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Doctorado en Matemáticas
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CIR Cox–Ingersoll–Ross
CPU central processing unit
DAE differential-algebraic equation
DG distributed generation
d-index differentiation index
DSA dynamic stability analysis
DSM demand-side management
e.g. for example (“exempli gratia”)
EM Euler-Maruyama
i.e. that is (“id est”)
IEEE Institute of Electrical and Electronics Engineers
IVP initial value problem
LE Lyapunov exponent
LLE largest Lyapunov exponent
MDS metric dynamical system
MET multiplicative ergodic theorem
m.s. mean square
NERC North American Electric Reliability Council
ODE ordinary differential equation
OU Ornstein-Uhlenbeck
PSS power system stabilizer
RDE random differential equation
RDS random dynamical system
RK Runge-Kutta
SDAE stochastic differential-algebraic equation
SDE stochastic differential equation
s-index strangeness index
SMIB single-machine infinite-bus
SSSA small-signal stability assessment



Abbreviations

SVD singular value decomposition
t-index tractability index
TSA transient stability analysis
uSDE underlying stochastic differential equation
VPP virtual power plant



Notation

C field of complex numbers
D domain of definition of a differential equations system
N field of natural numbers
R field of real numbers
R+ set of real nonnegative numbers
X defined euclidean d-dimentional space Rd
I = [t0, tf ] closed time interval of a differential equations system
Lν set of solutions of the derivative array F ν of order ν
C(I,Rn) set of continuous functions
Ck(I,Rn) set of k-times continuously differentiable functions
Ck,δb Banach space of Ck functions on Rd where the

k-th derivative is δ-Hölder continuous
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Resumen

La naturaleza aleatoria que caracteriza algunos fenómenos en sistemas
f́ısicos reales (e.g., ingenieŕıa, bioloǵıa, economı́a, finanzas, epidemioloǵıa
y otros) nos ha planteado el desaf́ıo de un cambio de paradigma del
modelado matemático y el análisis de sistemas dinámicos, y a tratar los
fenómenos aleatorios como variables aleatorias o procesos estocásticos.
Este enfoque novedoso ha tráıdo como consecuencia nuevas especifici-
dades que la teoŕıa clásica del modelado y análisis de sistemas dinámicos
deterministas no ha podido cubrir. Afortunadamente, maravillosas con-
tribuciones, realizadas sobre todo en el último siglo, desde el campo de
las matemáticas por cient́ıficos como Kolmogorov, Langevin, Lévy, Itô,
Stratonovich, sólo por nombrar algunos; han abierto las puertas para un
estudio bien fundamentado de la dinámica de sistemas f́ısicos perturba-
dos por ruido.

En la presente tesis se discute el uso de ecuaciones diferenciales alge-
braicas estocásticas (EDAEs) para el modelado de sistemas multif́ısicos
en red afectados por perturbaciones estocásticas, aśı como la evaluación
de su estabilidad asintótica a través de exponentes de Lyapunov (ELs).
El estudio está enfocado en EDAEs d-index-1 y su reformulación como
ecuaciones diferenciales estocásticas ordinarias (EDEs). Fundamenta-
dos en la teoŕıa ergódica, es factible analizar los ELs a través de sis-
temas dinámicos aleatorios (SDAs) generados por EDEs subyacentes.
Una vez garantizada la existencia de ELs bien definidas, hemos pro-
cedido al uso de técnicas de simulación numérica para determinar los
ELs numéricamente. Hemos implementado métodos numéricos basados
en descomposición QR discreta y continua para el cómputo de la ma-
triz de solución fundamental y su uso en el cálculo de los ELs. Las
caracteŕısticas numéricas y computacionales más relevantes de ambos
métodos se ilustran mediante pruebas numéricas. Toda esta investi-
gación sobre el modelado de sistemas con EDAEs y evaluación de su
estabilidad a través de ELs calculados numéricamente, tiene una intere-
sante aplicación en ingenieŕıa. Esta es la evaluación de la estabilidad
dinámica de sistemas eléctricos de potencia. En el presente trabajo de
investigación, implementamos nuestros métodos numéricos basados en

i



descomposición QR para el test de estabilidad dinámica en dos modelos
de sistemas eléctricos de potencia de una-máquina bus-infinito (UMBI)
afectados por diferentes perturbaciones ruidosas. El análisis en pequeña-
señal evidencia el potencial de las técnicas propuestas en aplicaciones de
ingenieŕıa.
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Abstract

The random nature that characterizes some phenomena in the real-world
physical systems (e.g., engineering, biology, economics, finance, epidemi-
ology, and others) has posed the challenge of changing the modeling and
analysis paradigm and treat these phenomena as random variables or
stochastic processes. Consequently, this novel approach has brought
new specificities that the classical theory of modeling and analysis for
deterministic dynamical systems cannot cover. Fortunately, stunning
contributions made overall in the last century from the mathematics
field by scientists such as Kolmogorov, Langevin, Lévy, Itô, Stratono-
vich, to name a few; have opened avenues for a well-founded study of
the dynamics in physical systems perturbed by noise.

In the present thesis, we discuss stochastic differential-algebraic
equations (SDAEs) for modeling multi-physical network systems under
stochastic disturbances, and their asymptotic stability assessment via
Lyapunov exponents (LEs). We focus on d-index-1 SDAEs and their
reformulation as ordinary stochastic differential equations (SDEs). Sup-
ported by the ergodic theory, it is feasible to analyze the LEs via the
random dynamical system (RDSs) generated by the underlying SDEs.
Once the existence of well-defined LEs is guaranteed, we proceed to
the use of numerical simulation techniques to determine the LEs nu-
merically. Discrete and continuous QR decomposition-based numerical
methods are implemented to compute the fundamental solution matrix
and use it in the computation of the LEs. Important numerical and
computational features of both methods are illustrated through numer-
ical tests. All this investigation concerning systems modeling through
SDAEs and their stability assessment via computed LEs finds an appeal-
ing engineering application in the dynamic stability assessment of power
systems. In this research work, we implement our QR-based numerical
methods for testing the dynamic stability in two types of single-machine
infinite-bus (SMIB) power system models perturbed by different noisy
disturbances. The analysis in small-signal evidences the potential of the
proposed techniques in engineering applications.
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Resum

La naturalesa aleatòria que caracteritza alguns fenòmens en sistemes
f́ısics reals (e.g., enginyeria, biologia, economia, finances, epidemiologia
i uns altres) ens ha plantejat el desafiament d’un canvi de paradigma
del modelatge matemàtic i l’anàlisi de sistemes dinàmics, i a tractar
els fenòmens aleatoris com a variables aleatòries o processos estocàstics.
Aquest enfocament nou ha portat com a conseqüència noves especifici-
tats que la teoria clàssica del modelatge i anàlisi de sistemes dinàmics
deterministes no ha pogut cobrir. Afortunadament, meravelloses con-
tribucions, realitzades sobretot en l’últim segle, des del camp de les
matemàtiques per cient́ıfics com Kolmogorov, Langevin, Lévy, Itô, Stra-
tonovich, només per nomenar alguns; han obert les portes per a un
estudi ben fonamentat de la dinàmica de sistemes f́ısics pertorbats per
soroll.

En la present tesi es discuteix l’ús d’equacions diferencials alge-
braiques estocàstiques (EDAEs) per al modelatge de sistemes multif́ısicos
en xarxa afectats per pertorbacions estocàstiques, aix́ı com l’avaluació
de la seua estabilitat asimptòtica a través d’exponents de Lyapunov
(ELs). L’estudi està enfocat en EDAEs d-index-1 i la seua reformulació
com a equacions diferencials estocàstiques ordinàries (EDEs). Fona-
mentats en la teoria ergòdica, és factible analitzar els ELs a través
de sistemes dinàmics aleatoris (SDAs) generats per EDEs subjacents.
Una vegada garantida l’existència d’ELs ben definides, hem procedit
a l’ús de tècniques de simulació numèrica per a determinar els ELs
numèricament. Hem implementat mètodes numèrics basats en descom-
posició QR discreta i cont́ınua per al còmput de la matriu de solució fon-
amental i el seu ús en el càlcul dels ELs. Les caracteŕıstiques numèriques
i computacionals més rellevants de tots dos mètodes s’illustren mit-
jançant proves numèriques. Tota aquesta investigació sobre el mode-
latge de sistemes amb EDAEs i avaluació de la seua estabilitat a través
d’ELs calculats numèricament, té una interessant aplicació en enginye-
ria. Aquesta és l’avaluació de l’estabilitat dinàmica de sistemes elèctrics
de potència. En el present treball de recerca, implementem els nostres
mètodes numèrics basats en descomposició QR per al test d’estabilitat
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dinàmica en dos models de sistemes elèctrics de potència d’una-màquina
bus-infinit (UMBI) afectats per diferents pertorbacions sorolloses. L’anàlisi
en xicotet-senyal evidencia el potencial de les tècniques proposades en
aplicacions d’enginyeria.
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ciado mis estudios de doctorado.

A todos, mil gracias.

viii



Dedicatoria
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CHAPTER 1
Introduction and

Objectives

1.1. Introduction

1.1.1. Modeling Multi-Physical Systems

Mathematical modeling is defined as the representation of the behav-
ior of systems, devices, objects, etc. by using concepts expressed in a
mathematical language. Mathematical models are extensively applied
in the scientific and engineering area. By manipulating and interpret-
ing mathematical terms, scientists and engineers are able to understand
the phenomena under study. In engineering, mathematical modeling is
crucial to understanding the behavior of complex systems that are gener-
ally a combination of mechanical, electrical, chemical, or other physical
components, which are known as multi-physical systems.

Nevertheless, to create a mathematical model of a complex multi-
physical system is an increasingly challenging exercise. First of all, it
is essential to decide what we will do with the model, whether it is a
robustness analysis, numerical simulation, optimization, or control pro-
cess of the network. Depending on the task, different modeling details
may be needed. In some cases, highly simplified (reduced) models may
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be enough, and in other cases, a highly detailed model could be neces-
sary. With these differing requirements in mind, model hierarchies are
usually developed for multi-physical systems. A model hierarchy allows
to choose the most simple model for a desired task, preserving as much
as possible the physical properties need for that task, being as accurate
as needed, and being its implementation as efficiently as possible.

An appealing class of multi-physical systems in the electrical en-
gineering area, where suitable model hierarchies have been built, are
the power network systems. In these systems, a task such as the power
flow analysis, where just the steady-state of the system is need to be
taken into account, a set of algebraic equations that models the con-
straints of the system (i.e., topological, geometric, electrical, mechanical,
etc. constraints) is enough. Nevertheless, when it is necessary to study
the system’s transient-state behavior, then a dynamical model through
differential equations is needed in addition to the model of algebraic
equations. Furthermore, if some parameters are treated as spatially dis-
tributed, a more complex model based on partial differential equations
should be considered. Other considerations, e.g. including (or neglect-
ing) specific physical phenomena, provoke the creation of new models
with different shapes, which are also part of the power systems model
hierarchy.

Let us focus on multi-physical systems assuming their parame-
ters are lumped. This kind of systems’ dynamical behavior is gener-
ally modeled employing ordinary differential equations (ODEs) coupled
to algebraic equations (AEs) representing such systems’ constraints.
This combined set of equations is called Differential-Algebraic Equa-
tions (DAEs), (DAEs), also known in the control context as descriptor
systems. They are a natural and widely requested mathematical rep-
resentation paradigm in many areas of science and engineering. In the
most general case, a DAE model can be expressed in the fully implicit
form

F (ẋ, x, u, t) = 0, (1.1)

typically accompanied by an initial condition xt0 = x0 and possibly com-
bined with an output equation y = G(x, u, t). Besides the term of de-
scriptor systems, multi-physical systems formulated in this fashion have
other denominations are implicit, generalized, singular, constrained, de-
generate, and semi-state systems.
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1.1.2. Incorporating Uncertainties

On the other hand, it is important to mention that real-world dynami-
cal systems evolve in the presence of noisy disturbances either on their
parameters, inputs, or initial conditions. The noise source has diverse
origins such as measurement errors, earthquake motion, epidemics, solar
radiation, wind speed, thermal noise, population fluctuation, and many
others. Regardless of its source, the presence of noise (also referred to
as randomness or stochasticity) can lead to non-trivial effects over the
dynamical system. Possible uncertain variations in the states’ trajecto-
ries of the system or changes in their stability properties are some of
the consequences registered, turning the deterministic-based studies in-
adequate for this new situation. Hence, it is essential to propose a way
to incorporate the noise into our dynamic models. A suitable choice is
to couple the noise as an additional term to the deterministic dynamic
equations as follows

dx

dt
= f(x, t, u) + “noise” . (1.2)

These noise-coupled expressions are well known as “stochastic differen-
tial equations” (SDEs), and the uncertain term is the white noise pro-
cess [68]. However, the implementation of SDEs is not trivial. Working
with them requires the use of new rules of calculus. Along the time, two
versions of stochastic calculus have been dominant; these are Itô and
Stratonovich calculi.

Dynamical systems perturbed by uncertain disturbances have ap-
propriately been modeled and analyzed in many disciplines through
SDEs (Itô or Stratonovich -type). During the last decades, there has
been a broad and fruitful development either in theory and applica-
tions. In like manner, DAEs have been the choice to treat constrained
dynamical systems on a deterministic framework, as mentioned before,
see [5], [48], [61], [68] and [15], [16], [52], [55] respectively. However,
modeling and analyzing the dynamic behavior of constrained systems
subject to white noise disturbances has stated the need for a general-
ized concept that covers both SDEs and DAEs. Such a requirement
has led to the appearance of “stochastic differential-algebraic equations”
(SDAEs). This is a relatively new framework, the study of its concepts,
mathematical properties, and numerical treatment has been limited to
the date. Some relevant contributions can be found in [22], [80], [95].
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1.1.3. Power Systems Modeled as SDAEs

A kind of constrained multi-physical systems of particular interest, be-
cause of their importance in the energy context, are the power network
systems. Here, the dynamical behavior of the different components into
a power system (i.e., synchronous machines, controllers, power convert-
ers, transmission lines, loads, etc.) together with its constraints (given
by the network topology, physical laws and restrictions, etc.) have been
traditionally represented by DAEs. Nonetheless, the need of incorporat-
ing perturbing phenomena of random/stochastic nature (such as wind
or solar generation, rotor vibrations in synchronous machines, stochas-
tic variations of loads, electromagnetic transients, measurement errors
in control devices, etc.) in the form of random variables or stochastic
processes makes it necessary the use of SDAEs. However, the scarce de-
velopment experienced with SDAE’s theory has had repercussions in the
applications, the studies of multi-physical systems based in SDAEs have
been modest and sparse. An exemplary case of this exiguous implemen-
tation is the power systems area. Some relevant engineering oriented
works which implement SDAEs in the study to power systems are [65],
[94]. Most of the engineering studies have instead made use of the SDE
forms. Nonetheless, it is significant to point out that right modeling of
constrained systems necessarily entails an explicit representation of the
system’s constraints via algebraic equations, or even more, the possible
implicit presence of constraints into the differential equations system,
which it is the case of the system modeled as d-index greater than 1
SDAE system. With this scenario, the SDAE setting is the right choice
to avoid issues in subsequent analysis and numerical treatment.

1.1.4. Lyapunov Exponents in SDAEs

The presence of noise perturbing a multi-physical system can drasti-
cally modify its dynamical behavior compared to the one in determinis-
tic condition. Among others, qualitative changes linked to the dynamic
stability of the system could come out. For example, noise can shift
the bifurcations stabilizing the system, or induce new stable states that
did not exist in the deterministic counterpart, or exciting internal os-
cillation modes. In this context, it is worth having techniques that
enable us to assess the dynamic stability conditions with noisy distur-
bances. An interesting tool is the one inspired in the “characteristic
exponents” introduced by A.M. Lyapunov in his remarkable Ph.D. the-
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sis [59] entitled “The general problem of the stability of motion”. The
nowadays called Lyapunov exponents (LEs), are a powerful instrument
in the asymptotic stability evaluation of dynamical systems. Although
the theoretical background of LEs is not new, this experimented with
a crucial development since the contribution given by Oseledets (1968).
The Multiplicative Ergodic Theorem (MET) of Oseledets [69] ensures
the regularity and the existence of the LEs belonging to a linear cocycle
over a metric dynamical system under some assumptions and conditions.
A fundamental merit of the ergodic theory framework is that it leads us
to a whole new field, the theory of random dynamical systems (RDS).
Moreover, this enables us to derive a theory of the LEs for RDSs, which
can be generated by random and stochastic, ordinary and partial differ-
ential equations. The interested reader is referred to [7] for a rigorous
presentation of this theory.

1.2. Thesis Objectives

Based on the information stated in the previous section, it is noticeable
the still not mature enough development of theory, and numerical treat-
ment techniques around SDAE systems. This added to the scarcity of
applications of the stability analysis strategies in real-world study-cases
such as power network systems. In order to perform a contribution in
these fields of studies, we state as main objective the study of concepts
and methods of modeling and stability analysis of constrained dynami-
cal systems under uncertainty based on stochastic differential-algebraic
equations, with an application to power network systems. Based on this
postulate, the specific objectives are identified as follows:

• Acquire a deep understanding of the fundamental concepts related
to stochastic differential-algebraic equations and the generation of
random dynamical systems.

