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ABSTRACT 

Small interfering RNAs (siRNA) are key regulators of gene expression that play 

essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) 

are a class of plant-endogenous siRNAs that lead the cleavage of non-identical 

transcripts. TasiRNAs are usually involved in fine-tuning development. However, 

increasing evidence supports the notion that these plant-specific molecules may 

be involved in (abiotic and biotic) stress response. Melon (Cucumis melo) is a 

crop of great economic importance extensively cultivated in semiarid regions 

frequently exposed to changing environmental conditions that limit its 

productivity. However, knowledge of the precise role of siRNAs in general, and 

of tasiRNAs in particular, in regulating the response to adverse environmental 

conditions is limited. Here we provide the first comprehensive analysis of 

computationally inferred tasiRNAs responsive to two biotic (viroid-infection) and 

abiotic (cold treatment) stress conditions in melon. First, the TAS candidates 

(cmTAS) predicted from small RNA sequencing data were characterized 

according to their chromosome localization and expression pattern in response 

to stress. Second, the functional activity of cmTAS genes was validated by 

transcript quantification and degradome assays of the tasiRNA precursors and 

their predicted targets. Finally, the functionality of a representative cmTAS3-

derived tasiRNA was confirmed by transient assays showing the cleavage of ARF 

target transcripts. 
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Introduction 
 
Adverse environmental conditions, either of both biotic and/or abiotic origin, 

cause severe productivity constrains in major crops leading to important 

economic losses worldwide (Sunkar et al. 2007, Calanca, 2017). As sessile 

organisms, plants have developed various protective mechanisms to counteract 

stress situations. As a general strategy, gene expression is fine-tuning regulated 

to assist the physiological changes necessary to ensure plant adaptation to 

changing environments (Zhang 2015, Zhu 2016, Banerjeeab et al. 2017, Bielach 

et al. 2017).  

Small regulatory RNAs (21–24 nt in size) are key regulators of gene expression 

in plants, playing essential roles in diverse biological processes (Bologna and 

Voinnet, 2014, Borges and Martienssen, 2015, Martinez and Köhler, 2017). Upon 

production, small RNAs (sRNAs) are loaded into their effector protein named 

ARGONAUTE (AGO), and guide it to recognize target RNAs or DNA through 

sequence complementarity (Yu et al. 2017, Carbonell, 2017). AGO/sRNA 

complexes negatively modulate gene expression at both transcriptional and post-

transcriptional levels, by directing DNA methylation or histone modification, and 

through target RNA cleavage or translational inhibition, respectively (D’Ario et al. 

2017, Yang et al. 2018).  

Endogenous plant sRNAs are classified primarily according to their initial 

processing source. The small RNAs derived from double-stranded RNA (dsRNA) 

precursors are known as small interfering RNAs (siRNAs), and sRNAs arising 

from single-stranded self-complementary hairpin structures are named 

microRNAs (miRNAs) (Axtell, 2013). While increasing evidences support the 

notion that miRNAs act as master regulators of the plant responses to 

environmental changes (Zhang 2015, Islam et al. 2018, Sunkar et al. 2012, 

Kumar, 2014, Sanz-Carbonell et al. 2019), the role of siRNAs in these processes 

remains obscure. 

Based on their origin, biogenesis and/or mode of action, endogenous siRNAs can 

be further classified into phased siRNAs (pha-siRNAs), heterochromatic siRNAs 

(hc-siRNAs), and natural antisense siRNAs (nat-siRNAs) (Yu et al. 2017, Axtell, 

2013, Shriram et al. 2016).  



When a plant transcript is targeted by a miRNA, it can generate multiple siRNAs 

in a phased pattern relative to the miRNA cleavage site, these small RNAs are 

termed phasiRNAs (Deng et al. 2018, Fei et al., 2013). If the miRNA-sliced 

transcript is a noncoding RNA, it generates a subset of phasiRNAs known as 

trans-acting siRNAs (tasiRNAs) that target in trans RNAs distinct from those from 

which they derive; hence the term trans-acting siRNAs (Deng et al. 2018, Allen 

et al. 2005, Axtell 2013).  

In the tasiRNA biogenesis model, a specific miRNA directs the AGO-dependent 

cleavage of Pol II-dependent TAS transcripts. Next a protein complex that 

includes RNA-dependent RNA polymerase 6 (RDR6), suppressor of gene 

silencing 3 (SGS3) and double-stranded RNA binding 4 (DRB4) (Adenot et al. 

2006, Fukunaga and Doudna, 2009), is recruited to one of the cleavage 

fragments to generate a dsRNA. This dsRNA is sequentially processed by DCL4 

into 21-nucleotide (nt) tasiRNA duplexes in register with the miRNA-guided 

cleavage site (Allen et al. 2005, Axtell et al. 2006). One strand of the tasiRNA 

duplex is selectively loaded into an AGO protein according to the sRNA 5′nt, or 

to other sequence/structural elements of sRNA, the sRNA duplex or the PIWI 

domain (Zhang et al. 2014, Mi et al. 2008, Montgomery et al. 2008, Takeda et al. 

2008, Zhu et al. 2011). 

