Transformation Execution direction

A	transformation	invoked	for	enforcement	is	executed	in	a	particular	direction	
by	selecting	one	of	the	candidate	models	as	the	target.	The	target	model	may	be	
empty,	 or	 may	 contain	 existing	 model	 elements	 to	 be	 related	 by	 the	
transformation.	The	execution	of	the	transformation	proceeds	by	first	checking	
whether	 the	 relations	 hold,	 and	 for	 relations	 for	 which	 the	 check	 fails,	
attempting	to	make	the	relations	hold	by	creating,	deleting,	or	modifying	only	
the	target	model,	thus	enforcing	the	relationship.	

4.2.7.6.2. Relation

Relations	in	a	transformation	declare	constraints	that	must	be	satisfied	by	the	
elements	of	the	candidate	models.	A	relation,	defined	by	two	or	more	domains	
and	 a	 pair	 of	when	 and	where	 predicates,	 specifies	 a	 relationship	 that	must	
hold	between	the	elements	of	the	candidate	models.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 32

4.2.7.6.3. Domain

A	domain	is	a	distinguished	typed	variable	that	can	be	matched	in	a	model	of	a	
given	model	type.	A	domain	has	a	pattern,	which	can	be	viewed	as	a	graph	of	
object	nodes,	their	properties	and	association	links	originating	from	an	instance	
of	the	domain’s	type.	

Alternatively	 a	 pattern	 can	 be	 viewed	 as	 a	 set	 of	 variables,	 and	 a	 set	 of	
constraints	 that	 model	 elements	 bound	 to	 those	 variables	 must	 satisfy	 to	
qualify	as	a	valid	binding	of	the	pattern.	A	domain	pattern	can	be	considered	a	
template	 for	 objects	 and	 their	 properties	 that	 must	 be	 located,	 modified,	 or	
created	in	a	candidate	model	to	satisfy	the	relation.	

4.2.7.6.4. When and Where clauses

A	relation	also	can	be	constrained	by	two	sets	of	predicates,	a	when	clause	and	
a	 where	 clause,	 as	 shown	 in	 the	 example	 relation	 ClassToTable	 below.	 The	
when	 clause	 specifies	 the	 conditions	 under	 which	 the	 relationship	 needs	 to	
hold,	 so	 the	 relation	 ClassToTable	 needs	 to	 hold	 only	 when	 the	
PackageToSchema	relation	holds	between	the	package	containing	the	class	and	
the	schema	containing	the	table.	The	where	clause	specifies	the	condition	that	
must	be	satisfied	by	all	model	elements	participating	in	the	relation,	and	it	may	
constrain	any	of	the	variables	in	the	relation	and	its	domains.	Hence,	whenever	
the	ClassToTable	relation	holds,	the	relation	AttributeToColumn	must	also	hold	
Implementations.	

relation	ClassToTable		/*	map	each	persistent	class	to	a	table	*/	
			{	
										domain	uml	c:Class	{		
												namespace	=	p:Package	{},		
												kind='Persistent',		
												name=cn	
							}	
						domain	rdbms	t:Table	{	
													schema	=	s:Schema	{},		
														name=cn,	
														column	=	cl:Column	{	
																				name=cn+'_tid',		
																				type='NUMBER'},		
														primaryKey	=	k:PrimaryKey	{	
																					name=cn+'_pk',			
																					column=cl}	
							}	
						when	{	
									PackageToSchema(p,	s);	
						}	
						where	{	
									AttributeToColumn(c,	t);	
						}	
			}	
	

The	when	and	where	clauses	may	contain	any	arbitrary	OCL	expressions	
in	 addition	 to	 the	 relation	 invocation	 expressions.	 Relation	 invocations	 allow	
complex	relations	to	be	composed	from	simpler	relations.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 33

4.2.7.6.5. Top‐Level Relations

A	 transformation	 contains	 two	kinds	of	 relations:	 top‐level	 and	non‐top‐level.	
The	execution	of	a	transformation	requires	that	all	 its	top‐level	relations	hold,	
whereas	 non‐top‐level	 relations	 are	 required	 to	 hold	 only	 when	 they	 are	
invoked	directly	or	transitively	from	the	where	clause	of	another	relation.	

transformation	umlRdbms	(uml	:	SimpleUML,	rdbms	:	SimpleRDBMS)		
{	

top	relation	PackageToSchema	{…}	
top	relation	ClassToTable	{…}	
relation	AttributeToColumn	{…}	

}	
A	top‐level	relation	has	the	keyword	top	to	distinguish	it	syntactically.	 In	

the	example	above,	PackageToSchema	and	ClassToTable	are	top	level	relations,	
whereas	AttributeToColumn	is	a	non‐top‐level	relation.	

4.2.7.6.6. Check and Enforce

Whether	or	not	 the	 relationship	may	be	enforced	 is	determined	by	 the	 target	
domain,	 which	 may	 be	 marked	 as	 checkonly	 or	 enforced.	 	 When	 a	
transformation	is	enforced	in	the	direction	of	a	checkonly	domain,	it	 is	simply	
checked	to	see	if	there	exists	a	valid	match	in	the	relevant	model	that	satisfies	
the	relationship.	When	a	transformation	executes	in	the	direction	of	the	model	
of	an	enforced	domain,	 if	 checking	 fails,	 the	 target	model	 is	modified	so	as	 to	
satisfy	the	relationship,	i.e.,	a	check‐before‐enforce	semantics.	

In	 the	 example	 below,	 the	 domain	 for	 the	 “uml”	 model	 is	 marked	
checkonly	and	the	domain	for	the	rdbms	model	is	marked	enforce.	

relation	PackageToSchema		/*	map	each	package	to	a	schema	*/	
			{	
						checkonly	domain	uml	p:Package	{name=pn}	
						enforce	domain	rdbms	s:Schema	{name=pn}	
			}	
If	we	 are	 executing	 in	 the	direction	of	 uml	 and	 there	 exists	 a	 schema	 in	

rdbms	for	which	we	do	not	have	a	corresponding	package	with	same	name	in	
uml,	it	is	simply	reported	as	an	inconsistency	‐	a	package	is	not	created	because	
the	“uml”	model	is	not	enforced,	it	is	only	checked.	

However,	 if	 we	 are	 executing	 the	 transformation	 umlRdbms	 in	 the	
direction	 of	 rdbms,	 then	 for	 each	 package	 in	 the	 uml	model	 the	 relation	 first	
checks	 if	 there	exists	a	schema	with	same	name	 in	 the	rdbms	model,	and	 if	 it	
does	 not,	 a	 new	 schema	 is	 created	 in	 that	 model	 with	 the	 given	 name.	 To	
consider	 a	 variation	 of	 the	 above	 scenario,	 if	 we	 execute	 in	 the	 direction	 of	
rdbms	and	 there	 is	not	 a	 corresponding	package	with	 the	 same	name	 in	uml,	
then	 that	 schema	 will	 be	 deleted	 from	 the	 rdbms	 model,	 thus	 enforcing	
consistency	in	the	enforce	domain.	

These	rules	apply	depending	on	the	target	domain	only.	In	this	execution	
scenario,	 schema	 deletion	 will	 be	 the	 outcome	 even	 if	 the	 uml	 domain	 is	
marked	 as	 enforced,	 because	 the	 transformation	 is	 being	 executed	 in	 the	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 34

direction	of	rdbms,	and	object	creation,	modification,	and	deletion	can	only	take	
place	in	the	target	model	for	the	current	execution.	

4.2.7.7. QVT Graphical Syntax

Diagrammatic	notations	have	been	a	key	factor	in	the	success	of	UML,	allowing	
users	 to	 specify	 abstractions	 of	 underlying	 systems	 in	 a	 natural	 and	 intuitive	
way.	 Therefore	 this	 specification	 contains	 a	 diagrammatic	 syntax	 to	
complement	the	textual	syntax	of	Section	7.13.1.	There	are	two	ways	in	which	
the	diagrammatic	syntax	is	used,	as	a	way	of:		

 Representing	transformations	in	standard	UML	class	diagrams,		

 Representing	 transformations,	 domains,	 and	 patterns	 in	 a	 new	
diagram	form:	transformation	diagrams.	

The	syntax	is	consistent	between	its	two	uses,	the	first	usage	representing	
a	 subset	 of	 the	 second.	 A	 visual	 notation	 is	 suggested	 to	 specify	
transformations.	A	relationship	relates	two	or	more	patterns.	Each	pattern	is	a	
collection	of	objects,	links,	and	values.	The	structure	of	a	pattern,	as	specified	by	
objects	and	links	between	them,	can	be	expressed	using	UML	object	diagrams.	
Using	 object	 diagrams	 with	 some	 extensions	 to	 specify	 patterns	 within	 a	
relation	 specification	 is	 suggested.	 The	 notation	 is	 introduced	 through	 some	
examples	followed	by	detailed	syntax	and	semantics.	[53].	Figure	8	specifies	a	
relation,	 UML2Rel	 from	 UML	 classes	 and	 attributes	 to	 relational	 tables	 and	
columns.	 A	 new	 symbol	 is	 introduced	 to	 represent	 a	 transformation.	 The	
specifications	“uml1:UML”	and	“r1:RDBMS”	on	each	limb	of	the	transformation	
specifies	that	this	is	a	relationship	between	two	typed	candidate	models	“uml1”	
and	 “r1”	with	packages	 “UML”	and	 “RDBMS”	as	 their	 respective	meta	models.	
The	 “C”	 under	 each	 limb	 of	 the	 relation	 symbol	 specifies	 that	 both	 domains	
involved	in	this	relation	are	checkonly.	

	

relation	UML2Rel	{	
		checkonly	domain	uml1	c:Class		
{	
name	=	n,	
attribute	=	a:Attribute{name	=	an}	
}	
		checkonly	domain	r1	t:Table		
{	
name	=	n,		
column	=	col:Column{name	=	an}	
}	
}	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 35

	
Figure 8. QVT Graphical notation for UML2Rel Class to Relational Table Relation

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 36

Table	1	gives	a	brief	description	of	the	visual	notation	elements.	

	
Table 1. QVT Diagramatic elements

	

4.2.7.8. Object Constraint Language (OCL)

Object	 Constraint	 Language	 (OCL)	 [55]is	 a	 formal	 language	 used	 to	 describe	
expressions	 on	 UML	 models.	 These	 expressions	 typically	 specify	 invariant	
conditions	that	must	hold	for	the	system	being	modeled	or	queries	over	objects	
described	in	a	model.	Note	that	when	the	OCL	expressions	are	evaluated,	they	
do	 not	 have	 side	 effects;	 i.e.	 their	 evaluation	 cannot	 alter	 the	 state	 of	 the	
corresponding	executing	system.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 37

OCL	 expressions	 can	 be	 used	 to	 specify	 operations	 /	 actions	 that,	 when	
executed,	do	alter	the	state	of	the	system.	UML	modelers	can	use	OCL	to	specify	
application‐specific	constraints	in	their	models.	UML	modelers	can	also	use	OCL	
to	 specify	 queries	 on	 the	 UML	 model,	 which	 are	 completely	 programming	
language	independent.	

OCL	not	only	can	be	applied	in	UML	models	but	also	it	can	be	applied	into	
UML	 or	 MOF	 metamodels	 since	 are	 expressed	 in	 UML	 or	 a	 subset	 of	 UML.	
Hereby	 OCL	 can	 be	 used	 to	 restrict	 metamodel	 semantics,	 for	 example	 by	
means	of	stereotypes	or	DSL’s.	

In	MDA	context,	OCL	can	be	used	in	three	ways:	

 Precise	modeling	in	MOF	M1	level.	

 Definition	of	modeling	languages.	

 Definition	of	transformations.	

4.3. Technological Spaces

In	this	section	we	describe	the	technological	areas	related	to	the	work.	

4.3.1. Eclipse

The	Eclipse	 community	 [66]is	 an	open	 source	 community	whose	projects	 are	
focused	 on	 creating	 an	 open	 development	 platform	 comprised	 of	 extensible	
frameworks,	 tools	 for	 creating,	 deploying	 and	 managing	 software	 across	 the	
lifecycle.	

One	 of	 his	most	 important	 projects	 is	 Eclipse.	 Eclipse	 is	 an	 open	 source	
project,	 robust,	 with	 multiple	 features,	 commercial‐quality	 industry	 platform	
for	 the	 development	 of	 highly	 integrated	 tools.	 Integrated	 Development	
Environment	(IDE)	uses	different	modules	 to	enhance	 its	 functionality;	 this	 is	
an	 advantage	 over	 other	monolithic	 environments	where	 functionality	 is	 not	
configurable.	

In	 short,	 the	 nature	 of	 this	 tool	 makes	 it	 an	 open,	 extensible	 IDE	 for	
multiple	purposes.	This	work	will	be	of	particular	interest	the	Eclipse	Modeling	
Framework	 (EMF),	 a	 framework	 for	 managing	 models	 and	 code	 generation	
from	models	described	in	XMI.	EMF	is	described	in	detail	in	the	next	subsection.	

4.3.2. EMF

The	 EMF	 project	 is	 a	 modeling	 framework	 and	 code	 generation	 facility	 for	
building	tools	and	other	applications	based	on	structured	data	models.	It	starts	
with	a	model	specification	described	 in	XMI.	EMF	provides	 tools	to	produce	a	
set	of	Java	classes	for	the	model.	You	can	generate	a	set	of	adapter	classes	that	
enable	views	and	edition	commands	based	on	the	model.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 38

Models	 can	 be	 specified	 using	 annotated	 Java,	 XML	 documents,	 or	
modeling	tools	like	Rational	Rose	through	which	can	be	imported	to	EMF.	The	
most	 important	 thing	 is	 that	 EMF	 provides	 the	 foundation	 for	 establishing	
interoperability	with	other	tools	and	applications	based	on	EMF.	With	regard	to	
the	 relationship	 of	 EMF	 to	 OMG	 and	 MOF,	 EMF	 started	 out	 as	 an	
implementation	of	 the	MOF	specification	matured	 from	the	experience	gained	
in	the	development	of	tools	by	the	developers	of	Eclipse.	EMF	can	be	seen	as	an	
efficient	 implementation	 of	 joint	 use	 of	 the	 MOF	 API.	 However,	 to	 avoid	
confusion,	the	EMF	metamodel	based	on	the	MOF	core	is	called	Ecore	[66].	

4.3.3. Medini QVT

Medini	QVT	[33]	is	a	QVT	transformation	engine	which	implements	the	OMG’s	
QVT	relations	specification	in	a	powerful	QVT	engine.	This	standard	is	designed	
for	 model‐to‐model	 transformations	 to	 allow	 fast	 development,	 maintenance	
and	customization	of	process	specific	transformation	rules.	

Highlights	among	the	supported	features	are:	

 Execution	 of	 QVT	 transformations	 shown	 the	 textual	 concrete	
syntax	of	the	relations	language.	

 Editor	with	code	assistant.	

 Integrated	 debugging	 which	 allows	 to	 run	 the	 relations	 step	 by	
step.	

 Trace	 management	 enabling	 incremental	 updates	 during	
transformations.	

 Key	concept	enabling	incremental	updates	as	well	as	the	transition	
from	manual	modeling	to	automatic	transformations.	

 Bidirectional	transformations.	

 Multi‐model	 transformations,	 multiple	 source	 or/and	 target	
models.	

There	 are	 two	 ways	 of	 working	 with	 Medini	 QVT	 a	 standalone	 version,	 an	
Eclipse‐like	 standalone	 executable	 or	 an	 Eclipse	 Plug‐in.	 In	 the	 standalone	
version	EMF	editors	 and	 the	 transformation	 engine	 are	 available	 for	defining	
transformations,	 designing	 models	 and	 metamodels.	 The	 Eclipse	 Plug‐in	
integrates	QVT	relations	Engine	 in	 the	Eclipse	 IDE.	Once	 the	plug‐in	has	been	
activated	 the	 QVT	 transformations	 are	 available	 as	 any	 other	 Eclipse	
functionality.	

The	selection	of	Mediny	QVT	against	other	transformation	engines	for	this	
project	is	based	on:	

 Multi‐model	transformations	support.	

 Complaint	with	OMG’s	QVT	Relations	standard.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 39

 Bidirectional	transformations.	

 Eclipse	Integration.	

 EMF	compatible.	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 40

Chapter 5. A Multi‐model for
Software Product Line Development

Through	 the	 years	 it	 had	 been	 demonstrated	 that	 variability	 management	 is	
inherent	 to	 product	 line	 engineering	 and	must	 be	 taking	 into	 account	 during	
software	 development.	 However,	 the	 variability	 information	 must	 be	 related	
with	the	functional	and	quality	requirements	and	thus	be	verified	to	ensure	that	
every	 possible	 product	 derived	 from	 a	 product	 line	 fulfills	 its	 functional	 and	
quality	requirements.	

The	main	objective	of	this	work	is	to	introduce	quality	attributes	in	early	
stages	of	software	product	line	development.	As	a	means	for	achieving	this	goal	
we	need	to	define	the	artifacts	for	collecting	the	quality	requirements	and	use	
them	during	the	core	asset	and	product	development	activities.		

This	 chapter	 presents	 a	 multi‐model	 that	 integrates	 the	 quality	 view	
together	 with	 the	 variability	 and	 functional	 views	 and	 allows	 describing	 the	
software	product	line	extension.	

The	chapter	 is	organized	as	 follows:	 In	Section	5.1	we	explain	the	role	of	
the	multi‐model	 in	 the	software	product	 line	development	process.	 In	Section	
5.2	we	describe	 the	 structure	 of	 the	multi‐model,	 how	 it	 has	 been	defined	 as	
well	 as	 the	different	 views	 that	 comprises	 the	multi‐model.	 In	 Section	5.3	we	
describe	the,	the	different	variability	modeling	techniques	the	variability	view,	
followed	 by	 the	 structure	 of	 the	 variability	 metamodel.	 In	 Section	 5.4	 we	
describe	the	quality	view,	including	the	structure	of	the	quality	metamodel.	In	
Section	 5.5	 we	 describe	 the	 functional	 view,	 the	 different	 architectural	
description	 languages	and	an	excerpt	of	 the	AADL	modeling	 language.	Finally,	
in	Section	5.6	we	describe	the	relationships	among	the	different	system	views	
and	how	they	have	been	defined	in	the	context	of	our	multi‐model.	

5.1. The Multi‐Model in the Development Process

Quality	 attributes,	 such	 as	 response	 time,	 accuracy,	 security,	 reliability,	 are	
properties	that	affect	the	system	as	a	whole.	Most	approaches	deal	with	quality	
attributes	separately	from	the	functional	requirements	of	a	system.	This	means	
that	 integration	 is	difficult	 to	achieve	and	usually	 is	 accomplished	only	at	 the	
later	stages	of	the	software	development	process.	

Furthermore,	 software	 product	 line	 engineering	 approaches	 emphasizes	
more	on	specifying	functional	aspects	of	a	product	line	and	its	variability	than	
in	 ensuring	 the	 quality	 attributes	 that	 the	 product	 line	 and/or	 the	 products	
derived	from	it	must	fulfill	[18].	Research	in	the	field	of	software	product	lines	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 41

has	primarily	been	 focused	on	analysis,	design,	 and	 implementation	 and	very	
few	studies	have	addressed	the	quality	assurance	problems	and	challenges	that	
arise	 in	 a	 reuse	 context	 [42].	 The	 selection	 of	 different	 features	 and	 the	
instantiation	of	 functional	components	 in	the	product	development	phase	will	
impact	 on	 the	 quality	 of	 the	 product.	 If	 we	 can	 establish	 the	 relationships	
between	features	and/or	functional	components	and	quality	attributes	then	the	
quality	attributes	can	be	another	factor	to	decide	whether	or	not	to	select	one	
feature/functional	component.	

Therefore,	 what	 we	 propose	 is	 a	 multi‐model	 to	 capture	 the	 different	
system	 views	 (functionality,	 features,	 quality...)	 and	 the	 relationships	 among	
them	(e.g.,	 features	with	different	qualities).	This	will	allow	us	to	 identify	and	
specify	 quality	 attributes	 that	 crosscut	 functional	 requirements	 at	 an	 early	
stage	 of	 the	 product	 line	 development	 process.	 This	 also	 allows	 the	
parameterization	 of	 the	 production	 process	 by	 means	 of	 the	 multi‐model	
proposed.	

The	multi‐model	plays	a	pivotal	role	in	the	SPL’s	production	plan,	since	it	
will	be	used	as	the	main	artifact	for	selecting	among	the	features	and	the	core	
assets	that	will	be	deployed	in	a	specific	product	configuration.	Therefore,	the	
multi‐model	 is	 going	 to	 be	 used	 during	 the	 two	 main	 phases	 of	 the	 SPL	
development,	see	Figure	9:	

 In	 the	 core	asset	development	phase	 by	 expressing	 the	 impact	
that	 the	 features	 and	 the	 functional	 components	 have	 over	 the	
quality	 attributes	 and	 the	 relationships	 among	 features	 and	
functional	 components,	 describing	 the	 whole	 extension	 of	 the	
product	line.	

 In	the	product	development	phase,	as	the	artifact	that	guides	the	
product	configuration,	allowing	with	the	selection	of	 features	and	
functional	 components	 based	 on	 the	 quality	 attributes	 that	 a	
specific	product	must	fulfill.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 42

	
Figure 9. The Multi‐model in the SPL development process

At	core	asset	development	 level,	 variability	management	as	 the	basis	 for	
LPS	 development,	 implies	 on	 one	 hand,	 to	 handle	 the	 common	 and	 optional	
features	of	a	specific	domain,	expressed	in	a	 features	model,	and	on	the	other	
hand,	 that	 this	 variability	 must	 be	 supported	 by	 software	 assets.	 The	
specification	 of	 variability	 and	 functionality	 (Functional	 Model)	 can	 be	
managed	in	separated	and	independent	models.	In	addition,	in	order	to	assure	
the	 quality	 of	 the	 product	 this	 also	 should	 be	 included	 in	 the	 development	
process,	 through	 a	 quality	 model.	 In	 this	 way,	 we	 consider	 (at	 least)	 three	
system	 views	 expressed	 in	 a	 multi‐model:	 the	 system’s	 variability	 view,	 the	
system’s	functional	view	and	the	system’s	quality	view		

At	the	application	level,	the	multi‐model	represents	the	mandatory	and	the	
selected	 features	 from	 the	 Features	Model	 together	with	 the	 elements	 of	 the	
Functional	Model	and	the	Quality	Model	that	are	affected	by	these	features.	

This	leads	to	the	parameterization	of	the	production	process	by	means	of	a	
multi‐model,	which	is	able	to	capture	the	different	views	of	the	product	and	the	
relationships	 among	 them.	 In	 this	 scenario	 we	 should	 considered	 the	 intra‐
model	consistence	problems	 (i.e.	 the	consistence	of	 the	variability	model)	and	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 43

inter‐model	 consistence	problems	(i.e.	 the	consistence	of	 the	relation	between	
the	Features	Model	and	the	Quality	Model)	in	a	more	wide	and	realistic	context.	

Furthermore,	 the	 quality	 assurance	 and	 evaluation	 processes	 are,	 in	
general,	 executed	 independently	 to	 the	 development	 process.	 However,	
following	 the	 multi‐modeling	 approach,	 the	 quality	 view	 participates	 in	 the	
software	development	process,	becoming	an	active	artifact	throughout	the	life	
cycle.	 The	 quality	 view	 interacts	 with	 the	 other	 system	 views	 and	 its	
relationships	drive	the	production	plan	of	a	final	product.	

5.2. Multi‐model Structure

The	 multi‐model	 structure	 is	 established	 by	 the	 definition	 of	 what	 a	 multi‐
model	 is:	 “a	 collection	of	models	 supporting	different	 views	of	 a	 system	with	
relationships	among	them”.	This	leads	to	a	solution	where	the	metamodels	that	
give	support	to	the	different	views	of	the	system	remain	unchanged	(are	exactly	
the	original	metamodels).	In	addition	we	need	to	define	a	new	metamodel	that	
gives	support	to	the	multi‐model	containing,	basically,	the	relationships	among	
the	meta‐classes	of	the	different	metamodels	defined	as	external	resources.	The	
use	of	the	proxy	pattern	[23]	allows	us	to	define	new	meta‐classes	in	the	multi‐
model	that	inherit	from	the	original	meta‐classes	and	that	can	be	extended	for	
holding	the	additional	 information	needed	 for	expressing	 the	 impacts	and	the	
relationships	among	the	views.	

“Design	patterns	describe	problems	 that	occur	over	and	over	again	 in	our	
environment,	and	then	describe	the	core	of	the	solution	to	that	problem,	in	such	a	
way	that	this	solution	can	be	used	in	different	scenarios,	without	ever	doing	it	in	
the	same	way	twice.	Design	patterns	make	it	easier	to	reuse	successful	design	and	
architectures	 and	 help	 designers	 choosing	 alternatives	 that	 make	 a	 system	
reusable	and	avoid	alternatives	that	compromise	reusability”	[23].	

“The	Proxy	Pattern	provides	a	surrogate	or	placeholder	for	another	object	to	
control	access	to	 it”.	Proxy	 is	 applicable	whenever	 there	 is	 a	 need	 for	 a	more	
versatile	 or	 sophisticated	 reference	 to	 an	 object	 than	 a	 simple	 pointer	 (i.e.	 a	
smart	 reference	 is	 a	 replacement	 for	 a	 bare	 pointer	 that	 performs	 additional	
actions	when	an	object	is	accessed)	[23].	

Figure	10	shows	the	application	of	the	proxy	pattern	in	an	excerpt	of	the	
multi‐model.	The	meta‐class	ComponentType	shown	in	Figure	10.1	is	defined	in	
one	of	 the	 system	views’	metamodels	 (the	 functional	 view).	This	 class	has	 its	
proxy‐pattern	 EComponentType1	meta‐class	 in	 the	 multi‐model’s	 metamodel	
(Figure	10.2).	The	original	meta‐classes	remain	unchanged,	as	 it	was	required	
by	 the	 multi‐model	 definition,	 and	 we	 can	 add	 the	 additional	 structures	 for	

																																																																		

	

1 	By	 convention	 each	 proxy	 meta‐class	 has	 been	 named	 as	
E+OriginalClassName.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 44

supporting	the	relationships	among	the	elements	in	the	different	views	as	will	
be	described	in	section	5.6.	

	
Figure 10. Application of the Proxy Pattern in the Multi‐model

Once	we	have	defined	what	is	a	multi‐model	and	how	it	should	be	defined,	
we	 need	 to	 define	 its	 different	 views.	 The	 multi‐model	 will	 comprise	 three	
views	of	the	SPL:	

 The	Functional	View	 for	 expressing	 the	 base	 architecture	 of	 the	
SPL	as	well	as	the	different	assets	(or	components)	that	are	going	
to	be	“plugged”	into	the	base	architecture.	

 The	Variability	View	expressing	the	features	(user‐visible	aspects	
or	 characteristics	 of	 a	 system)	 that	 are	 common	 and	 variable	
within	the	system.	

 The	 Quality	 View	 of	 the	 SPL	 is	 where	 the	 different	 quality	
attributes	 and	 the	 relationships	 among	 them	 are	 expressed	 in	 a	
hierarchical	 decomposition.	 As	 a	 starting	 point	 this	 model	 will	
contain	 only	 the	 most	 relevant	 quality	 attributes	 for	 the	 safety‐
critical	embedded	systems	domain.	

5.3. Variability View

One	 of	 the	 key	 aspects	 that	 characterize	 SPLE	 against	 other	 software	 reuse	
techniques	 is	 how	 it	 describes	 and	 manages	 variability.	 The	 majority	 of	 the	
approaches	 addressing	 this	 problem	 are	 based	 in	 Feature‐Oriented	 Domain	
Analysis	(FODA)	[38],	which	is	a	method	(and	also	a	notation)	for	performing	a	
domain	analysis.	The	feature‐oriented	concept	is	based	on	the	emphasis	placed	
by	 the	 method	 on	 identifying	 those	 features	 a	 user	 commonly	 expects	 in	 a	
domain.	 In	 the	 literature	we	 can	 find	 a	wide	 set	of	 definitions	 for	 the	 feature	
concept	within	a	Software	Product	Line’s	context	[12]:	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 45

 “A	Feature	is	a	logical	unit	of	behavior	specified	by	a	set	of	functional	
and	non‐functional	requirements”	Bosch	[10].	

