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Abstract

An example of a weakly ergodic 3-isometry is provided in [3], we give new
examples of weakly ergodic 3-isometries and study numerically hypercyclic m-
isometries on finite and infinite dimensional Hilbert spaces. In particular, all
weakly ergodic strict 3-isometries on a Hilbert space are weakly numerically
hypercyclic. Adjoints of unilateral forward weighted shifts which are strict
m-isometries on `2(N) are shown to be hypercyclic.

1 Introduction

Throughout this article X stands for a Banach space, the symbol B(X) denotes the
space of bounded linear operators defined on X.

Given T ∈ B(X), we denote the Cesàro mean by

Mn(T )x :=
1

n+ 1

n∑
k=0

T kx for all x ∈ X.

We need to recall some definitions concerning the behaviour of the sequence of Cesàro
means (Mn(T ))n∈N.

Definition 1.1. A linear operator T on a Banach space X is called

1. Uniformly ergodic if Mn(T ) converges uniformly.

2. Mean ergodic if Mn(T ) converges in the strong operator topology of X.

3. Weakly ergodic if Mn(T ) converges in the weak operator topology of X.

4. Absolutely Cesàro bounded if there exists a constant C > 0 such that

sup
N∈N

1

N

N∑
j=1

‖T jx‖ ≤ C‖x‖ for all x ∈ X.
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MTM2016-75963-P. The third author was supported by grant No. 17-27844S of GA CR and RVO:
67985840. The fourth author was also supported by Generalitat Valenciana, Project PROME-
TEO/2017/102.
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5. Cesàro bounded if the sequence (Mn(T ))n∈N is bounded.

6. Uniformly Kreiss bounded if there is a C > 0 such that

‖Mn(λT )‖ ≤ C for |λ| = 1 and n = 0, 1, 2, · · · . (1)

An operator T is said power bounded if there is a C > 0 such that ‖T n‖ < C for
all n.

Remark 1.1. 1. On finite-dimensional Hilbert spaces, the classes of uniformly
Kreiss bounded and power bounded operators are equal.

2. Any absolutely Cesàro bounded operator is uniformly Kreiss bounded, by (1).

The class of absolutely Cesàro bounded operators was introduced by Hou and
Luo in [16].

The following implications for operators on Hilbert spaces among various concepts
in ergodic theory are a direct consequence of the corresponding definitions and results
in [5]:

Power bounded Abs. Cesàro bounded Uniformly Kreiss bounded

Mean ergodic

∥∥Tnx
n

∥∥→ 0 ∀x ∈ H

∥∥∥ Tn
√
n

∥∥∥→ 0
∥∥Tn

n

∥∥→ 0

‖T n‖ = O(n)

Weakly ergodicCesàro bounded

Figure 1: Relations between different definitions in ergodic theory in Hilbert spaces.

In general, the converse implications of the above figure are not true.

Let H be a Hilbert space. For a positive integer m, an operator T ∈ B(H) is
called an m-isometry if for any x ∈ H,

m∑
k=0

(−1)m−k
(
m

k

)
‖T kx‖2 = 0 .

We say that T is a strict m-isometry if T is an m-isometry but it is not an
(m− 1)-isometry.
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Remark 1.2. 1. For m ≥ 2, the strict m-isometries are not power bounded.
Moreover, ‖T n‖ = O(n) for 3-isometries and ‖T n‖ = O(n

1
2 ) for 2-isometries.

2. There are no strict m-isometries on finite dimensional spaces for m even. See
[2, Proposition 1.23].

3. An example of a weakly ergodic 3-isometry is provided in [3].

We recall the following definition that allow us to study some properties of orbits
of the m-isometries or adjoint of m-isometries.

An operator T ∈ B(X) is said to be hypercyclic if there exists a point x ∈ X
such that for every nonempty open subset U of X, the set {n ∈ N : T nx ∈ U} is
nonempty, T is mixing if for every nonempty open sets U, V ⊂ X, there exists n0 ∈ N
such that T n(U)∩ V 6= ∅ for all n ≥ n0 and T is Devaney chaotic if it is hypercyclic
and has a dense set of periodic points.

Examples of absolutely Cesàro bounded mixing operators on `p(N) are given in
[5] (see also [16], [9], [10]).

Definition 1.2. Let H be a Hilbert space. T ∈ B(H) is called numerically hyper-
cyclic if there exists a unit vector x ∈ H such that the set {〈T nx, x〉 : n ∈ N} is
dense in C.

