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ABSTRACT

Machine Learning (ML) is known as the branch of artificial intelligence that
gathers statistical, probabilistic, and optimization algorithms, which learn em-
pirically. ML can exploit the knowledge and the experience that have been
generated for years to automatically perform different processes. Therefore,
ML has been applied to a wide range of research areas, from medicine to soft-
ware engineering.

In fact, in software engineering field, up to an 80% of a system’s lifetime
is spent on the maintenance and evolution of the system. The companies, that
have been developing these software systems for a long time, have gathered
a huge amount of knowledge and experience. Therefore, ML is an attractive
solution to reduce their maintenance costs exploiting the gathered resources.
Specifically, Traceability Link Recovery, Bug Localization, and Feature Lo-
cation are amongst the most common and relevant tasks when maintaining
software products. To tackle these tasks, researchers have proposed a num-
ber of approaches. However, most research focus on traditional methods, such
as Latent Semantic Indexing, which does not exploit the gathered resources.
Moreover, most research targets code, neglecting other software artifacts such
as models.

In this dissertation, we present an ML-based approach for fragment re-
trieval on models (FRAME). The goal of this approach is to retrieve the model
fragment which better realizes a specific query in a model. This allows engi-
neers to retrieve the model fragment, which must be traced, fixed, or located
for software maintenance. Specifically, the FRAME approach combines evolu-
tionary computation and ML techniques.

In the FRAME approach, an evolutionary algorithm is guided by ML to
effectively extract model fragments from a model. These model fragments
are then assessed through ML techniques. To learn how to assess them, ML
techniques takes advantage of the companies’ knowledge (retrieved model frag-
ments) and experience. Then, based on what was learned, ML techniques
determine which model fragment better realizes a query. However, model
fragments are not understandable for most ML techniques. Therefore, the
proposed approach encodes the model fragments through an ontological evolu-
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tionary encoding. In short, the FRAME approach is designed to extract model
fragments, encode them, and assess which one better realizes a specific query.

The approach has been evaluated in our industrial partner (CAF, an inter-
national provider of railway solutions) and compared to the most common and
recent approaches. The results show that the FRAME approach achieved the
best results for most performance indicators, providing a mean precision value
of 59.91%, a recall value of 78.95%, a combined F-measure of 62.50%, and a
MCC (Matthews correlation coefficient) value of 0.64. Leveraging retrieved
model fragments, the FRAME approach is less sensitive to tacit knowledge
and vocabulary mismatch than the approaches based on semantic information.
However, the approach is limited by the availability of the retrieved model
fragments to perform the learning. These aspects are further discussed, af-
ter the statistical analysis of the results, which assesses the magnitude of the
improvement in comparison to the other approaches.
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RESUMEN

El aprendizaje automático (ML por sus siglas en inglés) es conocido como la
rama de la inteligencia artificial que reúne algoritmos estadísticos, probabilís-
ticos y de optimización, que aprenden empíricamente. ML puede aprovechar
el conocimiento y la experiencia que se han generado durante años en las em-
presas para realizar automáticamente diferentes procesos. Por lo tanto, ML se
ha aplicado a diversas áreas de investigación, que estudian desde la medicina
hasta la ingeniería del software.

De hecho, en el campo de la ingeniería del software, el mantenimiento y
la evolución de un sistema abarca hasta un 80% de la vida útil del sistema.
Las empresas, que se han dedicado al desarrollo de sistemas software durante
muchos años, han acumulado grandes cantidades de conocimiento y experien-
cia. Por lo tanto, ML resulta una solución atractiva para reducir sus costos
de mantenimiento aprovechando los recursos acumulados. Específicamente,
la Recuperación de Enlaces de Trazabilidad, la Localización de Errores y la
Ubicación de Características se encuentran entre las tareas más comunes y rel-
evantes para realizar el mantenimiento de productos software. Para abordar
estas tareas, los investigadores han propuesto diferentes enfoques. Sin em-
bargo, la mayoría de las investigaciones se centran en métodos tradicionales,
como la indexación semántica latente, que no explota los recursos recopilados.
Además, la mayoría de las investigaciones se enfocan en el código, descuidando
otros artefactos de software como son los modelos.

En esta tesis, presentamos un enfoque basado en ML para la recuperación
de fragmentos en modelos (FRAME). El objetivo de este enfoque es recuperar
el fragmento del modelo que realiza mejor una consulta específica. Esto per-
mite a los ingenieros recuperar el fragmento que necesita ser trazado, reparado
o ubicado para el mantenimiento del software. Específicamente, FRAME com-
bina la computación evolutiva y las técnicas ML.

En FRAME, un algoritmo evolutivo es guiado por ML para extraer de
manera eficaz distintos fragmentos de un modelo. Estos fragmentos son pos-
teriormente evaluados mediante técnicas ML. Para aprender a evaluarlos, las
técnicas ML aprovechan el conocimiento (fragmentos recuperados de modelos)
y la experiencia que las empresas han generado durante años. Basándose en lo
aprendido, las técnicas ML determinan qué fragmento del modelo realiza mejor
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una consulta. Sin embargo, la mayoría de las técnicas ML no pueden entender
los fragmentos de los modelos. Por lo tanto, antes de aplicar las técnicas ML, el
enfoque propuesto codifica los fragmentos a través de una codificación ontológ-
ica y evolutiva. En resumen, FRAME está diseñado para extraer fragmentos
de un modelo, codificarlos y evaluar cuál realiza mejor una consulta específica.