 “Features	are	user‐visible	aspects	or	characteristics	of	a	system	that	
are	 organized	 into	 a	 tree	 of	 and/or	 nodes	 to	 identify	 the	
commonalities	 and	 variabilities	within	 the	 system”	 Clements	 et	 al.	
[14].	

The	 latter	 definition	 contains	 an	 explicit	 reference	 to	 feature	 models,	
which	 is	 the	most	 common	 way	 to	 express	 the	 variability	 view	 of	 a	 system.	
Feature	 Modeling	 is	 a	 technique,	 which	 uses	 a	 specific	 visual	 notation	 to	
characterize	the	variability	of	product	lines	by	means	of	diagrams.	

5.3.1. Feature models

The	 purpose	 of	 a	 feature	 model	 is	 to	 describe	 the	 “requirements	 space”	 of	
known	 solutions	 of	 a	 given	 problem.	 The	 model	 should	 encompass	 as	 many	
valid	 solutions	 (configurations)	 as	 is	 feasible,	 to	 include	 the	 fullest	 range	 of	
features	and	feature	values.	A	feature	model	as	defined	in	FODA	methodology	is	
composed	by:	

 A	feature	diagram:	a	graphical	and/or	hierarchy	of	features.	

 Composition	 rules:	 mutual	 dependency	 (Requires)	 and	 mutual	
exclusion	(mutex‐with)	relationships.	

 Issues	 and	 decisions:	 record	 of	 trade‐offs,	 rationales	 and	
justifications.	

 System	feature	catalogue:	record	of	existing	system	features.	

Figure	11	shows	a	feature	diagram	using	the	FODA	notation.	It	is	a	tree	of	
different	 features.	 A	 small	 circle	 above	 the	 feature	 name	 designates	 optional	
features.	Alternative	features	are	shown	in	the	diagram	as	being	children	of	the	
same	parent	feature	with	an	arc	 joining	all	 the	options,	meaning	that	one	and	
only	 one	 of	 those	 features	 can	 be	 chosen.	 The	 remaining	 features	 with	 no	
special	 notation	 are	 all	 mandatory.	 The	 lines	 drawn	 between	 a	 child	 and	 a	
parent	mean	that	the	child	feature	needs	the	parent	to	be	present.	If	an	optional	
parent	feature	were	not	marked	as	valid	all	its	children	would	be	unreachable	
for	 that	 specific	 configuration,	 as	 happens	 in	 the	 case	 of	 tiledColumns	 or	
tiledArbitrary	when	overlappedLayout	is	marked	as	valid.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 46

	
Figure 11. Features Model following the FODA notation

A	 specific	 implementation	 of	 a	 solution	may	 be	 through	 an	 instantiation	
(configuration)	 of	 the	 feature	 model.	 A	 configuration	 of	 a	 feature	 model	 is	
usually	 defined	 as	 the	 set	 of	 features	 that	 are	 selected	 from	 a	 feature	model	
without	violating	any	of	the	constraints	defined	on	it,	but	it	can	also	be	defined	
as	 a	 valid	 set	 of	 instances	 of	 a	 feature	mode,	 i.e.,	 the	 relationship	 between	 a	
feature	model	and	a	configuration	is	comparable	to	the	relationship	between	a	
class	and	an	object.	Figure	12	shows	 two	different	valid	configurations	of	 the	
features	 model	 shown	 in	 Figure	 11.	 The	 selected	 optional	 and	 alternative	
features	are	highlighted	in	the	diagram	with	boxes.	For	example,	notice	that	the	
feature	partiallyOffScreenWindows	 (abbreviated	on	 the	diagram)	 is	present	 in	
X10/uwm,	but	not	present	in	SunView.	Thus,	when	a	SunView	window	is	moved	
so	that	its	border	touches	the	edge	of	the	screen,	the	window	will	stop	moving	
in	that	direction.	In	X10/uwm	the	window	will	continue	to	move,	disappearing	
off	the	screen,	until	the	cursor	hits	the	screen	edge	and	stops	the	window	from	
moving	completely	off.	

Composition	 rules	 are	 the	 tool	 for	 expressing	 the	 relationships	 among	
features,	 and	 are	 a	 type	 of	 constraint	 on	 the	 use	 of	 a	 feature.	 In	 the	 FODA	
notation	composition	rules	have	two	forms:	

 A	 feature	 requires	 the	 existence	 of	 another	 feature	 (they	 are	
interdependent).	Its	textual	representation	is	<feature1>	“requires”	
<feature2>.	

 A	feature	 is	mutually	exclusive	with	another	(they	cannot	coexist).	
Its	textual	representation	is	<feature1>	“mutex‐with”	<feature2>.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 47

	
Figure 12. Comparison of two valid configurations of a features model

5.3.2. Cardinality Based Feature Models

Cardinality	based	feature	models	[16]	integrate	the	extensions	proposed	to	the	
original	FODA	notation	[39].	A	cardinality	based	feature	model	is,	in	essence,	a	
hierarchy	of	 features.	The	main	difference	with	 the	FODA	proposal	 resides	 in	
the	fact	that	each	feature	has	associated	a	cardinality	that	specifies	the	number	
of	 clones	 of	 the	 feature	 that	 are	 allowed	 in	 a	 specific	 configuration.	 Cloning	
features	is	useful	when	defining	multiple	copies	of	a	part	of	the	system	that	can	
be	replied	and	configured	in	different	ways.		

Features	can	be	organized	in	feature	groups	with	its	own	group	cardinality.	
This	 cardinality	 restricts	 the	 minimum	 and	 maximum	 number	 of	 group	
members	that	can	be	selected	in	a	configuration.	Finally	an	attribute	type	can	be	
specified	 for	 a	 given	 feature.	 Thus,	 a	 primitive	 value	 for	 this	 feature	 can	 be	
defined	during	configuration.	

The	 variability	 view	 of	 the	 multi‐model	 is	 going	 to	 be	 defined	 using	 a	
variant	 of	 this	 cardinality‐based	 feature	 model	 defined	 in	 [26].	 This	 variant	
allows	 representing	 explicitly	 the	 relationships	 between	 features.	 Thus,	 its	
metamodel	represents	in	a	uniform	way	the	hierarchical	relationships	and	the	
constraints	between	features.	In	addition	it	allows	adding	OCL‐like	constraints	
and,	based	on	these	constraints,	to	check	whether	the	instances	are	valid	or	not.	
The	 approach	 also	 allows	 representing	 a	 Feature	Model	 as	 a	 Class	Model,	 by	
means	of	model	transformations.	Table	2	shows	the	types	of	relationships	the	
feature	 metamodel	 contains.	 Relationships	 are	 classified	 in	 two	 orthogonal	
groups:	

 Vertical	vs.	horizontal	relationships:	Vertical	relationships	define	
the	 hierarchical	 structure	 of	 a	 feature	 model	 and	 horizontal	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 48

relationships	 define	 dependencies	 and	 restrictions	 between	
features.	

 Binary	 vs.	 grouped	 relationships:	 Binary	 relationships	 define	
relationships	 between	 two	 single	 features.	 In	 turn,	 grouped	
relationships	 are	 a	 set	 of	 relationships	 between	 a	 single	 feature	
and	a	group	of	childs.	

Given	this	classification,	the	following	relationships	exist:	

 Binary	 and	 vertical	 relationships:	 these	 relationships	 define	
structural	 relationships	 between	 two	 single	 features.	 In	 this	
approach,	 they	 represent	 a	 has_a	 relationship	 between	 a	 parent	
and	a	child	feature.	They	can	be	mandatory	or	optional	depending	
on	 the	 lower	 bound	 value.	 The	 upper	 bound	 (n)	 can	 be	 on	 both	
cases	1	or	greater	than	1,	and	indicates	how	many	instances	of	the	
child	feature	will	be	allowed.	

 Grouped	 and	 vertical	 relationships:	 grouped	 and	 vertical	
relationships	 are	 a	 set	 of	 binary	 relationships	 where	 the	 child	
features	 share	 an	 is_a	 connotation	 with	 respect	 to	 their	 parent	
feature.	 A	 group	 can	 have	 an	 upper	 and	 a	 lower	 bound.	 These	
bounds	 specify	 the	 minimum	 and	 the	 maximum	 number	 of	
features	that	can	be	instantiated	(regardless	of	the	total	number	of	
instances).	

 Binary	 and	 horizontal	 relationships:	 these	 relationships	 are	
specified	between	two	features	and	do	not	express	any	hierarchical	
information.	 They	 can	 express	 constraints	 (conditional,	
implications	and	exclusion)	or	dependencies	(use).	The	first	group	
applies	 to	 the	 whole	 set	 of	 instances	 of	 the	 involved	 features.	
However,	 the	 second	 one	 allows	 us	 to	 define	 the	 following	
dependencies	at	instance	level:	

 Implication	 (A	 ‐>	B):	 if	 an	 instance	of	 feature	A	exists,	 at	 least	an	
instance	of	feature	B	must	exist	too.	

 Co‐implication	(A	<‐>	B):	if	an	instance	of	feature	A	exists,	at	least	
an	instance	of	feature	B	must	exist	too	and	vice	versa.	

 Exclusion	(A<‐>	B):	 if	an	 instance	of	 feature	A	exists,	cannot	exist	
any	instance	of	feature	B	and	vice	versa.	

 Use	(A	B):	this	relationship	will	be	defined	at	configuration	level,	
and	 it	 will	 specify	 that	 an	 specific	 instance	 of	 feature	 A	 will	 be	
related	to	one	(or	more)	specific	instances	of	feature	B	as	defined	
by	its	upper	bound	(n).	

	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 49

	
Table 2. Symbols used in cardinality‐based feature modeling [26]

Figure	13	 shows	an	example	of	a	 feature	model	 created	using	 the	editor	
described	 in	[26],	 illustrating	an	excerpt	of	a	Car	Control	System.	This	control	
system	 has	 different	 features	 as	 ABS,	TractionControl,	StabilityControl	 and	 so	
on.	Some	of	those	features	are	linked	by	requires	relationships;	TractionControl	
requires	the	sensors	of	the	ABS	system	or	the	GPS	Navigation	feature	requires	
the	 feature	MultimediaAudioSystem	 to	 be	 selected.	 There	 is	 a	 feature	 group	
below	 the	 car	 definition,	 with	 a	 multiplicity	 ranging	 from	 1	 to	 7,	 due	 to	 the	
presence	of	a	mandatory	feature	(Car	Audio)	that	should	be	selected	in	each	car	
configuration.	Finally	there	is	a	group	of	optional	features	below	the	CarAudio	
feature,	meaning	that	one	and	only	one	type	of	CarAudio	should	be	selected	in	
each	car	configuration.	

	
Figure 13. Example of Cardinality Based Features Model

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 50

Figure	14	shows	an	excerpt	the	structure	of	the	cardinality	based	features	
model	 metamodel.	 The	 FeatureModel	 contains	 features;	 a	 feature	 can	 be	
constrained,	 and	 can	 contain	 groups	 of	 child‐features.	 The	 Feature	 model	
contains	also,	as	top	level	entities,	the	relationships	among	features	and	groups.	
There	 are	 two	 main	 types	 of	 relationships,	 the	 structural	 relationships	 for	
expressing	 the	 parent‐child	 relationships	 and	 the	 binary	 and	 horizontal	
relationships:	uses,	excludes,	implies	and	biconditional	(co‐implication).	

	
Figure 14. Cardinality‐Based Features Model Metamodel

	

5.4. Quality View

Software	Quality	is	the	capability	of	the	software	product	to	satisfy	stated	and	
implied	 needs	 (requirements)	when	 used	 under	 specific	 conditions	 [36].	 The	
ISO/IEC	FCD	9126‐1	[36]	defines	a	quality	attribute,	,	as	“a	measurable	physical	
or	 abstract	 property	 of	 an	 entity”.	 This	 definition	 has	 been	 redefined	 and	
extended	in	ISO2500‐SQuaRE	[35]	as	the	“inherent	property	or	characteristic	of	
an	 entity	 that	 can	be	distinguished	quantitatively	or	qualitatively	by	human	or	
automated	means”.	

The	 evaluation	of	 software	products,	 in	order	 to	 satisfy	 software	quality	
needs,	is	one	of	the	most	important	activities	in	the	software	development	life	
cycle.	 Software	 product	 quality	 can	 be	 evaluated	 by	 measuring	 internal	
software	 quality	 (typically	 static	 measures	 of	 intermediate	 products),	 or	 by	
measuring	external	software	quality	(typically	by	measuring	the	behavior	of	the	
code	when	executed),	or	by	measuring	software	quality	in	use.	The	objective	is	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 51

to	 ensure	 product	 have	 the	 required	 effect	 in	 a	 particular	 context	 of	 use	 as	
shown	Figure	15.	

	
Figure 15. Quality in the life cycle

5.4.1. Quality Models

The	quality	attributes	of	a	software	product	are	usually	difficult	to	be	checked.	
This	is	partly	due	to	their	nature,	but	there	are	other	reasons	that	contribute	to	
this,	namely	 the	 lack	of	structured	and	widespread	descriptions.	To	solve	 this	
problem,	 several	 approaches	 that	 define	 quality	models	 have	 been	 proposed	
the	last	years.	

	A	quality	model	is	a	“set	of	characteristics	and	relationships	among	them,	which	
provides	a	framework	for	specifying	quality	requirements	and	evaluating	quality”	
[27].	The	quality	view	of	a	system	can	be	specified	through	a	quality	model.	

Early	quality	models	 that	 still	 serve,	 as	 reference	models	 are	 the	models	
proposed	by	Boehm	[8]	McCall	[46],	the	ISO	9126	[36]	and	the	latest	ISO25000‐
SQuaRE	[35]		standard	for	software	quality,	which	contains	a	quality	model	that	
is	 based	 on	 the	 McCall’s	 model.	 All	 these	 models	 decompose	 quality	 in	
characteristics	 and	 subcharacteristics	 that	 are	 inherent	 to	 the	 product.	 For	
instance,	 the	 SQuaRE	 standard	 establishes	 criteria	 for	 the	 specification	 of	
software	 product	 quality	 requirements,	 their	 measures	 and	 evaluation.	 The	
standard	 is	 defined	 with	 the	 intent	 of	 allowing	 customers	 and	 designers	
defining	the	quality	attributes	(which	are	not	defined	in	the	standard)	assuming	
that	 they	 are	 domain	 specific.	 The	 two‐part	 quality	 model	 addresses	 the	
problem	 of	 aligning	 the	 customer‐defined	 quality	 attributes	 and	 the	 quality	
attributes	 of	 the	 development	 process.	 Figure	 16	 shows	 the	 SQuaRE	
decomposition	 of	 software	 product	 quality	 in	 characteristics	 and	
subcharacteristics.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 52

	
Figure 16. SQuaRE Software Product Quality Decomposition

5.4.2. Quality Models for Software Product Line Development

There	are	approaches	defining	quality	models	specifically	for	software	product	
line	development,	 such	as	 the	model	proposed	by	Montagud	 [50].This	quality	
model,	 compliant	 to	 the	 SQuaRE	 standard,	 defines	 the	 hierarchical	
decomposition	 of	 quality	 in	 characteristics,	 subcharacteristics	 and	 quality	
attributes	specifically	for	software	product	lines.	

The	model	allows,	 the	definition	of	 relationships	among	the	quality	attributes	
(in	terms	of	relative	and	quantifiable	impacts).		

The	 model	 also	 allows	 the	 definition	 and	 operationalization	 of	 metrics	
which	 can	 then	 be	 associated	 to	 different	 artifacts	 at	 different	 phases	 of	 the	
product	line	life	cycle	(core	asset	or	product	development).		

This	quality	model	can	be	used	to	evaluate	quality	at	three	different	levels:	

 Level	 1:	 Core	 asset	 quality	 evaluation	 within	 the	 core	 asset	
development	activity.	

 Level	 2:	 Selection	 of	 core	 assets	 that	 satisfy	 some	 quality	
attributes	that	a	particular	software	product	must	fulfill	within	the	
product	development	activity.	

 Level	3:	Quality	evaluation	of	the	SPL,	giving	feedback	to	the	multi‐
model,	 in	 order	 to	 validate	 the	 relationships	 defined	 among	 the	
different	views	of	the	multi‐model.	

Figure	17	shows	an	excerpt	with	 the	structure	of	 the	Montagud’s	quality	
metamodel.	 It	 contains	only	 the	 relevant	 classes	and	relationships	 that	play	a	
role	 in	 the	multi‐model.	 The	 IsAssociatedWith	 relationship	 allows	 the	 quality	
characteristics	 and	 attributes	 to	 be	 related	 with	 others,	 expressing	
dependencies	 among	 them.	 The	 Perspective	 attribute	 in	 the	 different	 meta‐
classes	 allows	 the	 definition	 of	 quality	 characteristics,	 subcharacteristics	 and	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 53

attributes	 for	 the	different	quality	perspectives	 (internal	and	external	quality,	
quality	in	use	and	so	on).	The	AttributeImpact	meta‐class	allows	the	definition	
of	 positive	 or	 negative	 impacts	 among	quality	 attributes.	 The	Attribute	meta‐
class	includes	two	attributes	Phase	and	Artifact	that	allows	defining	whether	an	
attribute	 covers	 core	 assets	 or	 product	 quality	 and	 whether	 is	 applied	 to	
features,	 core	 assets	 or	 final	 product.	 A	more	 detailed	 version	 of	 the	 quality	
model	for	software	product	lines	can	be	found	in	[50].		

	
Figure 17. Quality View Metamodel

	

5.5. Functional View

Functional	 components	 under	 the	 SPL	 approach	 can	 be	 seen	 as	 the	 system	
behavior,	 which	 satisfies	 the	 requirements	 of	 the	 different	 features.	 Those	
components	 can	 be	 described	 by	 using	 architectural	 models.	 Software	
architecture	involves	the	description	of	elements	from	which	systems	are	built,	
interactions	among	those	elements,	patterns	that	guide	their	compositions,	and	
constraints	on	these	patterns	[63].	A	more	precise	definition	can	be	found	in	[3]	
“software	 architecture	 of	 a	 program	 or	 computing	 system	 is	 the	 structure	 or	
structures	of	the	system,	which	comprises	software	elements,	the	externally	visible	
properties	of	those	elements,	and	the	relationships	among	them”.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 54

5.5.1. Architectural Description Languages

Since	 software	 architecture	 is	 often	 described	 by	 using	 different	 views,	 the	
component	and	connector	view,	module	view,	the	deployment	view	and	so	on,	
there	 are	 different	 modeling	 solutions	 or	 standards	 that	 can	 be	 used	 as	
Architectural	 Description	 Languages.	 Clements	 et	 al.	 propose	 [13]	 the	 use	 of	
UML,	SysML	and	AADL	as	architectural	description	languages.	

The	Unified	Modeling	Language	(UML)	is	a	standardized,	general	purpose,	
visual	 language	 for	 modeling	 software	 designs.	 It	 was	 originally	 created	 to	
merge	 notations	 for	 object‐oriented	 modeling,	 but	 now	 UML	 has	 grown	 to	
become	 the	de‐facto	 standard	 for	 representing	 software	designs.	UML	 can	be	
used	 to	 describe	 some	 information	 found	 in	 software	 architectures	 as	
component‐and‐connector	view,	allocation	views,	behavior	documentation	and	
interfaces.	However,	object	oriented	abstractions	are	not	always	 the	best	 tool	
for	describing	software	architectures.	UML	has	no	notation	for	a	layer,	context	
diagram,	 or	 rich	 connector.	Many	 changes	were	 introduced	 in	 revision	 2.0	 of	
UML	and	some	of	them	were	motivated	by	the	need	of	improving	architecture	
abstractions.	 Language	 elements	 as	 connectors	 and	 ports	were	 introduced	 to	
address	 some	 problems.	 Other	 elements	 were	 enriched	 to	 improve	 their	
suitability;	 for	 example,	 UML	 components	 now	 share	 many	 features	 with	
classes,	 such	as	 the	 ability	 to	 add	 interfaces	 and	behavioral	descriptions.	The	
result	 is	 that	 today’s	 2.x	 versions	 of	 UML	 are	 better	 adapted	 to	 documenting	
architectures,	 but	 there	 are	 some	 gaps	 between	 UML	 and	 architectural	
abstractions,	particularly	when	defining	Component	and	Connector	views.	

The	System	Modeling	Language	(SysML)	 language	[54],	although	it	 is	not	
intended	 to	 be	 a	 dedicated	 architecture	 description	 language,	 it	 provides	
enough	 constructs	 to	 meet	 many	 of	 the	 needs	 of	 a	 systems	 engineer.	 The	
engineer	 can	 represent,	 by	 means	 of	 the	 different	 abstraction	 the	 language	
provides,	 the	 topology	of	 the	hardware	and	allocate	software	units	 into	 those	
hardware	units.	 It	 is	also	possible	 to	represent	 the	various	architecture	views	
needed	to	document	software	architectures.		

SysML	 is	 a	 general‐purpose	 systems‐modeling	 language	 intended	 to	
support	a	broad	range	of	analysis	and	design	activities	for	system‐engineering	
applications.	SysML	is	a	standard	maintained	by	the	Object	Management	Group	
(OMG)	in	collaboration	with	the	International	Council	on	Systems	Engineering	
(INCOSE).	 SysML	 started	 as	 a	 UML	 profile	 (in	 the	 same	way	 that	MARTE	 for	
real‐time	systems).	Being	a	UML	profile	means	that	SysML	reuses	much	of	UML,	
but	 it	 also	 provides	 the	 extensions	 needed	 to	 cover	 the	 demands	 of	 systems	
engineers.	

The	 Architecture	 Analysis	 and	 Design	 Language	 AADL	 [22]	 is	 an	
aerospace,	automotive	and	medical	device	standard	developed	by	SAE.		

The	AADL	standard	defines	a	textual	and	graphical	language	to	represent	
the	 runtime	 architecture	 of	 software	 system	 as	 a	 component‐based	model	 in	
terms	of	distinct	components	and	their	interactions.	AADL	is	extensible	through	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 55

user‐defined	properties	and	sublanguage.	 It	 includes	abstractions	of	software,	
computational	hardware,	and	system	components	for	doing	the	following:	

 Specifying	 and	 analyzing	 real‐time	 embedded	 and	 high	
dependability	 systems,	 complex	 systems	 of	 systems,	 and	
specialized	performance	capability	systems	,	

 Mapping	 software	 abstractions	 onto	 computational	 hardware	
elements.		

The	AADL	is	especially	effective	for	model‐based	analysis	and	specification	
of	complex	real‐time	embedded	systems.		

We	 have	 decided	 to	 use	 AADL	 for	 supporting	 the	 functional	 view	 of	 the	
multi‐model	 since	 it	 is	 specifically	 designed	 for	 architecture	 modeling.	 In	
addition	 there	 are	 some	 research	 efforts	 to	 optimize	 embedded	 systems	
architectures	by	using	model	transformation	as	input	of	the	description	of	the	
architecture	in	AADL.	Our	intention,	as	mentioned	in	the	future	works	section,	
is	to	use	architecture	optimizers	to	analyze	the	output	of	the	production	plan,	in	
order	 to	 obtain	 not	 only	 an	 architecture	 that	 meets	 the	 required	 quality	
attributes	but	also	the	best	architecture	in	terms	of	performance,	cost,	memory	
consumption	and	so	on.	The	weak	point	is	that	AADL	is	not	a	OMG	standard	and	
it	 is	 out	 of	 the	 MDA	 approach,	 but	 since	 the	 AADL	 is	 becoming	 a	 de‐facto	
standard	in	the	software	architecture	field	and	since	it	is	fully	supported	by	the	
technological	space	(i.e.,	 the	AADL	metamodel	 is	defined	 in	Eclipse	EMF),	 this	
language	 is,	 under	 our	 point	 of	 view,	 the	 best	 choice	 for	 expressing	 the	
functional	 view	 of	 the	 proposed	 multi‐model.	 An	 overview	 of	 the	 AADL	
components,	 component	 types,	 component	 implementations,	 packages,	
property	sets	and	annexes	are	provided	below.	

5.5.2. The AADL Language

This	subsection	describes	 in	detail	 the	different	components	that	 integrate	an	
AADL	specification,	its	purpose	and	structure.	

5.5.2.1. AADL Components

Components	form	the	central	modeling	vocabulary	for	the	AADL.	Components	
are	 assigned	 a	 unique	 identity	 (name)	 and	 are	 declared	 as	 a	 type	 and	
implementation	within	a	particular	component	category.	A	component	category	
defines	 the	 runtime	 essence	 of	 a	 component.	 There	 are	 three	 distinct	 sets	 of	
component	categories:	

Software	Components:	

 Thread:	basic	unit	of	concurrent	execution.	

o Process:	a	protected	address	space.	A	process	must	contain	at	
least	one	thread.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 56

 Thread	 Group:	 a	 compositional	 unit	 for	 organizing	 threads,	
declares	 the	 features	and	 required	 subcomponent	access	 through	
which	 threads	 contained	 in	 a	 thread	 group	 can	 interact	 with	
components	declared	outside	the	thread	group.	

 Data:	data	types	and	static	data	in	source	text.	

 Subprogram:	callable	sequentially	executable	code.	

Hardware	Components	

 Processor:	 an	 abstraction	 of	 the	 hardware	 and	 software	 that	 is	
responsible	 for	 scheduling	 and	 executing	 threads.	 For	 their	
execution,	 threads	will	be	bound	to	a	processor	that	supports	the	
dispatch	protocol	required	by	the	thread.	A	processor	component	
must	 contain	 at	 least	 one	 memory	 component	 (the	 application	
software	 executes	 in	 the	 attached	memory)	 or	 provide	 access	 to	
memories	via	a	bus.	

 Memory:	 components	 that	 store	 data	 and	 code.	 Memory	 can	
represent	 any	 randomly	 accessible	 storage	 (e.g.,	 random	 access	
memory	 [RAM],	 read‐only	 memory	 [ROM])	 or	 more	 complex	
(random	 or	 sequential)	 storage	 devices	 (e.g.,	 mag‐	 netic	 disk,	
optical	disk,	and	tape).	Memories	have	properties	such	as	size	(e.g.,	
8	 bits),	 proto‐	 col	 (e.g.,	 read_only,	 write_only,	 read_write),	 and	
amount	(e.g.,	max_word_count).	Subprograms,	data,	and	processes	
are	bound	to	memory	components	for	access	by	processors	when	
executing	threads.	

 Device:	components	that	interface	with	and	represent	the	external	
environment.	 A	 device	 can	 represent	 single‐function	 components	
(e.g.,	sensors)	as	well	as	more	complicated	components	(e.g.,	global	
positioning	 system	 [GPS]	 units,	 camcorders).	 In	 reality,	 the	more	
complicated	 de‐	 vices	 would	 have	 internal	 processors,	 memory,	
and	so	forth	that	are	not	explicitly	modeled.	

 Bus:	 components	 that	 provide	 access	 among	 execution	 platform	
components	 as	 processors,	 memories,	 and	 devices.	 The	 bus	
component	 represents	 a	 communication	 channel,	 typically	
hardware	coupled	with	a	communication	protocol.	

Composite	

 System:	 a	 composite	 of	 software,	 execution	 platform,	 or	 system	
components.	 Supports	 the	hierarchical	 grouping	of	 both	 software	
and	 hardware	 components.	 A	 system	 can	 be	 used	 to	 organize	
processes,	execution	platform	components,	or	the	combina‐	tion	of	
both.	A	system	can	also	contain	lower	level	system	instances.	It	 is	
generally	used	early	in	the	modeling	process	as	a	generic	modeling	
component.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 57

AADL	 components	 interact	 exclusively	 through	 defined	 interfaces.	 A	
component	interface	consists	of	directional	flow	through:	

 Data	ports	for	unqueued	state	data.	

 Event	Data	Ports	for	queued	message	data.	

 Event	Ports	for	asynchronous	events.	

 Synchronous	subprogram	calls.	

 Explicit	access	to	data	components.	

5.5.2.2. Component Types

An	 AADL	 component	 type	 declaration	 defines,	 by	 means	 of	 subclauses,	 the	
component’s	 externally	 visible	 characteristics.	 The	 type	 declaration	 specifies	
four	 subclasses	 defining	 those	 characteristics.	 Figure	 18	 shows	 the	 four	
subclauses	of	a	thread	type	declaration.		

 Extends	 clause	 enables	 the	 component	 type	 to	 build	 upon	 the	
definition	 of	 another	 existing	 component	 of	 the	 same	 type.	 The	
component	 defined	 as	 extension	 of	 another	 inherits	 the	
characteristics	of	the	original	type.		

