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Abstract The Superconvergent Patch Recovery technique with constraints (SPR-C) con-

sists in improving the accuracy of the recovered stresses obtained with the original SPR tech-

nique by considering known information about the exact solution, like the internal equilib-

rium equation, the compatibility equation or the Neumann boundary conditions, during the

recovery process. In this paper the SPR-C is extended to consider the equilibrium around the

contact area when solving contact problems with the Cartesian grid Finite Element Method

(cgFEM). In the proposed method, the Finite Element stress fields of both bodies in contact

are considered during the recovery process and the equilibrium is enforced by means of the

continuity of tractions along the contact surface.

Keywords Superconvergent Patch Recovery · Contact · Cartesian grid · Immersed

boundary

1 Introduction

The mechanical contact problem is present in several classical industrial applications such

as tire-road, wheel-rail interactions, pin-on-disc wear or fretting. The contact problem is

also being introduced in novel research areas like the patient specific study of the interac-

tion between living tissue and prosthetic devices. We are interested in solving the contact

between two linear elastic domains Ω (i), i = 1,2, considering a quasi-static approximation.

The formulation of this problem can be written as follows:
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div σσσ +b = 0

σσσ = Dεεε

εεε = εεε (u)

u(x) = ud (x) x ∈ ΓD

n ·σσσ = t̂ x ∈ ΓN

gN ≥ 0 x ∈ ΓC

(1)

where the displacements are represented by u, the strain and stress tensors are εεε ,σσσ respec-

tively, D is the linear elasticity tensor and b denotes the volume forces. The boundaries

of the analysis domains are divided in three non-overlapping regions {ΓD,ΓN ,ΓC} where

the Dirichlet, Neumann and contact constraints are imposed. The last constraint in (1) only

accounts for the non-penetrability condition. Sliding contact can also be considered using

frictional laws such as the Coulomb model [1].

The use of the Finite Element method to obtain an approximate solution of (1) has

become a standard. In this framework the a posteriori error estimation of the approximate

solution can be very useful in different aspects like error-driven mesh adaptation or error

estimates in quantities of interest. A complete study of such methods can be found in [2].

The first developments in a posteriori error estimators for contact problems were in the

context of node-to-node formulations. For example, an h-adaptive refinement strategy was

guided by a residual based estimator in [3] and a stress recovery estimator in [4]. A posteriori

errors have also been developed to guide hp-adaptive refinements in [5]. Since then, several

error estimators have been proposed for contact problems involving non-matching meshes

[6], using locally equilibrated fluxes [7] and mixed formulations [8], to cite a few.

Zienkiewicz and Zhu [9] proposed the ZZ error estimator for the disctretization error

in energy norm, which is widely used within the FE community. The ZZ estimator can be

formulated as:

‖ees‖=
∫

Ω

(
σσσ∗−σσσ h

)t

D−1
(

σσσ∗−σσσh
)

dΩ (2)

where Ω can be the whole analysis domain or a subdomain of it, σσσh is the FE stress field

and σσσ∗ is usually referred to as smooth stress or recovered stress field. Zienkiewicz and

Zhu also developed a very efficient method to evaluate this field: the Superconvergent Patch

Recovery [10], which is simple, robust and requires a considerably low computational cost.

The ZZ estimator has been adapted to contact problems with different approaches. Some

works in this direction are the use of the global version of the ZZ estimator for Coulomb’s

frictional contact [11] and its extension to multigrid methods in [12].

The Cartesian grid Finite Element Method (cgFEM) [13,14] is an immersed boundary

method developed for solving 2D [13] and 3D [14] elasticity problems. The main charac-

teristic of the method is the use of approximation meshes with regular quadrilaterals (2D)

or hexaedrons (3D) that are independent of the domain. The cgFEM features an efficient

hierarchical data structure based on the use of nested Cartesian grids together with a special

numerical integration procedure that enables one to capture the exact boundary definition

through the use of NURBS. This method has been recently extended to solve 3D frictional

contact problems [15] with a stabilized Lagrangian formulation in which the stabilization

term is calculated with the SPR stress field. Moreover, the cgFEM features an h-adaptive

refinement strategy based on the ZZ estimator and the SPR technique [16]. The accuracy of
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the ZZ estimator relies directly on that of the smooth field σσσ∗ [9]. Therefore, in this work

we aim to improve the accuracy of the smooth field σσσ∗ for contact problems to serve as

stabilization stress and to efficiently guide the h-adaptive refinement.