• Verify through the theory the use of Lyapunov exponents as asymp-
totic stability index of dynamical systems perturbed by noise mod-
eled via SDAEs.

• Develop suitable numerical techniques to compute the Lyapunov
exponents from an SDAE setting.

• Evaluate the methods through their implementation into some nu-
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merical examples in order to evaluate its precision and computa-
tional cost.

• Working out selected conventional and validated study-cases of
power systems modeled through SDAEs using the proposed nu-
merical methods for computing Lyapunov exponents.

1.2.1. The Road Towards the Objectives’ Achievement

The starting point of the present research work is the review of concepts
that permit the correct asymptotic stability assessment of differential-
algebraic equations driven by Gaussian white noise through the method
of LEs. We start by surveying the theory of SDAEs. In particular, we
are interested in SDAEs systems of the form

Edxt = f0(xt)dt+
m∑

j=1
f j(xt)dw

j
t , t ∈ R+,

together with consistent initial value xt0 = x0. Following the ideas from
[22], [23], [54], [80], [95], properties such as strong solutions’ existence
and uniqueness are reviewed. Analogously to the DAE case, We also
define the class of index-1 SDAEs. Further, we show that SDAE systems
with this structure can be reduced to an equivalent SDE system that
preserves the inherent dynamics of the original SDAE. Additionally, we
know from the RDSs theory that an autonomous Itô SDE generates an
RDS (see [7]). Therefore, the Oseledets’ MET can be applied to define
the Lypaunov exponents and Lyapunov spectrum.

Once we have verified the theoretical framework that guarantees the
existence of well-defined LEs, we study the numerical methods based on
the QR factorization of the fundamental solution matrix that allow the
numerical computation of spectral values associated to the Lyapunov
spectra. The first technique requires computing the fundamental so-
lution matrix and forming an orthogonal factorization; the second one
involves performing a continuous QR decomposition of the fundamental
solution matrix. Both techniques have been extensively studied in works
with applications to deterministic ODE and DAE systems, see [12], [13],
[28], [29], [57], [58]. This research essentially follows the ideas exposed
in [18], who extended the QR methods to a stochastic version.

Finally, the whole concepts and computational methodologies are
applied to assess the asymptotic stability of power systems affected by
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stochastic disturbances using the LEs associated with their SDAE mod-
els. The stability under stochastic perturbations of didactic models such
as the single machine infinite bus system is tested. This is an attractive
attempt to evidence the usefulness of the LEs as an index of stability for
dynamical systems working under uncertainty and opening the doors to
its potential application on large-scale systems stability analysis.

The research studies and results presented in this thesis document
has been carried out within the Research Group INTERTECH of Univer-
sitat Politècnica de València (UPV), led by Prof. Dr. Pedro Fernández
de Córdoba. Additionally, the research activities have been partially
performed in the Research Group Numerical Mathematics of Technische
Universität Berlin (Germany) under the supervision of Prof. Dr. Volker
Mehrmann.

1.3. Outlines of the Thesis

The present thesis document, which contains a compilation of author’s
doctoral researh work, is organized in the following manner:

We start with Chapter 2 (Modeling Dynamics of Constrained Sys-
tems under Uncertainty). This chapter is a summary of the theory
related to constrained ODE systems, which are called DAEs. The im-
portant concept of index is tackled and explained, with emphasis on the
differential and strange indexes, which are of interest to our studies. We
continue with the theory of SDEs, as the mathematical expression of a
dynamical system perturbed by noise. The SDAE, understood as the
constrained version of the SDE systems is finally studied. Specifically,
we refer to the d-index-1 (or strangeness-free) quasi-linear SDAE form,
which can be reduced to an underlying system. Some methods for the
numerical integration of SDEs are digested in the last section.

Chapter 3 (Random Dynamical Systems and Lyapunov Stability),
is devoted to briefly recall some basic concepts about Random Dynam-
ical Systems generated by SDAEs and their properties. The fundamen-
tals of this topic were mainly taken from L. Arnold’s work published in
his book [7]. We revisit the main concepts about stability in the sense of
Lyapunov, as well as the two methods to assess the stability of a given
solution. Afterward, we focus on the first method for testing stability
based in characteristic numbers better known as Lyapunov exponents,
whose value is a suitable index to determine the asymptotic growth rate
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of the system solutions. This section summarizes explanations about
the existence and well-posedness of the Lyapunov exponents.

With base on the theory reviewed about the existence of well-
defined Lyapunov Exponents in the RDS generated by SDEs, along with
Chapter 4 (Numerical Methods for computing LEs), we provide numer-
ical techniques for the numerical computation of Lyapunov Exponents
for given SDE systems. The methods are based on QR decomposition of
the fundamental solution matrix. Two different methods, namely con-
tinuous and discrete, are studied and implemented along with the use of
Euler-Maruyama and Milstein discretization schemes for numerical in-
tegration. The numerical accuracy, computational cost, and robustness
of the QR-based methods are tested numerically through two examples.

In Chapter 5 (Application to Power Systems), we present a sur-
vey of the main concepts regarding power network systems in dynamic
regime, emphasizing topics such as technical definitions and classification
of stability (according to IEEE/CIGRE), dynamical modeling consider-
ing uncertainties with SDAEs, and dynamic stability analysis. Here, we
show the benefits of using the computed Lyapunov Exponents calculated
by QR-based methods. In the two single-machine infinite-bus (SMIB)
power system test cases proposed in the last section of this chapter, it
has been possible to assess the system’s asympotic stability condition
for different stochastic perturbation levels and the maximum stochastic
volatility allowed by the system before losing stability.

Lastly, Chapter 6 (Final Discussion) contains the main conclud-
ing ideas, relevant considerations and remarks, future works of interest
in line with the thesis, and an itemized list of the publications made
along the present doctoral research.



CHAPTER 2
Modeling Dynamics of

Constrained Systems under
Uncertainty

2.1. Differential-Algebraic Equations

The exercise of modeling the dynamics of multi-physical systems leads
typically to a formulation based on differential equations. Nevertheless,
in real-wold systems in general, the states are usually constrained by con-
servation laws, geometric, topological, geometric, electrical, mechanical,
etc. restrictions. They must then be included in the model through Al-
gebraic Equations (AEs), which model such restrictions. This indicates
that constrained dynamic models arise naturally from the real system.
It is a common operation to comprise such constraints of the system,
transforming them algebraically (vanishing the constraints) to a set of
the known ordinary differential equations (ODEs) in minimal coordi-
nates. However, in practice, such transformation could not be feasible
in some cases, and even not recommendable due to the numerical and
analytical issues this conversion could cause. As far as possible, the al-
gebraic constraints must be kept, and the system be treated analytically
and numerically within this form.
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The combined group of ODEs accompanied by AEs are called
differential-algebraic equations (DAEs), also named descriptor systems.
The subject of DAEs has been extensively studied from the analytic,
numerical and the application point of view. Abundant literature is
available on this topic, see e.g. [15], [16], [52], [55] for further reading.
The most general formulation of DAE, known as standard form, which is
used in the general mathematical analysis and general numerical meth-
ods, has the following fully implicit form

F (ẋt,xt, t) = 0, (2.1)

where we denote by C0(I,Rn) the set of continuous functions, I ⊆ R is
a compact time interval, and xt ∈ Rn represents the system’s unknown
variables. We assume that F ∈ C0(I×Dx×Dẋ,Rn) is sufficiently smooth
and that Dx,Dẋ ⊆ Rn are open sets [52]. If an initial condition

xt0 = x0, x0 ∈ Rn, (2.2)

on the domain I := [t0, tf ], accompanies the DAE (2.1), it is known as an
initial value problem (IVP) DAE. Commonly, to analyze the nonlinear
form (2.1) requires its linearization along with its solutions. The result
of the linearization process is the linear DAE form

Etẋt = Atxt, t ∈ I, (2.3)

with the matrix pair Et, At ∈ C0(I,Rn×n), which is also known as
variational equation.

Concerning a DAE system’s solutions, a function can be consedered
a solution of an specific DAE if it satisfies such DAE pointwise and
satisfies the initial conditions. Furthermore, a whole IVP DAE, like (2.1)
with the initial value (2.2), is called consistent if there exist at least one
solution that satisfies such initial value problem. It is interesting to see
a DAE solution, from a geometrical point of view, as an ODE whose
solutions are restricted to manifolds due to the constraints.

The validation of a model given by the IVP DAE, in order to guar-
antee its consistency with the system that represents, requires the study
of the existence and uniqueness of the solutions. This is not an easy
task in the DAEs’ field. Firstly, there is an important property to ac-
complish; this is the regularity. A DAE system is called regular if its
number of equations is equal to the number of unknowns. If the DAE
is not regular, a regularization process is needed [15]. Also, the analysis
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and numerical treatment of the solutions for the different DAE forms
require remodeling procedures that involve transformations of the equa-
tions, as well as differentiations to filter out the hidden constraints. The
characterization of the DAEs, in order to perform these transformations
and differentiations, is discussed in the following section.

2.1.1. The Index of DAEs

The analysis and numerical treatment of ODEs, which can be consid-
ered as an special type of DAEs, has been extrensively studied and is
well understood. In fact, the most of the techniques of simulation, sta-
bility analysis, control, and optimization are available for ODEs. On
the contrary, several difficulties arise when the DAEs are anlyzed and
treated. Identifying and measuring those issues has led to the birth and
the development of different approaches called index concepts. An in-
dex of a DAE is a nonnegative integer that provides useful information
about the mathematical structure and potential difficulties in its anal-
ysis and the numerical solution. The height of an index in the DAE is
directly proportional to the specific difficulties one can expect. A wide
variety of indexes have been proposed and developed, based on the kind
of difficulty to be measured. Extensive bibliography can be found in
[52], [55], [63], [84] about index concepts such as geometric index, global
index, uniform index, index of nilpotency, perturbation index, or struc-
tural index. However, their individual characteristics and the relations
between them are beyond this study. Since our research work needs are
mainly oriented to the equivalent transformations and differentiations
of the DAEs, in order to apply classical numerical methods, we briefly
get focus on three important indexes tractability index, differentiation
index, and the strangeness index.

2.1.1.1. Tractability Index

Shortly identified in the literature as t-index, the tractability index is
adequate for the class of DAEs with properly stated leading term such
as

Et
d

dt
(Dtxt) = b(xt, t), t ∈ I, (2.4)

whereEt ∈ C(I,Rn,n),D ∈ C1(I,Rn,n), b(xt, t) ∈ Rn, xt ∈ Rn, ker(Et)⊕
range(Dt) = Rn for all t ∈ I, and there exists a projector Rt ∈
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C1(I,Rn,n) such that

range(Rt) = range(Dt), ker(Rt) = ker(Et) for all t ∈ I.

The t-index proposes the construction of a chain of matrices for decou-
pling the DAE into characteristic components. Here, the t-index value
is given by the length of the sequence of matrices need to accomplish
the decoupling. The proposal of the t-index is not developed in view of
numerical methods, but it is suited either for discretizations or for the
analysis of the DAE in aspects such as the determination of consistent
initial values, the determination of the smoothness requirements to the
solution, and system matrices and vectors, see [62], [84].

2.1.1.2. Differentiation Index

Either the differentiation index as well as the strangeness index presented
below, are oriented to the differentiation process of the DAE. They are
based on the derivative array approach developed by Campbell [16]. Let
us consider the general nonlinear DAE (2.1). If we successive differenti-
ate it with respect to t up to order l and summarize all the derivatives
together with the original form, we obtain the so-called derivative array.
This inflated system has the form

F l(x(l+1)
t , . . . , ẋt,xt, t) =




F (ẋt,xt, t)
d
dtF (ẋt,xt, t)

...(
d
dt

)l
F (ẋt,xt, t)



. (2.5)

We require the solvability of (2.5) in an open set. Furthermore, we
consider every smooth solution of (2.1) solves (2.5) as well, and vice-
versa. Are also defined the Jacobians

Ml(x(l+1)
t , . . . , ẋt,xt, t) = F l;ẋt,...,x

(l+1)
t (x(l+1)

t , . . . , ẋt,xt, t), (2.6)
N l(x(l+1)

t , . . . , ẋt,xt, t) = −F l;x(x(l+1)
t , . . . , ẋt,xt, t), (2.7)

which corresponds to the derivative array in the linear form (2.3) [84].
Then, we are ready to define the differentiation index.
Definition 2.1.1 (Differentiation index). Suppose that the DAE (2.1)
is a solvable system on an open set. If νd is the smallest integer l (if
it exists) such that the solution x is uniquely defined by (2.5) for all
consistent initial values, then we call νd the differentiation index (d-
index) of the DAE (2.1).
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The d-index, roughly speaking, tells us the number of differenti-
ations that are required to convert a DAE system into an ODE. The
d-index is the most known and the most used approach for DAEs. But,
it has an important drawback, it is not suitable for general DAE forms
since it is based on a solvability concept that requires unique solvabil-
ity. Therefore, another concept has been developed to generalize this
approach.

2.1.1.3. Strangeness Index

The concept of the strangeness index was developed by Kunkel and
Mehrmann. It is a generalization of the differentiation index to over- and
underdetermined DAE systems. The concept is based on the following
Hypothesis

Hypothesis 2.1.2 ([63]). Consider the general nonlinear DAE (2.1)
and suppose that there exist integers ν, a, and d such that the set

Lν = {zt ∈ R(ν+2)n+1|F ν(zt) = 0}

associated with F is nonempty and such that for every point

z0 = (x(ν+1)
0 , . . . , ẋ0,x0, t0) ∈ Lν

there exists a sufficiently small neighborhood in which the following prop-
erties are satisfied:

1. We have rank Mν(zt) = (ν + 1)n− a on Lν such that there exists
a smooth matrix function Z2 of size (ν + 1)n × a and pointwise
maximal rank, satisfying ZT

2 Mν = 0 on Lν .

2. We have rank Â2(zt) = a, where Â2(zt) = ZT
2 N ν [In 0 · · · 0]T

such that there exists a smooth matrix function T 2 of size n × d,
d = n− a, and pointwise maximal rank, satisfying Â2T 2 = 0.

3. We have rankF ẋt(ẋt,xt, t)T 2(zt) = d such that there exists a
smooth matrix function Z1 of size n × d and pointwise maximal
rank, satisfying rank Ê1T 2 = d, where Ê1 = ZT

1 F ẋt.

With the Hypothesis 2.1.2 as base, we define the strangeness index
concept as follows.
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Definition 2.1.3 (Strangeness index). Given the nonlinear DAE in the
general form (2.1), the smallest value of ν, denoted by νs, such that the
right-hand side F = (ẋt,xt, t) of (2.1) satisfies the Hypothesis 2.1.2, is
called the strangeness index (s-index) of (2.1). Furthermore, if (2.1) has
ν = 0 (vanishing s-index), then it is called strangeness-free (s-free).

The s-index owns the same simple interpretation as d-index, which
is the minimum number of differentiations needed to transform the DAE
into an ODE. But, the value of s-index is one below the d-index, con-
sidering that both indexes exist. Notice that not all the systems can
have this generalized differentiation index, but many of those from ap-
plications do. In fact, s-free DAEs are commonly found in transmission
power systems modeled as DAEs.

Under very mild assumptions, DAE systems for which there exists
an s-index, can be reformulated as a s-free system with the same solution,
in which the algebraic and differential parts of the system are easily
separated.

2.1.2. Some Classes of DAEs

The DAE in standard form (2.1) is a beneficial general representation
that permit its suitable analysis and numerical treatment. Neverthe-
less, in practice, the structure of a DAE strongly depends on the ap-
plication where they come from. Based on this, there is an extensive
classification of DAEs arising from different origins and with different
structures such as DAEs with linear derivative term, nonlinear deriva-
tive term; fully implicit, semi-implicit, semi-explicit, quasi-linear, lin-
ear; with variable coefficients (nonautonomous), or constant coefficients
(autonomous), among others; see [16], [52], [55] for details. The clas-
sification of DAEs by their structure is fundamental since most of the
analysis concepts and numerical methods have been developed for each
specific form. In this section, we define three forms of DAEs that are
of interest to our research. The first one is the autonomous quasi-linear
DAE and has the form

Eẋt = f(xt), t ∈ I, (2.8)

where E ∈ Rn×n is known as “leading matrix”, the vector-valued func-
tion f ∈ Ck(Dx,Rn) (for some k ≥ 1) is called right-hand side function,
and xt ∈ C1(I,Rn) are the unknown variables of the quasi-linear DAE.
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Dx ⊆ Rn is an open set. Moreover, an special subclass of quasi-linear
DAE is the semi-implicit DAE

E1ẋt = f1(xt), (2.9a)
0 = f2(xt), (2.9b)

with t ∈ I. Where f1 ∈ Ck(Dx,Rd), f2 ∈ Ck(Dx,Ra), and xt ∈
C1(I,Rn). Here the leading matrix of (2.9) is a singular matrix and
has the structure

E :=
[
E1
0

]
,

withE1 ∈ Rd×n. Here we consider d = n−a, with d denoting the number
of differential equations and a the number of algebraic equations. Fur-
thermore, if the block matrix of (2.9a) satisfies E1 := [ Id 0 ] (where Id is
the identity matrix), then the form (2.9) corresponds to a semi-explicit
DAE. As an interesting remark, there an interesting further subclass
of semi-explicit DAE whose special structure arises naturally in many
applications; this is the Hessenberg DAE form, see [16], [55]. When a
nonlinear DAE form is linearized with respect to a (constant) solution,
we have a linear DAE. In this section, we present the autonomous linear
DAE

Eẋt = Axt, t ∈ I, (2.10)

where the leading matrix E ∈ Rn×n and the right-hand side matrix
A ∈ Rn×n are constant matrices. The vector xt ∈ C1(I,Rn) represents
the unknown variables.