 Features	 subclause	 defines	 the	 interfaces	 of	 the	 component,	
including	 the	 input	and	accesses	 required	by	 the	component,	and	
all	the	output	and	items	the	component	provides.		

 Flows	subclause	defines	specifications	of	logical	flows	through	the	
component	 from	 incoming	 interaction	 points	 to	 outgoing	
interactions	points	(These	flows	can	be	used	to	specify	end‐to‐end	
flows	 without	 having	 to	 expose	 or	 have	 available	 any	
implementation	 detail	 of	 the	 component.	 Flows	 can	 trace	 data,	
control,	or	mixed	flow	by	connecting	event	and	data	ports).		

 Properties	 subclause	 specifies	 the	 properties	 of	 the	 component	
that	apply	to	all	instances	of	this	component	unless	overwritten	in	
implementations	or	extensions.	

	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 58

Figure 18. Type Declaration Subclauses

	

5.5.2.3. Component Implementations

A	 component	 implementation	 specifies	 the	 internal	 structure	 in	 terms	 of	
subcomponents,	interactions	(calls	and	connections)	among	the	features	of	those	
subcomponents,	 flows	 across	 a	 sequence	 of	 subcomponents,	 modes	 that	
represent	 operational	 states	 and	 properties	 of	 a	 component	 type	 defined	
previously.	 Figure	 19	 shows	 the	 different	 subclauses	 of	 a	 component	
implementation	clause.	The	subcomponents,	connections	and	calls	clauses	allow	
the	definition	of	a	component	implementation	as	a	collection	of	subcomponents	
and	 their	 interactions.	 Flows	 subclause	 represents	 the	 flow	 implementation	
defined	in	the	component	type	declaration.	Modes	clause	represent	alternative	
operational	modes	that	may	manifest	themselves	as	alternate	configurations	of	
subcomponents,	calls	sequences,	connections,	flows	sequences,	and	properties.	
Properties	define	intrinsic	characteristics	of	a	component.	There	are	predefined	
properties	 for	 each	 component	 implementation,	 and	 the	 user	 can	 define	
additional	ones	by	using	the	language	extension	capabilities.	

	
Figure 19. Type Implementation Subclauses

	

In	addition	AADL	allows	the	declaration	of	multiple	implementations	of	a	
component	 type,	 allowing	 behavioral	 variants	 with	 the	 same	 external	
interface.It	also	allows	extending	and	refining	previously	declared	component	
implementations	 through	 the	 extends	 or	 refines	 subclauses.	 Extended	
implementations	 inherit	 all	 the	 characteristics	 of	 the	 original	 component	
implementation	 and	 all	 of	 its	 predecessors.	 Refinement	 allows	 partially	
specified	component	implementations	(templates)	to	be	completed	as	opposed	
to	 the	 extension	 mechanism	 that	 allows	 a	 component	 implementation	 to	 be	
expressed	 as	 a	 variation	 of	 a	 common	 component	 description	 through	
additions.	Extended	implementations	can	add	property	values	to	the	features	of	
its	component	type	by	means	of	the	refines	type	subclause.	

The	subcomponent	subclause	allows	the	component	decomposition	tithing	
component	 implementation	declaration	clause.	The	 subcomponent	 represents	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 59

the	decomposition	element	and	the	classifier	represents	a	choice	in	the	family	
of	implementations	of	that	subcomponent	(that	had	been	previously	defined	as	
component	 type	 and	 component	 implementation).	 A	 component	 instance	 is	
created	 by	 instantiating	 a	 component	 implementation	 and	 each	 of	 its	
subcomponents	recursively.	

5.5.2.4. Packages, Property Sets and Annexes

AADL	 packages	 allow	 the	 declaration	 of	 collections	 of	 components	 to	 be	
organized	in	separate	units	with	their	own	namespaces.	Packages	support	the	
independent	 development	 of	 large‐scale	 systems	 providing	 independent	
namespaces	for	each	group	of	subsystem	elements.	

AADL	property	set	is	a	named	grouping	of	property	declarations	that	define	
new	 properties	 and	 property	 types	 that	 can	 be	 included	 in	 a	 specification.	
These	 properties	 are	 referenced	 using	 the	 property	 set	 name	 and	 can	 be	
associated	 with	 components	 and	 other	 modeling	 elements	 (e.g.,	 ports	 or	
connections)	within	a	 system	specification.	Their	declaration	and	use	become	
part	of	the	specification.	

An	 annex	 enables	 a	 user	 to	 extend	 the	 AADL	 language,	 allowing	 the	
incorporation	of	specialized	notations	within	a	standard	AADL	model.	

5.5.2.5. The AADL Textual and Graphical Specifications

This	section	shows	an	excerpt	of	the	AADL	textual	and	graphical	specification.	
Table	1	shows	the	AADL	specification	as	a	human	readable	collection	of	textual	
declarations	that	comply	with	the	AADL	standard.	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 60

	

Declaration	 Description

Component	Type:

System,	 process,	 thread,	
thread	 group	 data,	
subprogram,	 processor,	
device,	memory,	and	bus	

The	component	type	declaration	establishes	the	identity	
(component	 category	 and	 name)	 and	 defines	 the	
features,	 flows,	 and	 properties	 of	 a	 component	 type.	 A	
component	type	declaration	may	also	declare	the	type	as	
an	extension	of	another	type	(extends).	

Component	
Implementation:	

System,	 process,	 thread,	
thread	 group	 data,	
subprogram,	 processor,	
device,	memory,	and	bus	

The	 component	 implementation	 declaration	 establishes	
the	 identity	 (component	 category,	 type,	 and	 name)	 and	
defines	 the	 refinements	 (refines	 type	 sub‐clause),	
subcomponents,	 calls,	 connections,	 flows,	 modes,	 and	
properties	of	a	component	implementation.	The	identity	
must	include	a	declared	component	type	consistent	with	
the	 component	 category.	 The	 component	
implementation	 declaration	 may	 also	 declare	 the	
implementation	 as	 an	 extension	 of	 another	
implementation	(extends	sub‐clause).	

Port	Group	Type Port	 group	 type	 declarations	 establish	 the	 identity	
(name)	 and	 define	 the	 features	 and	 properties	 of	 a	
grouping	 of	 ports	 and/or	 port	 groups.	 Within	 the	
features	declaration,	a	port	group	may	be	defined	as	the	
inverse	 of	 another	 port	 group.	 A	 port	 group	 type	
declaration	 may	 also	 declare	 the	 port	 group	 as	 an	
extension	of	another	port	group	type	(extends).	

Package	 The	package	declaration	establishes	 the	 identity	 (name)	
of	 a	 collection	 of	 AADL	 declarations,	 groups	 those	
declarations	 into	 private	 and	 public	 sections,	 and	
declares	properties	associated	with	a	package.	Packages	
are	 used	 to	 logically	 organize	AADL	 declarations.	 AADL	
component	 type,	 implementation,	 and	 port	 group	
declarations	placed	in	AADL	packages	can	be	referenced	
by	declarations	in	other	packages.	

Property	Set Property	 set	 declarations	 introduce	 additional	
properties,	 property	 types,	 and	 property	 constants	 that	
are	not	included	as	pre‐declared	AADL	properties.8	Each	
property	 set	 has	 a	 unique	 global	 name	 and	 provides	 a	
unique	namespace	 for	 the	 items	declared	 in	 it.	 In	 other	
words,	 properties	 and	 property	 types	 declared	 in	 a	
property	 set	 are	 referenced	 by	 property	 set	 name	 and	
item	name.	

Annex	Library Annex	 library	declarations	establish	the	 identity	(name)	
and	define	the	contents	of	a	set	of	reusable	declarations	
that	are	not	part	of	 the	standard	AADL	 language.	Annex	
declarations	 are	 used	 to	 extend	 AADL’s	 core	 modeling	
and	analysis	capabilities.	

Table 3. AADL Textual notation

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 61

Figure	 20	 shows	 AADL	 graphical	 notation.	 AADL	 graphical	 notation	
facilitates	 a	 clear	 visual	 presentation	 of	 a	 system’s	 structural	 hierarchy	 and	
communication	 topology	 and	 provides	 a	 foundation	 for	 distinct	 architecture	
perspectives.		

	
Figure 20. AADL Graphical Notation [22]

	

5.5.2.6. The AADL Metamodel

AADL	Metamodel	 is	defined	as	a	multi‐model	 itself.	The	representation	of	 the	
AADL	metamodel	 as	 a	 single	 unit	 would	make	 it	 difficult	 to	 understand	 and	
maintain.	 The	 modular	 metamodel	 approach	 allows	 metamodels	 for	 such	
sublanguages	 to	 be	 defined	 separately	 in	 Ecore	 and	 added	 to	 the	 core	 AADL	
metamodel.	

The	metamodel	for	the	core	AADL	is	divided	into	six	metamodel	packages:	

 Core:	defines	the	concepts	of	component	type,	implementation,	and	
subcomponent	as	abstractions,	as	well	as	packages	and	modes.	

 Component:	 defines	 the	 concrete	 classes	 for	 the	 different	
categories	 of	 components,	 including	 the	 constraints	 on	 their	
subcomponents.	

 Feature:	defines	the	features	of	component	types.	

 Connection:	defines	the	connections	between	component	features.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 62

 Flow:	defines	flow	related	elements	of	the	AADL.	

 Property:	defines	the	elements	for	associating	property	values	and	
for	 introducing	 new	 property	 types	 and	 properties	 via	 property	
sets.	

Figure	21	shows	the	multi‐model	structure	with	the	seven	metamodels	on	
the	right	side	and	the	external	packages	(connection	and	property)	 loaded	on	
the	core	metamodel	on	the	left	side.	

	
Figure 21. Multi‐Package Metamodel Structure

5.6. Relationships among Views and Metamodel

Definition

Variability	 management	 involves	 the	 manipulation	 of	 domain	 features,	
represented	 as	 feature	models,	 and	 the	 support	 of	 such	 variability	 in	 the	 so‐
called	 product	 line	 core	 assets.	 Specifications	 of	 both	 system	 variability	 and	
functionality	can	be	dealt	with	models	that	are	independent	from	each	other.	In	
addition,	 quality	 requirements	 should	 also	 be	 included	 in	 the	 product	 line	
development	process	by	means	of	a	quality	model.	Therefore,	we	will	consider	
(at	 least)	 three	 different	 views	 of	 software	 systems:	 System	 Variability	 View	
(SVV),	System	Functional	View	(SFV),	and	the	System	Quality	View	(SQV).	

The	SVV	is	based	on	cardinality‐based	feature	models.	The	SFV	is	considered	in	
the	 different	 stages	 of	 the	production	 process	 of	 a	 SPL	 by	means	 of	 different	
architectural	 models	 (e.g.,	 component‐connector).	 Finally,	 the	 SQV	 is	 defined	
over	the	aforementioned	views	defining	relationships	that	guide	the	production	
plan	 towards	 a	 final	 product.	 These	 different	 system	 models	 correspond	 to	
different	system	views	that	constitute	a	multi‐model	 that	represents	a	SPL	by	
considering	the	relationships	among	views.	

However,	in	order	to	define	production	plans	to	guide	the	development	of	
specific	 software	 products	 using	 the	 multi‐model,	 we	 should	 establish	
relationships	among	the	elements	of	the	different	system	views.	This	will	allow	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 63

us	 to	 formally	 analyze	 properties	 over	 the	 system	 as	 a	 whole	 (i.e,	 the	
consistency	of	the	multi‐model).	

In	 section	 5.3	 we	 have	 defined	 a	 feature	 as	 “user‐visible	 aspects	 or	
characteristics	 of	 a	 system”	 and	 in	 section	 5.5	 we	 have	 defined	 functional	
component	 as	 the“system	 behavior,	 which	 satisfies	 the	 requirements	 of	 the	
different	features”.	According	to	these	definitions	we	must	consider,	at	least,	the	
following	relationships:	

 A	functional	component	can	be	also	combined	with	others	in	order	
to	fulfil	those	requirements	(more	than	one	functional	component	
to	fulfil	the	requirements	of	one	feature).	

 A	 functional	 component	 can	 fulfil	 the	 requirements	 of	more	 than	
one	feature.	

In	addition,	if	we	focus	on	the	quality	attributes,	the	features	selected	in	a	
product	 configuration	 will	 impact	 directly	 over	 the	 quality	 attributes	 of	 the	
product.	The	mapping	between	features	and	functional	component	will	impact	
also	in	the	quality	of	the	final	product.	.			

This	relationship	is	analyzed,	from	the	asset	point	of	view	by	Nolan	et	al.	in	
[58],	concluding	that	the	selection	of	core	assets	with	different	levels	of	quality	
(maturity	and	variability	in	this	case)	increases	the	cost	of	the	core	asset	

We	 have	 defined	 the	 relationships	 with	 features	 and	 quality	 attributes.	
However,	the	functional	view,	as	mentioned	in	section	5.5,	is	modeled	by	using	
the	AADL	modeling	language.	In	this	language	there	are	different	meta‐classes	
that	could	be	considered	as	functional	components	(system,	component,	thread,	
process	and	so	on),	depending	on	the	level	of	detail	that	needs	to	be	achieved.		

To	 cope	with	 this	problem	we	have	defined	 the	 ImpactingElement	meta‐
class	 that	 allow,	 by	 defining	 inheriting	 meta‐classes,	 to	 have	 different	 meta‐
classes	that	can	impact	over	the	quality	attributes.		

The	 Impact	 meta‐class	 expresses	 the	 relationship	 between	 the	
ImpactingElement	 and	 the	 quality	 attributes.	 This	 relationship	 is	 associated	
with	 the	EAtribute	meta‐class,	defined	by	applying	the	proxy	pattern	over	 the	
Attribute	 meta‐class	 from	 the	 quality	 metamodel.	 The	 impact	 meta‐class	
includes	the	Weight	attribute	that	allows	to	expressing	the	relative	importance	
of	 this	 impact	 over	 the	quality	 attribute.	The	 impacts	 could	be	defined	as	 the	
relationship	 of	 more	 than	 one	 ImpactingElement	 over	 a	 quality	 attribute,	
meaning	that	the	combination	of	some	elements	may	have	impact	(negative	or	
positively)	over	the	quality	attributes.	This	allows	us	to	express	more	complex	
relationships	 that	 occur	 when	 dealing	 with	 the	 selection	 of	 features	 or	
components.	 In	 general	 the	quality	of	 the	 final	product	 can	be	more	 (or	 less)	
than	 the	 addition	 of	 the	 quality	 of	 the	 parts.	 The	 composability	 of	 quality	
attributes	had	been	studied	from	the	perspective	of	Component	Based	Software	
Engineering	 perspective	 [15]	 but	 the	 ideas	 can	 be	 applied	 also	 to	 SPL	
development.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 64

The	 EComponentType	 meta‐class	 contains	 the	 relationship	 between	
features	 and	 functional	 components.	 There	 are	 different	 meta‐classes	 that	
inherit	 from	 this	 meta‐class,	 such	 as	 ESystemType,	 EProcessType	 and	
EThreadType.	All	those	three	classes	have	also	been	defined	also	as	subclasses	
of	the	homonymous	ComponentType	subclasses,	by	applying	the	proxy	pattern	
over	the	AADL’s	metamodel	meta‐classes.	Therefore	a	feature	can	be	associated	
with	an	ESystemType,	an	EProcessType	or	an	EThreadType,	as	shown	in	Figure	
22.		

	

	
Figure 22. EComponent Type Subclases (Excerpt of the Multi‐Model’s Metamodel)

	

Figure	23	shows	the	relationships	among	 the	different	meta‐classes,	 that	
have	an	inheritance	relationship	with	the	ImpactingElement	meta‐class.	It	also	
shows	 the	 relationships	between	 the	 ImpactingElement	 and	 the	 Impact	meta‐
classes.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 65

	
Figure 23. Impacting Elements Sub‐classes (Excerpt of the Multi‐Model’s Metamodel)

The	 structure	 of	 the	 multi‐model,	 with	 the	 proxy	 meta‐classes	 and	 the	
definition	of	 the	 ImpactingElement	 allows	adding	new	kinds	of	 entities	 to	 the	
meta‐classes	 that	 already	have	an	 impact	over	 the	quality	attributes.	 If	 in	 the	
future,	we	discover	that	other	entities	have	an	impact	on	the	quality	attributes,	
this	impact	can	be	defined	only	by	defining	an	inheritance	relationship	with	the	
ImpactingElement	meta‐class.	By	 the	 same	way,	 if	 in	 the	 future	 other	 entities	
are	 discovered	 to	 have	 relationships	 with	 features,	 this	 relationship	 can	 be	
established	 by	 only	 defining	 an	 inheritance	 relationship	 with	 the	
EComponentType	meta‐class.	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 66

Chapter 6. Quality‐Driven Model
Transformations and SPL

The	existence	of	several	system	models	or	views	with	relations	between	them	
suggests	the	parameterization	of	the	production	process	by	means	of	the	multi‐
model	 proposed.	 However,	 in	 order	 to	 do	 this,	 we	 should	 define	 production	
plans	 that	 are	 able	 to	 derive	 a	 specific	 product	 by	 using	 the	 multi‐model	 as	
input.	 In	 this	 work,	 the	 production	 plan	 of	 a	 software	 product	 line	 will	 be	
realized	by	means	of	model	transformations.	

In	 a	 Model	 Driven	 Software	 Development	 (MDSD)	 context,	 model	
transformations	become	a	key	aspect	in	the	development	process.	This	means	
that	 part	 of	 the	 development	 effort	 is	 relocated	 to	 the	 transformation	 design	
and	 implementation.	The	design	of	model	 transformations	needs	 to	deal	with	
not	only	with	 functional	concerns,	 i.e.,	how	to	move	from	a	source	model	 to	a	
target	 model,	 but	 also	 with	 nonfunctional	 concerns,	 which	 are	 the	 desired	
quality	 attributes	 of	 the	 target	model.	 In	 order	 to	 do	 this,	 the	 transformation	
designers	 need	 to	 identify	 possible	 alternative	 transformations	 and	 choose	
those	 alternatives	 that	 produce	 the	 target	 model	 with	 the	 desired	 quality	
attributes.	

The	 chapter	 is	 organized	 as	 follows:	 In	 Section	 6.1	 we	 introduce	 the	
concept	the	alternative	model	transformations	and	its	purpose	in	product	line	
development	 processes.	 In	 Section	 6.2	 we	 present	 our	 architecture	 for	
supporting	 quality‐driven	 model	 transformation	 processes	 dealing	 with	
alternative	transformations	that	impact	over	the	quality	attributes	of	the	target	
models.	Finally	in	Section	6.3,	we	describe	the	schema	that	must	be	followed	for	
defining	quality‐driven	model	transformations.		

6.1. Alternative Model Transformations

In current model transformation design practices, the required quality attributes of
the target model are hard-coded in the transformation definition even though this
information is not directly related to the functional concern of the transformation.
Hard-coding refers to the software development practice of embedding input or
configuration data directly into the source code of a program or specification, rather
than of obtaining the required information or data from external sources.

In	 a	MDD	 approach,	 a	 software	 system	 is	 developed	 by	 refining	models.	
This	 refinement	 is	 implemented	 as	 transformations	 over	 models.	 Given	 a	
source	model	 there	may	be	 several	ways	 to	 transform	 this	 source	model	 into	
target	models.		

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 67

Alternative	 target	 models	 may	 exist	 when	 a	 structural	 pattern	 in	 the	
source	model	in	the	source	model	can	be	transformed	into	different	structural	
patterns	 in	 the	 target	 model	 by	 the	 application	 of	 different	 transformation	
rules.	Those	alternative	target	models	may	have	the	same	functionality	but	may	
differ	in	their	quality	attributes.		

In	a	software	product	line	development	context	there	are	at	least	two	main	
scenarios	where	alternative	model	transformations	may	exist:	

 Different	functional	components	or	assets,	which,	having	the	same	
structure,	 interface	 and	 behavior	 are	 different	 with	 regard	 to	
quality	attributes.	It	is	quite	common,	If	we	consider	the	embedded	
systems	 context,	 to	 have	 various	 subsystems	 (hardware	 or	
software),	 that	 develop	 exactly	 the	 same	 functionality	 but	 with	
different	attributes	as	cost,	time	response,	power	consumption	and	
so	on	depending	on	the	component	vendor	or	technology.	

 The	 improvement	of	 the	quality	of	models	 (or	 software	 artifacts)	
during	the	development	process,	both	in	core	asset	and	in	product	
development	 activities.	 This	 can	 be	 applied	 as	 endogenous,	
horizontal	transformations	(the	source	and	target	models	conform	
to	 the	same	metamodel	 in	 the	same	 level	of	abstraction),	 such	as	
optimization	 of	 architectural	 models	 by	 applying	 architectural	
patterns	 for	 obtaining	 architectures	 that	 meets	 some	 quality	
attributes,	similar	to	the	technique	applied	by	Maswar	et	al	in	[45].	
It	 also	 can	 be	 applied	 to	 exogenous	 vertical	 transformations	
(source	 and	 target	models	 that	 conform	 to	 different	metamodels	
across	levels	of	abstraction	as	PIM	to	PSM	transformations),	where	
is	common	to	have	design	alternatives,	as	 the	examples	shown	 in	
[28],	[29],	[30],	[34],		

6.2. A Quality‐Driven Model Transformations

Architecture.

This	section	presents	an	overview	of	our	architecture	to	support	quality‐driven	
model‐transformations.	 A	 key	 aspect	 of	 this	 architecture	 is	 the	 use	 of	 two	
models	 as	 active	 artifacts	 to	 drive	 the	 selection	 and	 execution	 of	 model	
transformations:	 a	 quality	 model	 to	 represent	 quality	 attributes,	 and	 a	
transformation	model	 to	 represent	 the	 relationship	 among	 quality	 attributes	
and	the	alternative	transformations.	

Unlike other transformation processes, which only use source models as input
to apply the transformations, our approach proposes the use of two additional
models: a quality model to represent quality attributes, and a transformations model
to represent the relationship among quality attributes and the alternative
transformations in a particular domain.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 68

The	 architecture	 divides	 the	 transformation	 process	 into	 two	 phases:	
Rules	Analysis	 and	Transformation.	 In	 the	Rules	Analysis	phase,	 the	 software	
engineer	 performs	 the	 Alternatives	 Identification	 activity	 to	 identify	 the	
alternative	 transformations	 in	 a	 particular	 domain.	 The	 domain	 expert	 also	
performs	 the	 Trade‐Off	 Analysis	 activity	 among	 quality	 attributes	 and	
alternative	 model	 transformations.	 This	 trade‐off	 analysis	 is	 performed	 by	
means	of	the	Analytic	Hierarchy	Process	(AHP)	[3].	

The	 AHP	 is	 a	 decision‐making	 technique	 that	 is	 widely	 used	 to	 resolve	
conflicts	 in	which	it	 is	necessary	to	address	multi‐criteria	comparisons.	 In	our	
approach,	we	 use	 the	 two	main	 phases	 of	 the	 AHP	 technique:	 i)	 Value	 Score	
Computation,	and	 ii)	Normalization.	 In	 the	 first	phase	of	 the	AHP,	 the	domain	
expert	performs	two	pair	wise	comparisons,	weighting	the	relative	importance	
of	the	different	quality	attributes	identified	by	comparing	every	pair	of	quality	
attributes	 using	 the	 AHP	 weighting	 scale	 [3]	 and	 obtaining	 a	 Wz	 value.	 The	
domain	expert	then	determines	how	each	design	alternative	relatively	supports	
the	relevant	quality	attributes.	For	every	quality	attribute,	we	compare	all	 the	
alternatives	in	a	pair‐wise	fashion,	thus	obtaining	the	values	of	Siz	which	allows	
us	to	then	compute	the	value	score	for	each	possible	alternative	transformation	
i	for	the	structural	pattern	j	using	the	following	formula:	

	

Finally,	 in	 the	second	phase	of	 the	AHP,	 the	value	scores	obtained	 in	 the	
previous	phase	are	normalized.	The	value	scores	from	different	decisions	must	
be	compared,	and	they	are	then	scaled	relatively.	

Once	 the	 trade‐off	 analysis	 has	 been	 completed,	 the	 software	 engineer	
performs	 the	 Rules	 Selection	 activity.	 This	 activity	 uses	 the	 results	 from	 the	
trade‐off	analysis	and	the	quality	attributes	selected	by	 the	software	engineer	
to	 generate	 the	 Active	 Rules	 Model,	 which	 contains	 the	 selected	
transformations	 from	 the	 set	 of	 alternative	 transformations	 that	 produces	 a	
target	model	that	best	fits	the	desired	quality	attributes.		

In	 the	 second	 phase	 of	 our	 architecture	 (Transformation),	 the	 Quality‐
Driven	Model	Transformation	activity	is	performed	by	using	both	the	definition	
of	 non‐alternative	 transformations	 and	 the	 definition	 of	 the	 selected	
transformations	 from	 the	 Active	 Rules	 Model.	 Quality	 Driven	 Model	
Transformation	activity	uses	the	Source	Model	and	the	Actives	Rules	Model	as	
input	 to	 generate	 the	 Target	 Model.	 Every	 time	 a	 structural	 pattern	 with	
alternative	transformations	is	found	in	the	source	model	the	rules	associated	to	
this	 structural	 pattern	 in	 the	 Active	 Rules	Model	 is	 applied.	 Since	 only	 those	
alternative	 transformations	which	 best	 support	 the	 desired	 quality	 attributes	
are	 executed,	we	 ensure	 that	 the	produced	 target	model	 satisfies	 the	 desired	
quality	 attributes.	 Figure	 24	 shows	 schema	 the	 two	 phases,	 the	 different	
activities,	transformation	processes	and	artifacts	of	the	architecture.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 69

	

	
Figure 24. Phases and artifacts of the quality‐driven model transformation architecture

The next sections will introduce the artifacts of our architecture, describing
their metamodels.

6.2.1. Transformation Model

The	 transformations	 model	 represents	 the	 relationships	 among	 alternative	
transformations	 and	 quality	 attributes	 (trade‐off	 analysis	 results)	 in	 a	 given	
domain.	 The	 most	 relevant	 classes	 of	 the	 corresponding	 metamodel	 are	
described	in	Figure	25.		

The	 Characteristic,	 Subcharacteristic,	 and	 Attribute	 classes	 are	 used	 to	
represent	the	domain‐specific	subset	of	the	quality	model	from	Section	3.1.	The	
domain	expert	can	also	define	new	associations	among	subcharacteristics	and	
among	attributes.		

The	Attribute	 class	has	 an	attribute	 for	 representing	 the	AHP	 ranking	of	
the	 quality	 attributes	 obtained	 from	 the	 trade‐off	 analysis.	 The	 impacts	
between	 quality	 attributes	 and	 the	 relative	 importance	 of	 these	 impacts	
(weight)	 are	 expressed	 by	 means	 of	 the	 Impact	 class.	 The	 Transformations	
Model	 also	 contains	 a	 StructuralPattern	 class	 to	 represent	 the	 structural	
patterns	 in	 the	 source	 model	 that	 will	 be	 transformed	 into	 elements	 of	 the	
target	model.	A	structural	pattern	 is	a	subset	of	elements	 in	the	source	model	
that	has	a	transformation	definition.	A	 transformation	definition	 is	defined	by	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 70

the	Rule	class.	 In	this	 transformations	model	we	 include	only	those	structural	
patterns	 that	have	 alternative	 transformations	 (those	 structural	patterns	 that	
have	no	alternatives	are	not	related	to	quality	attributes	nor	are	they	weighted	
since	 they	must	always	be	executed).	A	structural	pattern	 is	defined	by	an	 id,	
name,	 and	 description.	 The	 different	 alternative	 transformations	 for	 a	
structural	 pattern	 are	 represented	 by	 the	 association	 between	 the	 Structural	
Pattern	class	and	the	Alternative	class.	

Finally,	the	transformation	of	a	structural	pattern	using	one	alternative	or	
another	may	have	a	different	effect	on	the	quality	attributes	of	the	target	model.	
These	effects	are	quantified	by	the	domain	expert	during	the	trade‐off	analysis	
and	are	represented	in	this	metamodel	by	means	of	the	Weight	class,	which	is	
associated	with	the	alternative	and	its	respective	quality	attribute.	