Since the publication of the early SPR technique, several attempts to enhance the accu-

racy of the recovered field have been proposed. A thorough review of the different modifi-

cations of the SPR is presented in [17]. The same work proposes the SPR with constraints

(SPR-C), which is based in the enforcement of known equilibrium equations of the 2D elas-

ticity problem at a patch level. This work represents an extension of the SPR-C technique in

which the contact constraint is weakly imposed for 3D elastic contact problems. The paper

is structured as follows: section 2 features a brief review of the SPR and SPR-C methods,

and some special features regarding the use of cgFEM are presented. In section 3 the contact

condition constraint is included in the SPR-C. Finally, section 4 shows the performance of

the technique with some numerical examples.

2 Superconvergent Patch Recovery with constraints: SPR-C

The idea behind the Superconvergent Patch Recovery [10] to compute the smooth field σσσ ∗

is the following: having a FE mesh, a recovery patch Ω k
p is defined for each node k in the

mesh, which is composed by all the elements containing the given node. Then, for each FE

stress component σ h
i , a polynomial field σ ∗,k

i (x) = p(x) ak
i is fitted to the values of σ h

i at all

Gaussian points xg in the elements of Ω k
p. The polynomial expansion p(x) = {1,x,y,z, ...}

is usually of the same degree as the FE approximation. The coefficients ak
i ∈ R

Nk , where Nk

is the dimension of vector p(x), are obtained solving a minimization problem:

min
ak

i ∈R
Nk

1

2




Nk
g

∑
g=1

(
p(xg) ak

i −σ h
i (xg)

)2


 (3)

where Nk
g stands the total number of Gaussian points xg ∈ Ω k

p. After solving all patches in

the mesh, the smooth field σσσ∗ can be computed at any point in the FE domain Ω h by the

same interpolation used in the FE approximation, with the nodal values σ
∗, j
i (x j) and the

shape functions N j(x) associated to the j vertex nodes of element E :

σ ∗
i (x) = ∑

j

N j(x)σ
∗, j
i (x j) ; x ∈ E (4)

For elements with p ≥ 2, the values at non-vertex nodes will, in general, be available from

several patches and, following the advices presented in [18], σ
∗, j
i (x j) will be computed as

an average of such values.

A straightforward idea to enhance the accuracy of σσσ∗,k consists in considering known

information of the exact solution of the elasticity problem in equation (3). Following this

idea, the Superconvergent Patch Recovery with constraints (SPR-C, [17]) is a modified ver-

sion where the fulfillment of the internal equilibrium and Neumann boundary conditions

are enforced at each patch by means of adding constraints to equation (3). As these equa-

tions involve the six components of the stress tensor {σ
∗,k
1 , ...,σ ∗,k

6 } this version requires

the simultaneous solution of all stress components. Therefore the smooth stress field is now

defined with the block matrix P(x) and the column vector Ak, which are written as:
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σσσ∗,k(x) = P(x)Ak

P(x) = diag(p(x), ...,p(x)) ; Ak =
{

ak
1, ...,a

k
6

} (5)

Instead of the discrete approach of the standard SPR, an adaptation of the SPR-C tech-

nique to the X-FEM framework [19] considered a continuous formulation of the minimiza-

tion problem (3). This approach provides better results for patches with different quadrature

point densities in the elements, which is the case both in X-FEM and cgFEM [14], as the val-

ues at integration points are weighted [20]. Therefore, the modified minimization problem

is the following:

min
Ak

i ∈R
Nk×6

1

2

[∫

Ωk
p

(
P(x)Ak −σσσh(x)

)2

dΩ

]

subject to CAk = ΛΛΛ

(6)

where the additional constraints (to be defined later) have been included using a generic

equation. Solving this problem by means of Lagrange Multipliers λλλ
k
, we obtain the follow-

ing linear system of equations expressed in matrix form:

[
M CT

C 0

]{
Ak

λλλ
k

}
=

{
H

ΛΛΛ

}
(7)

where

M =

∫

Ωk
p

P(x)T P(x)dΩ ; H =

∫

Ωk
p

P(x)T σσσh(x)dΩ (8)

A numerical integration scheme is used to evaluate the SPR coefficient matrix and vector

defined in equation (8), using the integration quadratures built for the FE analysis.

Now the constraint equations are derived from the first and fifth equations in elasticity

problem (1). Substituting equation (5) in the first equation of (1) we obtain the constraint

equation to fulfill the internal equilibrium:

∇ ·P(x) Ak =−b(x) , x ∈ Ω k
p (9)

The SPR-C is also able to enforce the Neumann boundary conditions at patches con-

taining any loaded or free boundary Γ k
p . In this case the constraint equation is written as

follows:

R(x)P(x) Ak − t(x) = 0 , x ∈ Γ k
p (10)

where R(x) is an operator that obtains the tractions vector from the stress components using

the normal vector to the surface, and t(x) are the applied tractions (t(x)= 0 for free surfaces).