TasiRNAs were initially identified in Arabidopsis thaliana (arabidopsis), where 

four gene families, TAS1, TAS2, TAS3, and TAS4, have been described. The 

processing of TAS1 and TAS2 precursors in arabidopsis is initiated by miR173 

cleavage; while TAS3 and TAS4 biogenesis is triggered by miR390 and miR828, 

respectively (Allen et al. 2005, Howell et al. 2007, Allen and Howell, 2010). TasiRNAs 

have been characterized across a wide range of plant species, from the moss 

Physcomitrella patens (Axtell et al. 2006, Talmor-Neiman et al. 2006, Arif et al. 2012) 

to higher plants like rice, maize, pine and tomato (Williams et al. 2005, Axtell et al. 

2006, Heisel et al. 2008, Johnson et al. 2009, Wu et al. 2017), suggesting that these 

regulatory RNAs form part of a common ancient pathway in plants. Although they 

have been described as regulators of plant developmental processes (Chitwood 

et al. 2009, Marin et al. 2010, Fei et al. 2013), tasiRNAs may also be involved in 

abiotic and biotic stress responses (Hsieh et al. 2009, Li et al. 2012, Luo et al 

2012, Wu et al. 2017). Among plant TAS genes, the most widely studied is TAS3 



whose transcript bears two target sites of miR390, generating tasiRNAs via the 

so-called “two-hit” mechanism (Axtell et al. 2006). Very recently, however, it has 

been shown that –at least in arabidopsis- a single miR390 targeting event is 

sufficient for TAS3-based tasiRNA biogenesis (de Felippes et al. 2017). 

Melon (Cucumis melo) is a crop of great economic relevance. It is extensively 

cultivated in semi-arid regions frequently exposed to changing environmental 

conditions that affects its production (Wei et al. 2013). The recent development 

of molecular tools such as EST collections (Clepet et al. 2011), TILLING platforms 

(González et al. 2011), and genome sequencing and annotation (Garcia-Mas et al. 

2012, Ruggieri et al. 2018), has favored the emergence of melon as a valuable 

experimental system to conduct significant agricultural-related research focused 

on development (Wu et al. 2018) or response to stress (Bustamante et al. 2018, 

Sanz-Carbonell et al. 2019). Although, a melon genome region containing two 

predicted miR390 targets sites able to generate phased-sRNAs and reminiscent 

to TAS3 genes was previously identified computationally (Gonzalez-Ibeas et al. 

2011), the role that siRNAs in general and tasiRNAs in particular play in the 

regulation of the response to stress in melon plants remains in a conundrum. 

In order to gain insight into stress-responsive TAS-derived tasiRNA in melon, 

potential TAS loci (CmTAS) were computationally inferred. Next, we located 

these cmTAS in the melon chromosome and analyzed their expression patterns 

in response to stress. Finally, we functionally validated CmTAS genes by analysis 

of melon degradome and transient assays in Nicotiana benthamiana. The results 

shown here indicate that the processing of TAS3-derived tasiRNAs in melon is a 

functional process related to environmental conditions.  

 

 

Results 
 
Prediction and annotation of melon TAS loci  

For genome-wide detection of putative TAS loci in melon, the TASI-PREDICTION 

tool included in the UEA small RNA Workbench (v.4.4) was employed using as 

input data the reads recovered from sRNA libraries obtained from melon plants 

exposed to seven biotic and abiotic stress conditions (Bustamante et al. 2018, 

Sanz-Carbonell et al. 2019) and the melon genome sequence (Version 3.5.1) 



[47]. The software parameters established for a more robust prediction of phased 

siRNAs in melon are detailed in the Materials and Methods section. In all, 895 

regions were identified as being potential phasi-generators loci in the melon 

genome (Table S1).  

Then these potential TAS precursors were filtered according to the following 

parameters: i) homology with known TAS loci and ii) ≥5 phased sequences 

identified (at least one in both senses).  

We identified four melon genomic regions highly homologous to known TAS 

genes: one (TAS-Cmel779) matching arabidopsis TAS2 and three (TAS-

Cmel028, TAS-Cmel735, and TAS-Cmel737) homologous to TAS3 precursors 

identified in Wolffia arrhiza, Solanum demissum, and Oryza sativa, respectively 

(Table S2). Two of the potential TAS precursors (TAS-Cmel779 and TAS-

Cmel028) were discarded because of the low number (three) of phased 

sequences recovered and the shortness (32 nt) of the homologous region, 

respectively. The two selected potential TAS3 loci (TAS-Cmel735 and TAS-

Cmel737) were localized in chromosome 11. Regarding the number of phased 

sRNAs matching predicted TAS regions, TAS-Cmel735 with 23 sequences (12 

sense and 11 antisense) was the most highly represented.  

To increase the specter of our search, potential phasiRNA precursor non 

homologous to known TAS genes were reanalyzed following a strategy similar to 

the previously described to identify phased siRNAs in grapevine (Zhang et al 

2012). First, we retrieved the genomic region containing the predicted TAS and 

an additional 100 nt either to its left or right. Next, we searched for predicted 

regions between melon miRNAs and the retrieved genomic sequence using 

psRNATarget. As a final step, we validated the predicted miRNA cleavage 

position analyzing our degradome dataset. Under this analysis condition we 

identify an additional potential TAS loci identified as TAS-Cmel087 sliced in their 

5´region by miR828, reminiscent to TAS4 in arabidopsis. However this predicted 

precursors was discarded because of the low number (four) of phased sequences 

recovered (Table S2). The process employed to identify potential TAS loci in 

melon is represented in Figure S1. 