	
Figure 25. Quality Driven Model Transformations Transformation Metamodel

6.2.2. The Quality Model

As	 stated	 in	 section	 5.4.1	 a	 quality	 model	 is	 defined	 as	 being	 the	 set	 of	
characteristics	 and	 the	 relationships	 between	 them,	 which	 provide	 a	
framework	 for	 specifying	 quality	 requirements	 and	 evaluating	 quality	 [35].	
These	 kinds	 of	 models	 are	 often	 used	 to	 represent	 hierarchies	 of	 quality	
attributes.	 Top‐level	 attributes	 represent	 general	 quality	 characteristics	 (e.g.,	
usability,	maintainability)	while	bottom‐level	attributes	 represent	measurable	
properties	of	software	artifacts.		

This	quality	model	allows	the	transformation	designer	to	select	the	quality	
attributes	to	be	considered	by	the	 transformation	process.	This	quality	model	
its	 independent	 from	 the	 one	 defined	 in	 section	 5.4	 and	 addresses	 only	 the	
quality	attributes	of	the	models	in	the	domain	of	the	transformation	process.	Its	
corresponding	 metamodel	 is	 composed	 of	 four	 classes	 (Figure	 26):	 a	
QualityModel	 class	 which	 is	 the	 container	 class,	 and	 the	 Characteristic,	
Subcharacteristic	and	Attribute	classes	which	represent	the	ISO	25000‐SQuaRE	
[27]	hierarchical	quality	decomposition	structure	 for	quality	attributes.	These	
classes	 have	 three	 attributes,	 which	 represents	 the	 name,	 description	
information,	 and	 the	 stakeholder’s	 perspective.	 Different	 categories	 of	
stakeholders	have	 their	own	quality	perspective	 signifying	 that	 the	particular	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 71

set	 of	 quality	 characteristics	 varies	 according	 to	 the	 stakeholders’	 different	
categories	(e.g.,	maintainability	is	perceived	by	the	software	engineer	whereas	
time	 behavior	 is	 perceived	 by	 the	 end	 users).	 The	 Attribute	 class	 has	 an	
additional	 attribute,	 checked	 to	 represent	 the	 selection	made	 by	 the	 software	
engineer.	The	quality	model	contains	the	complete	ISO	attribute	decomposition	
and	the	domain	expert	can	choose	a	subset	of	those	quality	attributes	that	are	
relevant	 for	a	given	domain	to	define	the	Transformations	Model	(see	Section	
6.2.1).	We	use	an	extensible	and	standard‐based	quality	model	in	order	to	been	
capable	to	adapt	this	approach	to	multiple	domains.	

	
Figure 26. Quality Driven Model Transformations Quality Metamodel

6.2.3. The Active Rules Model

The	 active	 rules	 model	 represents	 the	 information	 from	 the	 transformation	
rules	that	are	eventually	selected	from	among	the	alternatives	through	which	to	
perform	 the	 transformation	 of	 the	 source	 model.	 This	 model	 is	 generated	
automatically	by	the	rules	selection	activity	in	the	first	phase	of	the	architecture.	
The	 corresponding	 metamodel	 shown	 in	 Figure	 27	 is	 composed	 of	 three	
classes,	 the	 ActiveRulesModel	 class	 which	 is	 a	 container	 class,	 the	
StructuralPattern	 class	 that	 represents	 the	 information	 concerning	 the	
structural	 patterns,	 and	 the	 Rule	 class	 that	 represents	 the	 information	
concerning	the	selected	transformation	rules.		

	
Figure 27. Quality Driven Model Transformations Active‐Rules Metamodel

	

6.3. Transformation Definition

A	 model	 transformation	 definition	 contains	 transformation	 rules.	
Transformation	 rules	 are	 the	 units	 in	 which	 transformations	 are	 defined.	 A	
transformation	 rule	 is	 responsible	 for	 transforming	 a	 particular	 selection	
(structural	pattern)	of	the	source	model	into	constructs	of	the	target	model.	A	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 72

transformation	 rule	 consists	 of	 two	parts:	 a	 left‐hand	 side	 (LHS)	 and	 a	 right‐
hand	side	(RHS).	The	LHS	accesses	the	source	model,	whereas	the	RHS	expands	
in	the	target	model.		

A	 transformation	 could	 be	 declaratively	 defined	 as	 a	 relation	 among	
models.	Relations	in	a	transformation	declare	constraints	that	must	be	satisfied	
by	 the	 elements	 of	 the	 participating	models.	 A	 relation	 is	 defined	 by	 two	 or	
more	 domains,	 preconditions,	 and	 post‐conditions	 that	 specify	 a	 relationship	
that	 must	 be	 hold	 between	 the	 elements	 of	 participating	 models	 [53].	 The	
precondition	 specifies	 the	 conditions	 under	 which	 the	 relationship	 needs	 to	
hold.	 The	 post‐condition	 specifies	 the	 condition	 that	must	 be	 satisfied	 by	 all	
model	elements	that	participate	in	the	relation.		

The	 transformation	 process	 is	 controlled	 by	 matches.	 A	 match	 occurs	
during	 the	 application	of	 a	 transformation	when	 elements	 from	 the	 left‐hand	
and/or	right‐hand	model	are	identified	as	meeting	the	constraints	specified	by	
the	 declaration	 of	 a	 transformation	 rule.	 A	 match	 triggers	 the	 creation	 (or	
update)	of	model	elements	in	the	target	model,	and	is	driven	by	the	declarative	
and/or	implementation	parts	of	the	matched	rule	[17],	[25].	

In	our	approach,	a	model	transformation	definition	contains	two	kinds	of	
rules:	 top‐level	 transformation	 rules	 and	 non	 top‐level	 transformation	 rules,	
similar	 to	 the	 classification	 performed	 in	 the	 QVT‐relations	 language	 [53].	
Existing	 alternative	 rules	 in	 the	 transformation	definition	will	 be	modified	 to	
become	 non	 top‐level	 transformation	 rules,	 and	 a	 new	 top‐level	 rule	 will	 be	
added	 for	 each	 structural	 pattern	 with	 alternative	 transformations.	 The	
alternative	 rules	will	 never	 automatically	match;	 they	will	 be	 called	 from	 the	
new	 top‐level	 rule	 which	 will	 perform	 the	 transformation	 based	 on	 the	
information	in	the	active	rules	model.		

6.3.1. Top‐level transformation rules

The	alternative	transformations	are	dealt	with	by	performing	a	transformation	
composition	 [5]	of	 the	alternative	 transformation	 rules.	 Figure	5(a)	 shows	an	
example	 of	 a	 generic	 top‐level	 transformation	 rule	 for	 alternative	
transformations	using	the	graphical	QVT‐relations	notation	[53].		

The	 set	 of	 all	 the	 alternative	 transformation	 rules	 for	 a	 given	 structural	
pattern	 are	 grouped	 into	 a	 new	 top‐level	 transformation	 rule.	 This	 top‐level	
transformation	 rule	 defines	 the	 common	 structural	 pattern	 among	 all	 the	
alternatives	 in	 the	source	model	(see	Figure	28.a.1).	The	structural	pattern	 in	
the	 active	 rules	 model	 defines	 the	 association	 between	 the	 name	 of	 the	
alternative	 and	 the	 various	 non	 top‐level	 rules	 that	 create	 or	 update	 the	
corresponding	particular	constructs	in	the	target	model	(see	Figure	28.a.2).	The	
post‐condition	of	the	top‐level	transformation	rule	deals	with	the	invocation	of	
the	 corresponding	alternatives	 represented	as	non	 top‐level	 rules	 (see	Figure	
28.a.4).	Preconditions	may	be	needed	to	describe	constraints	that	must	hold	in	
order	to	execute	this	transformation	rule	(see	Figure	28.a.3).	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 73

6.3.2. Non top-level transformation rules.

The	constructs	created	or	updated	in	the	target	model	are	specified	by	the	non	
top‐level	transformation	rules.	These	consist	of	a	left‐hand	side	that	defines	the	
structural	pattern	in	the	source	model	and	a	right‐hand	side	that	describes	the	
constructs	in	the	target	model.		

Preconditions	 may	 be	 needed	 to	 describe	 constraints	 that	 must	 hold	 in	
order	 to	 execute	 this	 transformation	 rule.	 Figure	 28.b.1	 shows	 the	 structural	
pattern	definition	 in	 the	 source	model.	 Figure	 28.b.2	 shows	 the	 constructs	 in	
the	 target	 model,	 and	 Figure	 28.b.3	 shows	 a	 precondition	 using	 the	 when	
clause.		

	
Figure 28. A generic top‐level and non‐top level with the QVT graphical notation

	

6.3.3. Rule‐Conflict Avoidance

When	dealing	with	transformation	rules,	one	of	the	problems	that	might	arise	is	
the	conflict	among	rules.	A	conflict	appears	when	an	structural	pattern	 in	 the	
LHS	of	a	transformation	rule	overlaps	with	an	structural	pattern	in	the	LHS	of	
any	other	transformation	rule.	

The	 application	 of	 our	 two‐phase	 architecture	 reduces	 the	 number	 of	
possible	conflicts,	due	to	the	selection	among	alternatives	performed	in	the	first	
phase.		

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 74

We	define	the	granularity	of	a	transformation	rule	as	the	size	of	structural	
pattern	in	the	LHS	of	the	transformation	rule.	A	transformation	rule	has	higher	
granularity	if	its	structural	pattern	covers	a	larger	portion	of	the	source	model.	
The	 theoretical	 idea	 for	solving	 the	granularity	 issue	 is	 to	define	a	high‐order	
relationship	 (hereafter	 HOR	 function),	 which	 assigns	 a	 value	 to	 each	
transformation	rule	based	on	the	number	of	entities	covered	by	the	structural	
pattern	 defined	 in	 the	 domain	 of	 the	 source	 model.	 This	 also	 reduces	 the	
ambiguity	of	the	whole	transformation	process.		

In	a	Term	Rewriting	System	R,	an	overlapping	can	be	defined	as	follows:	

Given	 two	 rules,	R1	 and	R2	 ϵ	R,	 l1→r1	 and	 l2→r2	 they	 overlap	 if	 there	
exists	almost	one	non‐variable	instance	u	of	l1	(or	l2)	such	as	l1/u	(alternatively	
l2/u)	unifies	with	l2	(alternatively	with	l1)	[18].	

If	we	consider	 the	 transformation	rules	as	a	 term	rewriting	system,	 then	
we	 can	 reduce	 the	 possible	 ambiguity	 among	 rules	 by	 incorporating	 a	 high‐
order	relationship.	Using	the	example	described	in	Figure	5(a)	as	TopRelation1	
we	could	have	another	rule	(TopRelation2)	defined	on	a	structural	pattern	that	
includes	the	structural	pattern	of	the	TopRelation1.	

	୘୭୮ୖୣ୪ୟ୲୧୭୬ଵܮ ⊂ ௢௣ோ௘௟௔௧௜௢௡ଶ்ܮ → ሻ	୘୭୮ୖୣ୪ୟ୲୧୭୬ଵܮሺܴܱܪ	 ൑ 	ሻ	୘୭୮ୖୣ୪ୟ୲୧୭୬ଶܮሺܴܱܪ

Therefore,	 when	 an	 aEntity	 and	 bEntity	 in	 the	 source	 domain	 of	
TopRelation1	 are	 found	 in	 the	 source	 model	 (see	 Figure	 28.a.1)),	 and	 if	 the	
entities	defined	in	the	structural	pattern	of	the	TopRelation2	are	also	found	in	
the	 source	model,	 only	 TopRelation2	will	 be	 executed,	 and	TopRelation1	will	
fail	due	to	the	precondition	shown	in	Figure	28.a.3.	This	precondition	is	defined	
by	means	of	a	query.	A	query	 is	an	expression	that	 is	evaluated	over	a	model.	
The	result	returned	by	a	query	is	one	or	more	instances	of	types	defined	in	the	
model,	or	defined	by	the	query	language.	Executing	a	query	can	be	considered	
as	a	specific	transformation	task,	since	it	only	returns	elements	from	the	model	
or	entities	defined	by	the	query	language.		

This	 query	 evaluation	 verifies	 the	presence	 of	 the	whole	 LHS	of	 another	
rule	that	has	a	larger	value	in	the	HOR,	and	this	query	is	therefore	evaluated	as	
true,	causing	the	precondition	of	TopRelation1	to	be	evaluated	as	false,	and	that	
it	cannot	consequently	be	executed.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 75

Chapter 7. A Quality‐Driven
Production Plan for SPL

In	this	chapter	we	describe	our	proposal	for	defining	a	production	plan	where	
the	 quality	 attributes	 play	 the	 role	 of	 being	 the	 decision	 factor	 during	 the	
product	 configuration	 process	 and	 for	 selecting	 among	 different	 design	
alternatives.		

The	 chapter	 is	 organized	 as	 follows:	 In	 Section	 7.1	 we	 describe	 how	 to	
define	the	production	plan	during	in	the	core	asset	development	phase,	how	to	
define	 the	multi‐model,	 how	 to	 detect	 design	 alternatives	 and	 define	 quality‐
driven	 transformation	 that	 processes	 as	 part	 of	 the	 attached	 processes	
associated	 to	 the	 core	 assets.	 In	 Section	 7.2	we	 describe	 how	 the	 production	
plan	 is	 applied	 in	 the	 product	 development	 phase	 driving	 the	 product	
configuration	and	the	different	model	transformation	processes	that	are	part	of	
this	phase.	

7.1. Production Plan Definition

There	 are	 two	 pivotal	 activities	 that	 should	 be	 performed	 in	 the	 core	 asset	
development	activity	for	defining	the	quality‐driven	production	plan:	

 Multi‐model	 definition:	 The	 domain	 experts	 and	 engineers	 must	
fulfill	 the	 different	 views	 of	 the	multi‐model	 with	 the	 variability,	
functional	and	quality	information.	

 Definition	 of	 Quality‐Driven	 Model	 Transformations:	 In	 software	
product	 line	 development	 there	 are	 different	 scenarios	 where	
design	alternatives	appear	 impacting	over	 the	quality	of	products	
or	 software	 artifacts.	 Those	 scenarios	 require	 the	 definition	 of	
quality‐driven	 model	 transformation,	 to	 enable	 the	 customers;	
designers	 or	 domain	 experts	 obtaining	 the	 products	 or	 software	
artifacts	that	best	fit	their	quality	attributes.	

Some	of	the	quality‐driven	model	transformations	processes	to	be	defined	
can	be	integrated	on	the	attached	processes	associated	of	the	assets	where	the	
design	 alternatives	 appear	 as	 shown	 in	 Figure	 29.a,	 and	 other	 will	 be	
transversal	 to	 the	 core	 assets	 (it	 may	 affect	 to	 different	 core	 assets,	 may	
substitute	 a	 core	 asset	 by	 its	 equivalents	 or	 may	 update	 the	 whole	 SPL	
architecture	i.e.	by	applying	architectural	patterns)	as	shown	in	Figure	29.b.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 76

	
Figure 29. Integration of the Quality‐Driven Model Transformations in the Core Asset
Development Activity

	

7.1.1. Multi‐model Definition

The	 starting	 point	 is	 the	 definition	 of	 the	 multi‐model	 for	 reflecting	 the	
extension	of	the	product	line.	Starting	with	an	existing	core‐asset	repository,	a	
variability	model	expressed	by	using	a	cardinality‐based	features	model	and	a	
functional	model	expressed	by	using	an	AADL	specification,	the	variability	and	
the	 functional	 views	 can	 be	 populated	 automatically	 by	means	 of	 two	model	
transformations	that	transform:	

 The	 functional	 view	 of	 the	 software	 product	 line,	 expressed	 by	
means	 of	 an	 AADL	 specification	 into	 the	 functional	 view	 of	 the	
multi‐model	 (see	 Figure	 30.a).	 This	 transformation	 projects	 only	
the	meta‐classes	that	had	been	defined	as	subclasses	of	the	meta‐
class	 EComponentType:	 ESystemType,	 EProcessType	 and	
EThreadType,	 since	 these	 are	 the	 meta‐class	 that	 have	 the	
capability	 of	 impacting	 over	 the	 quality	 attributes	 and	 of	 being	
associated	 with	 the	 features	 of	 the	 variability	 view.	 This	
transformation	also	projects	all	the	AADL	features,	AADL	flows,	the	
AADL	 hardware	 components	 that	 allow	 the	 deployment	 of	 those	
systems	and	its	implementations.		

 The	Cardinality‐Based	Features	Model	 into	 the	variability	view	of	
the	multi‐model	(see	Figure	30.b).	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 77

	
Figure 30. Transformation for Populating the Views

The	 next	 step	 is	 the	 quality	 view	 definition.	 The	 domain	 experts	 should	
define	the	quality	view	of	the	multi‐model	containing	the	quality	decomposition	
in	 characteristics,	 sub‐characteristics	 and	 the	 quality	 attributes	 identified	 as	
relevant	in	the	domain.		

The	next	 step	 is	 the	definition	of	 the	 relationships	among	 the	 variability	
and	 the	 functional	 view,	 performed	 by	 the	 domain	 experts	 and	 software	
engineers.	 This	 relationship	 expresses	 the	 combination	 of	 functional	
components	 for	 fulfilling	 the	 requirements	 of	 a	 feature	 or	 how	 a	 functional	
component	can	fulfill	part	of	the	requirements	of	more	than	one	feature.	

The	 next	 step	 is	 to	 associate	 the	 relative	 impacts	 that	 the	 different	
elements	of	the	variability	and	functional	view	have	over	the	quality	attributes.	
This	 information	 comes	 from	 the	 knowledge	 of	 the	 domain	 expert	 and	 the	
software	engineers,	from	empirical	evidence	obtained	by	experiments,	or	from	
the	 operationalization	 of	 metrics	 applied	 over	 the	 software	 artifacts.	 These	
impacts	are	expressed	using	the	Weight	attribute	of	the	Impact	class.	

7.1.2. Definition of Quality‐Driven Model Transformations

There	are	many	scenarios	in	SPL	development	that	may	require	the	definition	
of	quality‐driven	model	transformation	processes	due	to	the	presence	of	design	
alternatives	which	 impact	 over	 the	 quality	 attributes	 of	 the	 target	models	 of	
these	processes	(the	product	or	the	software	artifacts	generated).		

There	were	 two	main	groups	of	quality	driven	model	 transformations	as	
stated	in	Section	6.1:		

 Case1.	 Different	 functional	 components	 with	 the	 same	 interface,	
structure	 and	 behavior	 but	 different	 with	 regard	 to	 quality	
attributes:	 In	 this	 case	 the	 quality‐driven	 model	 transformation	
cannot	be	defined	as	a	part	of	the	attached	processes	associated	to	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 78

each	 core	 asset,	 since	 it	 is	 transversal	 to	 many	 core	 assets,	 and	
should	 be	 executed	 once	 the	 blocks	 (or	 core	 assets)	 had	 been	
selected	 from	 the	 repository	 and	 had	 been	 deployed	on	 the	 base	
architecture.		

o The	domain	expert	must	perform	the	following	activities:	

o Identify	the	equivalent	blocks.	

o Identify	 the	 impact	 of	 the	 selection	 the	 different	 functional	
components	over	the	quality	attributes.	

o Build	the	transformation	model.	In	the	transformation	model	a	
block	 with	 equivalences	 is	 created	 as	 an	 instance	 of	 the	
StructuralPattern	meta‐class.	Each	alternative	 is	 then	defined	
as	 instances	 of	 the	 Alternative	 meta‐class	 and	 the	 rule/s	
substituting	a	block	by	its	alternatives	are	defined	as	instances	
of	the	Rule	meta‐class.	Finally	each	Rule	 is	associated	with	its	
alternative.		

o The	 result	 off	 the	 trade‐off	 analysis	 is	 used	 to	 fulfill	 the	
weights	of	the	different	alternatives,	representing	the	relative	
impact	that	each	alternative	has	over	the	quality	attributes.	

o The	transformation	engineer	should	adapt	the	transformation	
rules	 (or	 define	 it	 from	 the	 scratch)	 following	 the	 schema	
defined	in	section	6.3.	

o When	 executing	 the	 transformation,	 the	 software	 engineer	
selects	 the	quality	attributes	 in	 the	quality	model	defined	 for	
this	transformation	process	as	stated	in	section	6.2.2,	executes	
the	 transformation	 process	 and	 obtains	 a	 new	 architectural	
model	with	the	functional	components	(or	assets)	that	best	fit	
the	quality	attributes	selected.		

 Case	 2.	 The	 improvement	 of	 the	 quality	 of	 models	 (or	 software	
artifacts)	during	 the	development	process,	both	 in	core	asset	and	
in	 product	 development	 activities:	 In	 this	 case,	 depending	 on	 the	
nature	 of	 the	 transformation	 process,	 the	 quality‐driven	 model	
transformation	 can	 be	 defined	 as	 part	 of	 the	 attached	 process	
associated	to	the	core	asset,	or	if	it	is	transversal	to	different	core	
assets	then	it	should	be	executed	after	the	selection	of	core	assets	
as	in	case	1.	

o The	domain	expert	must:	

o Identify	 structural	 patterns	 in	 the	 source	 models	 with	
alternative	transformations.	

o Identify	the	impact	of	the	different	alternative	transformations	
over	the	quality	attributes.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 79

o Build	 the	 transformation	model.	Each	 structural	pattern	with	
alternative	 transformations	 is	 created	 as	 an	 instance	 of	 the	
StructuralPattern	 meta‐class,	 the	 alternative	 transformations	
for	 each	 structural	 pattern	 are	 created	 as	 instances	 of	 the	
Alternative	meta‐class,	and	all	the	alternative	rules	are	created	
as	 instances	 of	 the	 Rule	 class.	 In	 addition,	 each	 rule	 is	
associated	with	the	corresponding	alternative	transformation.	

o The	 result	 off	 the	 trade‐off	 analysis	 is	 used	 to	 fulfill	 the	
weights	of	the	different	alternatives,	representing	the	relative	
impact	that	each	alternative	has	over	the	quality	attributes.	

o The	transformation	engineer	should	adapt	the	transformation	
rules	 (or	 define	 it	 from	 the	 scratch)	 following	 the	 schema	
defined	in	section	6.3.	

o When	 executing	 the	 transformation,	 the	 software	 engineer	
selects	 the	quality	attributes	 in	 the	quality	model	defined	 for	
this	transformation	process	as	stated	in	section	6.2.2,	executes	
the	 transformation	 process	 and	 obtains	 a	model	 that	 best	 fit	
the	quality	attributes	selected.	

7.2. The Production Plan in the Product Development

Activity

The	production	plan	defined	in	this	approach	has	two	main	phases,	where	the	
model	 transformation	 processes	 play	 an	 important	 role.	 In	 the	 first	 phase,	 a	
transformation	 process	 performs	 the	 product	 configuration,	 which	 takes	 as	
input	 the	multi‐model	 and	assists	 the	product	 engineer	 selecting	 the	 features	
and	 assets	 that	 best	 fit	 the	 quality	 attributes	 chosen	 in	 the	 multi‐model	 ‘s	
quality	 view.	 Figure	 31	 illustrates	 the	 relationships	 among	 the	 quality‐driven	
model	transformations,	the	core	assets	and	the	attached	processes.	

In	the	second	phase,	after	obtaining	a	valid	product	configuration	a	model	
transformation	process	generates	the	architectural	model	of	the	product.	This	
architectural	model	can	be	optimized	by	transformation	processes	defined	for	
substituting	the	equivalent	 functional	components	or	assets	or	by	the	quality‐
driven	 model	 transformation	 processes	 defined	 as	 part	 of	 the	 attached	
processes	associated	to	the	different	core	assets.		

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 80

	
Figure 31. The Production‐Plan in the Product Development

7.2.1. Product Configuration

The	 features	 and	 components	 that	 best	 fits	 the	 quality	 attributes	 chosen	 by	
product	engineer	are	selected	by	using	the	AHP	[3]	trade‐off	analysis	process,	
automated	 by	 an	 endogenous	 (the	 source	 and	 target	models	 conforms	 to	 the	
same	metamodel)	model	transformation	process.	

The	product	engineer	selects	the	quality	attributes	by	introducing	weights	
on	 the	Attribute	meta‐class.	Those	weights	mean	the	relative	 importance	 that	
each	quality	attribute	has	in	this	product	configuration.	The	higher	a	weight	is,	
the	more	 important	 this	 quality	 attribute	 is,	 under	 product	 engineer	 point	 of	
view.	

The	transformation	process	takes	as	input	the	multi‐model,	containing	the	
selections	of	the	product	engineer	over	the	quality	view	and	modifies	the	multi‐
model,	marking	as	selected	the	features	and	functional	components	that	best	fit	
those	quality	attributes	as	shown	in	Figure	32.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 81

	
Figure 32. Quality‐Driven Product Configuration

	

Depending	 on	 the	 nature	 of	 the	 Product	 Line	 this	 process	 can	 drive	 the	
whole	 selection	 of	 features	 and	 functional	 components.	 However	 there	 are	
different	 factors	 that	 affect	 to	 the	 completeness	 and	 satisfiability	 of	 this	
selection:	

 The	density	of	the	multi‐model:	we	can	consider	the	density	of	the	
multi‐model	as	the	number	of	relationships	that	contains,	first	and	
most	 important,	 between	 quality	 attributes	 and	 features	 and	
second,	 between	 features	 and	 functional	 components.	 As	 more	
features	 in	 the	 variability	 view	 have	 impact	 over	 the	 quality	
attributes	as	more	complete	the	process	of	selection	will	be.	

 Invalid	 multi‐model	 configurations:	 In	 the	 same	 way	 than	 the	
problems	 with	 invalid	 configurations	 in	 feature	 modeling,	 the	
impacts	 between	 the	 views	 can	 express	 product	 configurations	
that	cannot	be	satisfied.	For	example	because	of	 impacts	between	
qualities	attributes.	The	quality	view	of	the	multi‐model	allows	the	
definition	of	positive	or	negative	impacts	among	quality	attributes	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 82

(represented	by	the	meta‐class	AttributeImpact),	 if	two	attributes,	
which	 have	 negative	 impacts	 between	 them,	 are	 selected	 to	 be	
maximized,	then	that	configuration	can	hardly	be	satisfied.		

When	 the	 trade‐off	 can	only	make	a	partial	 selection	of	 the	 features	and	
functional	 components,	 product	 engineer	 should	 complete	 the	 product	
configuration	manually.	 This	 process	 is	 performed	 by	 selecting,	 directly	 over	
the	 multi‐model,	 the	 features	 (and/or	 components)	 that	 complete	 the	
functional	and	non‐functional	requirements	of	the	product	being	configured.	

The	next	step	to	be	performed	is	to	analyze	if	the	selections	made	over	the	
multi‐model	 are	 a	 valid	 product	 configuration	 (syntactic)	 satisfying	 all	 the	
constraints	 expressed	 in	 the	multi‐model.	 This	 analysis	 can	 be	 performed	 by	
using	model‐checking	tools	as	the	one	presented	by	Garcia	Galan	et	al	 in	[24],	
which	 allows	 verifying	 whether	 or	 not	 a	 feature	 model	 has	 valid	 product	
configurations	by	using	constraint	programing	techniques.	

Once	the	model	checker	confirms	that	the	selections	over	the	multi‐model	
express	 a	 valid	 configuration,	 it	 is	 time	 for	 the	 product	 engineer	 to	 validate,	
under	 a	 semantic	 point	 of	 view,	 whether	 or	 not	 the	 multi‐model	 contains	 a	
product	 configuration	 that	 meets	 all	 the	 functional	 and	 non‐functional	
requirements,	 especially	when	 the	product	 configuration	has	been	made	 fully	
automatically.	

7.2.2. Architecture Generation and Optimization

After	obtaining	a	valid	configuration	under	the	syntactic	and	the	semantic	point	
of	view	the	next	step	 is	 to	generate,	by	means	of	a	model	 transformation,	 the	
architectural	models	 of	 that	 configuration.	 Figure	 33	 illustrates	 the	 profile	 of	
this	 transformation	 process,	 which	 takes	 as	 inputs	 the	 multi‐model	 and	 the	
complete	 AADL	 specification	 containing	 architectural	 model	 of	 the	 software	
product	line,	and	generates	as	output	an	AADL	specification	containing	with	the	
architectural	model	of	that	product	configuration.		