The contact constraint will be presented in section 3, and terms C and ΛΛΛ in (7) will be

detailed in section 2.1.3, where we will propose a method to weakly enforce the constraints

(9) and (10).

The original version of the SPR consists in evaluating the stress polynomial at each

node and then interpolating those values (equation (4)). To enhance the quality of this field,
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Blacker and Belytschko proposed the conjoint polynomials technique [21], also used in [22].

In this method the smooth field is computed by the interpolation of the complete stress

polynomial σ
∗, j
i (x) of the element’s vertex nodes using the linear shape functions Nv

j (x).
Therefore, the smooth field is now written as:

σ ∗
i (x) =∑

j

Nv
j (x)σ

∗, j
i (x) (11)

We will use this last definition in this work so we have re-used the same symbol σ ∗
i from

equation (4) to keep a simple notation.

Note that although obtaining local equilibrium in each patch, the process of interpolating

a global smooth stress field introduces a lack of equilibrium of these constraints. As shown in

ref. [22], if we evaluate the internal equilibrium for the smooth field σσσ ∗ taking into account

equation (11) we obtain:

∇ ·σσσ∗(x) = ∑
j

∇ ·Nv
j (x)σσσ

∗, j +∑
j

Nv
j (x)∇ ·σσσ∗, j (12)

Considering the constraint in equation (9) and the partition of unity property of the shape

functions, the second sum in equation (12) is equivalent to the volumetric forces b(x). There-

fore the internal equilibrium of the smooth field results in:

∇ ·σσσ∗(x) = ∑
j

∇ ·Nv
j (x)σσσ

∗, j +∇ ·P(x) Ak = ∑
j

∇ ·Nv
j (x)σσσ

∗, j −b(x) (13)

where the lack of equilibrium is due to the term ∑
j

∇ ·Nv
j (x)σσσ

∗, j 6= 0. Ref. [23] proved that

this term can be used to obtain accurate asymptotic upper error bounds of the FE solution us-

ing recovery techniques. It is straightforward to obtain a similar term related to the Neumann

boundary conditions in equation (10).

2.1 cgFEM 3D features regarding SPR-C

In the cgFEM the mesh is independent of the domain. Thus, there are some nodes outside

the domain at the elements cut by the geometry (called boundary elements from now on) as

well as elements completely inside the domain (internal elements). We can also distinguish

between internal and boundary patches: internal patches contain only internal elements

whereas boundary patches are those containing at least one boundary element. The inter-

nal equilibrium constraint will be enforced at both internal and boundary patches. Boundary

patches cut by the Neumann boundary will also include the Neumann boundary conditions

constraint. In this section we will detail the enforcement of such constraints and show some

features that improve the efficiency of the SPR technique within the cgFEM.

2.1.1 Boundary patch enlargement

The arbitrary intersection between the Cartesian grids and the analysis domain may produce

some elements with a low volume of material inside, as in the example shown in Figure 1a.

In that case the stiffness associated to the external node colored in red becomes very small,

which results in an ill-conditioning of the FE formulation [24] and also a poor quality of

the FE stress field computed at those pathological elements. In the classical SPR procedure
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the patch Ω k
p associated to the red node in Figure 1a would consist only in that pathological

element. Then, the smooth field σσσ∗ would eventually have a lower quality in that region.

To avoid these situations we measure the ratio between material and element volume for

each boundary patch (all internal patches will have a 100% ratio). If the patch volume ratio

is under a certain threshold, the patch is enlarged by including the adjacent elements, as

shown in Figure 1b. All the tests in this paper were carried out with a threshold value of

25%, with acceptable results.

(a) Original patch (b) Enlarged patch

Fig. 1: Example of boundary patch enlargement. The patch Ω k
p associated to the red node

has a low material/element volume ratio. Hence a bigger patch Ω
′k
p that also includes the

surrounding elements is considered.

2.1.2 Patch coding

In order to reduce ill-conditioning problems when solving equation (7) a normalized local

coordinate system centred at the patch node is used instead [25]. Therefore, for a given node

with coordinates xN , the local coordinate system built for its recovery patch is defined as:

xlocal =
x−xN

hp

(14)

where hp is a representative size of the patch, e.g. the biggest element size in the patch.

Taking into account this variable change, the coefficient matrix M in (7) only depends on

the relative position of the integration points inside the patch. This implies that patches with

the same shape will share the coefficient matrix, and only one matrix inversion for each

different patch topology is needed to calculate the SPR coefficients.

In cgFEM h-adapted meshes only one level difference is allowed between adjacent ele-

ments. Hence, since all the elements in the cgFEM are quadrilaterals/hexahedrons there is a

finite number of internal patch topologies. Figure 2a shows all possible patch configurations

that exist in a 2D cgFEM mesh.