2.2. Stochastic Differential Equations

The development of theory and numerical treatment for dynamical sys-
tems expressed in ODEs and DAEs, and their applications to the study
of multi-physical systems, has been the most common activity in the sci-
entific and engineering area. However, as discussed previously in Chap-
ter 1, the dynamical systems studies’ orientation towards a deterministic
viewpoint is an incomplete exercise. The strong presence of randomness
or stochasticity, so-called uncertainty in general, shaped like interfer-
ence, noise, or other uncertain physical phenomena in the real-world
systems makes unavoidable neglecting their incorporation into dynami-
cal models. It is possible to categorize the presence of uncertainties into
systems in three groups:
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• initial conditions,
• inputs or stimulations,
• physical parameters.

In the last two categories, one can incorporate the uncertainties in the
form of additive or multiplicative uncertain disturbances, respectively.
So, in line with the equation (1.2) presented in the introductory chapter,
we can mathematically define a noisy differential equation by coupling
the uncertain disturbance in the form of a noise process ξt into a general
ODE form as follows

dx

dt
= f0(xt, t) + f1(xt, t)ξt. (2.11)

Then, the original ODE’s deterministic evolution becomes a stochastic
differential equation (SDE) with the incorporation of the noisy forcing.
Here, the form of the expression f1(xt, t) determines whether the noise is
additive or multiplicative in the SDE (if f1 ≡ cte. the noise is additive).

Although the presence of noise usually does nothing more than
blurring the deterministic trajectories of the system variables. In some
dynamical systems, overall in the ones characterized by a high nonlin-
earity where stochastics acts as a driving force, the noise’s action can
radically change their dynamics compared to their behavior in a deter-
ministic regime. In this context, a formal study on the noise effects in
the system dynamics is feasible in terms of SDEs.

There are some options of stochastic processes to describe the noise
ξt in (2.11) such as the Brownian motion, fractional Brownian motion,
Lévy noise, Poisson noise, etc. The Brownian motion, better known
in mathematics as Wiener process (in fact, Brownian motion is a con-
cept from physics, but mathematically defined with the name of Wiener
process), is widely used to model uncertainty in many applications in
engineering, biology, economics and finance [72]. The Wiener process
is characterized by being a continuous process with stationary indepen-
dent increments. It is the most basic stochastic process that allows us
to model continuous uncertainty.

Definition 2.2.1. (Wiener process) A stochastic process wt(ω) = ω(t)
with t ∈ R+, where ω ∈ Ω, defined on the complete probability space
(Ω,F ,P) with a filtration (Ft)t≥t0, where F = B(Ω) is the σ-algebra of
Borel sets in Ω, is called Wiener process if the following conditions hold:

1) w0 = 0 a.s.,
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2) sample paths of the function wt is a.s. continuous,
3) the function wt is of unbounded variation in every interval,
4) wt has independent increments with wt+h−wt ∼ N (0, h) ∀ t, h > 0,

where N (µ, σ2) denotes the normal distribution with expected value
µ and variance σ2.

Furthermore, Each j-th Wiener process is understood as a process
with independent increments such that (wt − ws) ∼ N (0, t − s), i.e., is
a Gaussian random variable for all 0 ≤ s < t, such that

E[wt − ws] = 0, E[wt − ws]2 = t− s, E[wtws] = min(s, t).

By using the differential equation given in the form (2.11), and the
Brownian motion expressed as the time derivative of the Wiener process

dwt
dt

= ξt, (2.12)

also called white noise process, we obtain the SDE of the form

dx = f0(xt, t)dt+ f1(xt, t)dwt, t ∈ I, (2.13)

where the function f0 ∈ Ck(Dx,R) (for some k ≥ 1) is known as “drift”,
the function f1 ∈ Ck+1(Dx,R) is known as the “diffusion”, with the
Wiener process wt. Since the Wiener process is nowhere differentiable,
it is more convenient to represent equation (2.13) in its integral form as

xt = xt0 +
∫ t

t0
f0(xs, s)ds+

∫ t

t0
f1(xs, s)dws, t ∈ I. (2.14)

Here, the first integral is a stochastic Riemann-Stieltjes integral, and
the second one is a stochastic integral (see, e.g. [68]). The presence of
a stochastic integral requires the use of special rules of calculus. In this
regard, two approaches are known: the Itô and the Stratonovich scheme.
In the case of SDEs with additive noise, the representations in Itô and
Stratonovich are equivalent. In other cases, swapping between Itô and
Stratonovich interpretations is feasible by converting the SDEs through
the following formula that relates the two definitions

f̄0(xt) = f0(xt)−
1
2f1

∂f1
∂xt

(xt). (2.15)

Both the Itô and Stratonovich interpretations have their own rules
of calculus. Each of the two with their advantages and drawbacks, see



18 Chapter 2. Modeling Dynamics of Const. Syst. under Uncertainty

[68] for further details. In the present research work, we will adopt the
Itô’s interpretation.

With base on the equation (2.13), we present the general formu-
lation of a d-dimensional nonlinear SDE with multiple noise sources as
follows

dxt = f0(xt)dt+
m∑

j=1
f j(xt)dw

j
t , t ∈ I, (2.16)

with the drift f0 ∈ Ck(Dx,Rd) (for some k ≥ 1), and the diffusions
f1, . . . ,fm ∈ Ck+1(Dx,Rd). Here, wjt (for j = 1, . . . ,m) form an m-
dimensional Wiener process defined on the complete probability space
(Ω,F ,P) with a filtration (Ft)t≥t0 , where F = B(Ω) is the σ-algebra (or
collection of events) of Borel sets in Ω. Each j-th Wiener process wt is
understood as a process such that wt(ω) = ω(t), where ω ∈ Ω, i.e., the
elements of Ω are identified with the paths.

In this case, the relationship between Itô and Stratonovich ap-
proaches is denoted by

f̄ i0(xt) = f i0(xt)−
1
2

d∑

j=1

m∑

k=1
fjk

∂fk
∂xt

(xt), i = 1, . . . , d, (2.17)

The constrained nature of real-world noisy dynamical systems makes
it necessary to include the algebraic equations that model the restric-
tions to the systems of SDEs. This new class of differential equations
on manifolds is discussed below.

2.3. Stochastic Differential-Algebraic Equations

Consider a system of quasi-linear stochastic differential-algebraic equa-
tions (SDAEs) of the form

Edxt = f0(xt)dt+
m∑

j=1
f j(xt)dw

j
t , t ∈ I, (2.18)

with a singular matrix E ∈ Rn×n of rank d < n. The function f0 ∈
Ck(Dx,Rn) (for some k ≥ 1) is the drift, and f1, . . . ,fm ∈ Ck+1(Dx,Rn)
are the diffusions. Here I := [t0, tf ] ⊆ R+ is a closed time interval and
Dx ⊆ Rn is an open set. Furthermore, wjt (for j = 1, . . . ,m) form an m-
dimensional Wiener process defined on the complete probability space
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(Ω,F ,P) with a filtration (Ft)t≥t0 . Each j-th Wiener process wt is a
process such that wt(ω) = ω(t), where ω ∈ Ω.

The representation of equation (2.18) in its integral form is

Ext = Ext0 +
∫ t

t0
f0(xs)ds+

m∑

j=1

∫ t

t0
f j(xs)dwjs, t ∈ I. (2.19)

We assume consistent initial values xt0 = x0, independent of the
Wiener processes wjt and with finite second moments [68]. A solution
xt = x(t, ω) of (2.19) is an n-dimensional vector-valued Markovian
stochastic process depending on t ∈ I and ω ∈ Ω (the parameter ω
is commonly omitted in the notation of x). Such a solution can be de-
fined as strong solution if it fulfills the following conditions, see e.g. [23],
[95].

• x(·) is adapted to the filtration (Ft)t≥t0 ,

•
∫ tf
t0 |f `0(xs)|ds <∞ almost sure (a.s.), for all ` = 1, . . . , n,

•
∫ tf
t0 |f `j (xs)|2dwjs <∞ a.s., for all j = 1, . . . ,m, and ` = 1, . . . , n,

• (2.19) holds for every t ∈ I a.s.

Because of the presence of the algebraic equations associated with
the kernel of E, the solution components associated with these equa-
tions would be directly affected by white noise and not integrated. To
avoid this, a reasonable restriction is to ensure that the noise sources
do not appear in the algebraic constraints. According to [80], [95], this
assumption can be accomplished in SDAE systems whose deterministic
part

Eẋt = f0(xt), t ∈ I, (2.20)

which is an autonomous quasi-linear DAE as (2.8), has tractability
index-1 [55], [95], whose constraints are regularly and globally uniquely
solvable for parts of the solution vector. Based on these ideas, the fol-
lowing definition is stated:

Definition 2.3.1. ([95]) The SDAE system (2.18) is called an index-1
SDAE if

• the noise sources do not appear in the constraints, and
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• the constraints are globally uniquely solvable for the algebraic vari-
ables.

In this work, we slightly modify the previous assumptions and
consider SDAE systems whose deterministic part (2.20) is a regular
strangeness-free DAE [52] i.e., it has differentiation index-1. A sys-
tem with these characteristics can be transformed into a semi-explicit
form employing an appropriate kinematic equivalence transformation
[15], [57]. Then, there exists a unique pair of projector matrices P

PEQ =
[
Id 0
0 0

]
.

Pre-multiplying (2.18) by P , and changing the variables xt according
to the transformation xt = Qx̂t, with x̂t =

[
x̂Dt , x̂

A
t

]
, we obtain the

decoupled semi-explicit form

dx̂Dt = f̂
D
0 (x̂Dt , x̂At )dt+

m∑

j=1
f̂
D
j (x̂Dt , x̂At )dwjt , (2.21a)

0 = f̂
A
0 (x̂Dt , x̂At )dt+

m∑

j=1
f̂
A
j (x̂Dt , x̂At )dwjt , (2.21b)

where x̂Dt and x̂At is a separation of the transformed state into differential
and algebraic variables, respectively, that is performed in such a way that
the Jacobian of the function f̂A0 with respect to the algebraic variables
is nonsingular, see [52] for details of the construction. The condition
that the noise sources do not appear in the constraints, implies that
∑m
j=1 f̂

A
j ≡ 0, so that the algebraic equations in (2.21b) can be solved

as
x̂At = FA(x̂Dt ),

and inserted in the dynamic equations (2.21a) yielding an ordinary SDE

dx̂Dt = f̂
D
0 (x̂Dt ,FA(x̂Dt ))dt+

m∑

j=1
f̂
D
j (x̂Dt ,FA(x̂Dt ))dwjt . (2.22)

The resulting equation is termed as underlying sotchastic differential
equation (uSDE) of the strangeness-free SDAE. It acts in the lower-
dimensional subspace Rd, with d = n− a (where a denotes the number
of algebraic equations). The SDE system (2.22) preserves the inherent
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dynamics of a strangeness-free SDAE system [55]. In this way, the al-
gebraic equations can be removed from the system. However, whenever
a numerical method is used for the numerical integration, then one has
to make sure that the algebraic equations are solved adequately at each
time step so that the back-transformation to the original state variables
can be performed.

2.4. Numerical Integration Methods

It has been seen that a d-index-1 (or strangeness-free) SDAE can be re-
duced to its uSDE by using suitable transformations. This makes it fea-
sible to solve an IVP SDAE (2.18) by integrating the IVP uSDE (2.22).
Most of the SDEs are non-integrable analytically. So, it is required
to use numerical methods to approximate the solutions numerically. In
this regard, the numerical schemes used for the solution of ODEs, have a
very low performance when implemented in SDEs because of their poor
numerical convergence. There are discretization schemes specifically de-
veloped to integrate SDE systems numerically. In literature such as [45],
[48], [61], [68] and references therein, one can find diverse implicit and
explicit methods. Some of these schemes more convenient for the Itô and
other ones for the Stratonovich formulation (e.g., Usually only the Itô
calculus allows us to exploit powerful martingale results for numerical
analysis.) [73].

The different numerical schemes are identified through their order
of convergence, which is a measure of efficiency. This plays a crucial role
in the design of numerical algorithms. Depending on the problem, there
are mainly two types of convergence. These are distinguished on base
whether it is required

• having approximations to the process trajectories themselves, or
• having approximations to the corresponding distributions.

These types of convergence are shortly identified as the strong and the
weak convergence criterion, respectively.

For the proposes of this research work, the numerical integration
of our SDE systems will focus on the use of Taylor schemes. So, let us
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consider the IVP SDE system of the form

dxt = f0(xt)dt+
m∑

j=1
f j(xt)dw

j
t , xt0 = x0, (2.23)

to be integrated numerically on the defined time interval [t0, T ]. It is
chosen a time discretization with the grid points

t0 < t1 < . . . < tN−1 < tN = T,

with a step-size h = T/N . Then, we discuss in the following sec-
tions some widely-used first-order numerical schemes for Itô-type SDE
systems. Here, we restrict ourselves to the particular case known as
diagonal-noise case, where m = d and no correlations between the dif-
fusion terms in the SDE system are assumed, see [48].

2.4.1. Euler-Maruyama Method

The Euler-Maruyama (EM) scheme is the simplest method used to solve
SDEs numerically. The method requires the system to be formulated ex-
clusively in Itô form (actually, its equivalent scheme for the Stratonovich
form is the Euler-Heun method). The method is the analog of the Euler
method for ODEs generalized to SDEs.

Considering the diagonal-noise case. The EM approximation for
the kth equation (with k = 1, . . . , d) of the Itô-type SDE system (2.23)
is a continuous-time stochastic process that satisfies the iterative scheme

Y k
n+1 = Y k

n + hfk0 (Yn) + fkk (Yn)∆W k
n , Y0 = xk0, (2.24)

for n = 0, 1, . . . , (N − 1), where Yn = Ytn , the step-size h = T/N =
tn+1 − tn, ∆Wn = [Wtn+1 −Wtn ] ∼ N (0, h) with Wt0 = 0. The random
variables ∆Wn are independent and identically distributed normal ran-
dom variables with expected value zero and variance h. The EM scheme
has a strong order of convergence 0.5, and weak order of convergence 1.
The method is considered simple and crude, somewhat inefficient, and
inaccurate unless a small step-size h is used. Also, it often exhibits poor
stability properties.

2.4.2. Milstein Method

If we consider one additional term from the stochastic Taylor expansion,
a strong order of convergence 1.0 is obtained. This is known as Milstein
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scheme. In the same way than section 2.4.2, for a d-dimensional Itô-type
SDE system (2.23), the Milstein scheme for the kth component (with
k = 1, . . . , d) is given by

Y k
n+1 = Y k

n + hfk0 (Yn) + fkk (Yn)∆W k
n

+1
2f

k
k (Yn)∂f

k
k

∂xkt
(Yn)

[
(∆W k

n )2 − h
]
, Y0 = xk0, (2.25)

for n = 0, 1, . . . , (N − 1), where Yn = Ytn , the step-size h = T/N =
tn+1 − tn, ∆Wn = [Wtn+1 −Wtn ] ∼ N (0, h) with Wt0 = 0. The Milstein
scheme converges strongly with order 1 and weakly with order 1. Note
that the additional term considered implies the calculation of the first
derivative of fkk . The interested reader can review in [48] a derivative-
free version of the Milstein scheme and its properties.

2.4.3. Runge-Kutta Method

Similarly to Euler scheme, the Runge-Kutta (RK) method for SDEs is
a generalization of the Runge-Kutta method for ODEs to SDEs. For
the same multi-dimensional Itô-type SDE system (once again in the
diagonal-noise case) we have the most basic one-step RK scheme for the
kth equation (with k = 1, . . . , d) as

Y k
n+1 = Y k

n + hfk0 (Yn) + fkk (Yn)∆W k
n

+1
2
[
fkk (Zn)− fkk (Yn)

] [
(∆Wn)2 − h

]
h−1/2,

Y0 = xk0, (2.26)

for n = 0, 1, . . . , (N − 1), where Yn = Ytn , the step-size h = T/N =
tn+1 − tn, ∆Wn = [Wtn+1 −Wtn ] ∼ N (0, h) with Wt0 = 0. Here, the
expression

Zn = Yn + fk0 (Yn)h+ fkk (Yn)h1/2.