The actual sequences of the both, Cmel735 and Cmel737, predicted TAS loci 

recovered from the melon genome were confirmed by sequencing of PCR-



amplified products (Figure S2A). Finally, the presence of transcripts derived from 

these predicted TAS loci was validated by RT-PCR assays and the subsequent 

sequencing of the amplified products (Figure S2B). 

 

Identification and validation of potential tasiRNA triggers 

Considering that the “two-hit” mechanism (Axtell et al. 2006) is the commonest 

processing mechanism to trigger TAS3 derived tasiRNAs in plants, as last 

filtering criteria we considered as potential TAS precursors only those containing 

the double recognition sites for the melon miRNAs found in the miRbase. To 

identify miRNA target sites in these potential TAS precursors, miRNA binding site 

prediction was performed using the psRNAtarget server (Dai et al. 2018). As 

shown in Table S2, two miR390 target sites for melon miRNAs recovered from 

the miRBase were predicted for both TAS-Cmel735 and TAS-Cmel737. As 

expected (the functional complex TAS3/miR390 is highly conserved in plants) 

(Xia et al. 2017), the two predicted cmTAS3 precursors included miR390 target 

sites. For TAS-Cmel735 and TAS-Cmel737, the miR390 target sites were located 

between the positions 24043012-24042992 (cut at 5´) and 24042821-24042801 

(cut at 3´), and between positions 28041083-28041103 (5´) and 28041335- 

28041355 (3´) of chromosome 11, respectively (Table S2). TAS-Cmel 735 (212 

nt) was relatively short compared to the TAS-Cmel 737 (273 nt), resembling the 

previously observed in apple and strawberry when two TAS3 families encoding 

length (TAS3-L) and short (TAS3-S) transcripts, respectively, were described 

(Xia et al, 2012, Xia et al. 2015).  

Predicted miRNA-mediated processing of TAS-Cmel735 and TAS-Cmel737 

precursors was evaluated by 5’-RLM-RACE assays. The results indicated that 

only remnants derived from the canonical (cleavage position between nucleotides 

10 and 12 in relation to the 5’-end of the miRNAs) cut of TAS-Cmel735 guided by 

miR390 in both 5´ and 3´ regions were recovered from our dataset (Figure 1 and 

Figure S3A - B). According to the number of normalized reads recovered from 

degradome assay matching onto both 5´ and 3´ regions [2 reads per million 

(RPM) and 2734 RPM, respectively], it was possible to infer that the 3´ region 

was the most highly processed and could possibly act as the starting point for the 

sequential processing of TAS-Cmel735 (potential TAS3) in melon. In addition, 



and as expected, when the 21 nt-long sRNAs recovered from the melon sRNAs 

libraries were plotted onto the potential TAS-Cmel735 genomic region, all 

analyzed sequences matched exclusively the area comprised within both miR390 

target-sites, which according to the biogenesis model for tasiRNA-production, 

constitutes the external limits of the miRNA-processed TAS precursor (Figure 

2A). In coincidence with the previously described for TAS3-S family in other 

dicotyledonous species (Xia et al., 2015), the residual miR390-silicing of the TAS-

precursor in their 5´ region was able to trigger the production of phased siRNAs 

(Figure 2C). 

Contrarily to the expected, when a similar analysis was performed onto the 

TAS-Cmel737 transcript (that according our degradome data is not sliced by 

miR390), all analyzed sRNA sequences matched exclusively the area comprised 

within both computationally inferred miR390 target-sites and exhibit high 

accumulation of miR390-related phased siRNAs (Figure S3C). 

 

Determination of TAS3-derived tasiRNAs targets in melon 

To elucidate the basis of the regulatory pathways modulated by the predicted 

cmTAS3, we analyzed the existing relationship between the phased siRNAs 

recovered from our data set and their intended targets. According to the miR390-

guided cleavage site validated by 5’-RLM-RACE in the TAS-Cmel735, nine 

potential 21 nt-long tasiRNAs were predicted to be produced from the processed 

TAS3 precursor in melon (Figure 2B). These in-phase siRNAs were named 

5’D1[+] to 5’D9[+], starting from the miR390 cleavable target site identified in the 

3´region of the potential TAS transcript. In addition, we also analyze potential 

phased siRNAs arising from the unprocessed miR390 target position predicted 

in the transcripts derived from TAS-Cmel737 (Figure S3D). 