The	 purpose	 of	merging	 the	 functional	 view	 of	 the	multi‐model	 and	 the	
complete	 architectural	 view	 reflects	 the	 need	 of	 completing	 the	 partial	
projection	 of	 the	 architectural	 model	 that	 the	 multi‐model	 contains.	 As	
described	 in	 section	 5.6	 the	 relevant	 meta‐classes	 for	 defining	 the	 multi‐
model’s	functional	view	were	the	ESystemType,	the	EProcessType,	EThreadType.	
For	 completeness	 the	 functional	 view	 of	 the	 multi‐model	 contains	 also	 the	
implementations,	 the	 hardware	 components	where	 those	 components	 can	 be	
deployed,	 the	 AADL	 features	 and	 the	 AADL	 flows	 associated	 to	 those	 three	
types	 of	 software	 components.	 Therefore	 there	 are	 parts	 of	 an	 AADL	
specification	 that	 are	 out	 of	 the	multi‐model	 functional	 view,	 and	 this	merge	
operation	 allows	 the	 specification	 to	 be	 completed.	 The	 output	 of	 this	
transformation	process	contains	the	architectural	specification,	in	AADL	of	the	
product	configured	in	the	previous	steps.		

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 83

	
Figure 33. Generation of the architectural view of a product

	

The	final	step	of	the	production	plan,	under	the	architectural	point	of	view	
is	 the	 architectural	 improvement	 and	 optimization	 based	 on	 some	 quality	
attributes.	The	AADL	specification	containing	 the	architectural	models	of	 that	
configuration	 is	 now	 the	 input	 for	 the	 quality‐driven	 model	 transformation	
processes,	which	substitute	some	functional	components	by	its	equivalents,	or	
applies	 architectural	 patterns	 or	 optimizes	 the	 deployment	 of	 the	 software	
components	into	the	hardware	components	of	the	architecture.		

	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 84

Chapter 8. Case Study

In	this	chapter	we	illustrate	the	feasibility	of	the	approach	through	a	case	study	
in	 the	 context	 of	 the	 Safety	 Critical	 Embedded	 Systems,	 from	 the	 automotive	
industry.	 The	 automotive	 industry	 is	 one	 of	 the	 domains	 where	 the	 product	
lines	paradigm	and	in	particular,	the	software	product	lines,	is	becoming	more	
and	more	extended.	 It	sounds	natural	 to	configure	a	car	by	selecting	different	
features,	as	are	the	engine	configuration,	the	onboard	and	safety	equipment,	the	
color	 and	 so	 on.	 This	 customization	 capability	 impacts	 directly	 over	 the	
complexity	of	the	software	that	controls	the	car.	Nowadays,	when	the	number	
of	 software	 elements	 and	 computational	 nodes	 is	 rising	 exponentially,	 this	
customization	 capability	 tends	 to	 make	 the	 problem	 of	 building	 the	 control	
system	 a	 problem	 that	without	 applying	 the	 software	 product	 line	 cannot	 be	
solved	in	an	economical	way.	The	case	study	describes	a	Vehicle	Control	System	
with	 different	 features,	 based	 in	 the	 example	 shown	 in	 [32]	 and	 extended	
applying	the	variation	points	described	in	[56].	

The	 chapter	 is	 organized	 as	 follows:	 In	 Section	 8.1	 we	 introduce	 the	
Vehicle	Control	System	this	case	study	focuses	on,	describing	the	variability	and	
functional	views.	In	Section	8.2	we	describe	the	steps	followed	to	describe	the	
multi‐model	for	this	case	study.	In	Section	8.3	we	illustrate	how	the	selection	of	
different	 quality	 attributes	 impacts	 on	 the	 selections	 of	 the	different	 features	
and	 assets.	 Finally	 in	 Section	 8.4	 we	 enumerate	 the	 conclusions	 and	 lessons	
learned	from	this	case	study.	

8.1. The Vehicle Control System

We	have	 used	 the	 Vehicle	 Control	 System	 to	 verify	 the	 feasibility	 of	 our	
approach	 in	 areas	 as	 multi‐model	 definition,	 product	 configuration	 and	
alternative	 identification.	 The	 Vehicle	 Control	 System	 contains	 different	
subsystems	 and	 features,	 as	 are	 Antilock	 Braking	 System	 (ABS),	 Traction	
Control	 System	 (TCS),	 Stability	 Control	 System	 (SCS),	 Cruise	 Control	 System	
(CC)	and	the	Airbag	and	Security	Belt	Controllers.	All	these	systems	comprise	a	
set	 of	 embedded	 systems	 present	 in	 modern	 automobiles.	 In	 general,	 those	
systems	 rely	 on	 capturing	 input	 signals	 from	 sensors,	 making	 some	
computation	 of	 those	 inputs	 based	 on	 specific	 control	 laws,	 and	 sending	 the	
outputs,	 a	 control	 value,	 to	 a	 actuator	 that	 affect	 the	 state	 of	 different	
subsystems	of	the	car	(engine,	throttle	position,	brakes,	security	belts	etc.).	

The	Goal	of	the	Antilock	Braking	System	(ABS)	is	to	ensure	that	maximum	
braking	 force	 is	 transmitted	 to	 all	 four	 wheels	 of	 the	 vehicle,	 even	 under	
adverse	conditions	such	as	skidding	on	rain,	snow	or	ice.	Antilock	brakes	work	
by	sensing	slippage	at	the	wheels	during	braking	and	adjusting	brake	pressure	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 85

to	ensure	maximum	contact	between	the	tires	and	the	road.	In	the	most	basic	
version,	wheel	rotation	sensors	from	all	four	wheels	are	used	as	input	and	the	
output	is	the	brake	valve	on	each	of	the	four	brake	lines.	

The	 Goal	 of	 the	Traction	Control	System	(TCS)	 is	 to	 avoid	wheels	 to	 slip.	
TCS	deals	with	the	front	to	back	loss	of	tire	to	road	friction	during	acceleration.	
The	 traction	 control	 system	 uses	 the	 data	 from	 the	 rotation	 sensor	 of	 each	
wheel	 of	 the	 vehicle,	 compares	 the	 rotation	 data	 with	 the	 speed	 to	 detect	
slipping	wheels,	and	compensates	these	slipping	wheels	by	reducing	the	speed	
of	 the	 wheels.	 This	 is	 achieved	 by	 applying	 individual	 braking	 force	 to	 the	
slipping	wheel	or	by	reducing	the	power	of	the	engine	via	the	throttle	control	to	
ensure	maximum	contact	between	 the	 road	 surface	and	 the	 tires,	 even	under	
less‐than	ideal	road	conditions,	such	as	ice	or	snow.		

The	goal	of	the	Stability	Control	System	(SCS)	is	to	keep	the	vehicle	going	in	
the	direction	in	which	the	driver	is	steering	the	car.	To	achieve	this,	the	stability	
control	 system	 applies	 the	 brake	 to	 one	 wheel	 (or	 passes	 the	 torque	 to	 the	
opposite	 one)	 to	 help	 steer	 the	 car	 in	 the	 correct	 direction.	 If	 poor	 traction	
causes	 the	 front	end	of	 the	car	to	slip	sideways	when	you	are	going	around	a	
corner,	the	control	laws	will	cause	the	brakes	to	be	applied	on	the	inside	wheels	
of	 the	 corner	 (and/or	 apply	 more	 proportion	 of	 the	 torque	 to	 the	 outside	
wheels),	causing	the	car	to	turn	and	slow	down.	If	the	back	end	of	the	car	slips	
sideways,	 the	 brake	 on	 the	 wheel	 that	 is	 outside	 of	 the	 corner	 is	 applied	 to	
bring	the	car	back	into	line	The	system	works	when	the	car	starts	to	slide	on	a	
straight	 road	 an	 when	 turning	 corners.	 The	 SCS	 takes	 information	 from	
different	 sensor	 and	 then	 determines	whether	 the	 car	 is	 a	 stable	 or	 unstable	
state.	 By	 combining	 the	 data	 from	 wheel	 rotation	 sensors,	 steering	 angle	
sensors,	 yaw	 sensors	 that	measure	 the	 amount	 of	 sideways	 g‐force	 the	 car	 is	
suffering,	the	central	processing	unit	can	actually	detect	whether	or	not	the	car	
is	 following	the	driver	 intends.	The	control	 system	then	applies	 the	brakes	or	
changes	the	distribution	of	torque	among	the	traction	wheels	to	counteract	the	
destabilizing	 force.	 In	 some	cases	 the	engine	 speed	may	also	be	 reduced.	The	
SCS	 differs	 from	 the	 TCS	 in	 what	 both	 systems	 prevent.	 A	 Traction	 Control	
System	 acts	 on	 a	 vehicle’s	 traction	 wheels	 to	 prevent	 unwanted	 wheel	 spin	
under	 acceleration,	 which	 is	 producing	 slipping	 effect.	 The	 SCS,	 on	 the	 other	
hand,	goes	one	step	further	by	detecting	when	a	driver	has	lost	some	steering	
control	over	the	car’s	trajectory.	 It	 then	automatically	stabilizes	the	vehicle	to	
help	the	driver	regain	control	of	the	vehicle.	

The	goal	of	the	cruise	control	system	(CC)	is	to	maintain	a	constant	speed	
as	determined	by	 the	driver.	The	 system	 is	 in	 effect	between	 some	minimum	
and	maximum	speeds	 (e.g.,	 40	Km/h	 to	120	MPH).	The	 cruise	control	 system	
maintains	 the	 vehicle	 speed	 at	 the	 predetermined	 value	 (target	 value)	 by	
storing	 the	 speed	 of	 the	 wheel	 rotation	 when	 the	 speed	 value	 is	 set	 and	
attempts	 to	 keep	 the	 throttle	 actuator	 at	 a	 position	 to	 maintain	 the	 vehicle	
speed	 at	 the	 target	 value.	 As	 the	 road	 inclination	 changes,	 the	 vehicle	 speed	
changes,	and	the	throttle	position	should	change	to	maintain	the	vehicle	speed.	
The	 control	 system	observes	 the	 speed	difference	between	 the	 current	 speed	
and	 the	 target	 value	 and	 either	 decreases	 or	 increases	 the	 throttle	 actuator	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 86

position	to	counteract	the	speed	differential.	The	algorithm	to	accomplish	this	
is	called	the	control	law.	

This	 case	 study	 presents	 three	 variants	 of	 Cruise	 Control	 System:	 The	
Basic	 Cruise	 Control	 System,	 an	 Adaptive	 Cruise	 Control	 System	 and	 Fully	
adaptive	Cruise	Control	System:	

 The	 goal	 of	 the	 Basic	 Cruise	 Control	 is	 to	 maintain	 a	 constant	
vehicle	velocity	as	determined	by	the	driver	(target	speed).		

 The	 goal	 of	 the	 Adaptive	 Cruise	 Control	 System	 is	 to	 extend	 the	
Basic	 Cruise	 Control	 and	 provide	 a	 new	 function	 of	 constant‐
distance	 cruise	 control	 that	 maintains	 the	 distance	 to	 a	 target	
vehicle	 traveling	 in	 front	 of	 the	 vehicle.	 In	 order	 to	 ensure	
constant‐distance	 cruise	 control,	 this	 system	 includes	 a	 radar	
sensor	that	yields	the	following	information:	the	distance	from	the	
equipped	 vehicle	 to	 the	 target	 vehicle	 and	 the	 relative	 speed	
between	these	two	vehicles.	

 The	goal	of	 the	Fully	Adaptive	Cruise	Control	System	 is	 to	extend	
the	 Adaptive	 Cruise	 Control,	 by	 adding	 an	 image	 sensor	 that	
captures	the	behavior	of	vehicles	and	objects	in	front	of	the	system,	
and	extends	the	effective	range	of	the	radar	sensor	and	is	capable	
to	stop	the	vehicle	in	case	of	imminent	collision.	

In	 all	 of	 the	 above	 systems,	 signals	 regarding	 overall	 engine	 and	 vehicle	
state	(e.g.	engine	on/off,	brake	pedal	on/off)	are	also	considered	in	each	control	
subsystem.	 These	 signals	 are	 used	 to	 ensure	 proper	 operation	 of	 each	
subsystem.	 For	 example,	 if	 the	 brake	 pedal	 is	 depressed,	 the	 cruise	 control	
system	 should	 disengage	 (or	 not	 become	 active)	 and	 the	 traction	 control	
system	 should	 not	 become	 active.	 There	 are	 also	 outputs	 from	 each	 system	
used	 as	 feedback	 to	 the	 driver	 that	 each	 system	 is	 on.	 These	 outputs	 can	 be	
indicating	lights	or	some	form	of	intelligent	operator	display	(e.g.,	LCD	panel).	
Moreover	 some	 of	 the	 systems	described	 above	 share	 some	 of	 the	 input	 and	
output	devices,	for	example	the	SCS	and	the	TCS	that	obtain	information	coming	
from	the	ABS	wheel	sensors	and	apply	 its	outputs	 to	 the	braking	systems.	All	
those	 systems	 are	 represented	 in	 Figure	 34.	 The	 elements	 on	 the	 left	 side	
represent	the	different	sensors	and	input	components	that	feed	the	controllers.	
The	elements	on	the	right	side	represent	the	output	devices	that	receive	control	
information,	as	the	brake	or	throttle	actuators,	or	display	devices	that	show	the	
status	information	to	the	driver.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 87

	
Figure 34. Main Components of the Vehicle‐Control System

Figure	35	shows	the	Cardinality	Based	Features	Model	that	describes	the	
variability	of	the	Vehicle	Control	System,	showing	only	the	features	with	regard	
to	the	systems	and	subsystems	described	in	this	case	study.	There	are	five	main	
features,	four	of	them	that	are	optional	and	one	(the	airbag)	that	is	mandatory.	
There	 are	 features	 that	 hold	 implies	 relationships	 with	 other	 features,	 since	
they	share	sensing	devices	or	infrastructures	(as	in	case	of	TCS	to	ABS	or	SCS	to	
TCS).	

	
Figure 35. Vehicle Control System Features Diagram

The	 next	 subsection	 describes	 with	more	 detail	 the	 different	 versions	 of	 the	
Cruise	Control	System,	showing	its	main	features,	the	devices	and	systems	with	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 88

which	 interacts	 and	 an	 excerpt	 of	 the	 implementation	 diagrams.	 The	 whole	
AADL	specification	of	the	Vehicle	Control	System	can	be	found	in	Annex	I.	The	
Annex	II	contains	the	AADL	specification	of	the	different	versions	of	the	Cruise	
Control.	

8.1.1. Basic Cruise Control

The	system	acts	only	between	a	minimum	and	maximum	speeds	(e.g.	40km/h	
to	 120	 km/h).	 The	 cruise	 control	 system	maintains	 the	 vehicle	 speed	 at	 the	
target	 speed	 by	 noting	 the	 wheel’s	 rotation	 speed	 and	 keeps	 the	 throttle	
actuator	position	to	maintain	the	vehicle	speed	to	this	target	value.	As	the	road	
conditions	 changes,	 the	 vehicle	 speed	 is	 affected,	 and	 the	 throttle	 position	
changes	to	maintain	the	vehicle	speed	in	accordance	with	the	user	target	speed	
value.	 The	 cruise	 control	 system	 renders	 the	 difference	 between	 the	 current	
vehicle	 speed	 and	 the	 target	 speed	 and	 either	 decreases	 or	 increases	 the	
throttle	actuator	position	to	counteract	the	speed	differential.		

The	Components	that	provide	inputs	signals	to	the	system	are:	

 The	On/Off	switch:	the	user	can	activate	or	deactivate	the	system	
by	pressing	this	switch	

 Engine	 Status:	 any	 alarm	 detected	 in	 the	 engine	 automatically	
disengages	the	cruise	control.	

 Brake	Pedal	Status:	 If	 the	 brake	 pedal	 is	 pressed	 by	 the	 driver,	
while	 the	 cruise	 is	 active,	 then	 the	 system	 is	 automatically	
disengaged	

 Resume	 Button:	 The	 system	 can	 be	 engaged	 again	 after	 being	
disengaged	by	the	brake	pedal	through	the	resume	button.	

 Decrease	speed	and	increase	speed:	Once	the	system	is	working	
the	driver	can	vary	the	target	speed	value	by	pressing	the	increase	
speed	or	decrease	speed	buttons.	

 The	 Set	 Button:	 The	 driver	 can	 establish	 the	 target	 speed	 by	
pressing	the	set	button,	the	system	automatically	stores	the	actual	
speed	as	the	new	target	speed	of	the	cruise	control	system.	

 Wheel	 Rotation	 Sensor:	 The	 system	 reads	 the	 wheel	 rotation	
pulse	 (one	 pulse	 per	 rotation)	 for	 calculating	 the	 actual	 speed	 of	
the	car.		

The	system	has	only	one	main	output2,	the	throttle	actuator.	This	version	
of	the	cruise	control	is	only	capable	of	controlling	the	speed	by	controlling	the	

																																																																		

	

2	The	display	devices	are	not	shown	nor	in	the	diagrams	nor	in	the	AADL	
specification	in	order	to	make	the	example	more	easy	to	understand	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 89

throttle;	 it	has	not	 control	over	 the	braking	 system.	The	Figure	36	 shows	 the	
context	diagram	of	the	basic	cruise	control	version,	with	the	related	component	
and	the	inputs	and	outputs	described	above.	

	
Figure 36. Basic Cruise Control System Context Diagram

The	 Figure	 37	 shows	 the	 implementation	 diagram	 of	 the	 basic	 cruise	
control.	The	system	has	four	subcomponents	(three	processes	and	one	device):	

 In	 Control	 (IC):	 this	 process	 calculates,	 based	 on	 the	 different	
status	 sygnals,	 the	 values	 of	 two	 signals:	ok_to_run	 that	 indicates	
whether	or	not	the	system	is	engaged	and	the	selected_speed	that	
contains	the	target	speed	value.	

 Calculate	 Velocity	 (CV):	 this	 device	 calculates	 the	 value	 of	
instantaneous_velocity,	the	current	speed	of	the	car,	taking	as	input	
the	wheel	rotation	pulse.	

 Compute	 Desired	 Speed	 (CDS):	 this	 process	 renders	 the	
difference,	 as	 a	 relative	 value,	 between	 the	 actual	 speed	
(instantaneous_velocity)	and	 the	 target	speed	and	by	applying	 the	
control	 law.	The	value	calculated	 in	the	previous	 iteration	 is	used	
for	detecting	when	the	system	has	achieved	the	steady	state.	

 Compute	 Throttle	 Setting	 (CTS):	 This	 process	 converts	 the	
relative	 speed	 into	 a	 throttle	 position	 (throttle_setting)	 for	 the	
throttle	actuator.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 90

	
Figure 37. Basic Cruise Control System Implementation Diagram

8.1.2. Adaptive Cruise Control System

The	Adaptive	Cruise	Control	System	extends	the	definition	of	the	Basic	version	
by	providing	a	new	function	of	constant‐distance	cruise	control	that	maintains	
the	 distance	 to	 a	 target	 vehicle	 traveling	 in	 front	 of	 the	 vehicle.	 In	 order	 to	
ensure	 constant‐distance	 cruise	 control,	 this	 system	 includes	 a	 radar	 sensor	
(distance	 sensor)	 that	 provides	 the	 system	 the	 distance	 from	 the	 equipped	
vehicle	to	the	target	vehicle	and	the	relative	speed	between	these	two	vehicles.	
The	speed	limits	for	operation	are	the	same	as	the	basic	version	(40‐120Km/h).	

Figure	38	shows	the	AADL	context	diagram	of	the	Adaptive	version	of	the	
cruise	control.	 In	this	diagram	the	red	boxes	show	the	additional	components	
and	signals	that	this	version	needs	for	providing	the	new	functionality.	The	new	
components	are:		

 Set	Distance	Button:	allows	the	driver	to	fix	the	distance	value	he	
wants	to	maintain	with	the	target	vehicle.	

 	Distance	Sensor:	 Calculates	 the	 actual	distance	between	 the	 car	
equipped	with	 the	 sensor	 and	 the	 target	 vehicle	 and	 the	 relative	
speed	between	them.	

 Braking	actuators:	This	version	of	the	cruise	control	is	capable	of	
controlling	 the	 speed	 by	 controlling	 the	 throttle	 position	 or	 by	
applying	the	brakes.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 91

	
Figure 38. Adaptive Cruise Control System Context Diagram

Figure	 39	 shows	 the	 implementation	 diagram	 of	 the	 adaptive	 cruise	
control.	The	system	has	five	subcomponents	(four	processes	and	one	device).	In	
this	 diagram	 the	 red	 boxes	 show	 the	 implementation	 changes	 from	 the	
previous	version.	There	is	a	new	component	Compute	Braking	Setting	(CBS)	
process	 converts	 the	 relative	 speed	 (when	 it	 is	 a	 negative	 value)	 into	 the	
braking	force	value	to	be	sent	to	the	braking	actuators.	The	In	Control	(IC)	has	
been	extended	into	a	new	version	(In_Control_Ext)	that	calculates	not	only	the	
ok_to_run	 and	 the	 value	 the	 selected_speed	 but	 also	 generates	 the	
selected_distance	signal	containing	the	distance	that	should	be	maintained	with	
the	 target	car.	The	Calculate	Desired	Speed	(CDS)	 it	has	been	also	extended	
for	 calculating	 the	 relative	 speed	 based	 also	 in	 the	 relative	 speed	 to	 the	
previous	car.	

	
Figure 39. Adaptive Cruise Control System Implementation Diagram

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 92

8.1.3. Fully Adaptive Control System

The	Fully	Adaptive	Cruise	Control	system	is	a	further	extended	system	derived	
from	 Adaptive	 Cruise	 Control.	 In	 addition	 to	 the	 radar	 sensor,	 this	 system	
includes	 an	 image	 sensor	 labeled	 Object	 Recognition	 Sensor.	 The	 object	
recognition	 sensor	 captures	 the	 behavior	 of	 vehicles	 in	 front	 of	 the	 system‐
equipped	vehicle.	 It	works	 together	with	 the	 radar	 sensor	 in	 a	 compensatory	
way	 to	 expand	 the	 effective	 range	of	 sensing	 the	distance	 and	 relative	 speed.	
This	alleviates	the	speed	limits	for	operation,	such	as	0	km/h–140	km/h.	This	
wide‐range	sensing	enables	a	 stop‐and‐go	 function	by	 following	on	 the	 target	
vehicle	 and	 adds	 the	 capability	 of	 stopping	 the	 vehicle	 in	 case	 of	 imminent	
collision.	When	a	imminent	collision	is	detected,	the	system	sends	signals	to	the	
airbag	and	security	belt	controllers	in	order	to,	first	pretense	the	security	belt	
and	after	to	fire	the	airbag	system.	

Figure	40s	hows	the	AADL	context	diagram	of	the	Fully	Adaptive	version	
of	 the	 cruise	 control.	 In	 this	 diagram	 the	 red	 boxes	 show	 the	 additional	
components	 and	 signals	 that	 this	 version	 needs	 for	 providing	 the	 new	
functionality.	The	new	components	are:		

 Objet	 Recognition	 Sensor:	 Extends	 the	 distance	 sensor	
capabilities,	being	able	to	detect	obstacles	that	can	cause	a	collision	
and	 expanding	 the	 range	 of	 sensing	 distance.	 Provides	 the	 same	
kind	of	signals	 than	 the	distance	sensor	 (distance	 to	previous	car	
and	relative	speed).	

 Airbag	 and	 Security	Belt	 Status:	The	 status	 of	 that	 airbag	 and	
security	belt	 controllers	needs	 to	be	 taken	 into	account	 since	 the	
system	now	interacts	with	them.	

 Airbag	and	Security	Belt	Actuators	 (ASA):	As	described	 above,	
this	 version	 of	 the	 cruise	 control	 is	 capable	 of	 controling	 the	
security	belt	and	the	airbag.		

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 93

	
Figure 40. Fully Adaptive Cruise Control System Context Diagram

Figure	41	shows	the	implementation	in	AADL	of	the	fully	adaptive	cruise	
control.	Due	 to	 the	complexity	 that	 the	 implementation	diagram	has,	we	have	
decided	 to	 show	only	an	excerpt	of	 that	definition	 in	 the	AADL	 language.	The	
system	 has	 now	 two	 additional	 component	 Compute	Airbag	 Setting	 (CAS),	
and	 the	Compute	Security	Belt	Setting	(CAS),	which	 is	 capable	 to	 calculate,	
based	on	the	relative	speed	and	the	distance	to	an	object	the	need	of	activating	
the	 airbag	 system	 or	 the	 security	 belt,	 respectively,	 before	 an	 imminent	
collision.	The	Compute	Desired	Speed	(CDS)	(compute_desired_speed_CC3)	has	
been	extended	into	a	new	version	for	calculating	the	relative	speed	based	also	
in	 the	 information	 of	 relative	 speed	 and	 distance	 to	 the	 previous	 car	 coming	
from	the	object	recognition	sensor.		

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 94

	
Figure 41. AADL Implementation of the Fully Adaptive Cruise Control

	

8.2. Definition of the Production Plan for the Vehicle

Control System

This	section	illustrates	the	creation	of	the	production	plan	for	the	system	based	
on	the	definition	described	in	the	previous	section.		

8.2.1. Multi‐model Definition

As	explained	in	the	previous	chapter	the	definition	of	the	production	plan	starts	
with	de	definition	of	 the	multi‐model.	The	starting	point	of	 this	process	 is	the	
AADL	 specification	 of	 the	 system	 (see	 Annex	 I	 and	 II)	 the	 cardinality	 based	
features	 model	 that	 is	 shown	 in	 Figure	 35.	 Vehicle	 Control	 System	 Features	
Diagram.	 The	 variability	 and	 functional	 views	 are	 going	 to	 be	 populated	
automatically	with	 two	 transformation	processes	 that	 take	as	 input	 the	AADL	
specification	and	the	features	model	respectively.		

The	quality	 view	 should	be	 created	with	 the	quality	 characteristics,	 sub‐
characteristics	 and	 attributes.	 In	 this	 case	 study	 we	 had	 included	 some	
additional	quality	attributes	identified	as	relevant	by	domain	experts	for	Safety	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 95

Critical	Systems	context	in	[58],	applicable	to	core	assets	and	which	should	be	
taken	into	account	during	product	configuration	process,	as	are:	

 Maintainability:	“The	ease	with	which	a	product	or	a	core	asset	can	
be	modified	 to	 correct	 faults,	 improve	 performance,	 or	 adapt	 to	 a	
changing	environment.”	

 Maturity:	 “The	 degree	 to	which	 a	 core	 asset	 is	 free	 from	 further	
modification.”

 Reusability:	“The	degree	to	which	a	core	asset	can	be	used	in	more	
than	one	software	system,	or	in	building	other	core	assets.”	

 Variability:	 “The	 ability	 of	 a	 system,	 an	 asset,	 or	 a	 development	
environment	 to	 support	 the	 production	 of	 a	 set	 of	 artifacts	 that	
differ	from	each	other	in	a	pre‐planned	fashion”.	

 Testability:	“The	ease	with	which	a	product	or	a	core	asset	can	be	
made	to	demonstrate	its	faults	through	(typically	execution‐based)	
testing.”	

We	 have	 also	 included	 some	 quality	 attributes	 of	 the	 Quality‐In‐Use	
perspective,	 as	 is	 the	Driving	Security,	 in	 order	 to	 illustrate	 how	 the	 product	
configuration	can	be,	from	the	customer	point	of	view.	

The	 next	 step	 is	 to	 define	 the	 relations	 among	 features	 and	 functional	
components.	 These	 relations	 should	 be	 defined	 by	 associating	 functional	
components	 that	 fulfill	 the	 requirements	 of	 the	 different	 features.	 Main	
components	 that	 fulfill	 the	 requirements	of	 the	 feature	and/or	 those	 that	 can	
impact	 over	 the	 quality	 attributes	 should	 be	 included	 in	 these	 relationships.		
Depending	 on	 the	 level	 of	 detail	 to	 be	 achieved	 the	 number	 and	 type	 of	 the	
functional	 components	 in	 those	 relationships	 may	 vary.	 Table	 4	 shows	 an	
excerpt,	 in	tabular	representation,	of	the	relationships	between	the	variability	
and	the	functional	view.			