El enfoque ha sido evaluado a partir de un caso real proporcionado por
nuestro socio industrial (CAF, un proveedor internacional de soluciones fer-
roviarias). Además, sus resultados han sido comparados con los resultados de
los enfoques más comunes y recientes. Los resultados muestran que FRAME
obtuvo los mejores resultados para la mayoría de los indicadores de rendimiento,
proporcionando un valor medio de precisión igual a 59.91%, un valor medio de
exhaustividad igual a 78.95%, una valor-F medio igual a 62.50% y un MCC
(Coeficiente de Correlación Matthews) medio igual a 0.64. Aprovechando
los fragmentos recuperados de los modelos, FRAME es menos sensible al
conocimiento tácito y al desajuste de vocabulario que los enfoques basados en
información semántica. Sin embargo, FRAME está limitado por la disponibil-
idad de fragmentos recuperados para llevar a cabo el aprendizaje automático.
Esta tesis presenta una discusión más amplia de estos aspectos así como el
análisis estadístico de los resultados, que evalúa la magnitud de la mejora en
comparación con los otros enfoques.
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RESUM

L’aprenentatge automàtic (ML per les seues sigles en anglés) és conegut com
la branca de la intel·ligència artificial que reuneix algorismes estadístics, prob-
abilístics i d’optimització, que aprenen empíricament. ML pot aprofitar el
coneixement i l’experiència que s’han generat durant anys en les empreses per
a realitzar automàticament diferents processos. Per tant, ML s’ha aplicat a
diverses àrees d’investigació, que estudien des de la medicina fins a l’enginyeria
del programari.

De fet, en el camp de l’enginyeria del programari, el manteniment i l’evolució
d’un sistema abasta fins a un 80% de la vida útil del sistema. Les empreses,
que s’han dedicat al desenvolupament de sistemes programari durant molts
anys, han acumulat grans quantitats de coneixement i experiència. Per tant,
ML resulta una solució atractiva per a reduir els seus costos de manteniment
aprofitant els recursos acumulats. Específicament, la Recuperació d’Enllaços
de Traçabilitat, la Localització d’Errors i la Ubicació de Característiques es
troben entre les tasques més comunes i rellevants per a realitzar el manten-
iment de productes programari. Per a abordar aquestes tasques, els investi-
gadors han proposat diferents enfocaments. No obstant això, la majoria de les
investigacions se centren en mètodes tradicionals, com la indexació semàntica
latent, que no explota els recursos recopilats. A més, la majoria de les inves-
tigacions s’enfoquen en el codi, descurant altres artefactes de programari com
són els models.

En aquesta tesi, presentem un enfocament basat en ML per a la recu-
peració de fragments en models (approach). L’objectiu d’aquest enfocament
és recuperar el fragment del model que realitza millor una consulta especí-
fica. Això permet als enginyers recuperar el fragment que necessita ser traçat,
reparat o situat per al manteniment del programari. Específicament, FRAME
combina la computació evolutiva i les tècniques ML.

En FRAME, un algorisme evolutiu és guiat per ML per a extraure de
manera eficaç diferents fragments d’un model. Aquests fragments són pos-
teriorment avaluats mitjançant tècniques ML. Per a aprendre a avaluar-los,
les tècniques ML aprofiten el coneixement (fragments recuperats de mod-
els) i l’experiència que les empreses han generat durant anys. Basant-se en
l’aprés, les tècniques ML determinen quin fragment del model realitza millor
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una consulta. No obstant això, la majoria de les tècniques ML no poden en-
tendre els fragments dels models. Per tant, abans d’aplicar les tècniques ML,
l’enfocament proposat codifica els fragments a través d’una codificació ontològ-
ica i evolutiva. En resum, FRAME està dissenyat per a extraure fragments
d’un model, codificar-los i avaluar quin realitza millor una consulta específica.

L’enfocament ha sigut avaluat a partir d’un cas real proporcionat pel nostre
soci industrial (CAF, un proveïdor internacional de solucions ferroviàries). A
més, els seus resultats han sigut comparats amb els resultats dels enfocaments
més comuns i recents. Els resultats mostren que FRAME va obtindre els millors
resultats per a la majoria dels indicadors de rendiment, proporcionant un valor
mitjà de precisió igual a 59.91%, un valor mitjà d’exhaustivitat igual a 78.95%,
una valor-F mig igual a 62.50% i un MCC (Coeficient de Correlació Matthews)
mig igual a 0.64. Aprofitant els fragments recuperats dels models, FRAME
és menys sensible al coneixement tàcit i al desajustament de vocabulari que
els enfocaments basats en informació semàntica. No obstant això, FRAME
està limitat per la disponibilitat de fragments recuperats per a dur a terme
l’aprenentatge automàtic. Aquesta tesi presenta una discussió més àmplia
d’aquests aspectes així com l’anàlisi estadística dels resultats, que avalua la
magnitud de la millora en comparació amb els altres enfocaments.
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PART I

Introduction

The only way to achieve the impossible is to believe it is possible.
Alice in Wonderland
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Chapter 1. Introduction

1.1 Motivation

Amongst the most common and relevant tasks in the Software Engineering
field, especially when maintaining software products, are Traceability Link
Recovery, Bug Localization, and Feature Location [1, 2, 3, 4]. Since up to
an 80% of a system’s lifetime is spent on the maintenance and evolution of
the system [5], there is a great demand for Traceability Link Recovery, Bug
Localization, and Feature Location approaches that can help developers to
retrieve relevant software artifacts in software products.