Clearly numerical hypercyclicity is preserved by unitary equivalence but in general
not by similarity. This leads to the following definition:

Definition 1.3. Let T ∈ B(X). It is said that T is weakly numerically hypercyclic
if T is similar to a numerically hypercyclic operator.

In [21, Proposition 1.5], Shkarin proved that T ∈ B(H) is weakly numerically
hypercyclic if and only if there exist x, y ∈ H such that the set {〈T nx, y〉 : n ∈ N} is
dense in C.

The paper is organized as follows: Section 2 studies ergodic properties of m-
isometries on finite or infinite dimensional Hilbert spaces. For example, strict m-
isometries with m > 3 are not Cesàro bounded, and we give new examples of
weakly ergodic 3-isometries. In Section 3, we analyze numerical hypercyclicity of
m-isometries. In particular, we obtain that the adjoint of any strict m-isometry
unilateral forward weighted shift on `2(N) is hypercyclic. Moreover, we prove that
weakly ergodic 3-isometries are weakly numerically hypercyclic.

2 Ergodic properties for m-isometries in Hilbert

spaces

The purpose of this section is to study ergodic properties of m-isometries. It is clear
that isometries (1-isometries) are power bounded. It is natural to ask about strict
m-isometries and the definitions of Figure 1 on finite or infinite Hilbert spaces.
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The following example is due to Assani. See [13, page 10] and [3, Theorem 5.4]
for more details.

Example 2.1. Let H be R2 or C2 and T =

(
−1 2
0 −1

)
. It is clear that

T n =

(
(−1)n (−1)n−12n

0 (−1)n

)
and supn∈N ‖Mn(T )‖ <∞. Then T is Cesàro bounded and ‖Tnx‖

n
does not converge

to 0 for some x ∈ H. Hence T is not mean ergodic. Note that T is a strict 3-isometry.

The above example shows that on a 2-dimensional Hilbert space there exists a
3-isometry which is Cesàro bounded and not mean ergodic. This example could be
generalized to any Hilbert space of dimension greater or equal to 2.

Let H be a Hilbert space and T ∈ B(H). Tomilov and Zemánek in [22] considered
the Hilbert space H = H ⊕H with the norm

‖x1 ⊕ x2‖H⊕H =
√
‖x1‖2 + ‖x2‖2 ,

and the bounded linear operator T on H given by the matrix

T :=

(
T T − I
0 T

)
.

In fact, they obtained the following relations of ergodic properties between the
operators T and T .

Lemma 2.1. [22, Lemmma 2.1] Let T ∈ B(H). Then

1. T is Cesàro bounded if and only if T is power bounded.

2. T is mean ergodic if and only if T n converges in the strong topology of H.

3. T is weakly ergodic if and only if T n converges in the weak topology of H.

Recall some properties of m-isometries.

Lemma 2.2. Let T ∈ B(H) and m ∈ N. Then

1. [7, Theorem 2.1] T is a strict m-isometry if and only if ‖T nx‖2 is the value
at n of a polynomial of degree less or equal to m − 1 for all x ∈ H, and there
exists xm ∈ H such that ‖T nxm‖2 is a polynomial of degree exactly m− 1.

2. [8, Theorem 2.7] If H is a finite dimensional Hilbert space, then T is a strict
m-isometry with odd m if and only if there exist a unitary U ∈ B(H) and a
nilpotent operator Q ∈ B(H) of order m+1

2
such that UQ = QU with T = U+Q.
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3. [8, Theorem 2.2] If A ∈ B(H) is an isometry and Q ∈ B(H) is a nilpotent
operator of order n which commutes with A, then A + Q is a strict (2n − 1)-
isometry.

Example 2.2. Let H be a Hilbert space and T ∈ B(H) such that T = I +Q where
Qn = 0 for some n ≥ 2 and Qn−1 6= 0. Define the Hilbert space H and the bounded
linear operator T on H as above. By construction T = A+Q where

A :=

(
I 0
0 I

)
, Q :=

(
Q Q
0 Q

)
where Qn = 0 and Qn−1 6= 0. By part (3) of Lemma 2.2, T is a strict (2n − 1)-
isometry and hence not power bounded. Thus, by Lemma 2.1 we have that T is not
Cesàro bounded. Newly by part (3) of Lemma 2.2, T is a strict (2n− 1)-isometry.