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 96

Feature Functional	Components	
Basic	Cruise	Control Cruise	Control	CC1

Cc1_app
Compute	desired	speed	
In	Control

Adaptive	Cruise	Control Cruise	Control	CC2
Cc2_app
Compute	desired	speed	
In	Control	Ext
Set	Distance
Distance	Sensor

Adaptive	Cruise	Control Cruise	Control	CC3
Cc3_app
Compute	desired	speed	
In Control	Ext
Set	Distance
Distance	Sensor
Object	Recognition	Sensor	

Airbag Airbag	Controller
ABS Brake	Actuators

Antilock	Brake	System
Stability	Control Throttle	Setting

Stability	Control	System	
Traction	Control Throttle	Setting

Traction	Control	System	
… …

Table 4. Relationships between Functional and Variability Views

Figure	42	shows	the	Eclipse‐based	editor	implemented	for	supporting	the	
multi‐model	definition	and	the	mechanism	for	defining	the	relationships	among	
features	 and	 functional	 components.	 The	 figure	 shows	 that	 the	 feature	
BasicCruiseControl	is	selected,	and	the	properties	view	on	the	bottom	shows	the	
functional	components	that	had	been	associated.	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 97

	
Figure 42. Definition of the Relationships in the Eclipse‐Based Multi‐Model Editor

The	next	 task	 is	 to	associate	 the	 impacts	 that	 each	element	has	over	 the	
quality	attributes.	The	Table	5	shows	an	excerpt,	in	a	tabular	representation,	of	
the	 main	 impacts	 detected.	 Those	 impacts	 must	 be	 defined	 according	 to	 the	
knowledge	of	domain	experts	or	to	the	results	of	empirical	evidence	obtained	
experimentally.	 In	 this	 case	 those	 values	 reflect,	 approximately,	 what	 the	
impacts	of	the	different	elements	would	be.		

The	Weight	 value	 expresses	 how	 this	 impacting	 element	 increases	 the	
quality	 of	 the	 product,	 for	 positive	 quality	 attributes	 (as	 driving	 security),	
higher	 values	 implies	 better	 quality.	 In	 the	 cases	 of	 negative	 attributes	 that	
should	 be	minimized	 (as	 cost)	 high	 levels	 of	 the	Weight	 attribute	mean	 poor	
quality.	 The	 impacts	 could	 be	 defined	 as	 the	 relationship	 of	 more	 than	 one	
ImpactingElement	 over	 a	 quality	 attribute,	 meaning	 that	 the	 combination	 of	
some	 elements	 may	 have	 impact	 (negative	 or	 positively)	 over	 the	 quality	
attributes.	 This	 allows	 us	 to	 express	 more	 complex	 relationships	 that	 occur	
when	 dealing	 with	 the	 selection	 of	 features	 or	 components.	 In	 general	 the	
quality	of	the	final	product	can	be	more	(or	less)	than	the	addition	of	the	quality	
of	 the	 parts,	 and	 this	 should	 be	 modeled	 and	 taken	 into	 account	 during	 the	
trade	off	analysis	that	will	perform	the	product	configuration.	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 98

	
Impacting	Element Quality	Attribute Artifact/Phase Weight	

Basic	Cruise	Control Cost Feature/Product	
Development	

40	

Adaptive	Cruise	Control Cost Feature/Product	
Development	

30	

Fully	Adaptive	Cruise	Control Cost Feature/Product	
Development	

20	

Traction	Control	System Cost Feature/Product	
Development	

70	

Basic	Cruise	Control Driving	 Security	
(Quality	In	Use)	

Feature/Product	
Development	

50	

Adaptive	Cruise	Control Driving	 Security	
(Quality	In	Use)	

Feature/Product	
Development	

70	

Fully	Adaptive	Cruise	Control Driving	 Security	
(Quality	In	Use)	

Feature/Product	
Development	

90	

Traction	Control	System Driving	 Security	
(Quality	In	Use)	

Feature/Product	
Development	

70	

Cruise	Control	CC1 Maturity Asset/Asset	Dev.	 95	

Cruise	Control	CC2 Maturity Asset/Asset	Dev.	 90	

Cruise	Control	CC3 Maturity Asset/Asset	Dev.	 80	

Cruise	Control	CC1 Maintainability Asset/Asset	Dev.	 90	

Cruise	Control	CC2 Maintainability Asset/Asset	Dev.	 70	

Cruise	Control	CC3 Maintainability Asset/Asset	Dev.	 60	

…	 … … …	

Table 5. Excerpt of the Main Impacts Detected

Figure	43	shows	the	 impact	definition,	 in	the	Eclipse‐Based	editor,	of	 the	
impacts.	 The	 selected	 item	 represents	 the	 relative	 impact	 that	 the	 feature	
BasicCruiseControl	 has	 over	 the	 final	 cost	 of	 the	 system.	 Although	 the	
BasicCruiseControl	 is	the	cheapest	version	of	the	cruise	control,	 it	 is	expensive	
enough	for	having	a	significant	negative	impact	over	the	cost	(40	value).		

Figure 43. Definition of impacts in the Multi‐Model Editor

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 99

Once	the	multi‐model	has	been	defined	the	next	step	is	to	detect	the	model	
transformations	that	have	alternative	model	transformations.		

8.2.2. Alternative Identification and Definition of Quality‐Driven

Model Transformations

In	 the	 scenario	 being	 presented,	 there	 are	 not	 visible	 alternative	
transformations.	The	different	variants	of	the	system	described	are	user‐visible	
and	 then	must	 be	 classified	 as	 features	 and	modeled	 in	 the	 variability	 view.	
However	 in	 the	 context	 of	 the	 embedded	 systems	 development	 its	 quite	
common	to	have	design	decisions	that	will	impact	over	the	quality	attributes	of	
the	 final	product.	For	example	equivalent	 software	 components	 that	have	 the	
same	structure,	the	same	interface	and	exactly	the	same	functionality,	but	that	
are	 different	with	 regard	 to	 attributes	 as	 cost,	 memory	 consumption	 or	 CPU	
usage.	 The	 second	 example	 of	 alternative	 transformations	 is	 the	 Deployment	
Process	 of	 the	 architecture,	 where	 the	 different	 software	 components	 are	
assigned	to	hardware‐processing	and	communication	elements	[4].	Both	those	
kind	of	transformation	processes	can	be	built	by	first	detecting	the	alternatives	
and	 identifying	 the	 impact	 over	 the	quality	 attributes	 as	described	 in	 Section	
6.1,	then	by	instantiating	the	architecture	defined	in	Section	6.2	and	finally	by	
defining	the	transformation	process	following	the	step	described	in	Section	6.3.		

8.3. Product Configuration

The	Product	configuration	process	takes	as	input	the	multi‐model	and	based	on	
the	selections	made	over	the	quality	view	(in	terms	of	values	introduced	in	the	
Weight	 in	 the	EAttribute	meta‐class	 of	 the	multi‐model)	 chooses	 the	 features	
and	 functional	 components	 that	 satisfy	 the	 quality	 attributes	 selected.	 This	
process	applies	a	model	transformation	which	implements	the	trade‐off	among	
attributes	and	then	selects	the	features	and	assets	by	changing	the	value	of	its	
Selected	attribute	to	true.	

In	our	example	if	we	want	to	obtain	a	product	where	the	driving	security	is	
relatively	more	important	than	the	cost	then	the	features	selected	will	include	
the	 Fully	 Adaptive	 version	 of	 the	 cruise	 control.	 However	 if	 we	 want	 to	
configure	 a	 product	 in	which	 the	 cost	 is	 the	most	 important	 quality	 attribute	
and	 the	 driving	 security	 is	 not	 important,	 then	 the	 features	 selected	will	 not	
include	 a	 version	 of	 the	 cruise	 control.	 In	 the	 case	 of	 attributes	 related	 to	
Assets/functional	 component	 the	 selection	must	 be	 performed	 first	 selecting	
those	 assets	 and	 then	 including	 the	 features	 that,	 having	 a	 relationship	 with	
those	assets,	satisfy	the	other	quality	attributes	selected.	In	our	example	if	we	
select	 to	 obtain	 a	 product	 configuration	 that	 include	 the	 more	 mature	 core	
assets,	 then	 the	 selection	 it	will	 include	 the	 component	CruiseControlCC1	 and	
then	the	feature/s	with	which	is	associated,	in	our	case	the	basic	version	of	the	
cruise	control.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 100

Once	 the	 product	 configuration	 has	 chosen	 the	 features	 and	 functional	
components	 that	 best	 fit	 the	 quality	 attributes	 selected,	 we	 can	 extract	 the	
architectural	 view	 of	 the	 configured	 product	 by	 applying	 a	 model	
transformation.	This	transformation	is	a	variation	of	the	model	transformation	
that	 populates	 the	 functional	 view	 of	 the	 multi‐model,	 taking	 profit	 of	 the	
directionality	of	the	QVT‐R	transformations.	Figure	44	shows	the	structure	of	a	
transformation	 rule	 that	 extracts	 the	SystemType	 entities	 (Systems	defined	 in	
an	 AADL	 specification)	 selected	 during	 the	 product	 configuration	 (Selected	
attribute	equals	to	true).		

	
Figure 44. Example of a Model Transformation Rule for Extracting the Architectural View

	

Finally	 the	 architectural	 view	 obtained	 is	 the	 input	 model	 for	 the	
transformations	defined	following	the	schema	described	in	Section	8.2.2.	First	
we	 should	 execute	 the	 transformation	 that	 may	 substitute	 the	 equivalent	
components	and	then	execute	the	architectural	deployment	optimizations.	

8.4. Discussion

The	 Car	 Control	 System	 has	 allowed	 us	 to	 define	 the	 multi‐model	 with	 the	
different	 views	 and	 then	 establish	 the	 relationships	 among	 them	 and	 finally	
define	the	impacts	over	the	quality	attributes	that	are	relevant	in	the	context	of	
safety	critical	embedded	systems.		

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 101

We	have	had	the	opportunity	of	study	some	examples	where	the	selection	
of	 different	 quality	 attributes	 influences	 the	 selection	of	 features	 and	 or	 core	
assets	during	product	configuration.		

The	example	had	also	help	us	on	analyzing	the	different	scenarios	where	
appear	 design	 alternatives	 influencing	 the	 quality	 attributes	 of	 the	 software	
artifacts.		

Finally	it	had	been	useful	to	analyze	the	appropriateness	of	transformation	
processes	 that	populate	 the	 functional	 and	 feature	 views	and	 that	 extract	 the	
architectural	models	of	the	product	once	the	product	configuration	concludes.	

In	 summary,	 the	main	 lesson	 learned	 that	we	 can	 extract	 from	 this	 case	
study	 is	 that	 the	approach	allows	us	 to	 introduce	 the	quality	as	an	additional	
view	 in	 the	 Software	 Product	 Line	 in	 order	 to	 define	 the	 impact	 that	 the	
different	design	decisions	have	over	the	quality	attributes	and	then	using	those	
quality	attributes	as	a	decision	factor	in	decision‐making	processes.		

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 102

Chapter 9. Conclusions and Future
work

The	 main	 motivation	 of	 this	 research	 work	 is	 the	 lack	 of	 coverage	 that	 SPL	
development	gives	to	the	identification	of	the	impacts	that	the	different	design	
decisions	have	on	the	product	quality	attributes.	This	 lead	to	not	taking	these	
impacts	 into	 account	 during	 the	 different	 decision‐making	 processes	 that	
occurs	 during	 the	 SPL	 development	 process.	 The	majority	 of	 the	 approaches	
consider	 only	 one	 view	 of	 the	 system	 (for	 managing	 the	 commonalities	 and	
variability	of	the	product	line)	and	the	quality	attributes	that	the	products	must	
fulfill	 are	 not	 considered	 during	 the	 product	 configuration	 and	 they	 are	 not	
supported	by	the	existing	production	plans.	

9.1. Conclusions

In	 this	Master’s	Thesis	we	have	 achieved	 the	 following	objectives	 defined	 for	
this	research	work:	

9. Study	the	approaches	that	try	to	cover	the	problems	that	arise	when	
developing	SPLs	in	the	domain	of	Safety	Critical	Embedded	Systems,	
paying	special	attention	to	approaches	trying	to	apply	multi‐view	or	
multi‐modeling	 techniques,	 or	 that	 introduces	 quality	 in	 model	
transformation	processes.	

10. Study	the	different	standards	that	can	be	used	for	expressing	each	
one	 of	 the	 different	 views.	 Identify	 the	 relationships	 among	 the	
elements	of	the	different	views.	Define	a	multi‐model	that	is	able	to	
express	 these	relationships.	Populate	 the	multi‐model	with	a	set	of	
quality	attributes	that	has	been	identified	as	relevant	for	the	domain	
of	Safety	Critical	Embedded	Systems.	

11. Analyze	the	alternative	transformations,	which	can	be	present	 in	
the	PIM‐To‐PIM,	and	PIM‐To‐PSM	model	transformations	that	occur	
within	 of	 the	 two	 phases	 of	 the	 SPL	 development	 and	 its	 possible	
impact	over	the	quality	attributes.		

12. Define	 a	 set	 of	 artifacts	 (mainly	 composed	 of	 model	 and	
metamodels)	 and	 a	 process,	 which	 allows	 the	 definition,	 and	
execution	 of	 model	 transformations	 in	 which	 the	 selection	 of	
alternative	transformations	is	make	based	on	quality	attributes.	

13. Define	how	to	integrate	the	quality	view	in	the	different	activities	
of	the	production	plan.	Establish	which	are	the	activities	that	affect	
to	 a	 single	asset	 and	which	ones	are	 transversal	 to	 the	 core	assets	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 103

(affect	 to	different	assets	or	 should	be	 taken	 into	account	after	 the	
product	has	been	configured).	

14. Illustrate	 the	 feasibility	 of	 the	 approach	 in	 case	 study	 in	 the	
domain	of	safety	critical	on	the	automotive	industry.	

With	 regard	 to	 the	 first	 objective,	 we	 have	 analyzed	 the	 different	
approaches	 trying	 to	apply	multi‐view	or	multi‐modeling	 techniques	realizing	
that	the	majority	of	the	approaches	do	not	integrate	the	quality	view	as	one	of	
the	 main	 views	 of	 the	 system.	 The	 approaches	 trying	 to	 introduce	 quality	
attributes	in	model	transformation	processes	covers	only	a	specific	set	of	model	
transformation	or	only	a	reduced	set	of	quality	attributes.	

With	 regard	 to	 the	 second	 objective	 we	 had	 analyzed	 the	 different	
standards	 for	 expressing	 the	 variability,	 the	 functional	 and	 the	 quality	
views,and	we	have	 select	AADL	 for	 the	 functional	 and	architectural	 view,	 the	
cardinalty	based	features	models	for	the	variability	view	and	an	SQuaRE		based	
quality	model	for	the	quality	view.	We	have	defined	a	multi‐model	that	allows	
us	to	 join	the	three	views	and	stablish	the	relationships	needed	among	views.		
The	 multi‐model	 has	 been	 implemented	 in	 Eclipse	 by	 using	 the	 Eclipse	
Modelling	 Framework.	 In	 addition	 we	 have	 defined,	 in	 QVT‐Relations,	 the	
transformations	that	populate	the	variability	and	the	functional	views.	

With	 regard	 to	 the	 third	 objective,	 we	 have	 analize	 the	 different	 model	
transformations	where	 alternatives	would	 appear.	 In	 SPL	 development	 there	
are	 two	 main	 groups	 of	 model	 transformations	 where	 alternative	 model	
transformations	may	exists:	different	assets,	which	having	the	same	structure,	
interface	 and	behavior	 are	different	with	 regard	 to	 quality	 attributes	 and	 the	
improvement	 of	 the	 quality	 of	 models	 (or	 software	 artifacts)	 during	 the	
development	process,	both	in	core	asset	and	in	product	development	activities.	
We	 have	 also	 analized	 which	 ones	 could	 be	 considered	 transversal	 to	 many	
core	assets	and	must	be	executed	after	the	core	assets	had	been	deployed	over	
the	SPL	architecture.	

With	 regard	 to	 the	 fourth	 objective,	 we	 have	 defined	 an	 architecture	
composed	 of	 a	 set	 of	 artifacts	 and	 a	 process	 to	 support	 quality‐driven	model	
transformations	in	automated	transformation	processes,	improving	traditional	
model	 transformation	 strategies	 by	 ensuring	 the	 quality	 of	 the	 software	
artifacts	obtained	as	a	result	of	applying	the	proposed	process.		

With	 regard	 to	 the	 fifth	 objective,	 we	 have	 defined	 the	 process	 for	
integrating	the	multi‐model	in	the	production	plan,		we	have	described	how	to	
define	 the	quality	driven	model	 transformations,	we	have	defined	the	process	
that	must	be	 followed	 for	performing	 the	product	 configuration	based	on	 the	
quality	attributes	that	the	product	must	fulfill	and	we		have	defined	the	process	
for	 obtaining	 the	 software	 architecture	model	 in	 AADL	 containing	 the	 assets	
deployed	 by	 the	 product	 configuration	 process.	 This	 architectural	model	 can	
now	be	obtained	by	means	of	the	inverse	of	the	QVT	transformation	defined	for	
populating	 the	 model,	 taking	 profit	 of	 the	 bidirectional	 capability	 of	 QVT‐R	
transformations.	This	architectural	model	can	be	 the	 input	of	a	quality‐driven	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 104

model	transformation	that	applies	architectural	patterns	to	this	model	trying	to	
improve	the	quality	attributes	selected.		

With	regard	to	the	sixth	objective,	After	studying	some	case	studies	in	the	
domain	 of	 safety	 critical	 embedded	 systems	 that	 deal	 with	 automotive	
examples	 [31],	 [32],	 [65]	we	 have	 defined	 a	 example	 putting	 together	 all	 the	
aspects	 found	 in	 the	 different	 case	 studies.	 Finally,	 the	 case	 study	 has	 been	
modeled	entirely	in	order	to	allow	us	to	analyze	the	feasibility	of	the	approach	
with	a	complex	and	complete	example.	

9.2. Future Works

The	work	presented	constitutes	 the	 first	steps	 toward	the	definition	of	a	
fully	 automated	 production	 plan	 for	 software	 product	 lines	 regardless	 to	 the	
domain.	However,	some	of	the	points	of	our	contribution	need	future	works	to	
be	completed	or	improved.		

The	 first	 line	 of	 research	 is	 to	 improve	 our	 analysis	 of	 the	 existing	
approaches	by	performing	a	systematic	literature	review	for	analyzing	the	state	
of	the	art	in	the	topics	that	had	been	informally	analyzed	in	this	work.			

The	second	line	of	research	is	to	improve	the	production	plan.	In	the	short	
term	 by	 implementing	 the	 complete	 the	 product	 configuration	 process	 that	
selects	the	features	and	the	assets	based	on	the	quality	attributes	selected,	and	
the	transformation	process	that	extracts	the	software	product	being	configured	
by	combining	 the	 functional	view	and	the	original	SPL	architecture	expressed	
by	means	of	an	AADL	specification.	In	our	proposal	this	transformation	only	is	
capable	to	extract	the	entities	contained	functional	view,	but	since	this	view	it	is	
only	 a	 partial	 projection,	 containing	 only	 the	 relevant	 entities	 of	 the	
architectural	view.	This	partial	projection	needs	to	be	decorated	with	the	extra	
information	contained	in	the	original	specification.	In	the	medium	term	we	plan	
to	 extend	 the	 definition	 of	 the	 production	 plan	 in	 order	 to	 obtain	 the	
configuration	as	a	chain	of	model	transformations.	This	requires	a	more	precise	
definition	of	what	is	a	production	plan,	what	is	a	delta	(the	increment	that	each	
core	asset	represents)	and	how	the	attached	processes	can	be	defined	in	terms	
of	model	transformations.		

The	third	line	of	research	deals	with	the	multi‐model	definition.	We	need	
to	analyze	 if	 the	 relationships	defined	are	enough	 for	expressing	 the	possible	
connections	among	views	regardless	to	the	domain.	We	plan	also	to	analyze	if	
additional	 views	 (and	 the	 relationships	with	 the	 existing	 ones)	 added	 to	 the	
multi‐model	will	 allows	us	 to	describe	 the	 SPL	 in	a	more	precise	way,	 i.e.,	 by	
including	a	risk	view	for	describing	the	uncertainty	associated	to	core	assets	or	
features	of	the	variability	view.	

The	 forth	 line	 of	 research	 is	 to	 integrate	 our	 architectural	 model	 with	
other	architectural	optimization	tools,	as	the	one	being	developed	at	the	LIACS.	
This	 tool	 nowadays	 allows	 the	 optimization	 of	 the	 deployment	 of	 software	
architecture	in	the	context	of	embedded	systems.	Integrating	both	approaches	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 105

will	 add	 flexibility	 to	 their	 tool,	 allowing	 the	 user	 to	 configure	 a	 product	 and	
then	to	obtain	the	optimal	deployment	for	this	software	architecture.		

The	fourth	line	of	research	is	to	empirically	validate	our	approach	through	
a	 series	 of	 experiments,	 using	 both	 embedded	 systems	 development	 experts	
and	 students	 as	 subjects	 for	 evaluating	 both	 the	 product	 configuration	
efficiency	 and	 efectiveness	 and	 the	 effectiveness	 of	 the	 quality‐driven	 model	
transformation	 architecture.	 The	 experiments	 will	 provide	 feedback	 to	 the	
multi‐model.	Thus,	the	multimodel	can	evolve	based	on	the	empirical	evidence	
provided	by	the	experiments.	

9.3. Related Publications

During	the	development	of	the	present	work,	different	public	the	following	
list	gathers	these	publications:	

International	Conferences	

o ACM/IEEE	 13th	 International	 Conference	 on	 Model‐Driven	
Engineering	Languages	and	Systems	MODELS	2010		

Emilio	 Insfran,	 Javier	 Gonzalez‐Huerta	 and	 Silvia	 Abrahão:	 Design	
Guidelines	for	the	Development	of	Quality‐Driven	Model	Transformations	
In:	Lecture	Notes	 in	Computer	Science,	2010,	Volume	6395/2010,	pp.	
288‐302	

In	 this	paper	we	presented	a	set	of	guidelines	 for	 the	development	of	
quality‐driven	model	transformations	(Discussed	in	Section	6.3).	

This	 conference	 is	 listed	 in	 the	 2010	 CORE	 Conference	 Ranking	
(www.core.ed.au)	as	Type	B	Conference.	MoDELS	 is	 the	most	 important	
international	 conference	 in	 the	 area	 of	 Model	 Driven	 Software	
Development.	Only	publishes	research	papers.		The	language	is	English.	

o 11th	 International	 Conference	 on	 Product‐Focused	 Software	
Process	Improvement	PROFES	2010		

Javier	 Gonzalez‐Huerta,	 David	 Blanes,	 Emilio	 Insfran,	 and	 Silvia	
Abrahão:	 Towards	 an	 Architecture	 for	 Ensuring	 Product	 Quality	 in	
Model‐Driven	Software	Development	

In	this	paper	we	present	the	architecture	for	supporting	quality‐driven	
model	 transformations.	 It	 defines	 a	 set	 of	 artifacts	 and	 a	 process	 for	
specifying	and	executing	model	transformations	(Discussed	 in	Section	
6.2)	

This	 conference	 is	 listed	 in	 the	 2010	 CORE	 Conference	 Ranking	
(www.core.ed.au)	 as	 Type	 B	 Conference.	 Profess	 is	 one	 of	 the	 most	
relevant	 conferences	 in	 the	 product‐focused	 software	 and	 process	
improvement.	Only	publishes	research	papers.	The	language	is	English.	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 106

Posters	on	International	Events:	

o 1st	 International	 Master	 Class	 on	 Model‐Driven	 Engineering.	
Modeling	Wizards	2010		

Javier	Gonzalez‐Huerta,	Emilio	Insfran,	and	Silvia	Abrahão:	Definining	
an	Architecture	for	Quality‐Driven	Model	Transformations	

In:	IRIT/RR‐2010‐20‐FR	

This	 poster	 briefly	 presents	 our	 architecture	 for	 supporting	 quality‐
driven	model	transformations.		

The	 Modeling	 wizard	 is	 an	 autumn	 school	 on	 model	 driven	
development.	 It	 puts	 together	 PhD	 students	 with	 the	 most	 relevant	
researchers	on	the	topic.	The	school	includes	theoretical	and	practical	
sessions	and	the	presentation	of	the	last	research	works.	It	allows	the	
students	 to	 present	 the	 works	 they	 are	 working	 with	 and	 receive	
feedback	about	it.	

National	Conferences	

o XVI	Jornadas	 de	 Ingeniería	 del	 Software	 y	Bases	 de	Datos	 JISBD	
2011		

Javier	 Gonzalez‐Huerta,	 Emilio	 Insfran,	 and	 Silvia	 Abrahão:	 Un	
enfoque	Multi‐modelo	para	la	Introducción	de	Atributos	de	Calidad	en	el	
Desarrollo	de	Líneas	de	Producto	Software	

This	 article	 proposes	 a	 preliminary	 approach	 of	 the	 multi‐model	 for	
expressing	 the	 relationships	 among	 elements	 of	 the	 different	 views	
(discussed	in	Chapter	5).	

JISBD	 is	 the	main	 Software	Engineering	national	 conference	 in	 Spain.	
Allows	researchers	to	present	both	regular	and	emergent	works	to	be	
discussed	with	the	community.	The	language	is	Spanish.	

	 	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 107

Workshops	collocated	with	national	conferences	

o VII	 Taller	 en	 Desarrollo	 de	 Software	 Dirigido	 por	 Modelos	
DSDM2010,	 junto	a	 las	 	XV	 Jornadas	de	Ingeniería	del	Software	y	
Bases	de	Datos	JISBD	2010		

URL:	http://www.sistedes.es/TJISBD/Vol‐4/No‐2/index.html	

Javier	González,	Emilio	 Insfrán,	Silvia	Abrahão:	Automatización	de	la	
Selección	 de	 Transformaciones	 Alternativas	 Basada	 en	 Atributos	 de	
Calidad	

This	article	presents	a	practical	example	of	the	application	of	a	Quality‐
Driven	Transformation	Process	(Discussed	in	Chapter	6).	

Although	being	a	national	workshop,	DSDM	had	a	high‐level	reviewing	
process	by	a	high‐qualified	program	committee	with	reviewers,	as	are	
program	chairs	or	members	of	the	program	committee	of	international	
conferences	 as	 FASE	 or	 CaiSE,	 international	workshops	 as	 VaMOS	 or	
MDI	Workshop	2010	collocated	with	MODELS	2010.	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 108

References:																																																								

[1] Abrahão,	S.,	Insfran,	E.,	Genero,	M.	Carsí,	J.	A.,	Ramos,	I.	y	Piattini,	M.	Quality‐
Driven	Model	Transformations:	From	Requirements	to	UML	Class	Diagrams.	
In:	Model‐Driven	Software	Development:	Integrating	Quality	Assurance,	Jörg	
Rech	y	Christian	Bunse	(Eds.),	IGI	Global,	302‐326.	(2008).	

[2] Ameller,	D.,	Franch,	X.,	Cabot,	 J.:	Dealing	with	Non‐Functional	Requirements	
in	 Model‐Driven	 Development.	 In	 proceedings	 of	 18th	 Requirements	
Engineering	Conference	(RE2010),	pp	189	‐	198,	Sydney,	NSW	(2010).	

[3] Al‐Naeem,	 T.,	 Gorton,	 I.,	 Ali	 Babar,	 M.,	 Rabhi,	 F.,	 Benatallah,	 B.:	 A	 Quality‐
Driven	 Systematic	 Approach	 for	 Architecting	 Distributed	 Software	
Applications.	 In:	 Proceedings	 of	 International	 Conference	 on	 Software	
Engineering	(ICSE2005),	St.	Louis	pp.	244‐‐253.	(2005).	

[4] Baas,	 L.,	 Clements,	 P.,	 Kazman,	 R.:	 Software	 Architecture	 in	 Practice.	 2nd	
edition,	Addison	Wessley,	Reading,	Mass,	ISBN:	0321154959	(2003).	

[5] Belaunde,	 M.:	 Transformation	 Composition	 in	 QVT.	 In:	 First	 European	
Workshop	 on	 Composition	 of	 Model	 Transformations	 (CMT).	 Bilbao,	 Spain	
(2006).	

[6] D.	 Benavides,	 P.	 Trinidad,	 and	 A.	 Ruiz‐Cortés.	 Automated	 reasoning	 on	
feature	models.	In	O.	Pastor	and	J.	F.	e	Cunha,	editors,	Advanced	Information	
Systems	 Engineering,	 17th	 International	 Conference,	 CAiSE,	 Proceedings,	
volume	3520	of	Lecture	Notes	in	Computer	Science,	pages	491–503.	Springer,	
(2005).	