However, there are still hundreds of possible patch topologies in a cgFEM 3D mesh

(some examples are shown in Figure 2b). Instead of manually coding all the configurations

we have designed an efficient automatic coding of the patches based on the relative size of

the elements within the patch. Then, given a FE mesh, all internal patch topologies in the

mesh are detected, and the coefficient matrix M is evaluated and inverted once only for the

present topologies. Figure 3 shows an example of the automatic coding for 2D patches. The

bigger element in the patch is defined as level 0 and smaller elements have increasing values.



SPR-C for 3D contact problems in cgFEM 7

(a) (b)

Fig. 2: Patch topologies that can appear in a cgFEM analysis. All 19 possible configurations

for cgFEM 2D (a), and examples of possible configurations for cgFEM 3D (b).

Fig. 3: 2D example of SPR patch coding. The patch on the left has code number 0110 and

the patch on the right is number 1210.

A decimal number for the patch topology is obtained by concatenating all levels in the patch

(4 digits for 2D patches, 8 digits for 3D patches).

Despite not being compact, this system avoids manual classification and coding of all

possible 3D patches that may exist in a cgFEM 3D analysis. With this procedure the com-

putational cost of the recovery process for the internal patches can be neglected if compared

with the evaluation at boundary patches, as these must be solved individually. This could be

seen as a (d−1)-dimensional computational cost associated to the recovery procedure.

2.1.3 SPR-C constraints enforcement

The recovered field σσσ∗ cannot satisfy the enforced equilibrium equations for all points in the

domain (or boundary) in the general case. For instance, if σσσ∗ is a polynomial of degree 2 the

internal equilibrium equation (9) is only fulfilled for linear volumetric forces b(x). Similarly,

it is not possible to strongly enforce the Neumann boundary conditions for generic tractions

and/or curved boundaries. A possible alternative is the strong enforcement of the constraint

equations at a set of points in the patch to provide a number of linearly independent equations

equal to the number of constraints. However, the location of such points in 3D results to be

arbitrary and cumbersome.

We propose the weak enforcement of the equilibrium constraints using a pseudoinverse

approach. For the case of the internal equilibrium, equation (9) is now written as the follow-

ing numerical integration, where the subscript g denotes each quadrature point xg ∈ Ω k
p with

quadrature weight wg:

Nk
g

∑
g=1

∇ ·P(xg)wgAk =−

Nk
g

∑
g=1

b(xg)wg (15)
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Matrix Ciee and a vector ΛΛΛ iee are built such that each row represents the enforced con-

straint (15), that is:

Ciee
g Ak = ΛΛΛ iee

g ∀xg ∈ Ω k
p

Ciee
g = ∇ ·P(xg)wg ; ΛΛΛ iee

g =−b(xg)wg

(16)

Then the set of linearly independent columns C∗iee is selected from the constraint matrix,

and the constraint block of equations included in problem (6) is:

C∗iee′CieeAk = C∗iee′ΛΛΛ iee (17)

This generic approach is applied independently for any type of constraint included in

problem (6), so, for the Neumann boundary conditions, we will write equation (10) at each

quadrature point as:

Cext
g Ak = ΛΛΛ ext

g ∀xg ∈ Γ k
p

Cext
g = R(xg)P(xg)wg ; ΛΛΛ ext

g =−t(xg)wg
(18)

and then a procedure similar to (17) is applied. The resulting blocks of constraint equations

are concatenated to form C and ΛΛΛ in the system (7). For example, a boundary patch that

contains a loaded surface will have the following blocks of constraint equations:

C =

{
C∗iee′Ciee

C∗ext′Cext

}
; ΛΛΛ =

{
C∗iee′ΛΛΛ iee

C∗ext′ΛΛΛ ext

}
(19)

3 Contact condition constraint

Consider two elastic bodies Ω (1) and Ω (2) in contact, and let Γ
(i)

C , i = 1,2 be the part of

the boundary that is likely to become in contact. When both solids are in equilibrium the

deformed boundary Γ
(i)d

C will comprise all point pairs from both bodies that have an active

contact condition. Similarly to the ideas presented in the SPR-C, we would like to enforce

the equilibrium along the contact boundary. Since two different stress fields take part in Γ
(i)d

C

(one belonging to each body in contact), the stress distribution corresponding to the exact

solution should fulfill the following equilibrium equation:

t(1)(x)+ t(2)(x) = 0 (20)