In Model Driven Engineering, models are the main software artifacts.
Models raise the abstraction level using concepts that are much less bound
to the underlying implementation and technology and are much closer to the
problem domain [6]. The practice of Model Driven Engineering has proved to
increase efficiency and effectiveness in software development [6]. In fact, in in-
dustrial contexts, fostering modeling efforts brings benefits in order to improve
productivity, while ensuring quality and performance [6].

Therefore, in a model-driven industrial context, companies tend to have a
myriad of products with large and complex models behind [7]. In this context,
the software engineers have to consume high amounts of time and effort in
order to identify the model elements that have to be maintained or evolved.
Figure 1.1 depicts an example, taken from a real-world train, specified using
the Domain Specific Language (DSL) that formalizes the railway control and
management of the products manufactured by our industrial partner. Specif-
ically, on the left of the figure, the example presents a product model, where
a software engineer needs to identify the model elements related to a query.
After the fragment retrieval process, the example presents a model fragment.
A model fragment is a subset of one or more elements, which belong to the
product model. In fragment retrieval, a model fragment contains the model
elements identified by the software engineer regarding the query. In the exam-
ple, the model fragment is highlighted using a gray dotted shape, on the right
of the figure.

Although the example of Figure 1.1 makes that the manual retrieval pro-
cess seems easy, it is important to remember that the figure shows an example
and the real conditions differ from that. Basically the product models are
more large and complex than the product model in the figure. Moreover,
the models are created and maintained over long periods of time by different
software engineers, and the engineers in charge of the software maintenance
tasks (Traceability Link Recovery, Bug Localization, and Feature Location)
often lack knowledge over the entirety of the product details. Under these
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Legend

Model Fragment Model Elements
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Circuit
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Fragment Retrieval

Figure 1.1: Example of a product model and a model fragment for fragment retrieval in
software maintenance tasks on models

conditions, fragment retrieval in software maintenance tasks consumes high
amounts of time and effort, without guaranteeing good results.

In addition to the engineers’ experience, the dimensions of the data set
and the collaboration of several engineers are also relevant factors for time and
effort costs. Suppose we ask to a group of 19 domain experts to manually
retrieve the model elements that correspond to the 121 queries of a data set
provided by our industrial partner. Taking into account that the data set
comprises a family of product models with 23 models of 1200 model elements,
at least 27,600 model elements should be evaluated. Moreover, since each
model element has about 15 properties, about 414,000 properties should be
considered. Assuming that a domain expert only needs 1 second to consider
a property of a model element, the domain expert would need 4.79 days to
manually locate each query. Considering the 121 queries and the 19 domain
experts, the result is 30.17 years [8].

Considering these numbers, an approach that automatically retrieves model
fragments is strongly needed [7]. To address this challenge, we propose a Ma-
chine Learning-based approach for fragment retrieval. In that approach, Ma-
chine Learning (ML) techniques are the key to exploit the knowledge (manu-
ally retrieved model fragments) and the experience that have been generated
in software companies for years. Learning from this knowledge and experience,
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Chapter 1. Introduction

the approach is designed to automate the fragment retrieval process in software
maintenance tasks, such as Traceability Link Recovery, Bug Localization, or
Feature Location.

1.2 Dissertation Objectives

Information retrieval approaches are being widely used for Traceability Link
Recovery, Bug Localization, and Feature Location tasks, in order to maintain
and evolve the software [1, 2, 3, 4]. However, there is a need for approaches
that target models as the main software artifacts [9, 10, 11]. In this disser-
tation, we move towards this direction tackling three objectives: review the
works related to the application of ML techniques for software maintenance
tasks on models (OB1); provide a ML-based approach to automatically per-
form fragment retrieval in software maintenance tasks on models (OB2); and
validate the contribution of this research in an industrial context (OB3).

Following the structure provided by Wieringa [12], the research questions
(RQs) are divided into two categories: knowledge questions are asked to gather
information about the world, and design problems call for the design of an arti-
fact that will improve a problem context and contributes to answer knowledge
questions.

To review the works related to the application of ML techniques for the
software maintenance tasks on models (OB1), one knowledge question was
considered. Specifically, this question focuses on gathering information about
the domain of interest:

RQ1: What other approaches apply ML techniques for software mainte-
nance tasks on models?

Once the context of the problem has been determined, we have to tackle
the design of the ML-based approach for fragment retrieval in software main-
tenance tasks on models (OB2). This leads to a set of design problems:

RQ2: How to apply ML techniques on models?

When ML techniques are applied, objects being observed are characterized
through a format, which is understandable for the techniques. For example,
in case of weather forecasting, objects being observed can be daily analysis of
the weather. The weather in a specific day is characterized by means of the
minimum and maximum temperature, the wind speed, the wind direction, the
relative humidity, or the probability of precipitation (see Figure 1.2). All these
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characteristics are collected by different sensors, and their values are directly
used for the ML techniques to predict the weather of the following day.

Maintenance Task on Models

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Model Fragment

?27 17 21 W 5 ...40

Weather Forecasting

Weather analisys of May 11. 2020

Maximum Temperature: 27º

Minimum Temperature: 17º

Wind speed: 21km/h

Wind direction: West

Realtive humidity: 40

Precipitation: 57

...