On the basis of psRNA target results (considering only transcripts with well 

established biological function), the lower expectative values (expect. ≤1) were 

obtained for three melon transcripts that were predicted as candidates to be 

negatively regulated by TAS-Cmel735-derived tasiRNA 5’D6[+] and TAS-

Cmel737-derived tasiRNA 5’D7[+] and 5’D8[+] (Table S3). Consistently with the 

tasiRNA targets established in arabidopsis (Xia et al. 2017), mRNAs related to 

AUXIN RESPONSE FACTORS (ARF) family (ARF2, ARF3 and ARF4) were 



identified as potential targets for TAS3-derived siRNAs (tasiARF) activity. As 

observed in diverse plant species, two recognition sites for tasiARF-AGO activity 

were identified in ARF transcripts (Table S3). Like the commonly described for 

TAS3-L family, two tasiARFs were derived from the TAS-Cmel737 transcript.  In 

contrast, TAS-Cmel735 transcript encodes only one tasiARF, sharing also 

structural resemblance with TAS3-S family (Xia et al. 2012, Xia et al. 2017). 

To validate the functionality of the predicted tasiRNA-target interactions, we 

analyzed by 5’-RLM-RACE the processing of the transcripts expected to be 

regulated by tasiARF in melon. As shown in Figure 3, for the ARF3 melon 

transcript, we detected sequences-remnants coincident with those expected for 

transcripts sliced via TAS3-derived tasiRNA-guided AGO activity in the two 

predicted target sites. In contrast, only one of the two cleavage positions 

estimated by psRNA-target for the tasiRNA-ARF4 interaction was validated by 

the degradome assays (Figure 3). Finally sequences-remnants coincident with 

the expected processing of ARF2 by TAS-Cmel737 derived tasiRNA 5’D7[+] and 

5’D8[+] were also detected (Figure 3). 

 

In vivo validation of the interplay tasiARF/target. 

To provide further evidence for the biological activity of the TAS3-derived tasiARF 

identified in melon, the tasiARF derived from TAS-Cmel735 transcript (TAS3-S) 

was expressed from a functional syn-tasiRNA vector including a modified TAS1c 

precursor from arabidopsis (Carbonell et al. 2014). The resulting syn-tas-

cmTAS3 construct is shown in Figure 4A. As a functional reporter of tasiRNA-

activity, we used a construct containing a common region of ARF3 and ARF4 

cDNA consisting of the predicted tasiARF target site 

(AGGUCUUGCAAGGUCAAGAAA) fused to the 3´ end of the yellow fluorescent 

protein (YFP) mRNA. The detailed design of the YFP-ARF reporter construct is 

shown in Figure 4B. 

Constructs syn-tas-cmTAS3 and ARF-YFP, plus a construct expressing miR173 

needed for triggering TAS1c processing (Montgomery et al. 2008), were cloned in 

A. tumefaciens and co-infiltrated in N. benthamiana leaves for transient 

expression analysis. The correct processing and accumulation of the syn-tas-

cmTAS3 was validated by stem-loop qRT-PCR (Figure S4A). A construct 



expressing an amiRNA targeting GUS transcripts (Carbonell and Daros, 2017) was 

used as negative control. Infiltrated leaves were analyzed at 2 days post 

infiltration (2 dpi) by confocal microscopy . The expression of the YFP-ARF 

reporter was suppressed in the leaves co-infiltrated with the syn-tasiRNA3 

construct, while the leaves co-infiltrated with the control construct targeting GUS-

transcripts showed typical fluorescence (Figure 4C). The observation that 

accumulation (estimated by qRT-PCR) of ARF-YFP transcripts decrease in 

silenced plants reinforces results obtained by confocal microscopy (Figure S4B).  

These results suggest that lack of expression of the YFP-ARF reporter co-

infiltrated with the syn-tasiRNA3 construct is due to the tasiRNA-mediated 

degradation of its mRNA, hence validating ¨in vivo¨ the functional activity of 

tasiARF as negative regulator of ARF3 and ARF4 transcripts in melon. 

 

Functional activity of stress-responsive tasiRNAs 

To gain mechanistic insights into the regulatory role of tasiARF in response to 

stress, we analyzed the accumulation of the target transcripts in those stress 

situations in which TAS3-derived tasiRNAs (tasiARF) showed significant 

differential accumulation in response to stress.  

To evaluate the effects of changing environments on tasiARF populations, we 

used our data previously obtained from pairwise comparisons of total sRNAs 

recovered from control and treated samples with the statistical testing method 

DESeq2 (Sanz-Carbonell et al. 2019). According to our established filtering 

criteria (log2FC ≥1 or ≤-1, FDR value <0.05, and base mean ≥5), tasiARF 

accumulation was significantly reduced in the melon plants exposed to cold 

treatment (for both TAS3-L and TAS3-S derived tasiRNAs) and HSVd infection 

(for TAS3-S derived tasiRNA) (Table 1 and Table S4). These results revealed 

that, in coincidence with the observed in other plants species (Moldovan et al. 

2009, Katiyar et al. 2015, He et al. 2018), the biogenesis of TAS3-derived 

tasiRNAs is a process susceptible to be altered by adverse environmental 

conditions. Quantitative RT-PCR (qRT-PCR) assays revealed that the 

accumulation of ARF2, ARF3 and ARF4 transcripts is significantly increased in 

cold-treated and HSVd-infected plants, as expected for the functional negative 



regulation of the TAS3-derived tasiARFs, whose accumulation decreases in the 

same conditions, on its predicted targets. (Figure 5). 