It is worth to remark that this constraint equation is valid for both frictionless and fric-

tional contact models, since we only enforce the continuity of the traction vector between

bodies. Similarly to the Neumann boundary conditions, t(i)(x) are given by

R(i)(x)P(i)(x) A(i) = t(i)(x) , ∀x ∈ Γ
(i)d

C , i = 1,2 (21)

therefore we can rewrite the equilibrium equation at the contact boundary as:

R(1)(x)P(1)(x) A(1)+R(2)(x)P(2)(x) A(2) = 0 (22)

Note that the coefficients A(i) of the SPR are defined at nodes of each FE mesh. However,

the cgFEM deals with non-conforming meshes, and the association between nodes of both

bodies in contact is unclear. Our approach is the following: we define a main body where

the SPR-C will be performed (e.g Ω (1)), and the auxiliary body in contact (e.g. Ω (2)). We
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associate a region of the auxiliary body Ω k
aux to each patch Ω k

p at the main body with active

contact points. Then we define another SPR-C problem at Ω k
aux with the unknown coeffi-

cients A∗(2) and couple both problems with equation (22). Finally the system of equations

that will be solved for a patch at the main body is an expansion of equation (7):




M(1) 0

0 M(2)
C(1)T 0

0 C(2)T Ccont T

C(1) 0

0 C(2)

Ccont

0








A(1)

A∗(2)

λλλ (1)

λλλ
(2)

λλλ
cont





=





H(1)

H(2)

ΛΛΛ (1)

ΛΛΛ (2)

0





(23)

where the blocks in red correspond to the stress field in the main body, the green blocks

correspond to the stress field in the auxiliary domain, and the contact constraint Ccont which

enforces the continuity of both fields over the contact interface is derived from equation (22)

as:

Ccont =
[
R(1)(x)P(1)(x) , R(2)(x)P(2)(x)

]
(24)

As the problem considered for the auxiliary body is not associated with a particular node

of its mesh, the coefficients A∗(2) cannot be used to create a recovered stress field. Therefore

the solution of (23) provides two sets of coefficients, A(1) and A∗(2), but only those regarding

the main body can be considered for the evaluation of the smooth stress field. An analogous

procedure exchanging the main and auxiliary roles is followed to obtain the coefficients

A(2). With these considerations the recovered stress fields will not exactly fulfill equation

(22) at a patch level, which we find assumable since the calculation of the smooth stress σσσ ∗

already introduces a lack of equilibrium (shown in section 2).

Now we need to define Ω k
aux for each patch of the main body. There are many possibil-

ities to achieve this goal. In this work we have decided to split the procedure in two stages:

a) selection of a region in the auxiliary body, ΩE
aux, associated to each element E in the

main body cut by the contact area, and b) creation of an auxiliary region Ω k
aux for each patch

Ω k
p containing, at least, one of these elements. Here below we present the steps followed to

assign an auxiliary region ΩE
aux to each element E . In this description we use the indices i

and j to represent the main and auxiliary bodies, respectively.

1. We identify the set of contact points PE

Γ (i) within the element E . Taking only the points

with an active contact condition into account, PE

Γ (i) will contain: a) quadrature points of

the slave surface, if the main body is the slave body; b) projections of these points on the

master surface, if the main body is the master body, or c) both of them, if an unbiased

formulation (double pass) is considered. An additional set SE

Γ (i) will be used. This is the

union of PE

Γ (i) and the intersections between the element edges with the active section of

the contact surface. For example, SE

Γ (i) is depicted by all the green entities in Figure 4a.

2. We compute an average point xc and an average unit normal vector nc of ΓC ∩ E as

the weighted arithmetic mean of the coordinates xa and normal vectors to the surface

nb associated to the contact points PE

Γ (i) . The weighting values are those of the surface

numerical integration.

3. We use xc and nc to define the plane Ψ , which is perpendicular to nc and contains xc, as

shown in Figure 4b.
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4. We build the set P̃
( j) which groups the elements in the auxiliary body mesh P

( j) that

contain the pairs of the points in SE

Γ (i) . Then PE

Ω ( j) is defined as the set containing all

volume integration points in P̃
( j). This step is depicted in Figure 4c.

5. We obtain ηηηa = Φ (xa) and ηηηb = Φ (xb) by orthogonally projecting the points xa ∈
SE

Γ ( j) and xb ∈ PE

Ω ( j) onto the plane Ψ , with Φ being to the mapping operator. This

transformation is shown in Figure 4d.

6. The contact region S
E

Γ (i) is then approximated by the convex hull of ηηηa (the yellow

shapes in Figure 4d).

7. Finally, the auxiliary region ΩE
aux is defined as the subset of points in PE

Ω ( j) whose pro-

jections ηηηb are inside S
E

Γ (i) (Figures 4e and 4f).