Example 2.3. Let λ be a unimodular complex number different from 1. Then

T :=

(
λ λ− 1
0 λ

)
is a Cesàro bounded operator on C2 by Lemma 2.1(since supn |λn| < ∞), it is not
mean ergodic (since λnx does not converge) and by Lemma 2.2, T is a 3-isometry
on C2.

Now we give some ergodic properties of m-isometries.
Example 2.1 is a Cesàro bounded 3-isometry. However, as a consequence of [5,

Theorem 2.2] and Lemma 2.2, we obtain the following.

Corollary 2.1. There is no uniformly Kreiss bounded strict 3-isometry.

Theorem 2.1. Assume that H is a finite n-dimensional Hilbert space. Then

1. If n ≥ 2, then there exists a Cesáro bounded strict 3-isometry.

2. The isometries are the only mean ergodic strict m-isometries on H.

Proof. (1) Let

A :=

(
λ λ− 1
0 λ

)
be the operator on C2 considered in Example 2.3. Write H = C2 ⊕ Cn−2 and let
B := A ⊕ ICn−2 . Then B is a strict 3-isometry which is Cesàro bounded (and not
power bounded).

(2) Suppose that T is a strict m-isometry with m > 1 on a finite dimensional
Hilbert space, then m ≥ 3. Using part (1) of Lemma 2.2, it is easy to prove that
‖Tnx‖
n

does not converges to 0 for some x ∈ H. So, T is not mean ergodic.

In Hilbert space of infinite dimensional we can say more.

Theorem 2.2. Let T be a strict m-isometry. Then
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1. If m > 3, then T is not Cesàro bounded.

2. If m ≥ 3, then T is not mean ergodic.

Proof. By part (1) of Lemma 2.2, there exists x ∈ H such that ‖T nx‖2 is a polynomial
at n of order m− 1 exactly. Since

T n

n+ 1
= Mn(T )− n

n+ 1
Mn−1(T ) , (2)

the proof is complete.

Since any weakly ergodic operator is Cesàro bounded, in particular there is no
weakly ergodic strict m-isometry for m > 3.

Theorem 2.3. There exists a Cesàro bounded and weakly ergodic strict 3-isometry.

Proof. Let U be the bilateral shift. Define

M :=

(
U U − I
0 U

)
.

First observe that M is Cesàro bounded, by part (1) of Lemma 2.1. Since Un → 0
in the weak operator topology, M is weakly ergodic by part (3) of Lemma 2.1.
Therefore, the conclusion is derived by part (3) of Lemma 2.2.

In [3, Section 5.2], it is given an example of Cesàro bounded strict 3-isometry

T on a Hilbert space H for which the sequence

(
T n

n

)
n∈N

is bounded below for all

x ∈ H \ {0}. In particular, (Mn(T )x)n∈N diverges for each x ∈ H \ {0}, and T is
weakly ergodic.

We give a characterization of this property.
Given an m-isometry T , the covariance operator of T is defined by

∆T :=
1

(m− 1)!

m−1∑
j=0

(−1)m−1−j
(
m− 1

j

)
T ∗jT j .

Theorem 2.4. Let T be a strict 3-isometry on a Hilbert space H. Then the sequence(
T nx

n

)
n∈N

is bounded below for all x ∈ H \{0} if and only if the covariance operator

∆T is injective.

Proof. If T is a strict 3-isometry and ∆T is injective, then inf
n

‖T nx‖
n

> 0 for all

x ∈ H \ {0} (see the proof of [6, Theorem 3.4]).
If ∆T is not injective, then there exists x such that 〈∆Tx, x〉 = 0. By [6, Propo-

sition 2.3], we have that inf
n

‖T nx‖
n

→ 〈∆Tx, x〉 = 0, and thus the sequence
T nx

n
is

not bounded below.
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There exist weakly ergodic strict 3-isometries with the covariance operator ∆T

injective by [3, Section 5.2] and not injective, see the proof of Theorem 2.3.

The Uniform ergodic theorem of Lin [18, Theorem] asserts that if
‖T n‖
n
→ 0,

then T is uniformly ergodic if and only if the range of I − T is closed. On the other

hand, T is uniformly ergodic if and only if
‖T n‖
n
→ 0 and 1 is a pole of the resolvent

operator, [12].

Corollary 2.2. For m > 1, there is no uniform ergodic strict m-isometry on a
Hilbert space.