 

Table 1: Detail of the expression values (estimated by DeSEQ analysis) of the 
TAS3-S derived tasiARF sequence in melon plants exposed to diverse biotic and 
abiotic stress conditions. Only LogFC values ≥1 or ≤-1 and FDR values <0.05 were 
considered as significant for bona fide stress-responsive tasiRNAs. 
 

tasiRNA stress base-mean Log2FC FDR 

TTTCTTGACCTTGCAAGTCCA drought 16,053 -0,677 0,589 

TTTCTTGACCTTGCAAGTCCA HSVd 15,671 -1,762 0,012 

TTTCTTGACCTTGCAAGTCCA cold 16,961 -1,667 0,027 

TTTCTTGACCTTGCAAGTCCA salinity 18,479 -0,438 0,760 

TTTCTTGACCTTGCAAGTCCA Mon 21,531 0,036 0,999 

TTTCTTGACCTTGCAAGTCCA Agro 15,630 -0,788 0,694 

TTTCTTGACCTTGCAAGTCCA Short day 29,119 0,888 0,368 

 

 

 

Discussion 

SiRNAs have been shown to play important roles in developmental regulation 

and stress responses in plants. Genome-wide identification of diverse 

biogenesis-grouped members of the “siRNA family” in an increasing number of 

plant species may have a high impact in the investigation of the molecular basis 

of gene regulation in sRNA-mediated stress response (Banerjeeab et al. 2017, Li 

et al. 2017, Kumar et al. 2018). In this study, we used a computational approach 

to identify putative TAS loci in the melon genome. As consequence of a strict 

selective process, only two potential TAS3 loci (TAS-Cmel735 and TAS-

Cmel737) were considered as robustly predicted and subjected to subsequent 

validation analysis.  

To date, there are two families of TAS3 loci described in plants, identified 

respectively as TAS3-short (TAS3-S) and TAS3-long (TAS3-L) (Xia et al., 2017). 

In TAS3-L, only the 3´miR390 target site is cleavable, generating two in-phase 

tasiARFs (Allen et al., 2005; Axtell et al., 2006). The 5´target site of TAS3-L is 

usually noncleavable (Axtell et al., 2006). In contrast, both miR390 target sites of 

TAS3-S are cleavable, and one unique tasiARF is generated. Interestingly, has 



been described that both 5´ and 3´ processed ends can potentially generate 

phased siRNAs (Xia et al., 2015, Xia et al, 2017). 

Our results evidenced that, in coincidence with the previously described in apple 

(Xia et al, 2012) and strawberry (Xia et al, 2015), melon plants possesses both 

TAS3-L and TAS3-S families that transcribes length and short transcripts 

respectively. Although, the TAS3-S family is not present in arabidopsis, is 

conserved in many other dicot species (Xia et al, 2015). The existence of TAS3-

derived transcripts in melon was initially validated by RT-PCR amplification. The 

prediction of well-established miR390-target sites at two (at both 5´and 3´ region) 

positions of the TAS3-derived transcript and the precise determination of such 

AGO-mediated processing by degradome assays provided the first experimental 

evidences supporting the presence of a ̈ bona fide¨ TAS3-S loci in melon. miRNA-

mediated cleavage is considered to be an important and necessary aspect of 

tasiRNA biogenesis, not only for ensuring sRNA production in the proper register, 

but also to recruit RDR6 and SGS3 to the ncRNA transcript. Surprisingly, we were 

incapable to confirm by degradome assay the miR390-mediated processing of 

the 3` region of the TAS3-L. However the recovering of high levels of phased 

siRNAs derived from the longer family member suggest that in melon tasiARFs 

might be generated from a 3´ non-cleavable TAS3-L transcript. Although, we 

cannot exclude the possibility that sequences-remnants derived from the 

miR390-mediated processing of the TAS3-L transcripts were under-represented 

in our degradome data-set, this observation is coincident with the recently 

described in arabidopsis where a single non-cleavable miRNA hit was sufficient 

requirement for RDR6 recruitment and functional tasiRNA biogenesis (de 

Felippes et al, 2017). 

It is well established that the miR390/TAS3-ARF pathway represents a highly 

conserved negative regulator of the mRNAs encoding AUXIN RESPONSE 

FACTORS (ARF) in plants (Xia et al. 2017). Consequently, the prediction (by 

psRNA target) and validation (by degradome assays) that ARF2, ARF3 and 

ARF4 transcripts in melon are targets for the TAS3-derived tasiRNAs (tasiARF), 

contributed to reinforce our initial prediction. Finally, the demonstration that, in 

heterologous transient expression assays, the TAS3-S tasiRNA is able to 



negatively regulate “in vivo” the expression of a target-containing transcript, 

provides robust evidence supporting the regulatory role of the first TAS locus 

identified in melon. 

Regarding its behavior in response to stress conditions, we observed a significant 

reduction of TAS3-derived tasiARF in response to cold treatment (for both TAS3-

L and TAS3-S derived tasiRNAs) and Hop stunt viroid (HSVd) infection (for TAS3-

S derived tasiRNA). Hence these results suggest that the biogenesis of TAS3-

derived tasiRNAs in melon plants is a dynamic process susceptible to be 

influenced by environmental conditions. The recent description (Sanz-Carbonell 

et al. 2019) of the decreased accumulation of miR390 (the key component 

responsible for triggering TAS3 processing) in the melon plants exposed to both 

cold and HSVd treatments provides further functional support to this notion.  