(a) Element E with active con-

tact condition. The contact area

is depicted in green. The inte-

gration and intersection points

are presented as circles and

stars respectively.

(b) Definition of the plain

Ψ associated to the contact

area.

(c) Volume integration

points in the auxiliary body

that may be contained in

the auxiliary domain.

(d) Proyection of the points of inter-

est onto the plane Ψ . The space be-

tween the yellow points is the contact

region S
E

Γ (i) .

(e) Classification of volume points.

The yellow triangles represent the

points selected to create ΩE
aux.

(f) Auxiliary domain asso-

ciated to the element E

Fig. 4: Definition of the auxiliary domain ΩE
aux at element level for the solution of the SPR-C

problem at patches with contact points.
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In the second stage, the auxiliary domain Ω k
aux of the patch Ω k

p is constructed as the

union of the auxiliary domains of the elements in the patch: Ω k
aux = {ΩE

aux|E ⊂ Ω k
p}. This

is illustrated in Figure 5.

Fig. 5: Creation of the auxiliary region Ω k
aux from those computed at element level

4 Numerical examples

In this section three contact problems are solved to test the proposed recovery procedure.

The quality of the presented SPR-C with contact constraints is evaluated with respect to

several goals, namely the enforcement of the tractions between the two bodies in contact,

the effectivity of the error estimator and the suitability for h-adaptive refinement. We have

used a stabilized Lagrangian formulation [15], which is suitable for both frictionless and

friction contact, for the solution of the problems presented in this section.

4.1 Example 1. Contact test between elastic solids

An analysis of the differences between the recovered field calculation with and without

contact constraints is performed in the following problem involving two elastic solids in

contact. A 2D sketch of the problem is shown in Figure 6 left. At the initial configuration

both contact surfaces are overlapping (there is no such space between solids), and a vertical

displacement d = −1.6 · 10−6 m is applied on the upper face of body 2. Symmetry condi-

tions are applied on the faces parallel to the yz plane, and displacements along y direction

are constrained at a point to avoid rigid body motions. Two lateral faces of body 1 are loaded

with py = 4 · 1011(0.01− z)z Pa and pz = 10 · 1011(0.01− z)z Pa. The material properties,

identical for both solids, are E = 115 GPa and ν = 0.3. Three non-conforming uniformly

h-refined meshes were solved in the analysis (Figure 6), using the standard recovery tech-

nique (SPR) and the constrained version including contact constraints (SPR-C). We also

considered a reference solution coming from a 2D overkilled mesh analysis.

The contact pressure pN = n ·σσσ∗ ·n evaluated at a path along y direction is shown in

Figure 7a for the upper solid. An improvement of the recovered field can be appreciated

in two different aspects. First, the maximum contact pressure estimation is much closer to

the reference values. Furthermore, the enforcement of Neumann boundary conditions also

ensures null tractions over non-contact regions. The results show that both effects have a

higher impact on the recovered field as the mesh is coarser.
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Fig. 6: Example 1. Sketch of the problem and two analysis meshes. A third mesh obtained

by dividing the right-most mesh was also used in the analysis.

As a consequence of these improvements, it might be seen that there is a better estima-

tion of the end-of-contact area. However, is not possible to provide with accurate estimates

of the end-of-contact point (line in 3D) using regular polynomials for the recovered stress

field given the regularity of the exact solution. Although there is a considerably enhanced es-

timation of the stress gradient, the location of this area is still highly influenced by the mesh.

This is illustrated with the results shown in Figure 7b. The contact pressure is evaluated at

both bodies and the difference is normalized with respect to the maximum contact pressure

obtained at the reference solution (9.49 MPa). The vertical discontinuous lines represent the

end-of-contact points for the reference solution. Note that the addition of contact constraints

in the SPR-C results in a considerably lower lack of equilibrium inside the contact area.

However, there is no such improvement in the end-of-contact area. As the analysis meshes

are non-conforming the recovery process estimates these areas at a different location for

each body, thus locally increasing the lack of equilibrium. The results also show that this

local error is alleviated with the mesh h-refinement.

Note that the ZZ-estimator (2) becomes the exact error in energy norm ‖eex‖ if the

considered problem had an analytical solution (which is usually not available). In that case,

we can define the effectivity index Θ of the error estimator as Θ = ‖ees‖/‖eex‖. A good error

estimator should converge to Θ = 1 as the mesh is refined. Figure 8 shows the effectivity of

the ZZ-estimator in this problem using the standard SPR and the proposed SPR-C, assuming

the overkilled solution as reference. Although the error estimator is evaluated at all the

domain there is a substantial improvement in the effectivity values, especially for coarse

meshes. In order to evaluate the local improvement of the estimator around the contact area,

the integrand of equation (2) is evaluated at the quadrature points on the contact surface of

the lower body calculating the smooth field σσσ∗ with SPR, SPR-C and the reference solution.