The RK scheme has strong and weak order of convergence, both
equal to 1.





CHAPTER 3
Random Dynamical

Systems and Lyapunov
Stability

In Chapter 2, we have discussed the properties of an autonomous s-free
SDAE, as well as its reduction to an uSDE, which preserves the dynamic
characteristics of the original system. Using the back-transformation,
the definitions and properties attributed to the uSDE, and its analysis
can be extended to the original SDAE. For this reason, in the present
Chapter we will talk directly about random dynamical systems gener-
ated by SDE systems and assume this dynamical system with noise also
corresponds to the original SDAE within which the aforementioned SDE
system underlies.

Next, along with the Chapter, we evoke the theory of stability in
dynamical systems in Lyapunov’s sense. Assuming the ergodicity of
random dynamical systems and under some integrability conditions, we
define the Lyapunov exponents in linear cocycles as a generalization of
the Lyapunov exponents in the deterministic case. The theory discussed
in this part is strongly inspired in the concepts of random dynamical
systems and Lyapunov exponents developed by L. Arnold in [6], [7], and
other remarkable contributions mainly made by his known as “Bremen
group”.
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3.1. Random Dynamical Systems

A random dynamical system or (or simply named cocycle) is essentially,
roughly speaking, a nonautonomous dynamical system consisting of two
essential ingredients:

• a model of noise,
• a model of the system which is perturbed by the noise (cocycle).

This two-parameter stochastic flows can be generated by random and
stochastic, ordinary and partial differential equations. The formal defi-
nition of a random dynamical system requires to start with the notion
of a metric dynamical system

Definition 3.1.1 (Metric Dynamical System [7], [17], [82]). A metric
dynamical system (MDS) θ ≡ (Ω,F ,P, (θ)t∈I) with time interval I, is
a probability space (Ω,F ,P) with a flow on Ω defined as a family of
transformations (mappings) θt : Ω→ Ω, t ∈ I such that

• it is an one-parameter group, i.e.

θ0 = idΩ, θt ◦ θs = θt+s ∀ t, s ∈ I,

where dθ is the identical map on Ω,
• The mapping (t, ω) 7→ θtω is (B(I)×F ,F)-measurable,
• θtP = P ∀t ∈ I, i.e. P(θtB) = P(B), ∀ B ∈ F and ∀ t ∈ I.

A set B ∈ F is called θ-invariant (for short invariant) if θtB = B
for all t ∈ I. A MDS is called ergodic under P if for any invariant set
B ∈ F we have either P(B) = 0 or P(B) = 1. An ergodic MDS, denoted
by θ ≡ (Ω,F ,P, (θt)t∈R) with the filtration (Ft)t≥t0 , is also defined by
the Wiener shift

θtω(·) = ω(t+ ·)− ω(t), t ∈ I, ∀ ω ∈ Ω,

which means that a shift transformation given by θ is measure-preserving
and ergodic [17]. Once a MDS has been defined, we are ready to state
a random dynamical system’s formal definition.

Definition 3.1.2 (Random Dynamical System [7], [17]). Let (Ω,F ,P)
be a probability space and X = Rd. A measurable random dynamical
system Θ = (θ,ϕ) (henceforth abbreviated as RDS) on the measurable
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space X over (or covering, or extending) an MDS (Ω,F ,P, (θt)t∈I) is a
mapping

ϕ : I× Ω×X → X, (t, ω,x) 7→ ϕ(t, ω,X),

with the following properties:

• Measurability: (t, ω,x) 7→ ϕ(t, ω,x) is measurable,
• Cocycle property: The mappings ϕ(t, ω) := ϕ(t, ω, ·) : X → X

form a cocycle over θ(·), i.e., they satisfy

ϕ(0, ω) = idX ∀ ω ∈ Ω (if 0 ∈ I),

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ϕ(s, ω) ∀ s, t ∈ I, and ω ∈ Ω,

where idX is the identical map on X.
• continuity: x 7→ ϕ(t, ω,x) is continuous for all (t, ω) ∈ I× Ω.

Here “◦” means composition, which canonically defines an action
on the left of the semigroup of self-mappings of Rd on the space Rd, i.e.
(f ◦ g)(x) = f(g(x)).

Figure 3.1 helps us to imagine an RDS as fiber maps on the (trivial)
bundle Ω ×X. The figure can be explained as follows: according as ω
is shifted by the dynamical system θ in time s towards θsω on the base
space Ω, the cocycle ϕ(s, ω) moves the point x in the fiber {ω}×X over
ω to ϕ(s, ω)x in the fiber {θsω} × X over the point θsω. The cocycle
property can be clearly displayed on this bundle.

Figure 3.1: A RDS as an action on the bundle Ω×X
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3.1.1. RDSs generated by SDEs

Now, let us take back the Itô SDE (2.22) that was already stated in the
previous Chapter.

dxt = f0(xt)dt+
m∑

j=1
f j(xt)dw

j
t =

m∑

j=0
f j(xt)dw

j
t , t ∈ I. (3.1)

For simplicity, we have modified the Itô SDE, with the drift and diffu-
sion terms combined into one term, and with the convention dw0

t ≡ dt to
obtain this compacted version. Additionally, we assume that the differ-
ential operator L := f0 + 1

2
∑m
j=1(f j)2 is strong hypoelliptic in the sense

that the Lie algebra G(f0,f1, . . . ,fm) generated by the vector fields f j
(with j = 0, . . . ,m) has dimension d for all xt ∈ Rd [7]. Once again, wjt
(for j = 0, . . . ,m) is a m-dimensional Wiener process.

For a given initial value xt0 = x0, the solution process generates
a Markovian stochastic process, and the SDE (3.1) generates a RDS
Θ = (θ,ϕ). The details about how a Ck RDS is generated from an Itô
SDE as (3.1) are presented in the following Theorem.

Theorem 3.1.3 (RDS from an Itô SDE). Let f0 ∈ Ck,δb , f1, . . . ,fm ∈
Ck+1,δ
b and

∑m
j=1

∑d
i=1 f

i
j
∂
∂xi
fj ∈ Ck,δb for some k ≥ 1 and δ > 0. Here

Ck,δb is the Banach space of Ck vector fields on Rd with linear growth
and bounded derivatives up to order k and the k-th derivative is δ-Hölder
continuous. Then:

1. The quasi-linear Itô SDE

dxt =
m∑

j=0
f j(xt)dw

j
t , t ∈ I, (3.2)

with dw0
t ≡ dt, generates a unique (up to indistinguishability) Ck

RDS ϕ over the filtered dynamical system describing Brownian
motion. For any ε ∈ (0, δ), ϕ is a Ck,ε-semimartingale cocycle and
(t,x) 7→ ϕ(t, ω)x belongs to C0,β;k,ε for all β < 1

2 and ε < δ.
2. The RDS ϕ has stationary independent (multiplicative) increments,

i.e., for all t0 ≤ t1 ≤ · · · ≤ tn the random variables

ϕ(t1) ◦ϕ(t0)−1, ϕ(t2) ◦ϕ(t1)−1, . . . , ϕ(tn) ◦ϕ(tn−1)−1

(here, “◦” means composition) are independent, and the law of
ϕ(t+h) ◦ϕ(t)−1 is independent of t (homogeneous Brownian mo-
tion in the group Diffk(Rd)).
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3. If Φ(t, ω,x) denotes the Jacobian of ϕ(t, ω) at xt, then (ϕ,Φ) is a
Ck−1 RDS uniquely generated by (3.2) together with the variational
equation

dvt =
m∑

j=0
J j(xt)vt dwjt , t ∈ I, (3.3)

where J j(xt) :=
(
∂fj

∂x

) ∣∣∣
x(t;t0)

is obtained after linearizing (3.2)
along a solution. Hence Φ uniquely solves (3.3) on I,

Φ(t, ω,x) = Id +
m∑

j=0

∫ t

0
J j(ϕ(s)x)Φ(s,x)dwjs, t ∈ I, (3.4)

where Id denotes the identity matrix of size d. Therefore, Φ is a
matrix cocycle over Θ = (θ,ϕ).

4. The determinant detΦ(t, ω,x) satisfies Liouville’s equation on I,

detΦ = exp




m∑

j=0

∫ t

0
tr(Jj(ϕ(s)x)dwjs


 , t ∈ I, (3.5)

being then a scalar cocycle over Θ.

See Theorems 2.3.32 and 2.3.39-40 in [7] for the background theory
and proof of this Theorem.

As it was pointed out previously, a RDS Θ can be generated by an
IVP SDE system, but also by pathwise ODE that contain a real noise
stochastic process, i.e. with a wider range of probability distributions, in
their vector field functions. The so-called random differential equations
(RDEs). An autonomous RDE has the form

ẋt = f(xt,ηt(ω)), ω ∈ Ω, and t ∈ I, (3.6)
where ηt ∈ C1(I × Ω,Rm) valued stochastic process with continuous
sample paths defined on the probability space (Ω,F ,P) with a filtration
(Ft)t≥t0 , and f ∈ Ck(Dx×Dη,Rd) are the vector field (or right-hand side)
functions. If we consider an IVP, the RDE (3.6) comes accompanied
by an initial condition, which could be considered to be affected by
randomness as well, xt0(ω) = x0(ω), whose solutions are able to generate
a cocycle Θ = (θ,ϕ). Moreover, in cases where a model based on SDEs is
inappropriate because of the special structure on the noisy disturbance,
the SDE system could be transformed into a system of RDEs by suitable
change of variables, see [17]. A detailed research about this type of RDS
generator is beyond of our scope of study. The interested reader can
find further information about RDEs in [7], [17], [42], [83].
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3.2. Stability of Dynamical Systems

A crucial issue in the theory of dynamical systems, in general, is what in
physics is described as the ability of such systems, given an initial con-
dition, to regain a state of equilibrium after perturbations in the system
states. The mentioned property of the system is the very known con-
cept of stability. The rigorous mathematical theory of stability appeared,
and has been developed and formalized in the last centuries, overall in
studying mechanical motions (definitions given by Lagrange, Dirichlet,
Poisson, Laplace, Poincaré, and others). Nevertheless, the most com-
plete and mathematically rigorous contribution to the stability analysis
was proposed by the Russian mathematician A. M. Lyapunov, whose re-
sults were published for the very first time in his remarkable Ph.D. thesis
entitled The general problem of the stability of motion at Moscow Uni-
versity in 1892. The definitions of stability and the methods proposed
for its assessment are nowadays a powerful framework for the stability
analysis and control of nonlinear dynamical systems.

3.2.1. Lyapunov Stability Theory

In this Section, we present a survey of the classical concepts of stability
in Lyapunov’s sense, initially developed for ODEs. In that context,
let us consider a dynamical system generated by the following general
nonlinear ODE system

ẋt = f(xt, t), t ∈ I, (3.7)

with the initial condition xt0 = x0. Here xt ∈ Rd are the state (un-
known) variables, and f ∈ C(I×Dx,Rd) are functions or vector fields In
the following definition, we present different types of stability of equilib-
rium points of the system (3.7). An equilibrium point x∗ (also known
as steady state) is a constant particular solution of (3.7) that satisfies
f(x∗) = 0, (for further details see [17], [41], [53]).

Definition 3.2.1 (Stability in the sense of Lyapunov). An equilibrium
point x∗ of the system (3.7) is said to be:

1. “Lyapunov stable”, or simply “stable”, if for every ε > 0, there
exists a δ(ε) > 0 such that, if ‖x0 − x∗‖ < δ(ε), then for every
t ≥ 0 we have ‖xt − x∗‖ < ε.
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2. “Asymptotically stable”, if it is Lyapunov stable and there exists
δ(ε) > 0 such that if ‖x0 − x∗‖ < δ, then limt→∞ ‖xt − x∗‖ = 0.

3. “Exponentially stable”, if it is asymptotically stable and there exist
α > 0, β > 0, δ(ε) > 0 such that if ‖x0−x∗‖ < δ, then ‖xt−x∗‖ ≤
α‖x0 − x∗‖e−βt, for all t ≥ 0.

4. “Unstable” if is not Lyapunov stable.

Figures 3.2a, 3.2b, and 3.2c describe graphically the notions of Lya-
punov stability, asymptotic stability, and exponential stability respec-
tively; for an equilibrium point. It is clear the existence of a hierarchy
in these definitions. Exponential stability implies asymptotic stability,
asymptotic stability implies stability, and the absence of at least Lya-
punov stability implies instability.

Although the stability concepts in the sense of Lyapunov stated in
Definition 3.2.1 have been proposed initially for ODEs, since their first
appearance, such definitions have been extended to dynamical systems
generated by other kinds of realizations as DAEs, SDEs, SDAEs, RDEs,
and others (e.g., see [53] for the DAE case).

For autonomous systems, all the stability concepts in Definition
3.2.1 are uniform in time. This means that the choice of δ does not
depend on t. Nevertheless, this does not hold true for nonautonomous
systems. So, new definitions are required to distinguish uniform and
non-uniform type of stability [17].

3.2.2. Lyapunov Stability Assessment

In addition to the definitions of stability, Lyapunov proposed two meth-
ods to demostrate stability of a given solution. The first method was
developed with base on a “standard” perturbative analysis due to the
need to characterise property the perturbation dynamics. The result of
this analysis conducted to a called “characteristic number” later termed
as “Lyapunov characteristic exponent”, or simply “Lyapunov exponent”.
The second method, the most known, deals with introducing a pseudo-
energy function that vanishes in the equilibrium point and is otherwise
positive, and decreases (or does not increase) along a generic trajectory.
Both methods are described in the following sections.
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Figure 3.2: Graphical description of different types of stability of an equilibrium point
according to Definition 3.2.1 (Source: [86], own work).

3.2.2.1. Lyapunov First Method and LEs

The identified as first method in the Lyapunov’s thesis, it consisted on
the study of the stability of the solutions writing the equation as a per-
turbation of a linear system. As result of that analysis, Lyapunov de-
fined the characteristic number λL. Assuming that δ(t) ≈ eλt for a given
perturbation δ(t), Lyapunov defined λL as the value such that δ(t)eλLt

neither diverges nor converges exponentially. This characteristic num-
ber is basically the opposite of the today number known as Lyapunov
exponent. Nevertheless, all the stability theory behind that motivated
the definition of λL, holds unchanged in the later developments that
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took place in connection with this method, specifically the definitions of
Lyapunov exponent and regularity.

Our analysis of the concept of Lyapunov exponents starts by re-
calling the general system (3.7). A linearization of this set along the
solutions, known as the variational system of equations or just varia-
tional equations, can be formulated as

v̇t = J(xt, t)vt, vt0 = v0, t ∈ I, (3.8)

with J j(xt, t) :=
(
∂fj

∂x

) ∣∣∣
x(t;t0)

is the Jacobian of the vector field f(xt, t).

Here, vt ∈ Rd, and J(xt, t) ∈ (I,Rd×d) is a matrix depending continu-
ously on t ∈ I. Boundedness of J(xt, t) is assumed, i.e.

sup{‖J(xt, t)‖ : t ∈ I} <∞.

If we integrate the equation (3.8), we obtain

vt = H(x0, t)v0, (3.9)

where
H(x0, t) = exp

(∫ t

0
J(xs, s)ds

)

depends on the trajectory x(t; t0) at all intermediate times. In practice,
the matrix H(x0, t) is obtained by solving the ODE system (3.8).

Intending to determine the stability of the solution of (3.8), we
introduce the characteristic numbers λ : Rd → R ∪ {0} such that λ1 <
. . . < λs (i.e., λ attains only finitely distinct values) on R\{0} where
p ≤ d. Each number λi (with 1 ≤ i ≤ d) occurs with some multiplicity
di so that ∑p

i=1 di = d. There numbers are identified as Lyapunov
exponents (LEs) of (3.8) and are given by the formula

λ(v) = lim
t→∞

1
t

ln‖vt‖ (3.10)

for each v ∈ Rd, where is the unique solution of (3.8) that satisfies the
initial condition v0 = v. Assuming properties like (Lyapunov-Perron)
regularity and smoothness, the existence and well-posedness of the LEs
are guaranteed. The usefulness of the LEs as measurer of dynamical
systems’ stability lies in the fact that when all λ’s of a linear dynamics
are negative, all solutions are asymptotically stable.
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As will be seen in Section 3.3, the theory of LEs is developed sub-
stantially further in the framework of the ergodic theory given by V. Os-
eledets and his “multiplicative ergodic theorem” (MET), see [69]. Even
the result of ergodic theory defines the real symmetric matrix

M(x0, t) = H(x0, t)TH(x0, t),

whose limit
Λ(x0, t) = lim

t→∞

1
2t log(M(x0, t)),

defines a matrix Λ, where the LEs λi (with 1 ≤ i ≤ d) are defined by the
eigenvalues of Λ. In recent years, modem exposition of LEs context of
the MET has allowed the development of numerical studies and applica-
tions initially for the assessment of chaotic systems, nowadays extended
to the test of dynamical systems in general.