[7] Bézivin,	J.	and	Gerbé,	O.:	Towards	a	Precise	Definition	of	the	OMG/MDA(TM)	
Frame‐work.	 In:	 Proceedings	 of	 Automated	 Software	 Engineering	 (ASE'01),	
San	Diego,	USA,	pp.	26‐29,	(2001).	

[8] Boehm,	B.	W.,	Brown,	J.	R.,	Kaspar,	H.,	Lipow,	M.,	Macleod,	G.	 J.,	Merrit.	M.	J.:	
Characteristics	 of	 Software	 Quality,	 volume	 1	 of	 TRW	 Series	 of	 Software	
Technology.	North‐Holland	Publishing	Company,	Amsterdam,	(1978).	

[9] Boronat,	 A.,	 Knapp,	 A.,	 Meseguer,	 J.	 Wirsing,	 M.:	 What	 is	 a	 Multi‐Modeling	
Language?	In:	LNCS,	vol	5486/2009,	pp	71—87	Springer,	Heidelberg,	(2009).	

[10] Bosch,	 J.:	Design	and	use	of	software	architectures:	adopting	and	evolving	a	
product‐line	approach.	ACM	Press/Addison‐Wesley,	New	York,	USA	(2000).	

[11] Buschmann,	 F.,	 Meunier,	 R.,	 Rohnert,	 H.,	 Sommerlad,	 P.,	 Stal,	 M.:	 Pattern‐
Oriented	 Software	 Architecture:	 A	 System	 of	 Patterns.	 John	 Wiley,	 ISBN:	
0471958697	(1996).	

[12] Classen,	 A.,	 Heymans,	 P.,	 Schobbens.,	 P.:	 What’s	 in	 a	 Feature:	 A	
RequirementsEngineering	 Perspective.	 In	 Proceedings	 of	 the	 International	
Conference	 on	 Fundamental	 Approaches	 to	 Software	 Engineering	
(FASE2008),	volume	4961	of	Lecture	Notes	 in	Computer	Science,	pp	16–30.	
Springer‐Verlag,	(2008).	

[13] Clements,	P.,	Bachmann,	F.,	Bass,	L.,	Garlan,	D.,	 Ivers,	 J.,	Nord,	R.,	Stafford,	 J.:	
Documenting	 Software	 Architectures:	 Views	 and	 Beyond,	 Addison	 Wesley,	
ISBN:	9780321552687	(2002).	

[14] Clements,	 P.	 and	 Northrop,	 L.:	 Software	 Product	 Lines:	 Practices	 and	
Patterns,	Addison‐Wesley,	Boston,	ISBN:	9780201703320	(2007).	

[15] Crnkovic,	 I.,	Larsson	 	M.,	Preiss,	O.:	Concerning	Predictability	 in	Dependable	
Component‐	 Based	 Systems:	 Classification	 of	 Quality	 Attributes.	 Lecture	
Notes	in	Computer	Science	3549,	Springer,	pp	257‐278.		(2005)	

[16] Czarnecki,	K.,	Kim,	C.H.:	Cardinality‐based	feature	modeling	and	constraints:	
A	 progress	 report,	 In	 International	 Workshop	 on	 Software	 Factories,	 San	
Diego,	California,	(2005).	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 109

[17] Czarnecki,	 K,	 Helsen,	 S.:	 Feature‐based	 Survey	 of	 Model	 Transformation	
Approaches.	In:	IBM	Systems	Journal,	Vol.	45(3),	pp.	621‐‐645,	(2006).	

[18] Dershowitz,	 N.,	 Jouannaud,	 J.	 P.:	 Rewrite	 Systems.	 In:	 Formal	 models	 and	
semantics,	 Handbook	 of	 Theoretical	 Computer	 Science,	 Vol.	 B,	 (ed.	 J.	 van	
Leeuwen),	Elsevier	–	The	MIT	Press,	Amsterdam,	pp.	243‐‐320	(1990)	

[19] Drago,	L.M,	Ghezzi,	C.,	Mirandola,	R.:	Towards	Quality	Driven	Exploration	of	
Model	Transformation	Spaces,	14th	International	Conference	on	Model	Drive	
Engineering	Languages	and	Systems	(MODELS2010),	Part	II,	LNCS	6395,	pp.	
288–302,	Wellington,	New	Zealand	(2011).	

[20] Etxeberria,	L.,	Sagardui,	G.:	Variability	Driven	Quality	Evaluation	in	Software	
Product	 Lines.	 In:	 Proceedings	 of	 the	 13thInternational	 Software	 Product	
Line	Conference	(SPLC2008),	Limerick,	Ireland,	pp.243‐252	(2008).	

[21] Favre,	 J.M:	Towards	a	Basic	Theory	 to	Model	Model	Driven	Engineering.	 In:	
Workshop	on	Software	Model	Engineering,	Lisboa,	(2004).	

[22] Feiler,	 P.	 H.,	 Gluch,	 D.	 P.,	 Hudak,	 J.:	 The	 Architecture	 Analysis	 &	 Design	
Language	 (AADL):	 An	 Introduction	 (CMU/SEI‐2006‐TN‐011).	 Software	
Engineering	 Institute,	 Carnegie	 Mellon	 University,	 From	
http://www.sei.cmu.edu/publications/documents/06.reports/06tn011.html	
(2006)	

[23] Gamma,	 E.,	 Helm,	 R.,	 Johnson,	 R.,	 Vlissides,	 J.:	 Design	 Patterns:	 Elements	 of	
Reusable	 Object‐oriented	 Software.	 Addison‐Wesley,	 ISBN:	 0201633612	
(1995).	

[24] García	 Galán,	 J.,	 Trinidad,	 P.,	 Ruiz‐Cortés,	 A.:	 FaMa	 Abductive:	 una	
herramienta	para	explicaciones	de	errores	en	modelos	de	características.	(In	
Spanish)	En	Actas	de	las	XVI	Jornadas	de	Ingeniería	del	Software	y	Bases	de	
Datos	(JISBD2011),	A	Coruña	(2011).	

[25] Gardner,	 T.,	 Griffin,	 C.,	 Koehler,	 J.,	 Hauser,	 R.:	 A	 Review	 of	 OMG	 MOF	 2.0	
Query/Views/Transformations	 Submissions	 and	Recommendations	Toward	
the	Final	Standard.	In:	OMG	Document,	Object	Management	Group,	ad/03‐08‐
02,	http://www.omg.org/cgi‐bin/doc?ad/03‐08‐02	(2003).	

[26] Gómez,	 A.,	 Ramos,	 I.:	 Cardinality‐based	 feature	modeling	 and	model‐driven	
engineering:	 Fitting	 them	 together.	 In	 Fourth	 International	 Workshop	 on	
Variability	Modeling	of	Software	intensive	Systems	(VAMOS’10),	Linz	(2010).	

[27] González‐Baixauli,	B.	,	do	Prado	Leite,	J.	C.	S.,	Mylopoulos,	J.:	Visual	variability	
analysis	 for	 goal	 models.	 In	 12th	 IEEE	 International	 Conference	 on	
Requirements	 Engineering	 (RE),	 pages	 198–207.	 IEEE	 Computer	 Society,	
(2004)	

[28] Gonzalez‐Huerta,	J.,	Insfran,	E.,	Abrahão,	S.:	Un	enfoque	Multi‐modelo	para	la	
Introducción	de	Atributos	de	Calidad	en	el	Desarrollo	de	Líneas	de	Producto	
Software.	 (In	 Spanish)	 En	 Actas	 de	 las	 XVI	 Jornadas	 de	 Ingeniería	 del	
Software	y	Bases	de	Datos	(JISBD2011),	A	Coruña,	Spain	(2011).	

[29] Gonzalez‐Huerta,	 J.,	 Blanes,	 J.,	 Insfran,	 E.,	 Abrahão,	 S.:	 Towards	 an	
Architecture	 for	 Ensuring	 Product	 Quality	 in	 Model‐Driven	 Software	
Development.	 In:	 11th	 International	 Conference	 on	 Product‐Focused	
Software	Process	Improvement	(PROFES)	Limerick,	Ireland	(2010).	

[30] Gonzalez‐Huerta,	J.,	Insfran,	E.,	Abrahão,	S.:	Automatización	de	la	Selección	de	
Transformaciones	Alternativas	Basada	en	Atributos	de	Calidad.	En	Actas	del	
VII	 Taller	 sobre	 Desarrollo	 de	 Software	 Dirigido	 por	 Modelos,	 pp.	 10‐18,	
Valencia,	Spain	(2010).	

[31] Hause,	M.	C.,	Thom,	F.:	An	Integrated	MDA	Approach	with	SysML	and	UML.	In	
13th	 IEEE	 International	 Conference	 on	 Engineering	 of	 Complex	 Computer	
Systems	(IECCS2008).,	pp	249‐254,	Belfast	(2008).	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 110

[32] Hudak,	 J.	 and	 Feiler,	 P.:	 Developing	 AADL	 Models	 for	 Control	 Systems:	 A	
Practitioner’s	 Guide,	 Technical	 Report	 CMU/SEI‐2007‐TR‐014,	 Software	
Engineering	Institute,	(2007).	

[33] Ikv++	 technologies	 AG.	 ikv++	mediniQVT	website.	 Last	 accessed	 on	 August	
2011,	from	http://projects.ikv.de/qvt	(2011).	

[34] Insfran,	 E.,	 Gonzalez‐Huerta,	 J.,	 Abrahão,	 S.:	 Design	 Guidelines	 for	 the	
Development	 of	 Quality‐Driven	 Model	 Transformations.	 In:	 Proceedings	 of	
13th	 International	 Conference	 on	 Model	 Drive	 Engineering	 Languages	 and	
Systems	 (MODELS2010),	 Part	 II,	 LNCS	 6395,	 pp.	 288–302,	 Oslo,	 Norway	
(2010).	 	

[35] ISO/IEC	 25000:2005.	 Software	 Engineering.	 Software	 product	 Quality	
Requirements	and	Evaluation	(SQuaRE)	(2005).	

[36] ISO/IEC	FCD	9126‐1.2.	 Information	Technology	‐	Software	product	quality	‐	
Part	1:	Quality	model	(2001).	

[37] I.	 Ivkovic	 and	 K.	 Kontogiannis,	 "A	 Framework	 for	 Software	 Architecture	
Refactoring	 Using	 Model	 Transformations	 and	 Semantic	 Annotations,"	 in	
Proceedings	of	 the	Conference	on	Software	Maintenance	and	Reengineering,	 ,	
pp.	135‐144	(2006)	

[38] Jarzabek,	 S.,	 Yang,	 B.,	 Yoeun,	 S.:	 Addressing	 quality	 attributes	 in	 domain	
analysis	for	product	lines.	IEE	Proceedings	‐	Software,	153(2):61–73,	(2006).	

[39] Kang,	 K.,	 Cohen,	 S.,	 Hess,	 J.,	 Novak,	 W.,	 and	 Peterson,	 S.:	 Feature‐oriented	
domain	analysis	(FODA)	feasibility	study.	Technical	Report	CMU/SEI‐90‐TR‐
21,	Software	Engineering	Institute,	Carnegie	Mellon	University	(1990).	

[40] Kerhervé,	B.,	Nguyen,	K.	K.,	Gerbé,	O.	y	Jaumard,	B.	A.	(2006).	Framework	for	
Quality‐Driven	 Delivery	 in	 Distributed	 Multimedia	 Systems.	 Advanced	
International	 Conference	 on	 Telecommunications	 and	 International	
Conference	 on	 Internet	 and	 Web	 Applications	 and	 Services	 (AICT/ICIW	
2006),	195–205.	(2006)	

[41] Kleppe	 A.,	 Warmer,	 J.,	 and	 Bast,	 W.:	 MDA	 Explained,	 TheModel	 Driven	
Architecture:	 Practice	 and	 Promise,	 Addison‐Wesley,	 Boston,	 MA,	 ISBN:	
032119442X,	(2003).	

[42] Kolb,	R.,	McGregor,	J.	D.,	Muthig,	D.:	Introduction	to	quality	assurance	in	reuse	
contexts.	 In	 First	 International	 Workshop	 on	 Quality	 Assurance	 in	 Reuse	
Contexts	(QUARC2004),	Boston,	USA	(2004).	

[43] Kurtev,	 I.:	Adaptability	of	Model	Transformations.	PhD	Thesis.	University	of	
Twente,	Twente,	the	Netherlands	(2005)	

[44] Markovic,	 S.,	 Baar,	 T.:	 Refactoring	 OCL	 annotated	 UML	 class	 diagrams.	 In	
Briand,	 L.C.,	 Williams,	 C.,	 eds.:	 MoDELS’05:	 Proceedings	 of	 the	 8th	
International	 Conference	 on	 Model	 Driven	 Engineering	 Languages	 and	
Systems,	Montego	Bay,	Jamaica.	Volume	3713	of	Lecture	Notes	in	Computer	
Science.,	Springer‐Verlag	pp	280–294	(2005).		

[45] Maswar,	 F.,	 Chaudron,	 M.,	 Radovanovic,	 I.,	 Bondarev,	 E.:	 Improving	
Architectural	 Quality	 Properties	 through	 Model	 Transformations.	 Software	
Engineering	Research	and	Practice	(SERP2007),	Las	Vegas,	USA,	pp.687‐693,	
(2007)	

[46] McCall,	J.	A.,	Richards,	P.	K.,	Walters,	G.	F.:	Factors	in	Software	Quality,	volume	
vol	1‐3	of	AD/A‐049‐015/055.	Springfield,	(1977).	

[47] McNeile,	A.:	MDA:	The	Vision	with	the	Hole?	Last	accessed	on	August	2011,	
from	 http://www.metamaxim.com/download/documents/MDAv1.pdf,	
(2003).	

[48] Mellor,	 S.J.,	 Scott,	 K.,	 Uhl,	 A.,	Weise,	 D.:	MDA	Distilled:	 Principles	 of	Model‐
Driven	Architecture.	Addison‐Wesley,	New	York.	ISBN:	0201788918.	(2004).	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 111

[49] Merilinna,	 J.:	 A	Tool	 for	Quality‐Driven	Architecture	Model	Transformation.	
PhD	 thesis.	 VTT	 Technical	 Research	 Centre	 of	 Finland,	 Vuorimiehentie,	
Finland	(2005)	

[50] Montagud,	 S.:	 Un	 Método	 para	 la	 Evaluación	 de	 la	 Calidad	 de	 Líneas	 de	
Productos	Software	basado	en	SQuaRE.	Master’s	Thesis,	(In	Spanish),	Master	
en	 Ingenieria	 del	 Software	 Metodos	 Formales	 y	 Sistemas	 de	 Información.	
Universidad	Politécnica	de	Valencia,	Spain	(2009).	

[51] OMG:	 MDA	 Guide	 Version	 1.0.1.	 Last	 accessed	 on	 August	 2011,	 from	
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf	(2002).	

[52] OMG:	 Meta	 Object	 Facility	 (MOF)	 Core	 Specification	 2.4.	 Last	 accessed	 on	
August	2011,	from	http://www.omg.org/spec/MOF/2.4/Beta2/PDF/	(2010).	

[53] OMG:	 Meta	 Object	 Facility	 2.0	 Query/View/Transformation	 Specification.	
Last	 accessed	 on	 August	 2011,	 from	
http://www.omg.org/spec/QVT/1.0/PDF	(2008).	

[54] OMG:	SysML	1.2	Specification:	http://www.omg.org/spec/SysML/1.2/PDF/	
[55] OMG:	UML	2.0	Object	Constrain	Languaje	(OCL)	Specification.	Last	accessed	

on	August	2011,	from,	http://www.omg.org/spec/OCL/2.0/	(2006).	
[56] O'Regan,	G.:	A	Practical	Approach	to	Software	Quality,	Springer‐Verlag,	New	

York	ISBN	978‐0‐387‐95321‐2	(2002).	
[57] Nolan,	A.	J.:	Building	a	Comprehensive	Software	Product	Line	Cost	Model.	In:	

Proceedings	 of	 the	 13thInternational	 Software	 Product	 Line	 Conference	
(SPLC2009),	San	Francisco‐CA,	USA,	IEEE	Press,	(2009).	

[58] Nolan,	 J.A.,	 Abrahão,	 S.,	 Clements,	 P.,	McGregor,	 J.D.,	 Cohen,	 S.:	 Towards	 the	
Integration	of	Quality	Attributes	into	a	Software	Product	Line	Cost	Model.	In	
15th	Software	Product	Line	Conference,	Munich	(2011).	

[59] Pohl,	 K.,	 Böckle,	 G.,	 and	 Linden,	 F.	 J.:	 Software	 Product	 Line	 Engineering:	
Foundations,	 Principles	 and	 Techniques.	 Springer‐	 Verlag	 New	 York,	 Inc,	
ISBN:	10	3‐540‐24372‐0	(2005).	

[60] Raatikainen,	 M.,	 Niemelä,	 E.,	 Myllärmiemi,	 V.,	 Männistö,	 T.:	 Svamp	 –	 An	
Integrated	 Approach	 for	 Modeling	 Functional	 and	 Quality	 Variability.	 2nd	
Workshop	on	Modeling	and	Analysis	of	Software‐Intensive	Systems	(VaMOS	
2008),	Essen,	Germany	(2008).	

[61] Röttger,	 S.,	 Zschaler,	 S.:	 Tool	 support	 for	 refinement	 of	 non‐functional	
specifica‐	 �tions.	 Software	 and	 Systems	 Modelling	 journal	 (SoSyM)	 6(2)	
(2007)		

[62] Seidewitz,	E.:	What	models	mean,	 IEEE	Software,	September/October	2003,	
(Vol.20,	No.	5),	pp.	26‐32	(2003).	

[63] Shaw,	 M.,	 Garlan,	 D.:	 Software	 Architecture:	 Perspectives	 on	 an	 Emerging	
Discipline.	Prentice‐Hall,	New	Jersey,	USA,	ISBN:	0131829572	(1996).	

[64] Stahl,	 T.	 and	Völter,	M.:	Model‐Driven	 Software	Development	 ‐	 Technology,	
Engineering,	Management,	 John	Wiley	 and	 Sons,	 Ltd.,	 Chichester,	 England	 ,	
ISBN:	0470025700,	(2006).	

[65] Shiraishi,	S.:	An	AADL‐Based	Approach	to	Variability	Modeling	of	Automotive	
Control	Systems.	In:	Proceedings	of	13th	International	Conference	on	Model	
Drive	 Engineering	 Languages	 and	 Systems	 (MODELS2010),	 Part	 II,	 LNCS	
6394,	pp	346‐360,	Oslo,	Norway	(2010).	

[66] Tawhid,	 R.,	 Petriu	 D.C.:	 Automatic	 Derivation	 of	 a	 Product	 Performance	
Model	 from	 a	 Software	 Product	 Line	Model.	 In	 15th	 Software	 Product	 Line	
Conference	(SPLC	2011),	Munich,	Germany	(2011)	

[67] The	 Eclipse	 Foundation.	 Last	 accessed	 on	 August	 2011,	 from	
http://www.eclipse.org	(2011).	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 112

[68] Zhang,	 H.,	 Jarzabek,	 S.,	 Yang,	 B.:	 Quality	 Prediction	 and	 Assessment	 for	
Product	 Lines.	 In	 15th	 International	 Conference	 on	 Advanced	 Information	
Systems	Engineering	(CAiSE2003),	pp.	681‐695,	(2003).	

[69] Zou,	 Y.,	 Kontogiannis,	 K.:	 Quality	 Driven	 Transformation	 Framework	 for	
Object	Oriented	Migration.	2nd	ASERC	Workshop	on	Software	Architecture.	
(2003)	
	

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 113

Annex	I. Vehicle	Control	AADL	
Specification		

	
-- AADL model of automobile control systems consisting of: traction
-- control, stability control, cruise control, and antilock brake
-- systems.
-- THIS IS THE 'PORT GROUP' VERSION
data bool_type
end bool_type;

data real_type
end real_type;

-- Device declarations ---
device engine
 features
 engine_signals: port group engine_socket_1;
end engine;

device wheel_rotation_sensor
 features
 wheel_signal: port group wheel_sensors_socket_1;
end wheel_rotation_sensor;

device brake_pedal
 features
 brake_signals: port group brake_sensors_socket_1;
end brake_pedal;

device vehicle_state_sensors
 features
 vehicle_state_signals: port group vehicle_state_sensors_socket_1;
end vehicle_state_sensors;

device user_console
 features
 user_console_outputs: port group user_console_socket_1;
end user_console;

device distance_radar_sensor
 features
 distance_radar_signals: port group distance_radar_socket_1;
 -- As input will use the self_speed of the car for calculating relative
speed with the target vehicle
 self_speed: port group wheel_sensors_plug_1;
end distance_radar_sensor;

device object_recognition_sensor
 features
 object_recognition_sensor_signals: port group
object_recognition_sensor_socket_1;
 -- As input will use the self_speed of the car for calculating relative
speed with the target vehicle
 self_speed: port group wheel_sensors_plug_1;
end object_recognition_sensor;

----- output devices
device throttle_actuator
 features
 tc_throttle_signals: port group tc_throttle_actuator_socket_1;
 cc_throttle_signals: port group cc_throttle_actuator_socket_1;
end throttle_actuator;

device display
 features

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 114

 tc_display_input_signals: port group tc_user_display_socket_1;
 cc_display_input_signals: port group cc_user_display_socket_1;
 sc_display_input_signals: port group sc_user_display_socket_1;
 abs_display_input_signals: port group abs_user_display_socket_1;
end display;

device brake_actuators
 features
 -- device receives braking signals from three systems
 tc_brake_actuator_signals: port group tc_brake_actuator_socket_1;
 sc_brake_actuator_signals: port group sc_brake_actuator_socket_1;
 abs_brake_actuator_signals: port group abs_brake_actuator_socket_1;
end brake_actuators;

-- extension for the brake_actuators in the version 2 and 3
device brake_actuators_ext
 extends brake_actuators
 features
 cc_brake_actuator_signals: port group cc_brake_actuactor_socket_1;
end brake_actuators_ext;

-- port group declarations ----------------------------------
port group engine_socket_1
 features
 engine_status: out data port;
 -- engine is off (0) or on (1)
 engine_temp_1: out data port;
 throttle_position: out data port;
end engine_socket_1;

port group engine_plug_1
 inverse of engine_socket_1
end engine_plug_1;

port group wheel_sensors_socket_1
 features
 wheel_pulse: in data port bool_type;
 wheel_slippage: in data port real_type;
end wheel_sensors_socket_1;

-- assume only one rotation sensor on one wheel....could add one on -- other
wheels for redundancy
port group wheel_sensors_plug_1
 inverse of wheel_sensors_socket_1
end wheel_sensors_plug_1;

port group brake_sensors_socket_1
 features
 brake_status: out data port;
end brake_sensors_socket_1;

port group brake_sensors_plug_1
 inverse of engine_socket_1
end brake_sensors_plug_1;

port group vehicle_state_sensors_socket_1
 features
 steering_wheel_angle: in data port;
 yaw_rate: in data port;
 lateral_acceleration: in data port;
end vehicle_state_sensors_socket_1;

port group vehicle_state_sensors_plug_1
 inverse of vehicle_state_sensors_socket_1
end vehicle_state_sensors_plug_1;

port group user_console_socket_1
 features
 cc_system_on_off: out data port;
 speed_set: out data port;

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 115

 resume: out data port;
 cancel: out data port;
 speed_increase: out data port;
 speed_decrease: out data port;
 -- switch for enabling maintain distance
 maintain_distance: out data port;
end user_console_socket_1;

port group user_console_plug_1
 inverse of user_console_socket_1
end user_console_plug_1;

-------- distance radar port
port group distance_radar_socket_1
 features
 distance_to: in data port;
 relative_speed: in data port;
end distance_radar_socket_1;

port group distance_radar_plug_1
 inverse of distance_radar_socket_1
end distance_radar_plug_1;

port group object_recognition_sensor_socket_1
 features
 distance_to: in data port;
 relative_speed: in data port;
end object_recognition_sensor_socket_1;

port group object_recognition_sensor_plug_1
 inverse of object_recognition_sensor_socket_1
end object_recognition_sensor_plug_1;

-- TCS output port groups
port group tc_throttle_actuator_socket_1
 features
 throttle_actuator: out data port;
end tc_throttle_actuator_socket_1;

port group tc_throttle_actuator_plug_1
 inverse of tc_throttle_actuator_socket_1
end tc_throttle_actuator_plug_1;

port group tc_user_display_socket_1
 features
 tc_state: out data port;
end tc_user_display_socket_1;

port group tc_user_display_plug_1
 inverse of tc_user_display_socket_1
end tc_user_display_plug_1;

port group tc_brake_actuator_socket_1
 features
 tc_brake_output: out data port;
end tc_brake_actuator_socket_1;

port group tc_brake_actuator_plug_1
 inverse of tc_brake_actuator_socket_1
end tc_brake_actuator_plug_1;

port group cc_brake_actuactor_socket_1
 features
 cc_brake_output: out data port;
end cc_brake_actuactor_socket_1;

-- introduce to add the braking capability for the CC_Version 2 and 3
port group cc_brake_actuactor_plug_1
 inverse of cc_brake_actuactor_socket_1

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 116

end cc_brake_actuactor_plug_1;

-- -- cc output port groups
port group cc_throttle_actuator_socket_1
 features
 cc_throttle_actuator: out data port;
end cc_throttle_actuator_socket_1;

port group cc_throttle_actuator_plug_1
 inverse of cc_throttle_actuator_socket_1
end cc_throttle_actuator_plug_1;

port group cc_user_display_socket_1
 features
 cc_state: out data port;
end cc_user_display_socket_1;

port group cc_user_display_plug_1
 inverse of cc_user_display_socket_1
end cc_user_display_plug_1;

--- -- sc output port groups
port group sc_brake_actuator_socket_1
 features
 sc_brake_actuator: out data port;
end sc_brake_actuator_socket_1;

port group sc_brake_actuator_plug_1
 inverse of sc_brake_actuator_socket_1
end sc_brake_actuator_plug_1;

port group sc_user_display_socket_1
 features
 sc_state: out data port;
end sc_user_display_socket_1;

port group sc_user_display_plug_1
 inverse of sc_user_display_socket_1
end sc_user_display_plug_1;

--- -- abs output port groups
port group abs_brake_actuator_socket_1
 features
 abs_brake_actuator: out data port;
end abs_brake_actuator_socket_1;

port group abs_brake_actuator_plug_1
 inverse of abs_brake_actuator_socket_1
end abs_brake_actuator_plug_1;

port group abs_user_display_socket_1
 features
 abs_state: out data port;
end abs_user_display_socket_1;

port group abs_user_display_plug_1
 inverse of abs_user_display_socket_1
end abs_user_display_plug_1;

--
system traction_control_system
 features
 tcs_wheel_input: port group wheel_sensors_plug_1;
 tcs_engine_input: port group engine_plug_1;
 tcs_user_input: port group user_console_plug_1;
 tcs_throttle_out: port group tc_throttle_actuator_socket_1;
 tcs_display_out: port group tc_user_display_socket_1;
 tcs_brake_out: port group tc_brake_actuator_plug_1;
end traction_control_system;

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 117

system cruise_control_system_CC1
 features
 cc_user_input: port group user_console_plug_1;
 cc_wheel_speed: port group wheel_sensors_plug_1;
 cc_engine_input: port group engine_plug_1;
 cc_brake_status: port group brake_sensors_plug_1;
 cc_throttle_actuator: port group cc_throttle_actuator_plug_1;
 cc_display_out: port group cc_user_display_plug_1;
end cruise_control_system_CC1;

system cruise_control_system_CC2
 extends cruise_control_system_CC1
 features
 cc_distance_radar_setting: port group distance_radar_plug_1;
 cc_brake_actuator: port group cc_brake_actuactor_plug_1;
end cruise_control_system_CC2;

system cruise_control_system_CC3
 extends cruise_control_system_CC2
 features
 cc_object_rectonition_setting: port group object_recognition_sensor_plug_1;
end cruise_control_system_CC3;

system stability_control_system
 features
 sc_user_input: port group user_console_plug_1;
 sc_wheel_speed: port group wheel_sensors_plug_1;
 sc_engine_input: port group engine_plug_1;
 sc_brake_status: port group brake_sensors_plug_1;
 sc_display_out: port group sc_user_display_plug_1;
 sc_brake_output: port group sc_brake_actuator_plug_1;
end stability_control_system;

system antilock_brake_system
 features
 abs_user_input: port group user_console_plug_1;
 abs_wheel_speed: port group wheel_sensors_plug_1;
 abs_engine_input: port group engine_plug_1;
 abs_brake_actuator: port group abs_brake_actuator_plug_1;
 abs_display: port group abs_user_display_plug_1;
end antilock_brake_system;	