This comparison allows to qualitatively evaluate the accuracy of the recovered field on the

contact area. Results show that the SPR-C estimator detects error due to the end-of-contact

and free surface areas, whereas the SPR based estimator is not able to capture those errors.

It can also be seen that the error in the end-of-contact area is underestimated by the SPR-C.
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(a) Distribution of the normal stress evaluated at

the upper body. Positive values of the stress stand

for compression.
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(b) Contact stress difference between the two

bodies (σ2n2 − σ1n1). Values are normalized

with the reference maximum contact stress. The

contact area lies between the vertical discontinu-

ous lines.

Fig. 7: Example 1. Evolution of the different magnitudes along a path that follows the y

direction
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Fig. 8: Example 1. Effectivity of the error estimation using SPR and SPR-C taking the

overkilled mesh solution as reference.

(a) σσσ ∗
SPR −σσσh (b) σσσ ∗

SPR−C −σσσ h (c) σσσ −σσσh

Fig. 9: Example 1. Evaluation of the error estimation integrand
(
σσσ∗−σσσh

)
D−1

(
σσσ∗−σσσh

)

over the contact surface at the lower body using different stress fields. Results correspond to

the first analysis mesh.

4.2 Example 2. Cylinder-plane contact

The second example simulates the contact between a block with cylindrical surface and

a parallelepiped. The geometric model of the problem is depicted in Figure 10a, with the

dimensions L = 4 mm and R = 50 mm. A linear elastic material is used for both bodies

with properties E = 115 GPa and ν = 0.32. A vertical displacement d = −1.77x10−5 m is

applied on the upper face of the cylindric body and vertical displacements are constrained

on the lower face of the parallelepiped.

Symmetry conditions are applied on the surfaces perpendicular to the z axis and rigid

body motions are properly constrained along x. Both bodies are initially meshed with non-

conforming uniform grids of size h≈ 0.5 mm as shown in Figure 10b. Two different analysis

are compared in this example. First a sequence of three uniformly h-refined meshes is solved,

with the finest mesh containing 135045 degrees of freedom. In the second test an automatic

h-adaptive refinement procedure based on the ZZ-error estimator is used [26], and the SPR-

C presented in this work is used to obtain the smooth stress field. Figure 11 shows the
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2L

(a) (b)

Fig. 10: Example 2. (a) Geometry model for the cylinder-plane contact problem. (b) Initial

analysis mesh, containing 8262 degrees of freedom.

(a) 15468 DOF (b) 46140 DOF (c) 135045 DOF

Fig. 11: Example 2. Sequence of three meshes obtained through error-based h-adaptive re-

finement. Detail of body 2. For each mesh the DOF number of the complete problem is

shown.

sequence of meshes obtained with this procedure for the cylindrical body. Similar meshes

are obtained on the other body in the analysis. It is worth noting that the refinement algorithm

automatically adapts the mesh around the end-of-contact area, where the highest gradient of

the solution arises. A 2D overkilled solution has been solved again to serve as a reference

and compare the error of both strategies (Figure 12). Two conclusions can be extracted

from these results: first, the optimal convergence rate is obtained for the uniform refinement

analysis; and secondly, the automatic adaptive refinement strategy is more efficient in the

sense that it can provide the same accurate results with approximately a quarter of the DOFs

in this particular problem.

Finally, the effectivity of the ZZ-error estimator is compared again between the use

of SPR and SPR-C. The effectivity index Θ presented in the previous example can also

be calculated element-by-element to locally assess the quality of the estimator. However,

this index does not provide clear representations of the recovery performance because the

values are not balanced, that is, ”underestimation” efficiencies range between (0,1) and
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Fig. 12: Example 2. Comparison of the error in energy norm with uniform and adaptive

h-refinement using SPR-C in the ZZ-estimator.

”overestimation” efficiencies are in the (1,+∞) range. To overcome this issue, the local

effectivity index is defined as:

{
D = 1−

1

Θ
; 0 <Θ < 1

D =Θ −1 ; Θ ≥ 1
(25)

This definition of the local effectividy index, inspired by the robustness index described

by Babuska et al. [27], is appropriate as it produces values in (−∞,0) for error underesti-

mates of the error and in (0,+∞) when the error is overestimated. Using the last mesh of

the adaptive refinement sequence we have compared the accuracy of the SPR and SPR-C by

means of the local effectivity index D. This index is evaluated in Figure 13 at the elements

cut by the cylinder surface, where we can distinguish the contact area where the elements are

more refined. In the color map a red color denotes overestimation of the error and blue col-

ors indicate underestimation of the error. It is clearly seen that the SPR without constraints

underestimates the error around the end-of-contact area, whereas the SPR-C has an overall

better performance on the contact area. It is also worth to remark that the performance of the

estimator is considerably deteriorated far from the contact zone because the discretization is

coarser.