3.2.2.2. Lyapunov’s Second Method

Also known as Lyapunov’s direct method. Although it was the second
method proposed by Lyapunov, from the beginning, it became more
important than the first method. The Lyapunov’s direct method assesses
the stability of a solution by constructing a called Lyapunov fuction,
which vanishes in the equilibrium point and is otherwise positive, and
decreases (or does not increase) along a generic trajectory. Lyapunov’s
direct method gives sufficient conditions for Lyapunov, asymptotic, and
exponential stability of a nonlinear dynamical system. The spirit of the
method comes from the following Theorem.

Theorem 3.2.2 (Lyapunov’s Theorem [41]). Consider the nonlinear
dynamical system (3.7) and assume that there exists a continuously dif-
ferentiable function V ∈ C1(Dx,R) such that

V(0) = 0, (3.11)
V(x) > 0, x 6= 0, (3.12)

V̇(x)f(x, t) ≤ 0, (3.13)

with V̇ := dV
dt . Then the zero solution x(t) ≡ 0 to (3.7) is Lyapunov

stable. If, in addition,

V̇(x)f(x) < 0, x 6= 0, (3.14)
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then the zero solution xt ≡ 0 to (3.7) is asymptotically stable. Finally,
if there exist scalars α, β, ε > 0, and p ≥ 1, such that V ∈ C1(Dx,R)
satisfies

α‖xt‖ p ≤ V(x) ≤ β‖xt‖ p, (3.15)
V̇(x)f(x) ≤ εV(x), (3.16)

then the zero solution xt ≡ 0 to (3.7) is exponentially stable.

A key idea in stability theory is that the qualitative behavior of the
smooth dynamical system given by the n-dimentional ODE (3.7) at an
equilibrium point x∗, can be analyzed by using the linearization of the
system at that equilibrium point. Then, the linearized system of (3.7)
has the form

v̇t = Avt, vt0 = v0, t ∈ I, (3.17)

with Aj(xt) :=
(
∂fj

∂x

) ∣∣∣
x∗

. Where vt ∈ Rn are de unknown variables
on the linearized system, and the A ∈ Rn×n in the Jacobian matrix
of the system at the equilibrium point x∗ (this is also denoted as state
matrix overall in the control area). Here, the eigenvalues λ ∈ Cn of A
characterize the behavior of the nearby points. Specifically, if Re(λ) < 0
then the point is a stable attracting fixed point, and the nearby points
converge to it asymptotically. This condition is equivalent to

ATM +MA � 0 for some M = MT � 0,

for the relevant Lyapunov function V(x) = xTMx. If there exists an
eigenvalue λ of A with Re(λ) > 0 then the system is unstable at that
point.

3.3. LEs of Ergodic RDSs

Next to the survey given above regarding to stability theory in the Lya-
punov’s framework, we will continue with the theory that supports the
existence and well-possedness of LEs in RDSs generated by SDEs. In
this regard, we will start by citing an important result of the theory
of RDSs known as “multiplicative ergodic theorem”, developed by V.
Odelets in [69] with previous work on muliplication of random matrices
by Furstenberg and Kesten in [34]. The MET provides us with suitable
spectral objects, such as invariant subspaces (Lyapunov subspaces) and
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exponential growth rates (LEs), that permit the lift to nonlinear RDS
and hence a local theory for nonlinear RDS. In this manner, we have
with the MET the right substitute for deterministic linear algebra.

The MET concept permits a suitable definition of LEs for linear
cocycles over an ergodic MDS. First, let us recall the SDE system and
the RDSs defined for the Theorem 3.1.3. As duscussed before, both
SDE as well as RDE systems can define ergodic RDSs. The version of
the MET described below compiles concepts from [7], [19]. In line with
the Oseledets’ theory, it proposes the decomposition of Rd into random
subspaces (called Lyapunov vectors), with equal exponential growth rate
(Lyapunov exponents) with probability one.

Theorem 3.3.1 (Multiplicative Ergodic Theorem). Let Φ be a linear
cocycle over the RDS Θ = (θ,ϕ). Assuming the integrability condition

log+‖Φ(t, ω,x)‖ ∈ L1,

where log+‖Φ‖ = max{log(Φ), 0} denotes the positive part of log, is
satisfied. Here L1(Ω,F ,P;R) is the Banach space of all (equivalence
classes of) functions f : Ω→ R, which are measurable with respect to the
σ-algebra F and the Borel σ-algebra on R, and P-integrable. Ergodicity
of the probability measure P is also assumed. Additionally, let µ be an
ergodic invariant measure with respect to the cocycle ϕ [7]. Then, there
exists an invariant set Ω̂ ⊂ Ω of full µ-measure, such that for each ω ∈ Ω̂
the following statements hold:

1. There exists a measurable decomposition

Rd = L1(ω)⊕ · · · ⊕ Lp(ω),

of Rd into random linear subspaces Li(ω), which are invariant un-
der Θ. Here p ≤ d, where di ∈ N denotes the dimension of the
subspace Li(ω) (with 1 ≤ i ≤ p), and

∑p
i=1 di = d. This splitting

is characterized by the following properties:
2. Lyapunov exponents λ(ω,x) quantify the exponential growth rate

of the subspaces Li(ω).
3. There are real numbers λ1 > . . . > λp, such that for each x ∈

Rd\{0} the LEs λ(ω,x) ∈ {λ1 > . . . > λp} exists as a limit with

λ(ω,x) = lim
t→∞

1
t

log‖Φ(t, ω,x)‖ = λi ⇐⇒ x ∈ Li(ω) \ {0}.

4. The maps Li :−→ Gdi
, with the Borel σ-algebra on the Grassman-

nian Gdi
, are measurable (with 1 ≤ i ≤ p).
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5. The matrix Λ(ω) defined by the limit

Λ(ω) := lim
t→∞

(
Φ(t, ω)TΦ(t, ω)

) 1
2t

exists and is a positive definite random matrix. The different
eigenvalues of Λ(ω) are constants and can be written as eλ1 >
. . . > eλp. The corresponding random eigenspaces are given by
L1(ω), . . . , Lp(ω). Furthermore, the LEs are obtained as limits
from the singular values δj of Φ(t, ω). The set of indices 1, . . . , d
can be decomposed into subsets Σi, with j = 1, . . . , p, such that for
all j ∈ Σi,

λi = lim
t→∞

1
t

log δj(Φ(t, ω))

A proof of this theorem is given in [7]. It is need to remark that if
the underlying MDS is not ergodic, the MET still holds, but in a weaker
form.

According to [6, pag. 118], the LEs λi are independent of (ω,x) and
thus they are universal constants of the cocycle generated by (3.3) under
the ergodic invariant probability measure µ. Finally, if the following
identity holds for Φ

d∑

i=1
λi = lim

t→∞

1
t

log | detΦ(t, ω,x)|, (3.18)

the system is said to be Lyapunov regular (Lyapunov regularity condi-
tion) [18], [71]. In practice, it is hard (if not impossible) to verify Lya-
punov regularity for a particular system [7]. One of the key statements
of the MET is that linear RDS (whether these are constant, periodic,
quasi-periodic, or almost-periodic) are a.s. Lyapunov regular.

The concept of LEs plays an important role in the asymptotic sta-
bility assessment of dynamical systems subjected to stochastic distur-
bances. Under appropriate regularity assumptions, the negativity of
all LEs of the system of variational equations implies the exponential
asymptotic stability of both the linear SDE and the original nonlin-
ear SDE system. Furthermore, the asymptotic behavior analysis of the
stochastic models may be done based on every realization of the system
rather than statistically in the mean or mean square sense.





CHAPTER 4
Numerical Methods for

computing LEs

In this Chapter, we derive the numerical techniques to compute the
finite-time approximation of the LEs. Inspired by [18], our work pro-
poses an adaptation of the ideas from the purely deterministic case [26],
[28], [29] to noise-driven dynamical systems. The methods take advan-
tage on the existence of a Lyapunov transformation of the linear RDS
to an upper-triangular structure and the feasibility to retrieve a numer-
ical approximation of the LEs from that form. The transformation is
performed through an orthogonal change of variables. The approach is
made under the assumption of Lyapunov regularity of the system. In
order to explain the methods, let us consider the SDE again as an initial
value problem of the form

dxt =
m∑

j=0
f j(xt)dw

j
t , t ∈ I, xt0 = xt0 , (4.1)

where f j are sufficiently smooth functions. The corresponding varia-
tional equation of (4.1) along with the solutions xt(x0), turned into a
matrix initial value problem, is given by

dV t =
m∑

j=0
J j(xt)V tdw

j
t , V 0 = Id, (4.2)
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with the identity matrix Id ∈ Rd×d as initial value, where J j(xt) :=
∂fj

∂x are the Jacobians of the vector functions f j(xt), and V ∈ C1(I ×
Rd×d) is the fundamental solution matrix, whose columns are linearly
independent solutions of the variational equation. A key theoretical
tool for determining the LEs is the computation of the continuous QR
factorization of V t,

V t = QtRt,

where Qt is orthogonal, i.e., QT
t Qt = Id, and Rt is upper triangular

with positive diagonal elements Riit for i = 1, . . . , d. Applying the MET
theory presented in Subsection 3.3, and taking into account the norm-
preserving property of the orthogonal matrix function Qt, we have

λi = lim
t→∞

1
t

log‖V tpi‖ = lim
t→∞

1
t

log‖Rtpi‖, (4.3)

where {pi} is an orthonormal basis associated with the splitting of
Rd. Lyapunov regular systems preserve their regularity under kinematic
similarity transformations. Then, considering the regularity condition
(3.18), the Liouville equation (3.5), and performing some algebraic ma-
nipulations (see details in [18, pag. 150]), the LEs are given by

λi = lim
t→∞

1
t

log |Riit | a.s., for i = 1, . . . , d. (4.4)

The QR-based methods require to perform the QR decomposition of
V t for a long enough time, so that the Riit have started to converge.
Depending on whether the decomposition is performed after or before
integrating numerically the variational equation, the method is called
discrete or continuous QR method.

4.1. Discrete QR Method

The discrete QR method is a popular method for computing LEs in
ODEs and DAEs. In this approach, the fundamental solution matrix V t

and its triangular factor Rt are indirectly computed by a reorthogonal-
ized integration of the variational equation (4.2) through an appropriate
QR decomposition. Thus, given grid points 0 = t0 < t1 < . . . < tN−1 <
tN = T , we can write V t` in terms of the state-transition matrices as

V t` = Z(t`,t`−1)Z(t`−1,t`−2) · · ·Z(t2,t1)Z(t1,t0)V t0 . (4.5)
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At t0 = 0, we perform a standard matrix QR decomposition

V t0 = Qt0Rt0 ,

and for ` = 1, 2, . . . , N , we determine Z(t`,t`−1) as the numerical solution
(via numerical integration) of the matrix initial value problem

dZ(t`,t`−1) =
m∑

j=0
J j(xt)Z(t`,t`−1)dw

j
t ,

Z(t`,t`−1) = Qt`−1 , t`−1 ≤ t ≤ t`, (4.6)

and then compute the QR decomposition

Z(t`,t`−1) = Qt`
R(t`,t`−1),

where R(t`,t`−1) has positive diagonal elements. From (4.5), the value of
the fundamental matrix V t` is determined via

V t` = Qt`
R(t`,t`−1)R(t`−1,t`−2) · · ·R(t2,t1)R(t1,t0)Rt0 ,

which is again a QR factorization with positive diagonal elements. Since
this is unique, for the QR decomposition V t` = Qt`

Rt` , we have

Rt` = R(t`,t`−1)R(t`−1,t`−2) · · ·R(t2,t1)R(t1,t0)Rt0 =
∏̀

κ=0
Rκ.

Here we denote as Rκ the triangular transition matrices R(t`,t`−1) with
κ = 0, 1, . . . , `. From (4.4), the LEs are thus computed as

λi = lim
`→∞

1
t`

log
∣∣∣∣∣
∏̀

κ=0
Riiκ

∣∣∣∣∣ = lim
`→∞

1
t`

∑̀

κ=0
log |Riiκ |, i = 1, . . . , d. (4.7)

4.2. Continuous QR Method

The implementation of the continuous QR technique requires to deter-
mine a system of SDEs for the Q factor and the scalar equations for the
logarithms of the diagonal elements of the R factor elementwise. Then,
once the orthogonal matrix Q is computed by numerical integration, the
logarithms of the diagonal elements of R can also be obtained.
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By differentiating in the Itô sense the decomposition V t = QtRt

and using the orthogonality QT
t Qt = Id, we get

dV t = (dQt)Rt +Qt(dRt), (4.8)
0 = (dQT

t )Qt +QT
t (dQt). (4.9)

Inserting (4.8) into the variational equation (4.2), and multiplying by
QT
t from the left and by R−1

t from the right, we obtain

QT
t (dQt) + (dRt)R−1

t =
m∑

j=0
QT
t J j(xt)Qtdw

j
t . (4.10)

Since (dRt)R−1
t is upper triangular, the skew-symmetric matrix dSt :=

QT
t (dQt) satisfies

dSilt =





∑m
j=0

(
QT
t J j(xt)Qt

)jl
dwjt , i > l,

0, i = l,

−∑m
j=0

(
QT
t J j(xt)Qt

)jl
dwjt , i < l.

(4.11)

This results in an SDE for Qt given by

dQt = QtdSt =
m∑

j=0
QtT

j
t (xt,Qt)dw

j
t , (4.12)

where the matrices T jt (xt,Qt) (for j = 0, . . . ,m) are defined via

(
T jt (xt,Qt)

)il
=





(
QT
t J j(xt)Qt

)jl
, i > l,

0, i = l,

−
(
QT
t J j(xt)Qt

)jl
, i < l.

(4.13)

A corresponding SDE for Rt can be obtained from (4.10) and (4.11) via

dRt =
m∑

j=0
(QT

t J j(xt)Qt − T it(xt,Qt))Rtdw
j
t , (4.14)

and the equation for the ith diagonal element Riit is given by

dRiit =
m∑

j=0
(QT

t J j(xt)Qt)iiRiit dw
j
t , for i = 1, . . . , d. (4.15)
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Since the computed LEs can be obtained from (4.4), we make use of the
Itô Lemma to introduce the following SDE for the function ψit = logRiit
from (4.15),

dψit = d(logRiit ) =
m∑

j=0
(QT

t J j(xt)Qt)iidw
j
t

− 1
2



m∑

j=0
(QT

t J j(xt)Qt)iidw
j
t




2

. (4.16)

If we assume there are no correlations between the diffusion terms in the
SDE system; then we do not have terms dwkt dw`t (for 1 < k < m, and
1 < ` < m, with k 6= `) in the SDE (4.16). Also, using that dt dt ≡ 0,
dt dwkt ≡ 0, and dwjt dw

j
t ≡ dt for 1 < k < m, the SDE (4.16) is reduced

to

dψit =
m∑

j=0
(QT

t J j(xt)Qt)iidw
j
t −

1
2

m∑

j=1

[
(QT

t J j(xt)Qt)ii
]2
dt. (4.17)

By integrating this SDE, it is possible to obtain the LEs λi from

λi = lim
t→∞

1
t
ψit, i = 1, . . . , d. (4.18)

As it will be illustrated in the numerical examples, the alternative ex-
pressions (4.17) and (4.18), while easy to implement numerically, im-
prove the numerical results in comparison to (4.15), and they lead to
better robustness for large time intervals.

In summary, the difference between the discrete and the contin-
uous QR method is that for the first one, the orthonormalization is
performed numerically at every discrete time step, while the continuous
QR method maintains the orthogonality via solving differential equa-
tions that encode the orthogonality continuously.

4.3. Computational Considerations

In this section, we discuss additional aspects of the computational im-
plementation of discrete and continuous QR methods to calculate LEs.
The application of the discrete QR technique mainly requires the nu-
merical integration of the SDEs (4.1) and (4.6). This task is performed
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by using standard weak Euler-Maruyama and Milstein schemes, integra-
tors for whom the ergodicity preservation property has been proved (see
[40], [87]).

On the other hand, the numerical integration of the SDEs (4.1),
(4.12), and (4.17) in the computational implementation of the contin-
uous QR technique must be performed in such a way that it preserves
the orthogonality of the factor Q in each integration step. This can be
achieved via projected orthogonal schemes, which consist of a two-step
process in which first an approximation is computed via any standard
scheme, and then the result is projected into the set of orthogonal ma-
trices [27]. Again we use the Euler-Maruyama and Milstein method as
in the discrete case.

We have implemented the two QR-methods in Matlab. However,
to obtain a unique QR factorization in each step, we have modified the
QR decomposition provided by Matlab to ensure this uniqueness, by
forming a diagonal matrix I with Ii,i = sign(Ri,i), for i = 1, . . . , d; and
then setting Q := QI and R := IR.