In line with a more general viewpoint, the incidence of environmental cues in the 

TAS3 processing reported herein agrees with previous results that have indicated 

a close interrelation between tasiARF accumulation and stress conditions in 

poplar (He et al. 2018), arabidopsis (Moldovan et al. 2009), and sorgum (Katiyar 

et al. 2015). Interestingly, the observation that the general tendency of the 

alterations at the tasiARF level (down-regulation) observed in melon plants 

exposed to cold and HSVd was contradictory to that described for the TAS3 

derived tasiRNAs in poplar plants exposed to saline conditions (where up-

regulation of TAS3-derived tasiRNAs was reported). This suggests that similarly 

to that described for stress responsive miRNAs (Kumar, 2014), changes in the 

accumulation level of stress-responsive tasiRNAs might be stress- and/or specie-

dependent. 

As mentioned above, TAS3-derived tasiRNAs mediate the cleavage of the 

transcripts encoding ARFs factors. These proteins are key components of the 

auxin-signaling cascade and directly control the transcription of primary auxin-

responsive genes (Guilfoyle and Hagen, 2007). The miR390/TAS3/ARFs module is 

functionally diverse and regulates multiple plant developmental processes, 

including leaf patterning and expansion, phase transition, initiation of the shoot 

meristem, and also plays an important role in root nodule symbiosis (Adenot et 

al. 2006, Fahlgren et al. 2006, Garcia et al. 2006, Marin et al. 2010, de Luis et al. 



2012, Yifhar et al. 2012, Zhou et al. 2013, Li et al. 2014, Cabrera et al. 2016). 

However, recent studies have revealed that TAS3-regulated ARFs are involved 

in responses to adverse environmental conditions. For instance, it has been 

described that the miR390/TAS3/ARFs module is a key regulator of root growth 

in poplar subjected to salt stress via the modulation of the auxin pathway (He et 

al. 2018). In rice, ARF16 has been related to phosphate starvation responses 

(Shen et al. 2013), while ARF12 has been associated with phosphate 

homeostasis. ARF genes responsive to changes in water levels have been 

described in soybean (Wang et al. 2014). Finally, differential expression of ARF 

transcripts in response to diverse abiotic stress conditions was also reported in 

tea (Xu et al. 2016) and banana plants (Hu et al. 2015). However, the regulatory 

pathways underlying this phenomenon remain in a conundrum (He et al. 2018). 

Given that in general tasiRNA-defective mutants exhibit accelerated vegetative 

phase-change phenotypes, it has been suggested that arabidopsis TAS3-derived 

tasiRNAs could be involved in the regulation (mediated by ARF) of developmental 

processes in leaves and flowers (Guilfoyle and Hagen, 2007). Considering that 

equivalent pathways might be regulated by ARFs in melon, it is reasonable to 

assume that the down-regulation of the TAS3-derived tasiRNA observed in cold-

exposed and HSVd-infected plants might be related to the developmental 

alterations observed in plants growing under these adverse environmental 

conditions, mainly characterized by delayed growth (Hataya et al. 2017, Hou et 

al. 2018). However, we cannot exclude the possibility that changes in the ARF 

levels observed in cold exposed and HSVd-infected plants may be also 

modulated, at least in part, by and stress-related increasing in its transcription 

level, resembling the previously observed in divers plant species such as rice  

(Jain and Khurana, 2009), sorghum (Wang et al, 2010), banana (Hu et al, 2015) 

and peper (Yu et al, 2017). Further functional evidence, which is difficult to obtain 

in melon, is necessary to experimentally support this hypothesis. Altogether, our 

results support that in coincidence with the previously described in arabidopsis 

(Hsieh et al. 2009, Luo et al. 2012) and tomato (Wu et al. 2017), tasiRNAs could 

emerge as potential modulators of the plant-environment interactions in melon 

plants. 

Materials and methods 



Sequence data  

The sRNA sequence data used herein were obtained from 24 (three replicates 

by each treatment) previously described (Sanz-Carbonell et al. 2019). cDNA 

libraries obtained for control and stress-treated -i) abiotic agents: cold, drought, 

salinity, short day; ii) biotic agents: Hop stunt viroid (HSVd), Monosporascus 

cannonballus and Agrobacterium tumefaciens- melon plants (Table S5). The 

sequence data are publicly available in the SRA genomic repository of NCBI 

(BioProject IDPRJNA491809).  

The statistical testing method DESeq2 v.1.18.1 (Love et al. 2014, 

https://bioconductor.org/packages/release/bioc/html/DESeq2.html] was used to 

evaluate the differential expression of the siRNAs in melon plants under stress 

conditions. Only the sRNAs with: i) log2-fold change (log2FC) ≥1 or ≤-1 for 

biological significance, ii) FDR value <0.05, and iii) base mean ≥5, which is the 

mean of normalized counts of all samples were considered as differentially 

expressed. 