Proof. By part (2) of Theorem 2.2, there is no mean ergodic strict m-isometry for
m ≥ 3. For m = 2 the result follows from the fact that the spectrum of any strict
2-isometry is σ(T ) = D and, thus, 1 is not an isolated point of σ(T ).

There exists a strict 3-isometry T which is weakly ergodic (thus Cesàro bounded),
but it is not mean ergodic. For 2-isometries something else can be established.

Corollary 2.3. Let H be an infinite dimensional Hilbert space and let T be a strict
2-isometry. Then the following assertions are equivalent:

1. T is mean ergodic.

2. T is weakly ergodic.

3. T is Cesàro bounded.

Proof. It is a consequence of part (1) of Lemma 2.2, since Tnx
n

converges to zero for
all x ∈ H.

The following example provides a 2-isometry that is not Cesàro bounded.

Example 2.4. On `2(N) we consider the operator T given by T (x1, x2, . . .) :=
(x1, x1, x2, x3, . . .). Then T is a 2-isometry which is not Cesàro bounded.

Proposition 2.1. There is no Cesàro bounded weighted forward shift on `2(N), which
is a strict 2-isometry.

Proof. Assume that T is a weighted forward shift with weights (wn)n∈N. By [1,
Theorem 1] (see also [7, Remark 3.9]), if T is a strict 2-isometry, then

|wn|2 =
p(n+ 1)

p(n)
,

where p is a polynomial of degree 1, that is, p(n) := an+ b.
First, suppose that b = 0. Then wn =

√
n
n−1 , since a 6= 0. Hence T ∗en :=√

n
n−1en−1. By [5, Proposition 2.1], T ∗ is not Cesàro bounded. Since Cesàro bound-

edness is preserved by taking adjoints, T is not Cesàro bounded.
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Now, assume that b 6= 0, then wn(c) :=
√

cn+1
c(n−1)+1

with c 6= 0. Denote Tcen :=

wn(c)en+1 and the diagonal operator V en := αnen, where αn :=
√

c(n−1)+1
n

. Then V

is invertible and satisfies that V T1 = V Tc. Moreover, T1 is not Cesàro bounded, by
following an argument as in [5, Proposition 2.1]. Using that Cesàro boundedness is
preserved by similarities, we obtain that Tc is not Cesàro bounded.

Corollary 2.4. There is no absolutely Cesàro bounded strict 2-isometry on a Hilbert
space.

Proof. It is immediate by [5, Theorem 2.5] and part (1) of Lemma 2.2.

Question 2.1. Is it possible to construct a Cesàro bounded strict 2-isometry on an
infinite dimensional Hilbert space?

3 Numerically hypercyclic properties of m-isometries

In this section we study numerically hypercyclic m-isometries. For simplicity we
discuss only operators on Hilbert spaces.

Faghih and Hedayatian proved in [14] that m-isometries on a Hilbert space are
not weakly hypercyclic. Moreover, m-isometries on a Banach space are not 1-weakly
hypercyclic [4]. However, there are isometries that are weakly supercyclic [20] (in
particular cyclic). Thus the first natural question is the following: are there numer-
ically hypercyclic m-isometries?

Let H be a Hilbert space. Denote

Im(H) := {T ∈ B(H) : T is m-isometry} .

If H is an n dimensional Hilbert space, then by [8, Theorem 2.7] we have that

I1(H) = I2(H) ⊂ I3(H) = I4(H) ⊂ · · · ⊂ I2n−3(H) = I2n−2(H) ⊂ I2n−1(H) = Im(H)

for all m ≥ 2n− 1.

Theorem 3.1. There are no weakly numerically hypercyclic m-isometries in B(Cn)
for n ≤ 3.

Proof. If n = 1, there are not weakly numerically hypercyclic operators. Let n = 2.
By [21, Theorem 1.13], if T ∈ B(C2) is a weakly numerically hypercyclic operator,
then there exists λ ∈ σ(T ), with |λ| > 1 and thus T is not an m-isometry. For n = 3,
it is the same by [21, Theorem 1.14].

We discuss the existence of weakly numerically hypercyclic m-isometries on n-
dimensional spaces for n ≥ 4.