4.3 Example 3. Frictional contact between curved surfaces

In the final example a frictional contact problem involving curved surfaces is solved. Both

solids have a toroidal shape with identical geometry parameters, major and minor radius of

R = 1.5 cm and r = 0.5 cm respectively. The initial configuration of the problem is shown

in Figure 14a, where the blue colored surfaces are clamped and a constant displacement

along y direction of 0.05 cm is applied on the orange colored surfaces. The problem is

solved considering a Coulomb frictional model with a friction coefficient of µ = 1 and

linear elastic material with E = 115 GPa, ν = 0.3. We have conducted again two different

h-refinement strategies in this example, the uniform and the automatic adaptive using the

ZZ-error estimator and the SPR-C smoothed stress. The error estimation results, presented

in Figure 15, show that the FE convergence rate is kept once again for the uniform refinement
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(a) (b)

Fig. 13: Example 2. Color map of the local effectivity D evaluated at the contact surface for

the finest h-adapted mesh using SPR (a) and SPR-C (b).

and that the adaptive strategy is more efficient in terms of computational cost for a prescribed

error.

Figure 16 shows a detail around the contact area in one of the bodies for all the dis-

cretization meshes in the refinement sequence. In order to highlight the discretization of the

surface, only the intersection cuts between the Cartesian grid and the surface are shown.

Note that the mesh is again automatically refined around the contact area, which in this case

has a circular shape. The contact area can be distinguished in Figure 16, which represents the

values of the normal component of the surface tractions, (n ·σσσ)n, using the FE stress field

and the smooth stress obtained with the SPR-C. The negative values represent compression

stress, and the color map has been modified so that positive values of normal traction, which

are physically unfeasible since the surfaces are not loaded, are represented in black. It can be

seen that besides smoothing the FE stress field, which is discontinuous, the positive tractions

are removed on the recovered solution thanks to the additional constraints of the SPR-C.

5 Conclusions

We have presented a modified version of the Superconvergent Patch Recovery with con-

straints (SPR-C) that includes the traction equilibrium at the contact area for frictionless and

friction problems. For each patch containing active contact points, an auxiliary SPR prob-

lem with information of both contacting bodies is used. The constraints are enforced in a
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(a) Problem scheme (b) Analysis mesh

Fig. 14: Example 3. Model of the contact problem between curved solids. Lengths in cm.

Surfaces in blue are clamped, and a constant displacement uy =−0.05 cm is applied on the

orange surfaces. The initial mesh is a non-conforming uniform grid with element size of

h ≈ 0.25 cm for both bodies.
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Fig. 15: Example 3. Comparison of the error in energy norm with uniform and adaptive

h-refinement using the ZZ-estimator and the SPR-C smooth stress field.

weak sense to avoid ill-conditioning of the systems to solve at each SPR patch. The non-

conforming nature of the meshes in the cgFEM prevents the direct coupling of SPR patches

between bodies in contact. However, the results show that the contact pressure equilibrium

is greatly improved with the SPR-C, especially inside those elements completely contained

within the contact zone. The use of polynomials to build the recovered stress field prevents

to capture the pressure discontinuity that appears at the end of the contact area. Nevertheless,

the accuracy of the resulting contact stress distribution is clearly enhanced when the SPR-C

technique is considered.
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(a) 6840 DOF (b) 15555 DOF (c) 42333 DOF

(d) 123306 DOF (e) 223743 DOF

Fig. 16: Example 3. Sequence of five meshes obtained through error-based h-adaptive re-

finement. Detail of the intersection between the discretization mesh and geometry around

the contact area.

Fig. 17: Example 3. Surface normal tractions (n ·σσσ)n using the FE solution (left) and the

smooth stress obtained with the SPR-C (right) for the last h-adapted mesh. Negative values

represent compression stress. Positive values (physically unfeasible) are colored in black.
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The numerical examples show that the definition of the smooth field σσσ∗ and the ef-

fectivity of the ZZ estimator are clearly improved when including the contact boundary

equilibrium in the SPR-C. Finally, we have combined the ZZ estimator with an automatic

h-adaptive refinement procedure that increases the efficiency of 3D contact problems solu-

tion, requiring fewer degrees of freedom to reach a prescribed error level. The h-adaptive

procedure guided by the accurate recovery-based error estimator is able to locate the limit

of the contact area and adequately refine the mesh in these regions, providing a better spatial

discretisation to capture the end of the contact zone.
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