 

Identification of TAS candidate genes 

In order to detect phased tasiRNAs in melon, the TASI-PREDICTION tool 

(http://srna-workbench.cmp.uea.ac.uk/tasi-prediction) was used with default 

parameters on previously described sRNA libraries obtained from melon plants 

(Sanz-Carbonell et al. 2019) and from melon genome sequences (Version 3.5.1) 

downloaded from https://www.melonomics.net. Predicted TAS regions were then 

aligned against known TAS sequences described for Viridiplantae in the NCBI 

database (https://www.ncbi.nlm.nih.gov) by command-line interface (Rstudio) 

using BLAST+ (https://www.ncbi.nlm.nih.gov/guide/howto/run-blast-local). Only 

sequences with homology levels ≥70% and minimum length alignment of 30 nt 

were considered as potential TAS precursors. The sequence corresponding to 

the TAS3 gene identified in melon was deposited in the NCBI gene database with 

the accession number MK410640.  

 

qRT-PCR assays 

Total RNA was extracted from pooled leaves (~0.1 g) recovered from the treated 

and control melon plants using the TRI reagent (Sigma) according to the 

https://www.melonomics.net/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/guide/howto/run-blast-local


manufacturer’s instructions. To analyze target expression, total RNA (1.5 μg) 

extracted from control or treated plants was subjected to DNase treatment 

(EN0525, Thermo Scientific™) followed by reverse transcription using RevertAid 

First Strand cDNA Synthesis Kit (Thermo Scientific™) according to the 

manufacturer´s instructions by using of oligo-dT. Then, real-time PCR was 

performed (by triplicate) as previously described (Bustamante et al., 2018). The 

efficiency of PCR amplification was derived from a standard curve generated by 

four 5-fold serial dilution points of cDNA mixed from the two samples. Relative 

RNA expression was determined by using the comparative ΔΔCT method (Livak 

and Schmittgen, 2001) and normalized to the geometric mean of PROFILIN 

(NM001297545.1) and ADP-ribosylation factor-like (XM_008463181.2) 

expression, as reference control. Quantification of syn-tas-cmTAS3 and miRNAs 

was performed starting from low-molecular weight RNA (< 200 nt) fractions 

obtained as described previously (Sanz-Carbonell et al., 2019). A slightly 

modified stem-loop-specific reverse transcription protocol for miRNAs detection 

(Czimmerer et al. 2013) was performed as previously described (Sanz-Carbonell 

et al., 2019). Primers used are listed in Table S6. 

 

Degradome assay 

Data of AGO-processed sequences used in this work were recovered from 

degradome libraries obtained from melon plants (Sanz-Carbonell et al. 2019). 

 

Cloning and vectors construction 

The syn-tasiRNA construct syn-tas-cmTAS3 was generated by annealing oligos 

AC-154 (ATTATCTTGACCTTGTAAGACCCAA) and AC-155 

(GTTCTTGGGTCTTACAAGGTCAAGA), obtained with the P-SAMS website tool 

(Fahlgren et al. 2016), and by ligating the resultant insert into pMDC32B-AtTAS1c-

B/c (Addgene plasmid #51773) as previously described (Carbonell et al. 2014). 

Constructs amiR-GUS and miR173 have been generated and used in previous 

works (Montgomery et al. 2008, Carbonell and Daros, 2017).  

The ARF-YFP reporter is constituted by an ARF sequence (derived from both 

ARF3 and ARF4) predicted as target for the TAS3-derived tasiRNA (tasiARF), 

fused to the 3’ end of the sequence encoding for the yellow fluorescent protein 



(YFP) and cloned in a binary plasmid pMOG800 under the control of the 

Cauliflower mosaic virus 35S promoter and the A. tumefaciens nopaline synthase 

terminator (t-Nos) (Knoester et al. 1998). This construct was generated by 

amplifying the YFP-cDNA with a forward primer that includes an NcoI recognition 

site (GGTCTCCCATGGATGGTGAGCAAGGGCGA) and a reverse primer that 

contains the ARF sequence and an NheI recognition site 

(GGTCTCGCTAGCTCTTGACCTTGCAAGACCTTATCACTTGTACAGCTCGC

C). The PCR amplified DNA was digested with NcoI and NheI and ligated into a 

linearized pMOG800 vector. A non-modified 35S-YFP-tNos construct was used 

as agro-infiltration-control. 

 

 

Agro-infiltration assays 

Nicotiana benthamiana leaves of 3-4 week-old plants were agroinfiltrated with the 

corresponding cultures of A. tumefaciens strain C58C1, previously transformed 

with the construct to be analyzed. The overnight grown bacterial culture was 

diluted in infiltration buffer (0.1 M MES, 1 M MgCl2) up to an optical density at 600 

nm (OD600) of 0.2 and injected on the abaxial side of the leaves using a 1 ml 

needle-less syringe (Gomez and Pallas, 2007). Agroinfiltrated plants were 

analyzed two days post-agroinfiltration. The growing conditions were as follow: 

photoperiod of 16 h under visible light (wavelength between 400-700 nm) with an 

irradiance of 65-85 μmol·m-2s1 and 8 h of darkness; temperature cycles of 25 °C 

(light) and 18 °C (darkness) and relative humidity of 60-65 % (light) and 95-100 

% (darkness). YFP fluorescence was observed using an inverted Zeiss LSM 780 

confocal microscope and ZEN software (Carl Zeiss). Leaf dishes were cut and 

mounted in water. Then images were acquired using an objective plan-

apochromat 40x/1.4 Oil DIC M27 (0.5 cm diameter). 
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FIGURE LEGENDS: 
Figure 1: The predicted melon TAS3-S transcript is sliced by miR390. A) Graphic 

representation (not to scale) of the potential TAS3-S transcript (TAS-Cmel735) identified 

in the melon genome. The region position in chromosome 11 is also detailed. The 

miR390 target sites predicted by psRNA-targets tool are marked with gray arrows. 