4.4. Numerical Examples

This Section illustrates the described the described QR-based proce-
dures via two strangeness-free SDAE systems in order to compare the
computational efficiency, accuracy, and robustness of both the discrete
and continuous QR methods using the numerical integration schemes
Euler-Maruyama and Milstein. The four numerical methods will be
denoted as D-EM, D-Milstein, C-EM, C-Milstein, respectively. The
computations are carried out with Matlab Version 9.7.0(R2019b) on a
computer with CPU Intel Core i7 composed by 6 cores of 2.20GHz, and
16 GB of RAM.

4.4.1. Example 1

Let us consider the simple SDAE equation system

Edxt = f0(xt)dt+ f1(xt)dwt, (4.19)

where

E =
[
1 0
0 0

]
, xt =

[
x1
x2

]
, f0 =

[
−x2

−αx1 + arctan (x1) + x2

]
,
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and
f1 =

[
(x2

1 + 1) 1
2

0

]
,

with α ∈ R+. The nonlinear functions in both the drift and diffusion
parts are continuous on R+, with continuous and bounded derivatives,
and wt is a one-dimensional Wiener process. The underlying SDE of
(4.19) is

dx̂t = [−αx̂t + arctan (x̂t)]dt+ (x̂2
t + 1)

1
2dwt, (4.20)

whose LE exists and can be explicitly represented as the following inte-
gral with respect to the solution of a stationary Fokker-Planck equation
(see further details in [7])

λ = −α+ 1
2

∫

R

x̂2 − 2
x̂2 + 1p(x)dx, (4.21)

where p(x) is the stationary density of the unique invariant probability
law of x̂t. By solving numerically (4.21) for α = 2, we obtain the exact
value of the LE associated to (4.20 and its original SDAE (4.19, which is
λ = −1.3385. The accuracy of the QR-based methods will be assessed
by comparing their computed results with this value as reference.

A large number of simulations have been carried out for stepsizes
h = 1e−2, 9e−3, . . . , 1e−3 with T = 1000, 2000, . . . , 12000; to obtain
computed approximations of the LE truncated at the final time tf :=
T , denoted by λT . To complete our stochastic numerical analysis of
the LE, we have calculated the values of expectation E[λT ], standard
deviation σ[λT ], and variance V[λT ]; estimated from 100 independent
realizations. Some results are presented in Tables (4.1) to (4.4), taking
T = 6000, 12000, 20000 and h = 1e−1, 1e−2, 1e−3, 1e−4.

Observe that the time scale in Figure 4.1 has been conveniently
adjusted to the range [0, 250], in order to show the exponential drop of
the LE for the different realizations in the four methods, along with the
time evolution. While in Figure 4.2 the time scale has been adjusted to
the range [0, 10000], to better display the convergence of the mean and
variance of the LE.

Based on the analytic expression of the LE, given by equation
(4.21), the LE λ can be considered as a deterministic quantity. Accord-
ing to the numerical results obtained from the four QR-based methods,
the sequences of random variables λt` reveal a trend towards null vari-
ance and convergence to the mean as ` tends to infinity. Such evolution
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Figure 4.1: Discrete and continuous QR-based approximations of the LE correspond-
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confidence intervals of the trajectories.
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Figure 4.2: Discrete and continuous QR-based approximations of the LE correspond-
ing to SDAE (4.19) via Euler-Maruyama and Milstein integrators, with a stepsize
h = 1e−3 and T = 10000. The black dashed line in the left-hand side subplot shows
the analytic value of λ.

can be seen in Figure 4.1, and more obviously in Figure 4.2. For all the
methods, an exponential decay is illustrated in E[λt` ] and V[λt` ] as `
tends to infinite. This behavior indicates a mean square (m.s.) conver-
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T h E[λT ] σ[λT ] V[λT ] Rel. error [%] CPU-time [sec]
6000 1e−1 −1.51906 0.00476 2.266e−5 13.48994 0.9827
6000 1e−2 −1.35231 0.00296 8.734e−6 1.03179 12.6422
6000 1e−3 −1.33874 0.00234 5.483e−6 0.01807 125.6875
6000 1e−4 −1.33903 0.00225 5.042e−6 0.03958 4367.2676

12000 1e−1 −1.51870 0.00334 1.116e−5 13.46268 2.0336
12000 1e−2 −1.35217 0.00184 3.392e−6 1.02160 24.9517
12000 1e−3 −1.33920 0.00161 2.579e−6 0.05206 252.4366
12000 1e−4 −1.33902 0.00134 1.795e−6 0.03848 8815.9035

20000 1e−1 −1.51780 0.00262 6.858e−6 13.39551 3.3806
20000 1e−2 −1.35236 0.00139 1.944e−6 1.03533 41.2975
20000 1e−3 −1.33936 0.00133 1.781e−6 0.06437 416.3228
20000 1e−4 −1.33902 0.00119 1.415e−6 0.03922 13870.1475

Table 4.1: Numerical results of the calculated LE for SDAE system (4.19) computed
via Discrete QR-EM method.

T h E[λT ] σ[λT ] V[λT ] Rel. error [%] CPU-time [sec]
6000 1e−1 −1.47000 0.00356 1.267e−5 9.82471 1.3947
6000 1e−2 −1.34911 0.00205 4.217e−6 0.79239 14.2033
6000 1e−3 −1.33883 0.00185 3.415e−6 0.02480 139.4657
6000 1e−4 −1.33901 0.00224 5.039e−6 0.03812 4786.6657

12000 1e−1 −1.46914 0.00249 6.202e−6 9.75996 2.8596
12000 1e−2 −1.34925 0.00186 3.466e−6 0.80302 27.8426
12000 1e−3 −1.33889 0.00176 3.093e−6 0.02924 280.9451
12000 1e−4 −1.33900 0.00134 1.794e−6 0.03700 9629.9437

20000 1e−1 −1.46973 0.00159 2.517e−6 9.80448 4.6544
20000 1e−2 −1.34924 0.00141 1.982e−6 0.80274 46.9282
20000 1e−3 −1.33915 0.00130 1.699e−6 0.04854 465.2272
20000 1e−4 −1.33900 0.00119 1.416e−6 0.03770 15121.3377

Table 4.2: Numerical results of the calculated LE for SDAE system (4.19) computed
via Discrete QR-Milstein method.

gence of those sequences to a degenerate random variable, based on the
implication that if

λt` such that:




E[λt` ] = µλ, ∀`,
V[λt` ] −−−→

`→∞
0, ⇒ λt`

m.s.−−−→
`→∞

µλ.

This means that the limit of λt` can be interpreted as a deterministic
value with probability 1. This enables us to state that the stochastic
approximations λt` converge in m.s. sense to a number (a degenerate
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T h E[λT ] σ[λT ] V[λT ] Rel. error [%] CPU-time [sec]
6000 1e−1 −1.35864 0.00326 1.061e−5 1.50459 1.3841
6000 1e−2 −1.34005 0.00278 7.743e−6 0.11616 13.6211
6000 1e−3 −1.33822 0.00277 7.651e−6 0.02128 135.0360
6000 1e−4 −1.33892 0.00224 5.025e−6 0.03152 4642.6202

12000 1e−1 −1.35932 0.00226 5.091e−6 1.55512 2.7334
12000 1e−2 −1.33999 0.00186 3.459e−6 0.11134 26.9335
12000 1e−3 −1.33813 0.00159 2.535e−6 0.02786 272.8842
12000 1e−4 −1.33891 0.00134 1.794e−6 0.03052 9217.7371

20000 1e−1 −1.35888 0.00196 3.835e−6 1.52252 4.4753
20000 1e−2 −1.34010 0.00096 9.306e−7 0.11965 45.0326
20000 1e−3 −1.33807 0.00148 2.187e−6 0.03224 465.5119
20000 1e−4 −1.33892 0.00119 1.417e−6 0.03121 14583.8282

Table 4.3: Numerical results of the calculated LE for SDAE system (4.19) computed
via Continuous QR-EM method.

T h E[λT ] σ[λT ] V[λT ] Rel. error [%] CPU-time [sec]
6000 1e−1 −1.33950 0.00287 8.228e−6 0.07468 1.5009
6000 1e−2 −1.33767 0.00253 6.386e−6 0.06235 14.8586
6000 1e−3 −1.33810 0.00232 5.402e−6 0.02998 147.5276
6000 1e−4 −1.33890 0.00225 5.052e−6 0.02988 5082.6248

12000 1e−1 −1.33931 0.00259 6.692e−6 0.06075 3.0427
12000 1e−2 −1.33864 0.00121 1.460e−6 0.01053 29.3666
12000 1e−3 −1.33769 0.00153 2.329e−6 0.06087 299.2588
12000 1e−4 −1.33889 0.00134 1.802e−6 0.02878 10035.9100

20000 1e−1 −1.33990 0.00182 3.296e−6 0.10453 4.9331
20000 1e−2 −1.33828 0.00152 2.310e−6 0.01654 49.5662
20000 1e−3 −1.33853 0.00140 1.960e−6 0.00258 505.4304
20000 1e−4 −1.33889 0.00119 1.416e−6 0.02948 15917.1861

Table 4.4: Numerical results of the calculated LE for SDAE system (4.19) computed
via Continuous QR-Milstein method.

random variable), which is expected to represent the LE λ.

In Figure 4.3 we compare the relative error of the accuracy of the
four numerical methods for different stepsize h and time interval [0, T ].
From this graphical representation, we observe that continuous methods
obtain better results than discrete ones, as expected. We also observe
that the Milstein method has, in general, better accuracy than the Euler-
Maruyama scheme, since its convergence order is higher, but requires
more computational time. This latter fact is evidenced in Figure 4.4,
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Figure 4.3: Comparison of relative errors for discrete and continuous QR-based ap-
proximations of the LE corresponding to SDAE (4.19) via Euler-Maruyama and Mil-
stein integrators, with a range of stepsizes between h = 1e−2, . . . , 1e−3; and with
T = 1000, . . . , 12000.

where a comparison of CPU time (in seconds) is shown for different val-
ues of h and T . Here, we observe that all the methods are affected to
the same extent by incrementing the simulation interval T , via a loga-
rithmic increment, and by narrowing the stepsizes h, via an exponential
increment. A more pronounced difference between the methods should
be observed in higher-dimensional systems.

4.4.2. Example 2

In this example, we make use of the Chua’s circuit perturbed by noise,
showed in Figure 4.5. The Chua’s circuit is a simple electronic system
that exhibits chaotic behavior due to its nonlinear negative resistance
called Chua’s diode.

For the purpose of our example, we consider the circuit is affected
by an external noisy interference [78]. The noise, assumed to be coupled
to the circuit in its left-hand side loop, is modeled as an additive voltage
source, see Figure 4.5. On the other hand, the nonlinear relation be-
tween the voltage vD with the current iD in the Chua’s diode is modeled
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Figure 4.5: Chua’s circuit diagram.

through the continuous cubic polynomial function iD := Kav
3
D −KbvD,

where Ka and Kb are positive constants, see [46]. By means of Kirch-
hoff’s circuit laws, the Chua’s circuit can be naturally written as an
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Itô-type strangeness-free SDAE system as follows



C1 0 0 0 0 0
0 C2 0 0 0 0
0 0 L 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



·d




vC1

vC2

iL
iR
vD
iD




=




−iR − iD
iR + iL
−vC2

vC1 − vC2 −RiR
vC1 − vD

Kav
3
D −KbvD − iD



dt+




0
0
ε
0
0
0



dwt,

(4.22)
where [vC1 vC2 iL]T are state variables and [iR vD iD]T are algebraic
variables, the subscript “t” has been omitted in this formulation for
simplicity. The noise intensity constant is represented by ε. The SDAE
(4.22) can be reduced to its underlying SDE form

RC1dvC1 = [−RKav
3
C1 + (RKb − 1)vC1 + vC2 ]dt,

RC2dvC2 = [vC1 − vC2 +RiL]dt, (4.23)
LdiL = −vC2dt+ εdwt.

For the numerical simulations, we have chosen as constants R =
1.00; C1 = 0.0915; C2 = 1.00; L = 0.0714; Ka = 0.0625; Kb = 1.00.
Additionally, we have assigned the value ε = 0.25 to the noise intensity
constant. Under these values, the Chua’s system still tends to evolve
around its characteristic double scroll attractor, but in a different way
compared to the deterministic case (i.e., with ε = 0.00). The system
presents a stochastic bifurcation, specifically a phenomenological bifur-
cation (or P-bifurcation), because of the qualitative changes in the sta-
tionary probability distributions of the system’s states [7], [8]. Despite
the qualitative changes in the Chua’s system due to the stochastic per-
turbation, its chaotic behavior remains as can be seen in Figure 4.6.

Since the positiveness of the largest Lyapunov exponent (LLE) in
a nonlinear dynamical is usually an indication (although not sufficient)
that the system is chaotic, we make use of the QR-based methods to
compute the LEs in order to test for the presence of chaos in the dy-
namics of the noise-driven oscillator (4.22). Furthermore, it is known
the sum of all LEs allows for identifying dissipative dynamical systems.
If S := ∑d

i=1 λi in negative, the system is dissipative [71].

Unfortunately, it is unfeasible to obtain analytically LEs for the
present example, doing a precision test of the methods impossible to
perform. Therefore, the assessment of theQR-based techniques this time
is rather focused on the observation of consistent, time-convergent, and
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(a) without stochastic perturbation.

(b) with stochastic perturbation.

Figure 4.6: Chua’s system phase-portraits in chaotic regime.

homogeneous computed LEs for all the numerical methods. In addition,
the preservation of the dissipative characteristic of the system for all the
simulations through the computed value S is verified as well.

Figure 4.7 shows the time evolution computed LEs by using the four
QR-based methods. The simulation was carried out with the stepsize
h = 1e−4 and the interval T = 6000. It can be seen the convergence of
each LE for a single realization. We additionally present the numerical
values of S. Here, the negativeness of S evidences that, in our example,
the stochastic Chua’s circuit is a dissipative system.

As it can be seen, the computed LEs of the Chua’s system (4.22),
and hence the sum of LEs S as well, exhibit a satisfactory convergence
along the time even with a single realization. This is a suitable indicator
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Figure 4.7: Time evolution of the computed LEs in stochastic Chua’s system (4.22)
using the four QR-based methods for a stepsize h = 1e−4 and an interval T = 6000.

of the numerical robustness and a good performance of the proposed
QR-based methods when they are implemented in complex situations
such as the positiveness of the computed LLE. Even though in Figure
4.7 we present results only for a stepsize h = 1e−4, similar satisfactory
results can be obtained for wider stepsizes. In Table 4.5, we collect the
numerical results corresponding to h = 1e−3, 5e−4, 1e−4.

Method h λ1 λ2 λ3 S
1e−3 0.23994 −0.06890 −3.22041 −3.04936

D-EM 5e−4 0.24207 −0.07063 −3.23055 −3.05911
1e−4 0.24824 −0.07093 −3.20410 −3.05678

1e−3 0.24166 −0.07304 −3.23649 −3.06788
D-Mil 5e−4 0.24486 −0.06837 −3.24114 −3.06465

1e−4 0.24738 −0.06726 −3.24892 −3.05880

1e−3 0.22970 −0.06103 −3.22547 −3.05680
C-EM 5e−4 0.22962 −0.06231 −3.23562 −3.06831

1e−4 0.23400 −0.06837 −3.24523 −3.06960

1e−3 0.23514 −0.06963 −3.23238 −3.05686
C-Mil 5e−4 0.23169 −0.06858 −3.21973 −3.05662

1e−4 0.23287 −0.07468 −3.21613 −3.05794

Table 4.5: Numerical results of the calculated LEs for the Chua’s system (4.22) com-
puted via the four QR-based methods for T = 6000.





CHAPTER 5
Application to Power

Systems

5.1. General Structure of Power Systems

To understand the overall behavior of power systems, we need to know
the power grids’ underlying topology. The mostly alternating current
(AC) power systems have been generally composed of three-phase gen-
eration, transmission and distributions networks, and loads, see Figure
5.1. The networks supply massive three-phase industrial loads at differ-
ent distribution and transmission voltages as well as single-phase resi-
dential and commercial loads. In United States and many countries in
Latin-America, the term sub-transmission denotes networks with volt-
age ranges between transmission and distribution. Distribution voltages
are typically 10-60 kV, sub-transmission voltages are typically 66-138 kV,
and transmission voltages are typically above 138 kV. Generated voltages
are up to 35 kV for generators used in large electrical power stations.
Power station auxiliary supply systems and industrial power systems
supply a substantial amount of induction motor loads. On the other
hand, residential and commercial loads include a significant amount of
single-phase induction motor loads, see [88].