We say that λ1, λ2 ∈ T are rationally independent if λm1
1 λm2

2 6= 1 for every non-
zero pair m = (m1,m2) ∈ Z2, or equivalently if λj = eiθj with θj ∈ R with π, θ1, θ2
are linearly independent over the field Q of rational numbers.
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If T ∈ B(X) and there are rationally independent λ1, λ2 ∈ T such that ker(T −
λjI)2 6= ker(T − λjI) for j ∈ {1, 2}, then T is weakly numerically hypercyclic [21,
Theorem 1.9]. Moreover if X is a Hilbert space, then T is numerically hypercyclic
[21, Proposition 1.12]. The following result gives an answer to the above question
for some m-isometries.

Theorem 3.2. There exists a numerically hypercyclic strict (2m − 1)-isometry on
B(Cn), with n ≥ 4, for 2 ≤ m ≤ n− 2.

Proof. Let ` ∈ {2, 3, . . . , n − 2}. We will construct a numerically hypercyclic strict
(2`− 1)-isometry. Define D the diagonal operator with diagonal

(λ1, · · · , λ1︸ ︷︷ ︸
`

, λ2, λ2, 1, · · · , 1︸ ︷︷ ︸
k−2`

)

where λ1 and λ2 are rationally independent complex numbers with modulus 1 and
Q by

Qei : = ei−1 for i ∈ {2, 3, · · · , `}
Qe`+2 : = e`+1 and

Qei : = 0 for i = 1, i = `+ 1 and i ≥ `+ 3 .

It is clear that Q` = 0 and Q`−1e` = e1 6= 0. Moreover,

QDei = DQei = λ1ei−1 for 2 ≤ i ≤ `

QDe`+2 = DQe`+2 = λ2e`+1

QDei = DQei = 0 for i = 1, `+ 1 and ≥ i ≥ `+ 3 .

By part (3) of Lemma 2.2, T := D + Q is a strict (2` − 1)-isometry for any ` ∈
{2, 3, · · · , n− 2}.

Let us prove that T satisfies that Ker(λi − T ) 6= Ker(λi − T )2 for i = 1, 2. By
definition e2 ∈ Ker(λ1− T )2 \Ker(λ1− T ) and e`+1 ∈ Ker(λ2− T )2 \Ker(λ2− T ).
So by [21, Proposition 1.9], T is numerically hypercyclic.

As a consequence of the proof of Theorem 3.2, we obtain

Corollary 3.1. Let H be a complex Hilbert space with dimension at least 4. Then
there exists a numerically hypercyclic strict 3-isometry on H.

Theorem 3.3. An n-dimensional Hilbert space supports no weakly numerically hy-
percyclic strict (2n− 3) or (2n− 1)-isometries.

Proof. Let H be a finite-dimensional Hilbert space, dimH = n < ∞. Suppose on
the contrary that T ∈ B(H) is a weakly numerically hypercyclic (2n − 1)-isometry.
Since ‖T kx‖2 grows polynomially for each x ∈ H and there exists u ∈ H such that
‖T ku‖2 is a polynomial of degree 2n − 2, the Jordan form of T has only one block
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corresponding to an eigenvalue λ with |λ| = 1. Thus T = λI + Q where Qn = 0.
Thus

T k =
k∑
j=0

(
k

j

)
λk−jQj = λk

k∑
j=0

(
k

j

)
λ−jQj

for all k ∈ N.
Let x, y ∈ H and suppose that the set {〈T kx, y〉 : k ∈ N} is dense in C. We

have 〈T kx, y〉 = λkp(k) for some polynomial p of degree ≤ n − 1. If deg p ≥ 1 then
|〈T kx, y〉| → ∞ so the set {〈T kx, y〉 : k ∈ N} is not dense in C.

If deg p = 0 then the set {〈T kx, y〉 : k ∈ N} is bounded and again is not dense in
C. Hence T is not weakly numerically hypercyclic.

The case of (2n− 3)-isometries can be treated similarly. If T ∈ B(H) is a strict
(2n − 3)-isometry then the Jordan form of T has two blocks: one of dimension
n − 1 corresponding to an eigenvalue λ, |λ| = 1 and the second one-dimensional
block corresponding to an eigenvalue µ, |µ| = 1. For x, y ∈ H we have 〈T kx, y〉 =
λkp(k) + aµk for some polynomial p, deg p ≤ n− 2 and a number a ∈ C. Again one
can show easily that the set {〈T kx, y〉 : k ∈ N} cannot be dense in C. Hence there
are no weakly numerically hypercyclic (2n− 3)-isometries on H.

Theorem 3.4. For m ≥ 2, there exists a numerically hypercyclic strict m-isometry
on `2(N).