Figure 1.2: Design problem behind RQ2: Characterization of model fragments

In Model Driven Engineering, objects being observed are model fragments.
However, how to characterize a model fragment is not so clear as in weather
forecasting (see Figure 1.2). Should we use the frequency of a specific model
element? Should we use the relations among the model elements? These kinds
of questions have not a clear answer until now. Therefore, the second research
question focused on this design problem.

RQ3: How to assess model fragments through ML techniques?

In fragment retrieval, it is necessary to determine which model fragment
of a product model better realizes a specific query. However, the same product
model contains different model fragments. The left part of Figure 1.3 shows
an example of two different model fragments that belong to the same product
model. Both model fragments contain five model elements, but the model
elements are different. The Model Fragment 1 is composed of one pantograph,
one circuit breaker, one converter, one connection between the pantograph
and the circuit breaker, and one connection between the circuit breaker and
the converter. On the other hand, the Model Fragment 2 is composed of two
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circuit breakers, one converter, and two connections that connect the circuits
breaker to the converter.

To determine which model fragment better realizes the query in the figure,
the model fragments have to be assessed. How to assess the model fragments
is the design problem addressed by the third research question.

?

Model Fragment 1

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Query

To close a circuit breaker, the
pantograph has to be raised.

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Best Model Fragment for Query

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 2

Converter 1

HVAC PA

Pantograph 1

Model Fragment 2

Figure 1.3: Design problem behind RQ3: Assessing model fragments regarding a query

RQ4: How to extract model fragments from a model?

The last research question for OB2 (provide a ML-based approach for frag-
ment retrieval) focused on the extraction of model fragments1. Models frag-

1At this point, it is important to highlight that a model fragment is not extracted from its parent
model as a new isolated model. The model fragment is used to identify elements of the model
that are relevant for a query (i.e. a requirement, a bug, or a feature). This could be understood as
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ments contain one or more model elements, than can be or connected among
them. Therefore, a lot of model fragments can be extracted from a product
model. For example, a product model of our industrial partner have about
4672x10196 different model fragments. Even with an automatic approach, to
assess all these model fragments would take months of work.

Therefore, the fourth research question focused on researching how to ex-
tract the model fragments in order to assess only the most relevant model
fragments for a specific query instead of assessing the whole set of model frag-
ments from a product model (see Figure 1.4).

Product Model

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

?

Model Fragments

Figure 1.4: Design problem behind RQ4: Extraction of model fragments from a model

Moreover, to validate the contribution of this research in an industrial
context (OB3), one more research question was addressed:

highlighting model elements of the model (that is, no new artifact is created). Different combinations
of model elements can be highlighted and considered as model fragments.
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RQ5: What results does the designed approach achieve in comparison to
other approaches for software maintenance tasks on models?

1.3 Dissertation Contribution

In response to the RQ1, we present a preliminary systematic review of the liter-
ature (see Chapter 3). This systematic review identifies ML-based approaches
for software maintenance tasks on models. Specifically, the systematic review
focuses on Traceability Link Recovery, Bug Localization, and Feature Loca-
tion, because these tasks require the retrieval of software artifacts. However,
the systematic review not only focuses on models, but it also considers other
software artifacts, such as source code.

In response to RQ2, we present an ontological evolutionary encoding [13, 9]
(see Chapter 4). The encoding characterizes model fragments selecting the
most suitable set of characteristics to describe the model fragments. This
encoding allows ML techniques to understand the model fragments, so that
the ML techniques can be applied. Therefore, this encoding allows to apply
ML techniques on model fragments in the proposed approach (FRAME).

In response to RQ3, we present a fitness function [13, 9] (see Chapter
5). The fitness function takes advantage of ML techniques to determine what
model fragment better realizes an specific query. This function allows to assess
model fragments in the proposed approach (FRAME).

In response to RQ4, we propose the use of an evolutionary algorithm to
extract model fragments from a model [14] (see Chapter 6). Instead of assessing
all the model fragments of a model, the evolutionary algorithm allows to guide
the extraction towards the model fragments which are more related with the
query. This evolutionary algorithm allows to guide the extraction of model
fragments in the proposed approach (FRAME).

In response to RQ5, we compare the results of our ML-based approach
to the results of five different approaches [14] (see Chapter 8). Specifically,
the evaluation considers (1) the two traditional approaches that are based on
Natural Language Processing and obtain the best results for Traceability Links
Recovery on models, (2) two deep learning techniques that have also success-
fully been applied in Traceability Link Recovery in some recent works, and
(3) an approach that explore the search space by means of brute-force. Fur-
thermore, as part of this research question, we extend the comparison among
the approaches considering other aspects, such as the input artifacts. Specif-
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ically, we provide a discussion about the prerequisites and properties of the
approaches and the specific advantages that our approach has over the other
approaches.

It is noteworthy that we have collaborated with other researchers to ad-
dress some problems which are related to our research. Therefore, although
the main contributions of this dissertation are presented in [13, 9, 14], [15]
and [16] also present relevant contributions for this dissertation. [15] extends
existing Feature Location approaches based on Information Retrieval and Lin-
guistic rules to locate features in models. In this work, our contribution was
mainly related to apply the Linguistic Rule-Based approach in railway domain,
which is fundamental to answer the RQ5 in this dissertation (see Chapter 7).
[16] proposes using five measurements (size, volume, density, multiplicity, and
dispersion) to report the location problems. In this work, our contribution was
related to the three measurements for model fragments: density, multiplicity,
and dispersion. This contribution is also fundamental for RQ5, not only to
report but also to design the evaluation of this dissertation (see Chapter 7).