For over a century, power systems have employed synchronous ma-
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Figure 5.1: Classical Structure of a Power System (Source: [51], own work).

chines for electricity generation. However, in the last decades the techno-
logical development, the strong presence of renewable energy generation
(e.g., wind power, which has begun to expand at a large pace), and the
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deregulation of the electricity sector; have led to the appearance of new
concepts such as distributed generation (DG), demand-side management
(DSM), virtual power plants (VPP), electric vehicles (EV), smart me-
tering, etc. which changed the classical structure. These new elements
in the power network structure, along with other concepts, constitute
nowadays widely concept of Smartgrid. A suitable definition taken from
[89], states that Smartgrid is a type of electrical grid which attempts to
predict and intelligently respond to the behavior and actions of all elec-
tric power users connected to it (suppliers, consumers, and those that do
both) in order to efficiently deliver reliable, economical, and sustainable
electricity services.

5.2. Power System Stability

The concept of stability in power systems is, in essence, the same as
that for any dynamical system in general. For this reason, on base of
concepts as the ones surveyed in Section 3.2, one can find in the liter-
ature some previous efforts in order to define, classify, and assess the
stability in power systems. The most of them led by IEEE (Institute
of Electrical and Electronics Engineers) and CIGRE (Conseil Interna-
tional des Grands Réseaux Electriques). As result, the today’s reference
document is the technical report made by the IEEE/CIGRE Joint Task
Force on Stability Terms and Definitions, entitled “Definition and Clas-
sification of Power System Stability” [49], set up jointly by the CIGRE
Study Committee 38 and the IEEE Power System Dynamic Performance
Committee. This report addresses the issues of stability definition and
classification in power systems from a fundamental viewpoint and closely
examines the practical ramifications. The report aims to define power
system stability more precisely, provide a systematic basis for its clas-
sification, and discuss linkages to related issues such as power system
reliability and security, see [49], [50], [60]. The definitions are addressed
below.

5.2.1. Definition of Stability

The stability of a power system refers to the continuance of intact op-
eration following a disturbance and depends on the operating condition
and the nature of the physical disturbance that affects to it. Formal def-
inition given by IEEE/CIGRE in [49] which says: Power system stability
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is the ability of an electric power system, for a given initial operating
condition, to regain a state of operating equilibrium after being subjected
to a physical disturbance, with most system variables bounded so that
practically the entire system remains intact.

The previous definition refers mainly to an interconnected power
system as a whole and is essentially a single problem. However, the
various types of stability problems of a power system cannot be ad-
equately understood and effectively dealt with by treating them as a
single problem. Furthermore, because of the high dimensionality and
complexity of the power system, which involves a large number of vari-
ables, simplifying assumptions are made in order to allow the analysis
of specific types of problems with satisfactorily accuracy[31]. Stability
analysis is greatly facilitated by classification of stability into appropri-
ate categories. Thereby, the study of the stability in power systems is
split into three significant divisions:

• rotor angle stability,
• voltage stability,
• frequency stability.

Based on this triplet, there is an entire classification given by IEEE/-
CIGRE technical report. This categorization is based on the following
considerations:

• The physical nature of the resulting mode of instability as indi-
cated by the main system variable in which instability can be ob-
served.

• The size of the disturbance considered, which influences the method
of calculation and prediction of stability.

• The devices, processes, and the time span that must be taken into
consideration in order to assess stability.

This main taxonomy is a meaningful and widely accepted place-
ment due to high dimensionality and complexity of the stability prob-
lems. Figure 5.2 gives an overall graphic that explains of power system
stability classification based on the dynamics of the phenomenon and
identifying its categories and subcategories.

A further description of the subcategories related to the stability
concepts for the categories voltage, frequency, and rotor angle; may be
found in [32], [49], [50], [60], [66], [79] and references therein. Another
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Figure 5.2: IEEE/CIGRE Power systems stability classification [49].

possible classification of the power system stability can be done in terms
of the duration of the phenomenon (time-domain) and the components
that influence the phenomenon. The idea is illustrated in Table (5.1).

Time
Domain

Generator Influenced
Phenomenon

Load Influenced
Phenomenon

Short-term Rotor angle stability Small-disturbance voltage stability
Small-

disturbance
stability

Transient
stability

Long-term Frequency stability Large-disturbance
voltage stability

Table 5.1: PS stability classification based on the time-domain [31].

5.2.2. Definition of Reliability

The reliability of a power system refers to the probability of its satis-
factory operation over the long-run. It denotes the ability to supply
adequate electric service on a nearly continuous basis, with few inter-
ruptions over an extended time period. A formal definition of power
system reliability given by NERC (North American Electric Reliability
Council) and subscribed by [49] is the follow: Power system reliability is
the degree to which the performance of the elements in a electric power
system results in electricity being delivered to customers (final consumers
or retailers) within accepted standards and in the amount desired.

Reliability can be addressed by considering two basic functional
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aspects of the power systems such as Adequacy, that is the ability of
the power system to supply the aggregate electric power and energy
requirements of the customer at all times, taking into account scheduled
and unscheduled outages of system components; and Security, explained
below.

Unlike the stability and security concepts, which are time-varying
attributes which can be assessed by studying the power system perfor-
mance under a particular set of conditions. Reliability, is an indicator of
the time-average performance of the power system. It can only be stud-
ied by testing the system behavior over an appreciable time interval.
Reliability evaluation techniques are well developed, the most of them
based on a probabilistic framework. The interested reader can review
[4] for further information this issue.

5.2.3. Definition of Security

Defined in [49] as the ability of the power system to withstand sudden dis-
turbances such as electric short circuits or unanticipated loss of system
components. Security of a power system refers to the degree of risk in
its ability to survive imminent disturbances (contingencies) without the
customer service interruption. It relates to the robustness of the system
to imminent disturbances and, hence, depends on the system operating
condition as well as the contingent probability of disturbances.

System security may be further distinguished from stability in terms
of the resulting consequences. For example, two systems may both be
stable with equal stability margins, but one may be relatively more se-
cure because the consequences of instability are less severe.

The security analysis concerns about the estimation of power sys-
tem robustness to imminent disturbances (small or large). These anal-
ysis considers two important aspects: the static security analysis, it is a
steady-state assessment which verifies the right operating conditions of
the system after a disturbance ocurrs; and the dynamic security analy-
sis, which implies the examination of the three power system stability
categories described in Section 5.2.1.

As can be seen in these brief sections, there are important linkages
between reliability, security, and stability in power systems. These have
been widely discussed in several papers and books. We refer to [32], [49],
[50], [60], [66], [79] for further information.
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5.2.4. Tools for Dynamic System Analysis

The whole dynamic system analysis (DSA) of power system (where dy-
namic stability analysis is included) can be seen in general way as a
set of methodologies and mathematical modeling techniques to frame,
understand, and discuss complex issues and problems which occurs in
time horizons of the order of small fractions of a second to minutes.
The purpose of the DSA is the assessment of transient and dynami-
cal behavior of the network and its components when it is affected by
disturbances. The DSA involves carrying out studies in the time- and
frequency-domain, it includes studies such as transient stability, critical
clearing time, dynamic voltage step/control, fault ride through, etc. Fol-
lowing these scheme, several software packages such as: PowerFactory,
NEPLAN, DINIS, ERACS, ETAP, IPSA, Power World, PSS/E, SKM
Power Tools [43], as well as non-commercial choices such as: PSAT,
Dome, MATPOWER, MatDyn, PYPOWER-Dynamics, InterPSS, Grid-
Cal, UWPFLOW, PyPSA, among others; can be found nowadays. Their
key features for the dynamic stability assessment usually are:

• transient stability,
• small–signal stability,
• voltage stability,
• power system stability controls
• power system security assessment,
• fault ride through.

5.3. Applying LEs as DSA Method

In the DSA of power systems, a significant majority of study-cases are
oriented to evaluate the angle and voltage stability of the system when it
is subjected to small or large disturbances. In this regard, studies consid-
ering small disturbances are commonly known as small-signal stability
assessment (SSSA). Here, linear stability analysis via the computation
of the eigenvalues has been one of the traditional modal approaches to
predict the degree of stability of a power system [50], [79]. However,
eigenvalue analysis is limited to linear time-invariant systems or sys-
tems close to a stationary solution. When time-varying systems are
tested, as is the case of many systems subjected to stochastic distur-
bances, then eigenvalue approach is no longer applicable. On the other
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hand, the DSA of power systems affected by large disturbances, called
transient stability assessment (TSA), is mainly performed with verifica-
tion strategies based on time-domain integration [49], [60]. Figure 5.3
illustrates, coloured in grey, the subcategories from the IEEE/CIGRE
power systems stability classification where the computed LEs can be
implemented as stability assessment method.

Power system stability

Rotor angle 
stability

Frequency 
stability

Voltage 
stability

Small 
disturbance

angle stability

Transient 
stability

Small 
disturbance 

voltage stability

Large 
disturbance 

voltage stability

Figure 5.3: Subcategories of the IEEE/CIGRE power systems stability classification
where LEs can be implemented as a stability assessment technique (in grey).

Since the concept of LEs is based on the trajectories of the dynam-
ical systems, the method is an interesting measure of dynamic stability
for power systems under stochastic disturbances in general. So, testing
asymptotic stability of power systems via LEs has become an attractive
approach for the two areas mentioned before, namely, the SSSA of rotor
angles and voltages, by using the linearized set of SDAEs which model
the system [90], [92]; and strategies for the rotor angles via TSA using
the nonlinear SDAE system and its variational equation [44], [93] to de-
termine stability regions of the power system under analysis. For both
cases, asymptotic (exponential) stability is checked via approximations
of the LLE of the system. In particular, a negative LLE indicates that
the dynamics of the system is asymptotically stable. In the next sub-
sections, test cases of power systems modeled through strangeness-free
SDAE are presented. They illustrate the suitability of the computed
LEs to approach (exponential) stability for SSSA.
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5.4. Modeling Power Systems through SDAEs

Under the assumption of deterministic dynamic behavior, power systems
are typically modeled via a system of quasi-linear DAEs with partitioned
variables, see [50], [79], of the form

E11dx
D1
t = fD1

0 (xD1
t ,xAt )dt, (5.1a)

0 = fA0 (xD1
t ,xAt ), (5.1b)

where E11 ∈ Rd1×d1 is a diagonal block matrix, fD1
0 ∈ C1(Rd1+a,Rd1),

fA0 ∈ C1(Rd1+a,Ra), xD1
t ∈ Rd1 are the dynamic state variables, and

xAt ∈ Ra are the algebraic state variables and we set n1 = d1 + a. The
DAE system (5.1) is strangeness-free (or differentiation index-1).

The dynamic behavior of synchronous machines, system controllers,
power converters, transmission lines, or power loads are adequately rep-
resented through such a DAE formulation. But, in current real-world
systems, the dynamic behavior of power systems is affected by distur-
bances of a stochastic nature such as renewable stochastic power gen-
eration, rotor vibrations in synchronous machines, stochastic variations
of loads, electromagnetic transients, or perturbations originated by the
measurement errors of control devices, see [65]. Such disturbances can
be modeled through Itô SDEs of the form

dxD2
t = fD2

0 (xD1
t ,xD2

t ,xAt )dt+ fD2
1 (xD1

t ,xD2
t ,xAt )dwt. (5.2)

Here, fD2
0 ∈ C1(Rd2+a,Rd2) is the drift, fD2

1 ∈ C2(Rd2+a,Ra) is the
diffusion, xD2

t ∈ Rd2 are the stochastic variables, and wt is the Wiener
process. By combining (5.2) and (5.1), and assuming that xD2

t perturbs
(5.1a) and (5.1b), we obtain a strangeness-free SDAE system of the form

E1dx
D1
t = fD1

0 (xD1
t ,xD2

t ,xAt )dt, (5.3a)
dxD2

t = fD2
0 (xD1

t ,xD2
t ,xAt )dt+ fD2

1 (xD1
t ,xD2

t ,xAt )dwt, (5.3b)
0 = fA0 (xD1

t ,xD2
t ,xAt ), (5.3c)

or in simplified notation as

Edxt = f0(xt)dt+ f1(xt)dwt, xt0 = x0, (5.4)

with

E :=
[
E11 0 0

0 Id2 0
0 0 0

]
, xt :=



xD1
t

xD2
t

xAt


 ,
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drift f0 ∈ C1(Rn,Rn), and diffusion f1 ∈ C2(Rn,Rn), where n = d1 +
d2 + a.

The study-cases presented below are formulated as the form (5.3).
An alternative approach for including the stochastic disturbances is to
implement the Wiener process directly in the underlying ODE of the
system, turning them into SDEs (see [17], [36] for examples).

5.4.1. Modeling Stochastic Perturbations

In this subsection, we discuss the modeling of stochastic variations via
SDEs. We employ the well known mean-reverting process termed Ornstein-
Uhlenbeck (OU) process [38], [65]. The SDE, which defines the OU pro-
cess, has the form

dηt = α(µ− ηt)dt+ βdwt, ηt0 = η0, t ∈ I, (5.5)

where α, µ, β ∈ R+. The OU process is a stationary autocorrelated
Gaussian diffusion process distributed as N (µ, β2/2α). Another mean-
reverting choice, similar to the OU process, would be the Cox-Ingersoll-
Ross (CIR) process, whose realizations are always nonnegative; in fact,
it is a sum of squared OU process [5].

It is usually recommended to ensure the boundedness of the stochas-
tic variations for the numerical implementations. In this regard, suit-
able resources are odd trigonometric functions such as a sin or arctan to
guarantee boundedness. For example, if from (5.5) we generate a pro-
cess with a normal distribution N (µ, σ2), for µ = 0 and σ2 = 0.16, this
value of variance enables us to generate a mean-reverting stochastic tra-
jectory, whose confidence interval of 95% (±2σ) is inside the threshold
of ±1. Then, through the functions

ξ(ηt) = sin ηt, or χ(ηt) = 2
π

arctan ηt, (5.6)

we obtain a bounded stochastic variation inside the interval [−1, 1], and
the OU SDEs, that generate the stochastic variations are represented by
(5.3b).

To couple the parameters of the system in (5.3a) and (5.3c) with a
bounded stochastic disturbance, we use

p(ηt) = p0 + ρξ(ηt),
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where p0 is a constant parameter, ηt is the stochastic process that de-
scribes the variations of the parameter, and ρ ∈ R+ is a factor that
controls the magnitude of the perturbation.

5.5. Study-Cases

In this Section, we present results of our implementation of the QR-
based methods for the calculation of LEs at the hand of several test
cases of power systems represented by strangeness-free SDAEs models
of so-called single-machine-infinite-bus (SMIB) systems. This simplified
model is frequently used in the area of power systems in order to under-
stand the local dynamic behavior of a specific machine connected to a
complex power network. The SMIB consists of a synchronous generator
connected through a transmission line to a bus with a fixed bus voltage
magnitude and angle, called infinite bus, which represents the grid. A
diagram of the system is shown in Figure 5.4.

Figure 5.4: Single-machine infinite-bus (SMIB) scheme.

In each test case, we consider a different type of disturbance. For
Case 1, the disturbance is a stochastic load connected to the system.
In Case 2, the disturbance is due to noise caused by a measurement
error in a transducer of the machine control system. In both cases, the
maximum disturbance that the system can admit without losing stability
is analyzed, as well as the effect (positive or negative) of the disturbance
for the system in the stable region. The whole SMIB system, i.e., the
synchronous machine, system constraints, and stochastic disturbances;
are modeled by a strangeness-free SDAE system. The dimension of this
system is mainly defined by the type of model used in the synchronous
machine; we use a classical model and a flux-decay model, see [50], [60],
[75], [79] for detailed descriptions.
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5.5.1. Case 1: SMIB with stochastic load

In this test case, we make use of the LEs to assess the impact of stochas-
tic disturbances associated with an active power load, over the rotor
angle stability of a synchronous generator. Both the machine and load
are connected to the same bus, and this bus in turn, is linked to the
grid through a transmission line. This kind of SMIB model is typically
used to analyze the effects of renewable energy sources, or aggregated
random power consumption, see Figure 5.5. For this version of SMIB

Figure 5.5: Scheme of a SMIB system with a stochastic load used in Test Case 1.

system called classical model, the dynamic behavior of the synchronous
machine is represented by the swing equations where the rotor angle δt
and the rotor speed ωt are the state variables, see [60], [79]. The al-
gebraic constraint in the system is given by the active power balance,
expressed in terms of Pm the mechanical power, Pe the electrical power,
and PL the constant power consumed by the load. A stochastic process
ηt is modeled by an OU SDE. We consider that ρηt is the stochastic com-
ponent of power consumption that perturbs additively the active power
balance of the system, where ρ is the size of the disturbance. This leads
to the system

dδt = [ωt − ωs]dt, (5.7a)
2Hdωt = [Pm − Pe −KD(ωt − ωs)]dt, (5.7b)

ηt = −αηtdt+ βdwt, (5.7c)

0 = E′V

Xeq
cos δt + (PL + ρηt)− Pe. (5.7d)

By computing the LEs of this SDAE system and checking the LLE,
we can determine the maximal perturbation size ρ (via successive in-



5.5. Study-Cases 67

crements of ρ) admitted by the SMIB system before losing rotor angle
stability. The numerical tests are performed for the values Pm = 0.8;
PL = 0.3; Xeq = 0.8; H = 3.5; KD = 0.4; ωs = 2π50; V = 1.0;
E′ = 1.05; α = 1.0; β = 0.4. Most of the values are expressed in the
per-unit system (pu) [75]. The QR methods are executed with step
size h = 1e−3 and a simulation time T = 20000. Figure 5.6 displays

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Disturbance size ρ

−0.03

−0.02

−0.01

0.00

0.01
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E

D-EM
D-Milstein
C-EM
C-Milstein

Figure 5.6: LLE considering different disturbance sizes ρ for the SMIB Test Case 1,
tested with four QR-based methods.

the computed LLE utilizing the four QR-based methods for incremental
disturbance sizes ρ = 0.00, 0.05, . . . , 2.00. As expected, at ρ = 0.0 when
the system is not affected by a stochastic disturbance, i.e., the system
is deterministic, the computed LEs match closely with the real parts of
the eigenvalues obtained from the Jacobian matrix of the linearization
of (5.7). When increasing ρ, all methods reveal the same monotonically
increasing behavior of the calculated value of the LLE towards the unsta-
ble region. First, there is a slow increase for 0.00 < ρ < 0.60, and then
an abrupt increase of the LLE in the interval 0.60 < ρ < 0.75. In the
interval 0.75 < ρ < 1.20, even though the LLE has not yet reached the in-
stability region, for this particular case, the characteristics such as a low
damping coefficient and the presence of the stochastic disturbance, pro-
vokes a behavior in the system called pole slipping. This is, in a certain
sense, a different kind of instability because the system loses synchro-
nism as it reaches another equilibrium point near another attractor, see
[79, sec. 5.8] for further details. The different aspects of this study-case
are better illustrated with the phase portraits in Figure 5.7. The charts
display the trajectories of the dynamical system (5.7) projected onto
the δt − ωt/ωs plane for the disturbance sizes ρ = 0.0, 0.3, 0.7, 1.0, 1.5.
Detailed numerical data for this case are presented in Table 5.2.
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Figure 5.7: Phase portraits of the system (5.7) considering different disturbance sizes
ρ for the SMIB Test Case 1.