	 	

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 118

Annex	II. Cruise	Control	AADL	
Specification		

	
	
data bool_type
end bool_type;

data float_type
end float_type;

-- Devices
device cruise_control_button
 features
 cc_system_on_off: out data port;
end cruise_control_button;

device brake_pedal
 features
 brake_pedal_status: out data port bool_type;
 flows
 Flow1: flow source brake_pedal_status;
end brake_pedal;

device wheel_rotation_sensor
 features
 wheel_pulse: out data port;
 --Traction & Stability Control
 wheel_slippage: out data port;
end wheel_rotation_sensor;

device airbag_and_security_belt_status
 features
 airbag_status: out data port;
 security_belt_status: out data port;
end airbag_and_security_belt_status;

device engine
 features
 engine_status: out data port;
end engine;

device resume_button
 features
 resume: out data port;
end resume_button;

device speed_up_button
 features
 increase_speed: out data port;
end speed_up_button;

device speed_dn_button
 features
 decrease_speed: out data port;
end speed_dn_button;

device set_button
 features
 set_speed: out data port;
end set_button;

device set_distance_button
 features
 set_distance: out data port;
end set_distance_button;

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 119

device operator_panel
 features
 cc_system_on_off: out data port bool_type;
 set_speed: out data port float_type;
 decrease_speed: out data port bool_type;
 increase_speed: out data port bool_type;
 resume: out data port bool_type;
 set_distance: out data port float_type;
end operator_panel;

device sensor_platform
 features
 yaw_sensor_1: out data port float_type;
 yaw_rate_sensor_1: out data port float_type;
 lateral_force_sensor_1: out data port float_type;
end sensor_platform;

device steering_wheel
 features
 steering_angle: out data port float_type;
end steering_wheel;

device distance_radar_sensor
 features
 distance_to: out data port float_type;
 relative_speed: out data port float_type;
 -- The previously computed instantaneous_velocity
 instantaneous_velocity: in data port;
end distance_radar_sensor;

device object_recognition_sensor
 features
 distance_to: out data port float_type;
 relative_speed: out data port float_type;
 -- The previously computed instantaneous_velocity
 instantaneous_velocity: in data port;
end object_recognition_sensor;

-- Device: actuators
device throttle_actuator
 features
 throttle_setting: in data port;
 flows
 Flow1: flow sink throttle_setting;
end throttle_actuator;

device brake_actuators
 features
 -- device receives braking signals from three systems
 tc_brake_input: in data port;
 sc_brake_input: in data port;
 abs_brake_input: in data port;
 brake_status: out data port;
 flows
 flow1: flow source brake_status;
end brake_actuators;

-- extension for the brake_actuators in the version 2 and 3
device brake_actuators_ext
 extends brake_actuators
 features
 cc_brake_input: in data port;
end brake_actuators_ext;

-- device for airbag and security belt actuators, which will be controlled by
version 3
device airbag_and_security_belt_actuators
 features
 cc_security_belt_setting: in data port;

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 120

 cc_airbag_setting: in data port;
 flows
 Flow1: flow sink cc_security_belt_setting;
 Flow2: flow sink cc_airbag_setting;
end airbag_and_security_belt_actuators;

------ end of additional component declarations
-- System declarations
-- the cruise control software application is declared (sw + devices,
-- devices will be bound later)
system cc1_app
 features
 device_bus: requires bus access PC104_ISA_16BIT;
end cc1_app;

system cc2_app
 extends cc1_app
end cc2_app;

system cc3_app
 extends cc2_app
end cc3_app;

bus PC104_ISA_16BIT
end PC104_ISA_16BIT;

memory SDRAM
 features
 controller_memory: requires bus access PC104_ISA_16BIT;
end SDRAM;

processor PENTIUM
 features
 controller_cpu: requires bus access PC104_ISA_16BIT;
end PENTIUM;

system cruise_control_CC1
 features
 cc_system_on_off: in data port;
 engine_status: in data port;
 brake_pedal_status: in data port bool_type;
 resume: in data port;
 decrease_speed: in data port;
 increase_speed: in data port;
 set_speed: in data port;
 wheel_pulse: in data port;
 throttle_setting: out data port;
 flows
 brake_flow_1: flow path brake_pedal_status -> throttle_setting;
 decrease_speed_flow1: flow path decrease_speed -> throttle_setting;
 increase_speed_flow1: flow path increase_speed -> throttle_setting;
 set_speed_flow1: flow path set_speed -> throttle_setting;
end cruise_control_CC1;

system cruise_control_CC2
 extends cruise_control_CC1
 features
 distance_from_distance_sensor: in data port float_type;
 relative_speed_from_distance_sensor: in data port float_type;
 brake_status: in data port;
 current_instantaneous_velocity: out data port;
 brake_setting: out data port;
 set_distance: in data port;
 flows
 brake_flow_2: flow path brake_pedal_status -> brake_setting;
 brake_flow_3: flow path brake_status -> brake_setting;
 current_velocity_flow_1: flow path wheel_pulse ->
current_instantaneous_velocity;
 relative_speed_from_distance_sensor_flow_1: flow path
relative_speed_from_distance_sensor -> brake_setting;

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 121

 set_distance_flow1: flow path set_distance -> throttle_setting;
end cruise_control_CC2;

system cruise_control_CC3
 extends cruise_control_CC2
 features
 distance_to_from_object_recognition_sensor: in data port float_type;
 relative_speed_from_object_recognition_sensor: in data port float_type;
 security_belt_status: in data port;
 airbag_status: in data port;
 security_belt_setting: out data port;
 airbag_setting: out data port;
 flows
 airbag_flow1: flow path airbag_status -> airbag_setting;
 security_belt_flow1: flow path security_belt_status ->
security_belt_setting;
end cruise_control_CC3;

device compute_velocity
 features
 wheel_pulse: in data port;
 instantaneous_velocity: out data port;
 flows
 FS1: flow path wheel_pulse -> instantaneous_velocity;
end compute_velocity;

process compute_desired_speed
 features
 ok_to_run: in data port;
 instantaneous_velocity: in data port;
 selected_speed: in data port;
 current_instantaneous_velocity: out data port;
 previous_instantaneous_velocity: in data port;
 desired_speed: out data port;
 flows
 FS1: flow path ok_to_run -> desired_speed;
 FS2: flow path instantaneous_velocity -> desired_speed;
 FS3: flow path selected_speed -> desired_speed;
end compute_desired_speed;

process compute_desired_speed_CC2
 extends compute_desired_speed
 features
 distance_to_from_distance_sensor: in data port float_type;
 relative_speed_from_distance_sensor: in data port float_type;
 selected_distance: in data port float_type;
 flows
 FS4: flow path distance_to_from_distance_sensor -> desired_speed;
 FS5: flow path relative_speed_from_distance_sensor -> desired_speed;
 FS11: flow path selected_distance -> desired_speed;
end compute_desired_speed_CC2;

process compute_desired_speed_CC3
 extends compute_desired_speed_CC2
 features
 distance_to_from_object_recognition_sensor: in data port float_type;
 relative_speed_from_object_recognition_sensor: in data port float_type;
 flows
 FS6: flow path distance_to_from_object_recognition_sensor -> desired_speed;
 FS7: flow path relative_speed_from_object_recognition_sensor ->
desired_speed;
end compute_desired_speed_CC3;

process compute_throttle_setting
 features
 desired_speed: in data port;
 throttle_setting: out data port;
 flows
 FS1: flow path desired_speed -> throttle_setting;
end compute_throttle_setting;

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 122

process compute_brake_setting
 features
 desired_speed: in data port;
 brake_setting: out data port;
 brake_status: in data port;
 flows
 FS1: flow path desired_speed -> brake_setting;
 FS2: flow path brake_status -> brake_setting;
end compute_brake_setting;

process compute_airbag_setting
 features
 desired_speed: in data port;
 instantaneous_velocity: in data port;
 airbag_status: in data port;
 distance_to_from_object_recognition_sensor: in data port float_type;
 relative_speed_from_object_recognition_sensor: in data port float_type;
 airbag_setting: out data port;
 flows
 FS1: flow path desired_speed -> airbag_setting;
 FS2: flow path instantaneous_velocity -> airbag_setting;
 FS3: flow path distance_to_from_object_recognition_sensor -> airbag_setting;
 FS4: flow path relative_speed_from_object_recognition_sensor ->
airbag_setting;
 FS5: flow path airbag_status -> airbag_setting;
end compute_airbag_setting;

process compute_security_belt_setting
 features
 desired_speed: in data port;
 instantaneous_velocity: in data port;
 security_belt_status: in data port;
 distance_to_from_object_recognition_sensor: in data port float_type;
 relative_speed_from_object_recognition_sensor: in data port float_type;
 security_belt_setting: out data port;
 flows
 FS1: flow path desired_speed -> security_belt_setting;
 FS2: flow path instantaneous_velocity -> security_belt_setting;
 FS3: flow path distance_to_from_object_recognition_sensor ->
security_belt_setting;
 FS4: flow path relative_speed_from_object_recognition_sensor ->
security_belt_setting;
 FS5: flow path security_belt_status -> security_belt_setting;
end compute_security_belt_setting;

process in_control
 features
 cc_system_on_off: in data port;
 brake_pedal_status: in data port bool_type;
 resume: in data port;
 decrease_speed: in data port;
 increase_speed: in data port;
 set_speed: in data port;
 engine_status: in data port;
 ok_to_run: out data port;
 selected_speed: out data port;

 flows
 FS1: flow path brake_pedal_status -> ok_to_run;
 FS2: flow path decrease_speed -> selected_speed;
 FS3: flow path increase_speed -> selected_speed;
 FS4: flow path set_speed -> selected_speed;
 FS5: flow path cc_system_on_off -> ok_to_run;
end in_control;

process in_control_ext
 extends in_control
 features
 set_distance: in data port;

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 123

 selected_distance: out data port float_type;
flows
 FS6: flow path set_distance -> selected_distance;
end in_control_ext;

system implementation cruise_control_CC1.impl
 subcomponents
 I_C: process in_control;
 C_V: device compute_velocity;
 C_D_S: process compute_desired_speed;
 C_T_S: process compute_throttle_setting;
 connections
 C1: data port cc_system_on_off -> I_C.cc_system_on_off;
 C2: data port brake_pedal_status -> I_C.brake_pedal_status;
 C3: data port engine_status -> I_C.engine_status;
 C4: data port resume -> I_C.resume;
 C5: data port decrease_speed -> I_C.decrease_speed;
 C6: data port increase_speed -> I_C.increase_speed;
 C7: data port set_speed -> I_C.set_speed;
 C8: data port wheel_pulse -> C_V.wheel_pulse;
 C9: data port I_C.ok_to_run -> C_D_S.ok_to_run;
 C10: data port C_V.instantaneous_velocity -> C_D_S.instantaneous_velocity;
 C11: data port C_D_S.current_instantaneous_velocity ->
C_D_S.previous_instantaneous_velocity;
 C12: data port C_D_S.desired_speed -> C_T_S.desired_speed;
 C13: data port C_T_S.throttle_setting -> throttle_setting;
 C14: data port I_C.selected_speed -> C_D_S.selected_speed;
 flows
 brake_flow_1: flow path brake_pedal_status -> C2 -> I_C.FS1
 -> C9 -> C_D_S.FS1
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 decrease_speed_flow1: flow path decrease_speed -> C5 -> I_C.FS2
 -> C14 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 set_speed_flow1: flow path set_speed -> C7 -> I_C.FS4
 -> C14 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 increase_speed_flow1: flow path increase_speed -> C6 -> I_C.FS3
 -> C14 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
end cruise_control_CC1.impl;

system implementation cc1_app.impl
 subcomponents
 CC: system cruise_control_CC1.impl;
 BRAKE_PEDAL_SENSOR: device brake_pedal;
 TA: device throttle_actuator;
 CC_ON_OFF: device cruise_control_button;
 ENGINE: device engine;
 RESUME: device resume_button;
 SP_UP: device speed_up_button;
 SP_DN: device speed_dn_button;
 SETBUTTON: device set_button;
 WHEEL_ROT_SENSOR: device wheel_rotation_sensor;
 connections
 C21: data port CC_ON_OFF.cc_system_on_off -> CC.cc_system_on_off;
 C22: data port BRAKE_PEDAL_SENSOR.brake_pedal_status ->
CC.brake_pedal_status;
 C23: data port ENGINE.engine_status -> CC.engine_status;
 C24: data port RESUME.resume -> CC.resume;
 C25: data port SP_DN.decrease_speed -> CC.decrease_speed;
 C26: data port SP_UP.increase_speed -> CC.increase_speed;
 C27: data port SETBUTTON.set_speed -> CC.set_speed;
 C28: data port WHEEL_ROT_SENSOR.wheel_pulse -> CC.wheel_pulse;
 C29: data port CC.throttle_setting -> TA.throttle_setting;
 flows

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 124

 ETE_F1: end to end flow BRAKE_PEDAL_SENSOR.Flow1 -> C22 -> CC.brake_flow_1
 -> C29 -> TA.Flow1
 ;
end cc1_app.impl;

system implementation cruise_control_CC2.impl
 subcomponents
 I_C: process in_control_ext;
 C_V: device compute_velocity;
 C_D_S: process compute_desired_speed_CC2;
 C_T_S: process compute_throttle_setting;
 C_B_S: process compute_brake_setting;
 connections
 C1: data port cc_system_on_off -> I_C.cc_system_on_off;
 C2: data port brake_pedal_status -> I_C.brake_pedal_status;
 C3: data port engine_status -> I_C.engine_status;
 C4: data port resume -> I_C.resume;
 C5: data port decrease_speed -> I_C.decrease_speed;
 C6: data port increase_speed -> I_C.increase_speed;
 C7: data port set_speed -> I_C.set_speed;
 C8: data port wheel_pulse -> C_V.wheel_pulse;
 C9: data port I_C.ok_to_run -> C_D_S.ok_to_run;
 C10: data port C_V.instantaneous_velocity -> C_D_S.instantaneous_velocity;
 C11: data port C_D_S.current_instantaneous_velocity ->
C_D_S.previous_instantaneous_velocity;
 C12: data port C_D_S.desired_speed -> C_T_S.desired_speed;
 C13: data port C_T_S.throttle_setting -> throttle_setting;
 C14: data port distance_from_distance_sensor ->
C_D_S.distance_to_from_distance_sensor;
 C15: data port relative_speed_from_distance_sensor ->
C_D_S.relative_speed_from_distance_sensor;
 C16: data port C_V.instantaneous_velocity -> current_instantaneous_velocity;
 C17: data port C_D_S.desired_speed -> C_B_S.desired_speed;
 C18: data port C_B_S.brake_setting -> brake_setting;
 C19: data port I_C.selected_speed -> C_D_S.selected_speed;
 C20: data port brake_status -> C_B_S.brake_status;
 C21: data port set_distance -> I_C.set_distance;
 C22: data port I_C.selected_distance -> C_D_S.selected_distance;
 flows
 brake_flow_1: flow path brake_pedal_status -> C2 -> I_C.FS1
 -> C9 -> C_D_S.FS1
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 brake_flow_2: flow path brake_pedal_status -> C2 -> I_C.FS1
 -> C9 -> C_D_S.FS1
 -> C17 -> C_B_S.FS1
 -> C18 -> brake_setting;
 brake_flow_3: flow path brake_status -> C20 -> C_B_S.FS2
 -> C18 -> brake_setting;
 current_velocity_flow_1: flow path wheel_pulse -> C8 -> C_V.FS1
 -> C16 -> current_instantaneous_velocity;
 decrease_speed_flow1: flow path decrease_speed -> C5 -> I_C.FS2
 -> C19 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 set_speed_flow1: flow path set_speed -> C7 -> I_C.FS4
 -> C19 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 increase_speed_flow1: flow path increase_speed -> C6 -> I_C.FS3
 -> C19 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 relative_speed_from_distance_sensor_flow_1: flow path
relative_speed_from_distance_sensor -> C15 -> C_D_S.FS5
 -> C17 -> C_B_S.FS1
 -> C18 -> brake_setting;
 set_distance_flow1: flow path set_distance -> C21 -> I_C.FS6
 -> C22 -> C_D_S.FS11
 -> C12 -> C_T_S.FS1

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 125

 -> C13 -> throttle_setting;
end cruise_control_CC2.impl;

system implementation cc2_app.impl
 subcomponents
 CC: system cruise_control_CC2.impl;
 BRAKE_PEDAL_SENSOR: device brake_pedal;
 TA: device throttle_actuator;
 BA: device brake_actuators_ext;
 CC_ON_OFF: device cruise_control_button;
 ENGINE: device engine;
 RESUME: device resume_button;
 SP_UP: device speed_up_button;
 SP_DN: device speed_dn_button;
 SETBUTTON: device set_button;
 WHEEL_ROT_SENSOR: device wheel_rotation_sensor;
 DISTANCE_SENSOR: device distance_radar_sensor;
 SET_DISTANCE: device set_distance_button;
 connections
 C21: data port CC_ON_OFF.cc_system_on_off -> CC.cc_system_on_off;
 C22: data port BRAKE_PEDAL_SENSOR.brake_pedal_status ->
CC.brake_pedal_status;
 C23: data port ENGINE.engine_status -> CC.engine_status;
 C24: data port RESUME.resume -> CC.resume;
 C25: data port SP_DN.decrease_speed -> CC.decrease_speed;
 C26: data port SP_UP.increase_speed -> CC.increase_speed;
 C27: data port SETBUTTON.set_speed -> CC.set_speed;
 C28: data port WHEEL_ROT_SENSOR.wheel_pulse -> CC.wheel_pulse;
 C29: data port CC.throttle_setting -> TA.throttle_setting;
 C30: data port DISTANCE_SENSOR.distance_to ->
CC.distance_from_distance_sensor;
 C31: data port DISTANCE_SENSOR.relative_speed ->
CC.relative_speed_from_distance_sensor;
 C32: data port CC.current_instantaneous_velocity ->
DISTANCE_SENSOR.instantaneous_velocity;
 C33: data port CC.brake_setting -> BA.cc_brake_input;
 C34: data port BA.brake_status -> CC.brake_status;
 C35: data port SET_DISTANCE.set_distance -> CC.set_distance;
 flows
 ETE_F1: end to end flow BRAKE_PEDAL_SENSOR.Flow1 -> C22 -> CC.brake_flow_1
 -> C29 -> TA.Flow1
 ;
end cc2_app.impl;

system implementation cruise_control_CC3.impl
 subcomponents
 I_C: process in_control_ext;
 C_V: device compute_velocity;
 C_D_S: process compute_desired_speed_CC3;
 C_T_S: process compute_throttle_setting;
 C_B_S: process compute_brake_setting;
 C_A_S: process compute_airbag_setting;
 C_S_S: process compute_security_belt_setting;
 connections
 C1: data port cc_system_on_off -> I_C.cc_system_on_off;
 C2: data port brake_pedal_status -> I_C.brake_pedal_status;
 C3: data port engine_status -> I_C.engine_status;
 C4: data port resume -> I_C.resume;
 C5: data port decrease_speed -> I_C.decrease_speed;
 C6: data port increase_speed -> I_C.increase_speed;
 C7: data port set_speed -> I_C.set_speed;
 C8: data port wheel_pulse -> C_V.wheel_pulse;
 C9: data port I_C.ok_to_run -> C_D_S.ok_to_run;
 C10: data port C_V.instantaneous_velocity -> C_D_S.instantaneous_velocity;
 C11: data port C_D_S.current_instantaneous_velocity ->
C_D_S.previous_instantaneous_velocity;
 C12: data port C_D_S.desired_speed -> C_T_S.desired_speed;
 C13: data port C_T_S.throttle_setting -> throttle_setting;
 C14: data port distance_from_distance_sensor ->
C_D_S.distance_to_from_distance_sensor;

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 126

 C15: data port relative_speed_from_distance_sensor ->
C_D_S.relative_speed_from_distance_sensor;
 C16: data port C_V.instantaneous_velocity -> current_instantaneous_velocity;
 C17: data port distance_to_from_object_recognition_sensor ->
C_D_S.distance_to_from_object_recognition_sensor;
 C18: data port relative_speed_from_distance_sensor ->
C_D_S.relative_speed_from_object_recognition_sensor;
 C19: data port C_D_S.desired_speed -> C_B_S.desired_speed;
 C20: data port C_B_S.brake_setting -> brake_setting;
 C21: data port C_V.instantaneous_velocity -> C_A_S.instantaneous_velocity;
 C22: data port distance_to_from_object_recognition_sensor ->
C_A_S.distance_to_from_object_recognition_sensor;
 C23: data port relative_speed_from_distance_sensor ->
C_A_S.relative_speed_from_object_recognition_sensor;
 C24: data port C_D_S.desired_speed -> C_A_S.desired_speed;
 C25: data port C_V.instantaneous_velocity -> C_S_S.instantaneous_velocity;
 C26: data port distance_to_from_object_recognition_sensor ->
C_S_S.distance_to_from_object_recognition_sensor;
 C27: data port relative_speed_from_distance_sensor ->
C_S_S.relative_speed_from_object_recognition_sensor;
 C28: data port C_D_S.desired_speed -> C_S_S.desired_speed;
 C29: data port C_A_S.airbag_setting -> airbag_setting;
 C30: data port C_S_S.security_belt_setting -> security_belt_setting;
 C31: data port airbag_status -> C_A_S.airbag_status;
 C32: data port security_belt_status -> C_S_S.security_belt_status;
 C33: data port I_C.selected_speed -> C_D_S.selected_speed;
 C34: data port brake_status -> C_B_S.brake_status;
 C35: data port set_distance -> I_C.set_distance;
 C36: data port I_C.selected_distance -> C_D_S.selected_distance;
 flows
 brake_flow_1: flow path brake_pedal_status -> C2 -> I_C.FS1
 -> C9 -> C_D_S.FS1
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 brake_flow_2: flow path brake_pedal_status -> C2 -> I_C.FS1
 -> C9 -> C_D_S.FS1
 -> C19 -> C_B_S.FS1
 -> C20 -> brake_setting;
 brake_flow_3: flow path brake_status -> C34 -> C_B_S.FS2
 -> C20 -> brake_setting;
 security_belt_flow1: flow path security_belt_status -> C32 -> C_S_S.FS5
 -> C30 -> security_belt_setting;
 airbag_flow1: flow path airbag_status -> C31 -> C_A_S.FS5
 -> C29 -> airbag_setting;
 current_velocity_flow_1: flow path wheel_pulse -> C8 -> C_V.FS1
 -> C16 -> current_instantaneous_velocity;
 decrease_speed_flow1: flow path decrease_speed -> C5 -> I_C.FS2
 -> C33 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 set_speed_flow1: flow path set_speed -> C7 -> I_C.FS4
 -> C33 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 increase_speed_flow1: flow path increase_speed -> C6 -> I_C.FS3
 -> C33 -> C_D_S.FS3
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
 relative_speed_from_distance_sensor_flow_1: flow path
relative_speed_from_distance_sensor -> C15 -> C_D_S.FS5
 -> C19 -> C_B_S.FS1
 -> C20 -> brake_setting;
 set_distance_flow1: flow path set_distance -> C35 -> I_C.FS6
 -> C36 -> C_D_S.FS11
 -> C12 -> C_T_S.FS1
 -> C13 -> throttle_setting;
end cruise_control_CC3.impl;

system implementation cc3_app.impl
 subcomponents

Tesina	de	Máster	en	Ingeniería	del	Software,	Métodos	Formales	y	Sistemas	de	Información	(ISMFSI)	

 127

 CC: system cruise_control_CC3.impl;
 BRAKE_PEDAL_SENSOR: device brake_pedal;
 TA: device throttle_actuator;
 BA: device brake_actuators_ext;
 ASA: device airbag_and_security_belt_actuators;
 CC_ON_OFF: device cruise_control_button;
 ENGINE: device engine;
 RESUME: device resume_button;
 SP_UP: device speed_up_button;
 SP_DN: device speed_dn_button;
 SETBUTTON: device set_button;
 AIRBAG_SEC_BELT: device airbag_and_security_belt_status;
 WHEEL_ROT_SENSOR: device wheel_rotation_sensor;
 DISTANCE_SENSOR: device distance_radar_sensor;
 OBJECT_RECOG: device object_recognition_sensor;
 SET_DISTANCE: device set_distance_button;
 connections
 C11: data port AIRBAG_SEC_BELT.airbag_status -> CC.airbag_status;
 C12: data port AIRBAG_SEC_BELT.security_belt_status ->
CC.security_belt_status;
 C21: data port CC_ON_OFF.cc_system_on_off -> CC.cc_system_on_off;
 C22: data port BRAKE_PEDAL_SENSOR.brake_pedal_status ->
CC.brake_pedal_status;
 C23: data port ENGINE.engine_status -> CC.engine_status;
 C24: data port RESUME.resume -> CC.resume;
 C25: data port SP_DN.decrease_speed -> CC.decrease_speed;
 C26: data port SP_UP.increase_speed -> CC.increase_speed;
 C27: data port SETBUTTON.set_speed -> CC.set_speed;
 C28: data port WHEEL_ROT_SENSOR.wheel_pulse -> CC.wheel_pulse;
 C29: data port CC.throttle_setting -> TA.throttle_setting;
 C30: data port DISTANCE_SENSOR.distance_to ->
CC.distance_from_distance_sensor;
 C31: data port DISTANCE_SENSOR.relative_speed ->
CC.relative_speed_from_distance_sensor;
 C32: data port CC.current_instantaneous_velocity ->
DISTANCE_SENSOR.instantaneous_velocity;
 C33: data port OBJECT_RECOG.distance_to ->
CC.distance_to_from_object_recognition_sensor;
 C34: data port OBJECT_RECOG.relative_speed ->
CC.relative_speed_from_object_recognition_sensor;
 C35: data port CC.brake_setting -> BA.cc_brake_input;
 C36: data port CC.current_instantaneous_velocity ->
OBJECT_RECOG.instantaneous_velocity;
 C37: data port CC.security_belt_setting -> ASA.cc_security_belt_setting;
 C38: data port CC.airbag_setting -> ASA.cc_airbag_setting;
 C39: data port SET_DISTANCE.set_distance -> CC.set_distance;
 flows
 ETE_F1: end to end flow BRAKE_PEDAL_SENSOR.Flow1 -> C22 -> CC.brake_flow_1
 -> C29 -> TA.Flow1
 ;
end cc3_app.impl;

system cc_computer
 features
 device_bus: provides bus access PC104_ISA_16BIT;
end cc_computer;

system CompanyZ_computer
end CompanyZ_computer;

system CompanyZ_cruise_controlCC1_system
end CompanyZ_cruise_controlCC1_system;

system CompanyZ_cruise_controlCC2_system
end CompanyZ_cruise_controlCC2_system;

system CompanyZ_cruise_controlCC3_system
end CompanyZ_cruise_controlCC3_system;

system implementation cc_computer.CompanyZ

Integration	of	Quality	Attributes	in	Software	Product	Line	Development	

 128

 subcomponents
 CompanyZ_memory: memory SDRAM;
 CompanyZ_bus: bus PC104_ISA_16BIT;
 CompanyZ_processor: processor PENTIUM;
end cc_computer.CompanyZ;

system implementation CompanyZ_cruise_controlCC1_system.impl
 subcomponents
 CompanyZ_computer: system cc_computer.CompanyZ;
 CompanyZ_software: system cc1_app.impl;
 connections
 C1: bus access CompanyZ_computer.device_bus -> CompanyZ_software.device_bus;
end CompanyZ_cruise_controlCC1_system.impl;

system implementation CompanyZ_cruise_controlCC2_system.impl
 subcomponents
 CompanyZ_computer: system cc_computer.CompanyZ;
 CompanyZ_software: system cc2_app.impl;
 connections
 C1: bus access CompanyZ_computer.device_bus -> CompanyZ_software.device_bus;
end CompanyZ_cruise_controlCC2_system.impl;

system implementation CompanyZ_cruise_controlCC3_system.impl
 subcomponents
 CompanyZ_computer: system cc_computer.CompanyZ;
 CompanyZ_software: system cc3_app.impl;
 connections
 C1: bus access CompanyZ_computer.device_bus -> CompanyZ_software.device_bus;
end CompanyZ_cruise_controlCC3_system.impl;

	

	

	
	
	