In addition, we have evaluated the presented contributions with our in-
dustrial partners, applying them to industrial product models. However, this
evaluation has only taken into consideration the performance of the proposed
approach. We are still working on the evaluation of the benefits and the sat-
isfaction from the engineers’ perspective. Furthermore, the contributions have
been developed under National and International research projects aligned with
the research performed in this dissertation. The contributions have been shared
with the community in the form of conference and journal peer-reviewed pub-
lications. Finally, we have identified some challenges that remain unaddressed
in this dissertation and that constitute our ongoing research.

1.4 Dissertation Overview

Figure 1.5 shows an overview of the work performed as part of this dissertation.
It is structured into seven different rows: (row 1) identifies the challenge that
is addressed; (row 2) shows the research questions about the challenge; (row
3) shows the solutions proposed in this dissertation for each research question;
(row 4) shows the chapters where the solutions are presented; (row 5) lists the
scientific publications generated; (row 6) lists the research projects where the
work has been contributed to; (row 7) shows the industrial partner where the
solution has been matured and evaluated.
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Figure 1.5: Overview of the work performed as part of the dissertation

For the challenge of ML for fragment retrieval on models, five research
questions are identified. The solution for the first research question (RQ1) is
a systematic review of the literature, which is addressed in Chapter 3. The
solutions for the following two research questions (RQ2 and RQ3) contribute to
the design of the approach. Specifically, the solution for RQ2 is an ontological
evolutionary encoding and the solution for RQ3 is a fitness function to assess
model fragments. These two solutions are addressed in Chapters 4 and 5
respectively, and were presented in the publications REVE'17 [13] and ER'17
[9]. The fourth research question (RQ4) completes the design of the approach,
using an evolutionary algorithm to extract model fragments from a model.
This solution is addressed in Chapter 6 and was presented in the publication
JSS'20 [14]. Finally, the solution for the last research question (RQ5) is the
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comparison of the results obtained for different approaches, including ours.
This solution is addressed in Chapter 8 and was presented in the publication
JSS'20 [14]. Moreover, in publications CoopIS'17 and MODELS’18, we present
the first results in railway domain applying the Linguistic Rule-Based approach
and the measurements for model fragments, which are used in the evaluation
to answer the RQ5.

The work presented in this dissertation contributed to five projects: (ACIF)
a Spanish local research grant whose objective is the definition of the support
for the development of Big Data applications; (VARIAMOS) a Spanish na-
tional research project whose objective is the extraction of variability in the
form of model fragments to achieve the adoption of software product line ap-
proaches; (ALPS) a Spanish national research project whose objective is the
development of intelligent evolutive assistants for the initialization of software
product lines; (DataME) a Spanish national research project whose objective is
the definition of a model driven method for Big Data applications; (REVaMP2)
an international ITEA 3 Call 2 project whose main objective is the creation
of a holistic platform and process for variability extraction and management
over time.

Moreover, the industrial partner, where this work was evaluated, was
(CAF) a worldwide provider of railway solutions. The results of this disserta-
tion contribute to the creation of a solution for managing the variability of the
software existing in their railway systems.

1.5 Research Methodology

In order to perform the work of this dissertation, we have followed the de-
sign science approach of Wieringa, defined as the design and investigation of
artifacts in context [12]. Therefore, we designed a ML-based approach (the
artifact) for fragment retrieval on models (the context).

The research has been outlined as an engineering cycle and at the basis of
this approach is the design cycle, consisting in three phases:

• Problem Investigation: the goal of this phase is to identify, describe,
explain, and evaluate the problem to be treated. In problem investigation,
the research goal is to investigate an improvement problem before an
artifact is designed and when no requirements for an artifact have been
identified yet [12]. Therefore, in this first phase, we defined the problem
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Design cycle

Problem Investigation

ML techniques in Software
Maintenance Tasks

Treatment Design

ML-based approach

Treatment Validation

Evaluation in a real case

Treatment Implementation

Ontological Evolutionary Encoding

Fitness Function
Evolutionary Algorithm

Figure 1.6: Design cycle of the research methodology followed in this dissertation

context (i.e. fragment retrieval on models) considering the background
and the state of the art.

• Treatment Design: the goal of this phase is the design of one or more
artifacts that could treat the problem [12]. Therefore, in this second
phase, we provide the design of a ML-based approach, as the artifact to
tackle the problem.

• Treatment Validation: the goal of this phase is to justify that the
designed treatment would contribute to stakeholder goals when imple-
mented in the problem context [12]. In this third phase, we validate
the designed ML-based approach in order to provide evidence that our
approach can benefit software engineers and modelers.

Following the design science approach, there is a last phase (Treatment im-
plementation), whose goal is to transfer the treatment to the problem context
[12]. However, as Wieringa highlights in [12], design science research projects
do not perform the entire engineering cycle but are restricted to the design
cycle. Therefore, the technological transfer associated to the real-world design
and implementation is out of the scope of this PhD project.