This test case shows the immense potential of using LEs as an
indicator of instability for nonlinear power systems. These could also be
used in multi-machine study cases where the computational complexity
has to be reduced, e.g., by model reduction.

5.5.2. Case 2: SMIB with regulator perturbed by noise

In this subsection we consider an SMIB system with a synchronous ma-
chine described by a third-order flux-decay model. Here, in addition
to the rotor angle δt and the rotor speed ωt associated to the swing
equations, the system includes the effect of the field flux ψfd described
by the field circuit dynamic equations and constraints. In this model
the machine is equipped with an automatic voltage regulator (AVR)
to keep the generator output voltage magnitude in a desirable range,
and a power system stabilizer (PSS) to damp out low-frequency oscilla-
tions, see Figure 5.8. The AVR and PSS add to the system three more

Figure 5.8: SMIB system scheme equipped with AVR and PSS, corresponding to Test
Case 2.
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ρ D-EM D-Mil C-EM C-Mil
0.00 −0.02849 −0.02849 −0.02864 −0.02864
0.05 −0.02848 −0.02847 −0.02863 −0.02863
0.10 −0.02843 −0.02845 −0.02860 −0.02863
0.15 −0.02845 −0.02841 −0.02857 −0.02859
0.20 −0.02832 −0.02852 −0.02867 −0.02863
0.25 −0.02815 −0.02836 −0.02852 −0.02833
0.30 −0.02837 −0.02811 −0.02828 −0.02837
0.35 −0.02827 −0.02795 −0.02811 −0.02811
0.40 −0.02734 −0.02778 −0.02797 −0.02762
0.45 −0.02722 −0.02758 −0.02775 −0.02773
0.50 −0.02676 −0.02658 −0.02674 −0.02675
0.55 −0.02702 −0.02575 −0.02590 −0.02537
0.60 −0.02508 −0.02606 −0.02620 −0.02591
0.65 −0.01250 −0.00779 −0.00781 −0.02359
0.70 −0.01016 −0.00549 −0.00550 −0.00353
0.75 −0.00412 −0.01408 −0.01417 −0.00428
0.80 −0.00503 −0.00544 −0.00546 −0.00454
0.85 −0.00505 −0.00656 −0.00658 −0.00505
0.90 −0.00372 −0.00471 −0.00475 −0.00350
0.95 −0.00503 −0.00452 −0.00454 −0.00406
1.00 −0.00353 0.00024 0.00023 −0.00314
1.05 −0.00287 −0.00267 −0.00268 −0.00114
1.10 −0.00075 −0.00159 −0.00158 −0.00278
1.15 −0.00436 −0.00259 −0.00261 −0.00136
1.20 0.00184 0.00093 0.00091 −0.00191
1.25 0.00175 −0.00149 −0.00154 0.00217
1.30 0.00149 0.00029 0.00026 0.00059
1.35 0.00038 0.00044 0.00040 0.00409
1.40 0.00870 0.00284 0.00279 0.00311
1.45 0.00338 0.00072 0.00075 0.00314
1.50 0.00409 0.00570 0.00564 0.00607
1.55 0.00644 0.00806 0.00802 0.01024
1.60 0.01014 0.00642 0.00638 0.00553
1.65 0.00797 0.01089 0.01086 0.00915
1.70 0.00724 0.00896 0.00892 0.00826
1.75 0.00828 0.00808 0.00805 0.00815
1.80 0.01366 0.00658 0.00654 0.01361
1.85 0.00776 0.00977 0.00974 0.01083
1.90 0.01068 0.01346 0.01341 0.01192
1.95 0.01537 0.01313 0.01305 0.01072
2.00 0.01248 0.01225 0.01219 0.01031

Table 5.2: Numerical results of the approximated LLE of SMIB system (5.7) corre-
sponding to the study-case 1, computed via the four QR-based techniques.

state variables v1, v2, and vs; together with their corresponding DAEs,
which describe the dynamic behavior and constraints of the controllers
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into the SMIB system. The resulting model is a nonlinear system of
strangeness-free DAEs. We use the LEs to analyze the system stability
at a specific operation point in the state-space when it is subjected to
small-disturbances. Using the small-signal stability assessment (SSSA),
the set of DAEs that describes the dynamics of the power system is lin-
earized around the desired operating point. The final result is a linear
DAE system. A comprehensive explanation of this model, its lineariza-
tion, and reduction to an underlying ODE system can be found in [50,
ch. 12]. We consider a disturbance of stochastic nature entering in the
exciter block of the AVR as an error of the reference signal [50], [92], by
adding the stochastic variable η to v1 in equation (5.8c). Resolving the
algebraic constraints leads to the linearized system of SDEs

d∆δ = ωs∆ωdt, (5.8a)
2Hd∆ω = [−K1∆δ −KD∆ω −K2∆ψfd + ∆Tm] dt, (5.8b)
T3d∆ψfd = [−K3K4∆δ − (1 +K3K6KA)∆ψfd

−K3KA(1 + ρη)∆v1 +K3KA∆vs] dt, (5.8c)
TRd∆v1 = [−K5∆δ +K6∆ψfd −∆v1] dt, (5.8d)
d∆v2 = [−K1KST∆δ −KDKST∆ω −K2KST∆ψfd

− 1
TW

∆v2 + KST

2H ∆Tm
]
dt, (5.8e)

T2d∆vs = [−K1KSTT1∆δ −KDKSTT1∆ω −K2KSTT1∆ψfd

+
(
T1
TW

+ 1
)

∆v2 −
1
T2

∆vs + KSTT1
2H ∆Tm

]
dt, (5.8f)

dη = −αηdt+ βdw, (5.8g)

where ∆δ, ∆ω, ∆ψfd, ∆v1, ∆v2, ∆vs, and η are the state variables of
the linear underlying SDE system (in the same way than Example 2 in
Section 4.4.2, the subscript t has been omitted in the formulation for
simplicity). Once again, the stochastic perturbation is generated via an
OU SDE, and the size of the perturbation is controlled by the parameter
ρ. The numerical analysis is done for the values ωs = 2π60; H = 3.0;
K1 = 1.591; K2 = 1.50; KD = 0.0; K3 = 0.333; K4 = 1.8; K5 = −0.12;
K6 = 0.3; KA = 200.0; TR = 0.02; KST = 9.5; T1 = 0.154; T2 = 0.033;
T3 = 1.91; TW = 1.4; α = 1.0; β = 0.4; ∆Tm = 0.0.

Based on the analysis of Section (4.4.1), we only consider the con-
tinuous Euler-Maruyama QR method. The results of computing the
LLE of the SMIB system for incremental values of the perturbation size
ρ, are presented graphically in Figure 5.9. The values of the LLE when
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Figure 5.9: Computed LLE for the dimension 7 SMIB system of Test Case 2, con-
sidering different disturbance sizes and using the continuous Euler-Maruyama QR
method.

increasing perturbation size ρ clearly mark four defined intervals. In the
leftmost interval with 0.00 < ρ < 0.40, the calculated LLE is practically
constant and equal to the real part of the right-most eigenvalue from the
deterministic system. In this region, there is no impact of the distur-
bance on the system stability. In the interval 0.40 < ρ < 1.30 a curious
situation occurs, as the size of the disturbance increases, the distance
from the LLE to the positive region increases, in other words, the noise
improves the stability of the system. In the interval 1.30 < ρ < 2.60, the
situation changes completely, and the LLE converges to zero. Finally,
from ρ ≈ 2.60 onwards, the system is unstable. Table 5.3 shows the
numerical values of this test case.

Finally, we have evaluated the computing-times for this 7-dimensional
test case. The results are shown in Figure 5.10. Although the compu-
tational cost for all method is similar for the different methods as a
factor of the step sizes h and time interval [0, T ], the computational
costs strongly increase.

Even though the present work has been oriented for testing the
asymptotic stability of transmission power systems under uncertainty
through the computation of LEs, as showed in the last two study-cases,
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the numerical QR-based techniques for computing the LEs in stochas-
tic dynamical systems can be also a suitable assessment tool in a vast
range of fields such as physics, chemistry, biology, sociology, economics,
etc. Moreover, beyond its use as a tool for the asymptotic stability
assessment, LEs are useful for other quantitative studies such as the
characterization of synchronization or chaos.
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4000
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Figure 5.10: Computing-time comparison of LE calculation for the dimension 7 SMIB
Test Case 2. Comparison performed for the four QR methods in a range of step sizes
between h = [1e−2, 1e−3] and with T = [1000, 12000].
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ρ LLE ρ LLE ρ LLE ρ LLE
0.00 −0.74586 0.75 −0.78894 1.50 −0.84152 2.25 −0.35850
0.05 −0.74593 0.80 −0.78972 1.55 −0.81798 2.30 −0.25838
0.10 −0.74572 0.85 −0.81366 1.60 −0.80238 2.35 −0.13307
0.15 −0.74632 0.90 −0.83571 1.65 −0.77636 2.40 −0.17751
0.20 −0.74647 0.95 −0.85522 1.70 −0.72155 2.45 −0.09607
0.25 −0.74694 1.00 −0.85872 1.75 −0.73500 2.50 −0.07736
0.30 −0.74786 1.05 −0.86683 1.80 −0.64744 2.55 0.01194
0.35 −0.74901 1.10 −0.88458 1.85 −0.64093 2.60 −0.00056
0.40 −0.75015 1.15 −0.89293 1.90 −0.60895 2.65 0.04541
0.45 −0.75187 1.20 −0.88585 1.95 −0.56286 2.70 0.16176
0.50 −0.75370 1.25 −0.89951 2.00 −0.53564 2.75 0.20227
0.55 −0.75980 1.30 −0.88447 2.05 −0.51171 2.80 0.27489
0.60 −0.76208 1.35 −0.89645 2.10 −0.45690 2.85 0.28201
0.65 −0.76663 1.40 −0.87056 2.15 −0.41292 2.90 0.33127
0.70 −0.77893 1.45 −0.86469 2.20 −0.28496 2.95 0.38053

Table 5.3: Numerical results of the approximated LLE of SMIB system (5.8) corre-
sponding to the study-case 2, computed via C-EM method.





CHAPTER 6
Final Discussion

6.1. Conclusions

In the present doctoral thesis, the modeling of multi-physical systems
perturbed by noisy disturbances through SDAEs and their stability anal-
ysis via LEs have been studied.

We have revisited the theory of strangeness-free SDAE systems,
as well as the concepts of LEs associated with the RDSs generated via
such SDAEs. We have adapted and implemented stochastic versions of
continuous and discrete QR-based methods to calculate approximations
of the LEs, and assessed them by using Euler-Maruyama and Milstein
schemes over the corresponding underlying SDEs.

The results obtained from our numerical experiments illustrate the
approximations of the corresponding LE converge to degenerate ran-
dom variables, i.e., the LE can be interpreted as a deterministic value.
In the limit, the approximations’ variance tends to zero. This finding is
a quite relevant justification to avoid a Monte-Carlo-driven assessment
by computing many LEs for different realizations of the stochastic vari-
ables, and rather determine the Lyapunov spectra through just a single
simulation.

Both QR-based methods provide reliable results, but in general,
continuous methods provide better accuracy than the discrete counter-

75
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part at the expenses of higher computational cost and higher memory
requirement. Even though other discretization schemes could be carried
out as well, the ergodicity property of both Milstein and EM schemes
has already been proved.

Despite the accuracy limitations of the projected orthogonal meth-
ods, which are in some way mitigated by narrowing the integration step-
size, these are still a better choice over unitary integrators. Although
the use of automatic unitary integrators instead could improve the pre-
cision of the computed LEs, in exchange for a substantial increase in
computational cost. This represents a significant drawback in applica-
tions to high-dimension system; see [26]. However, the implementation
of automatic unitary integrators and their comparison with projected
orthogonal methods look like an interesting research topic for future
studies, as long as we restrict the applications to small-dimension sys-
tems.

We have illustrated the QR-based methods for SMIB power system
problems and shown the usefulness of the LEs as a stability indicator for
the rotor angle and voltage stability analysis of power systems affected
by bounded stochastic disturbances. As shown in the study-case 2, the
LLE works like an index in the maximum input parameter noise the
system admits before losing stability. On the other hand, in the power
systems study-cases, it is possible to check the numerical methods’ ro-
bustness when some positive LLEs are computed; these cases’ results
are coherent. Note that any numerical method for computing LEs has
limited robustness in tricky situations such as positive (large) LEs. Or
even in large negative LEs as is the case of discrete QR methods [26].

Regarding the contributions of this research work, it is valuable to
point out that these are mainly focused on improving computational as-
pects to calculate reliable approximations of LEs associated with SDAE
systems. Our most important proposal relies on the continuous QR-
based techniques obtained after applying Itô calculus (see expressions
(4.16) to (4.18)) to compute the LEs for SDAE systems with non-
correlated random noises. This ansatz improves the numerical results
compared to (4.15) and leads to better robustness for large time inter-
vals. All these concepts are for the first time used for the computation
of LEs and applied to the specific challenging examples arising in power
system applications.

Also, to reinforce the contributions of this research work, for the
sake of completeness and since the extant literature about this topic
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is relatively scarce, in Chapters 2 and 3, we have included a complete
survey about the SDAE systems, their underlying SDEs, the RDS gener-
ated by such systems, and the existence of well-defined LEs. Moreover,
Chapter 4 present a didactic explanation of the continuous and discrete
QR-based methods for computing LEs. We think that the final result of
our contribution may be useful for a wide audience interested in studying
further advances about the computation of LEs associated to SDAEs.
In a nutshell, the contribution of the thesis is indeed significantly on the
numerical side and focuses on the development of computational meth-
ods to compute LEs for mid- and large-scale complex examples modeled
as SDAE systems.

6.2. Future Developments

As future work, we suggest using discretization schemes for SDAEs to
directly apply the numerical integration to the SDAE system. This
implementation will represent an evident improvement compared to the
use of SDE oriented discretization schemes, whose application is limited
to strangeness-free SDAEs.

An appealing idea could be testing methods for computing the LEs
based on Singular Value Decompositions (SVD). Since the relationship
between the LEs and the evolution of the phase volume leads to a scalar
optimization problem for the LLE, which allows to control the growth
of the LE, the implementation of a norm preserving decomposition such
as SVD and a careful comparison with QR-based methods is a choice
that deserves to be assessed.

It would be of interest a combination of norm preserving decom-
position techniques with model reduction, overall for the assessment of
large-scale systems. Due to the high computational cost of the every-
step decomposition of the fundamental solution matrix, both continuous
or discrete techniques could become inapplicable in large-scale systems.
Here, reducing the order of the model by using stability preserving re-
duction techniques is of interest.

Although the aim of this research work has been to develop reliable
computational methods to compute the LEs associated to SDAEs with
no correlated noises modeling power systems, as future work it would
be interesting to extend our analysis to SDAEs with correlated noises
including their applications to other engineering problems.
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Concerning the applications to power systems and dynamical net-
work systems, the stability assessment of large-scale study-cases is a
remarkable work to be performed.
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