miR390 sequence is shown in gray. The complementary sequence identified in TAS3 

transcripts is denoted magenta. B) Graphic representation of the miR390-cleaved TAS3-

S transcripts detected by high-scale degradome assay. The obtained sequences were 

plotted (allowing 100% homologous matching) onto the TAS3 sequence. The red lines 

on the X-axis indicate the position of the predicted miRNA recognition site in the melon 

TAS3 transcript. The values on the Y-axis represent the number of obtained reads 

(normalized in reads per million). 

 

 

Figure 2: Phased tasiRNAs arising from the melon TAS3 transcripts. A) Read 

abundance distribution of TAS3-derived sRNAs in melon. 21 nt in length sRNAs 

(recovered from control libraries) were plotted (allowing 100% homologous matching) 

onto TAS3 region in melon genome. Arrows indicate miR390 target sites. The X-axis 

represents a double-stranded PHAS locus. The reads abundance is represented in 

reads per million (RPM). B) Schematic representation of the processing inferred for the 

TAS3-S precursor in melon. miR390 target sites in the 3´region is marked. Phased 21 nt 

in length TAS3-S derived tasi-RNAs predicted computationally and recovered by 

sequencing are represented. The position of the tasiRNA identified as a negative 

modulator of ARF-transcripts (tasiARF) is highlighted at the position 5’D6[+] and its 

sequence detailed. C) Phased 21 nt in length derived from the miR390-guided 

processing it the 5´ region of the TAS3-S transcript predicted computationally and 

recovered by sequencing are represented. Radar plots show percentages of 21-nt reads 

corresponding to each one of the 21 registers from TAS3-S transcripts, with position 1 

designated as immediately after the miR390-guided predicted cleavage site in the 

5´region. 

 

Figure 3: ARF family members are recognized as targets for TAS3 tasiRNA activity 

in melon. Graphic representation of tasiRNA-cleaved ARF3, ARF4 and ARF2 melon 

transcripts detected by degradome assay. The obtained sequences were plotted 

(allowing 100% homologous matching) onto the ARF3 (XM017043883.1), ARF4 

(XM008465701) and ARF2 (XM-008466144) sequences. The red lines on the X-axis 

show the position of the predicted tasiRNA target sites. The values on the Y-axis 

represent the number of obtained reads (normalized in reads per million, RPM). The 

tasiARF sequence is denoted in magenta. The complementary sequences identified in 

target transcripts are presented in gray. 

 

 

Figure 4: The TAS3-derived tasiARF trigger AGO-mediated processing of target-

transcripts in vivo. A and B) Physical map (not to scale) of the constructs used herein. 

The miR173 and tasiARF target sites are detailed. miR173 and tasi-ARF sequences are 



denoted in blue and magenta, respectively. The Cauliflower mosaic virus 35S promoter 

and the nopaline synthase terminator (t-Nos) are also represented. C) N. benthamiana 

plants were co-infiltrated with agrobacterium transformed with i) YFP-ARF reporter plus 

amiR-GUS and amiR173, and ii) YFP-ARF reporter plus syn-tas-cmTAS3 as control. As 

observed in the lower panels, the YFP-ARF reporter expression is clearly reduced 

compared to control (middle panels), when is co-expressed with the syn-tasiRNA and 

the amiR173 constructs. The unmodified YFP (upper panels) was used as YFP 

expression control. R1 to R3 are replicates of the same experiments in different N. 

benthamiana plants. 

 

Figure 5: The ARF2, ARF3 and ARF4 expression correlate to the changes in the 

accumulation of TAS3-derived tasiRNAs responsive to stress conditions. A) 

Histogram showing the means of the relative accumulation respect to the control 

samples (in Log of ΔΔCT value) of ARF3, ARF4 and ARF2 transcripts (gray bars) in 

melon plants exposed to cold treatment and HSVd-infection as estimated by qRT-PCR. 

Error bars show the confidence interval of the difference between means. The bars in 

magenta represent the accumulation levels (estimated by sRNA sequencing data 

analysis) (in LogFC) of the TAS3-derived tasiRNA in the correspondent melon samples.  

B) Detail of the data represented in A. 

 

Table 1: Detail of the expression values (estimated by DeSEQ analysis) of the TAS3-S 

derived tasiARF sequence in melon plants exposed to diverse biotic and abiotic stress 

conditions. Only LogFC values ≥1 or ≤-1 and FDR values <0.05 were considered as 

significant for “bona fide” stress-responsive tasiRNAs. 

 


