Figure 1.6 shows the key points of this dissertation according to each phase
of the design cycle and the objectives described in section 1.2. We start the
research work reviewing the state of the art with regard to the ML techniques

14



1.6 Dissertation Structure

in software maintenance tasks. This helps us to understand the domain and
have a deep knowledge of the problem context. When we verified that there
is not a current solution for the problem, we continue the research work with
the treatment design. It consists in the design of a ML-based approach for
fragment retrieval on models. The main parts of this approach are an ontolog-
ical evolutionary encoding to characterize model fragments, a fitness function
to assess model fragments, and an evolutionary algorithm to extract model
fragments from a model. Finally, we validate that the proposed approach is
useful to solve the problem. To do this, we evaluate the proposed approach
in a real case (CAF case) and compare these results against the results of the
best approaches in the literature.

1.6 Dissertation Structure

This dissertation is structured into six parts:

Part I The first part is the introduction of the dissertation.

Chapter 1. Introduction This chapter introduces the motivation for the
dissertation, the problem statement, the contribution, the overview of
the work done, the methodology followed, and the structure of the
dissertation.

Part II The second part of the dissertation focuses on the investigation prob-
lem.

Chapter 2. Background This chapter presents some background related
to the topics covered in the dissertation. Specifically, it presents Model
Driven Development, software maintenance tasks, Machine Learning,
and the running example extracted from our industrial partner in order
to illustrate the rest of the dissertation.

Chapter 3. State of the Art This chapter reviews the state of the art
in relation to the ML techniques in software maintenance tasks.

Part III The third part of the dissertation focuses on the treatment design.

Chapter 4. Ontological Evolutionary Encoding This chapter presents
the ontological evolutionary encoding to characterize model fragments.
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Specifically, this encoding allows ML techniques to understand the
model fragments, so that the ML techniques can be applied on model
fragments.

Chapter 5. Fitness Function This chapter presents the fitness function
to assess model fragments using ML techniques. Specifically, this func-
tion allows to determine what model fragment better realizes an specific
query.

Chapter 6. Evolutionary Algorithm This chapter presents the evolu-
tionary algorithm to extract model fragments from a model. Moreover,
this chapter provides an overview of the Fragment Retrieval Approach
based on Machine learning and Evolutionary algorithms (FRAME).

Part IV The fourth part of the dissertation focuses on the validation part.

Chapter 7. Evaluation Design This chapter presents the design of the
evaluation performed to validate the proposed approach. Specifically, it
presents the real case, the approaches under evaluation, the comparison
and measure setup, and the threats to validity.

Chapter 8. Results of the Evaluation This chapter presents the re-
ported results, the statistical analysis, the response to the research
question of the evaluation, and the discussion of the results.

Part V The sixth part of the dissertation presents the conclusion.

Chapter 11. Conclusion and Future Work This chapter includes the
conclusion, the recapitulation of the research questions presented and
their answers, the next steps in the research, and the concluding re-
marks.

Part VI Finally, the seventh part of the dissertation includes the five papers
selected for the dissertation.
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Investigation
Problem

You can’t see the whole picture until you look at it from the outside.
One Piece
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Chapter 2. Background

2.1 Overview of the Chapter

In this chapter, we introduce the background, which is conformed by the con-
text of the two first objectives: (1) review the works related to the application
of ML techniques for software maintenance tasks on models; (2) provide a
ML-based approach for fragment retrieval in software maintenance tasks on
models. Specifically, we present Model Driven Development, software mainte-
nance tasks, Machine Learning, and the running example that will be used to
illustrate the dissertation.

First, we present Model Driven Development (Section 2.2), which is a
paradigm where the models are not merely artifacts of documentation. The
goal of this paradigm is to automatically translate an abstract specification of
the system into a fully functional software product.

Second, we present software maintenance tasks (Section 2.3), which are
applied to maintain the systems. Specifically, we focus on Traceability Link
Recovery, Bug Localization, and Feature Location. These tasks are oriented
to retrieve software artifacts regarding a specific target in software systems.

Third, we present Machine Learning (Section 2.4), which is a discipline
focused on empirically learning. The goal of the ML techniques is to build
automated systems that can adapt and learn from their experience.

Finally, we present our running example extracted from our industrial
partner and the main acronyms used in this dissertation (Section 2.5).

2.2 Model Driven Development

Modeling is an essential part of any engineering process [17]. With the emerg-
ing paradigm of Model Driven Development (MDD), the models has become
to play a central role in the software development [18]. According to Mellor
et al. [19], "Model-driven development is simply the notion that we can con-
struct a model of a system that we can then transform into the real thing".
This paradigm is embraced by various organizations and companies, which
have been proposing a wide variety of different techniques and several environ-
ments claiming to support MDD [17]. Among them, the Object Management
Group (OMG) proposed a framework for software development, called Model
Driven Architecture (MDA) 1 and the Eclipse community provides a unified

1http://www.omg.org
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set of modeling frameworks, tooling, and standards implementations, under
the Eclipse Modeling Project 2.

2.2.1 Models in MDD

A model is an abstraction of a system often used to replace the system under
study [20, 21, 22]. Models have been used in software engineering to represent
a partial and simplified view of a system. This allows engineers to better
understand the system under development [23].