Proof. For m ≥ 2, no strict m-isometry is power bounded [11, Theorem 2]. Also
by [1, Theorem 1], there exist forward weighted shifts on `2(N) that are strict m-
isometries for m ≥ 2. Since a forward weighted shift on `p(N), 1 < p < ∞ is
numerically hypercyclic if and only if T is not power bounded ([17] & [21]), we
obtain the result.

Since both numerical hypercyclicity and m-isometry are properties preserved by
unitary equivalence, we have that

Corollary 3.2. Let H be an infinite dimensional separable complex Hilbert space
and m ≥ 2. Then there exists a numerically hypercyclic m-isometry on H.

Theorem 3.5. There exists a numerically hypercyclic Cesàro bounded strict 3-isometry
on C4.

Proof. Let T be the operator considered in the proof of Theorem 3.2

T :=


λ1 λ1 − 1 0 0
0 λ1 0 0
0 0 λ2 λ2 − 1
0 0 0 λ2

 ,

where λ1, λ2 ∈ T are rationally independent. By the proof of Theorem 3.2, it is clear
that T is numerically hypercyclic.
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Since both blocks(
λ1 λ1 − 1
0 λ1

)
and

(
λ2 λ2 − 1
0 λ2

)
are Cesàro bounded by Lemma 2.1, it is easy to see that T is Cesàro bounded.

We know that there exist examples of numerically hypercyclic and weakly ergodic
3-isometries. The following result goes further in this direction.

Theorem 3.6. Any weakly ergodic strict 3-isometry on a Hilbert space is weakly
numerically hypercyclic.

Proof. If T is a weakly ergodic strict 3-isometry, then there exists x such that
T nx

n
is weakly convergent but it is not norm convergent. Indeed for a strict 3-isometry T ,

there exists x such that
T nx

n
does not converge to zero in norm.

Then, since xn =
T nx

n
is weakly convergent but it is not norm convergent, by

[21, Lemma 6.1] there is y ∈ H such that {n〈xn, y〉 : n ∈ N} is dense on C. Hence T
is weakly numerically hypercyclic.

In particular, the example of a weakly ergodic 3-isometry defined in [3, Section
5.2] is weak numerically hypercyclic.

Question 3.1. Do there exist numerically hypercyclic weakly ergodic 3-isometries?

Let T be an m-isometry. By part (1) of Lemma 2.2, it is clear that T is not
hypercyclic. What can we say about dynamical properties of T ∗? In general we can
not say nothing. However, the following result gives a positive answer for forward
weighted shift operators.

Theorem 3.7. Let Sw be a forward weighted shift strict m-isometry on `2(N). Then

1. S∗w is mixing if and only if m ≥ 2.

2. S∗w is chaotic if and only if m ≥ 3.

Proof. By [1, Theorem 1], a unilateral weighted forward shift on a Hilbert space is
an m-isometry if and only if there exists a polynomial p of degree at most m − 1

such that for any integer n ≥ 1, we have that p(n) > 0 and |wn|2 =
p(n+ 1)

p(n)
. Thus

for m ≥ 2, S∗w satisfies condition ii) of (b) from [15, Theorem 4.8] and S∗w is mixing.
For m ≥ 3, S∗w satisfies condition ii) of (c) from [15, Theorem 4.8] and S∗w is chaotic.

Notice that, if Sw is a unilateral forward weighted shift and a strict m-isometry
on `2(N) with m ≥ 2, then S∗w is hypercyclic operator.

Since there exist bilateral forward weighted shifts which are strict m-isometries
on `2(Z) for odd m, then we have
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Theorem 3.8. Let Sw be a bilateral forward weighted shift strict m-isometry on
`2(Z) with m > 1. Then S∗w is chaotic.

Proof. By [1, Theorem 19 & Corollary 20], a bilateral weighted forward shift on a
Hilbert space is a strict m-isometry if and only if there exists a polynomial p of degree

at most m − 1 such that for any integer n, we have p(n) > 0 and |wn|2 =
p(n+ 1)

p(n)
and m is an odd integer. Hence, for m ≥ 3, S∗w satisfies condition ii) of (c) from [15,
Theorem 4.13]. Thus S∗w is chaotic.
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Banach spaces. Preprint.
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[22] Y. Tomilov and J. Zemánek, A new way of constructing examples in operator
ergodic theory, Math. Proc. Cambridge Philos. Soc., 137 (2004), no. 1, 209-225.

T. Bermúdez
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