However, the arrival of the MDD is changing the way of using models in
the development of software. In MDD, models are not only used to better
understand the systems, but also to develop them. The models are used to
synthesize concrete software development artifacts (e.g., other models, source
code, configuration generation, and test scripts) through model transforma-
tions [24, 17]. As stated by Agrawal et al. [25]:

"The models are not merely artifacts of documentation, but living docu-
ments that are transformed into implementations. This view radically extends
the current prevailing practice of using UML: UML is used for capturing some
of the relevant aspects of the software, and some of the code (or its skeleton) is
automatically generated, but the main bulk of the implementation is developed
by hand. MDA, on the other hand, advocates the full application of models, in
the entire life-cycle of the software product."

2.2.2 Domain Specific Language in MDD

According to the definition proposed by Van Deursen et al. [26], a Domain
Specific Language (DSL) is:

"a programming language or executable specification language that offers,
through appropriate notations and abstractions, expressive power, focused on,
and usually restricted to, a particular problem domain."

DSLs are not a new topic. Going back to the last century, APT, a
DSL for programming numerically controlled machine tools, was developed
in 1957–1958 [27] and the well-known syntax specification formalism, dates
back to 1959 [28, 29]. In fact, many DLS have been designed and used over
the years and some of them are well-known and widely-used (e.g. LATEX,
YACC, Make, SQL, and HTML).

2http://www.eclipse.org/modeling/
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In MDD, DSLs play a cornerstone role for representing models and meta-
models [30]. In general, a DSL is defined with regard to its abstract syntax
and its concrete syntax. For the abstract syntax, a metamodel describes the
concepts of the language, the relationships between them, and the structuring
rules. On the other hand, the concrete syntax specifies the representations of
the domain concepts in the metamodel. These representations are usually de-
fined as a mapping between the metamodel and a textual or graphical notation
[30].

2.3 Software Maintenance Tasks

Maintainability has become one of the most essential attributes of software
quality, as software maintenance has shown to be one of the most costly and
time-consuming tasks of software development [31]. In 1994, the software main-
tenance was estimated to account for 50% or more of the total development
cost, and this maintenance cost showed no sign of declining [32]. In fact, seven
years later, maintenance typically consumed about 40% to 80% (60% average)
of software costs [33]. After six years, up to an 80% of a system’s lifetime was
spent on the maintenance and evolution of a system [5].

Traceability Link Recovery, Bug Localization, and Feature Location are
amongst the most relevant tasks performed during software maintenance [7].
Below there is a brief description of each one:

Traceability Link Recovery: consists of tracing the software artifacts of a
system (e.g. source code, requirements, and test cases) to significantly
reduce the time cost that the engineers need to comprehend the system
[34, 2]. The term traceability was coined by the requirements engineering
community. In particular, in this community, the requirements traceabil-
ity is defined as the ability to describe and follow the life of a requirement,
in both a forward and backward direction [35]. In MDD, the requirements
traceability is the ability to identify the elements that implements a spe-
cific requirement in a product model.

Bug Localization: consists of determining where to fix a bug based on bug
report documents or incidence tickets [36]. For the traditional develop-
ment, Bug Localization assists developers in locating culprit source code
that must be modified to fix a bug [37]. In contrast, for MDD, Bug Local-
ization assists developers in locating the elements that causes a particular
error in a product model in order to fix it.
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Feature Location: consists of finding the software artifacts that realize a
feature [38]. A feature is a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system [39, 40]. The presence or
absence of a characteristic in a product, in that sense, entails the existence
of different product configurations [7]. In MDD, the feature location is
concerned with identifying the elements associated with a specific feature
in a product model. It should be noted that the location of features is not
only intended for software maintenance tasks, but also in reengineering
tasks. In fact, Feature Location is a key activity in reengineering a set of
product variants (e.g., variants created through clone-and-own to satisfy
the needs of different customers) into an Software Product Line [41, 42].

2.4 Machine Learning

Machine Learning (ML) is known as the branch of artificial intelligence that
gathers statistical, probabilistic, and optimization algorithms, which learn em-
pirically. ML has a wide range of applications, including search engines, med-
ical diagnosis, text and handwriting recognition, image screening, load fore-
casting, marketing and sales diagnosis, etc.

The ML techniques can be grouped in several categories, among the most
known ones are:

Supervised Learning: groups the techniques whose goal is to build a concise
model of the distribution of class labels in terms of predictor features. The
resulting model is then used to assign class labels to the testing samples
where the values of the predictor features are known, but the value of the
class label is unknown [43].

Unsupervised Learning: groups the techniques whose goal is to discover
patterns in large data sets or classifying the data into several categories
without being trained explicitly [44]. The inputs of unsupervised learning
techniques are not labelled.

This dissertation focuses on Supervised Learning techniques. However,
to simplify the understanding or avoid misunderstandings, some of ML terms
have been adapted:

Fitness value: is used instead of class label. The term class label is usually
replaced with a more friendly term for the application domain (e.g. target
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or score). In our case, the term class label has been replaced taken into
account the step, where the labels are predicted in the proposed approach.

Feature vector: is used instead of predictor features. Feature vector is not
a new term for ML. The predictor features are variables that contain
relevant information in predicting the output [45]. When these features
are comprised in a vector, this is called feature vector in ML.

Classifier: is used instead of model. In ML, the model is the object built from
the learning. In this dissertation, the term model could be used to mean
the models in MDD or the model in ML. Since this would be confused, we
have been adopted a synonym (i.e. classifier) that is also used in many
ML works.

Characteristic: is used instead of feature. In this dissertation, the concept
has two meanings. On the one hand, in feature location, a feature is
a prominent or distinctive user-visible aspect, quality, or characteristic
of a software system [39, 40]. On the other hand, in ML, a feature is
an individual measurable characteristic of the object being observed [46].
Therefore, to avoid misunderstandings, the term feature for ML has been
replaced by the term characteristic.

2.5 Runtime Example

This section presents the railway domain and the Domain Specific Language
used by our industrial partner to specify their product models. The language
and graphical representations presented in this section will serve as the basis
of the running example used to illustrate the rest of the dissertation.

2.5.1 Railway Domain

CAF is a worldwide leader in train manufacturing. CAF has produced a family
of software systems to control the trains that they have been manufacturing
over more than 25 years. Their trains can be found all over the world and in
different forms (regular trains, subway, light rail, monorail, etc.).

A train unit is furnished with multiple pieces of equipment in its vehicles
and cabins. These pieces of equipment are often designed and manufactured
by different providers, and their aim is to carry out specific tasks for the train.
Some examples of these devices are: the traction equipment, the compressors
that feed the brakes, the pantograph that harvests power from the overhead
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wires, and the circuit breaker that isolates or connects the electrical circuits
of the train. The control software is created with two goals in mind: (1)
orchestrating the equipments to achieve flawless train functionality, and (2)
guaranteeing the compliance of the train unit with the prevalent regulations
of the country where the train unit is to be installed.

2.5.2 Train Control and Management Language

The Train Control and Management Language (TCML) is a DSL used to
formalize the products manufactured by our industrial partner. TCML has
enough expressiveness to describe both the interactions between the main
pieces of equipment installed in a train unit and the non-functional aspects
related to regulation (such as signal quality or installed redundancy levels).
However, in order to gain legibility and due to intellectual property rights con-
cerns, in this section we use a simplified subset of the TCML which only shows
6 meta-classes and 8 relationships (see the top of Figure 2.1). Specifically, this
simplified subset of TCML focuses on four different kinds of equipment:

1 High Voltage Equipment, which is in charge of harvesting the energy
that powers the different elements of the train.

2 Contactors, which are in charge of opening or closing the circuits be-
tween the High Voltage equipment and the Voltage Converters.

3 Voltage Converters, which are in charge of transforming the harvested
electric power into a current that the Consumer Equipment can work
with.

4 Consumer Equipment, which is in charge of carrying out all of the
tasks required for the train to work properly and provide comfort to the
passengers.

The bottom of Figure 2.1 depicts an example of a product model and
a model fragment. The product model is taken from a real-world train and
presents a converter assistance scenario. In the example, two separate pan-
tographs (High Voltage Equipment) collect energy from the overhead wires
and send it to their respective circuit breakers (Contactors), which in turn
send it to a Voltage Converter. The converter then powers their assigned Con-
sumer Equipments: the HVAC (the air conditioning system of the train) device
and the PA (public address system).
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TCML Metamodel

High Voltage ConsumerVoltage ConverterContactors

Train

Equipment

TCML Syntax

High Voltage Voltage Converter

Contactors Consumer

Product Model

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Model Fragment

Legend

Model Fragment

Model Elements

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Figure 2.1: Example of a TCML model and model fragment

The model fragment is highlighted using a gray dotted shape. In this
example, the model fragment is composed of three equipments: the Pantograph
1, the Circuit Breaker 1, the Converter 1 ; and these equipments are connected
between them. In the following sections, we will use the TCML syntax, the
product model, and the model fragment to present a running example through
the rest of the dissertation.

ª
The following video illustrates the CAF models: youtube.com/
watch?v=Ypcl2evEQB8
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TLAs You Need
OMG: The Object Management Group is an international, not-for-profit industrial
consortium that creates and maintains software interoperability specifications.

MOF: Meta-Object Facility is the OMG metalanguage for defining modeling languages.

MDA: The Model-Driven Architecture is a set of OMG standards that enables the
specification of models and their transformation into other models and complete systems.

MDD: Model Driven Development is an emerging paradigm for software construction
that uses models to specify programs, and model transformations to synthesize executa-
bles.

DSL: A domain-specific language is a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain.

ML: Machine Learning is known as the branch of artificial intelligence that gathers
statistical, probabilistic, and optimization algorithms, which learn empirically.

LtoR: Learning to Rank is the name given to a family of ML techniques, which auto-
matically address ranking tasks.

FNN: Feedforward Neural Network is a traditional neural network structure and lay
the foundation for many other structures.

RNN: Recurrent Neural Network is a type of artificial deep learning neural network
designed to process sequential data and recognize patterns in it.

IR: Information Retrieval is a sub-field of computer science that deals with the auto-
mated storage and retrieval of documents.

CAF: Construcciones y Auxiliar de Ferrocarriles is a worldwide provider of railway
solutions. Their trains can be found all over the world and in different forms (regular
trains, subway, light rail, monorail, etc.)

TLA: Three-letter acronym.
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Chapter 3. State of the Art

3.1 Overview of the chapter

This chapter presents the state of the art for the dissertation. In order to find
the recent related works, we conducted a preliminary systematic review of the
literature. The goal of this systematic review is to provide an overview of ML
techniques in software maintenance tasks on models. Starting from an initial
set of 200 articles, we found that 56 of them actually adopted ML techniques
to tackle Traceability Link Recovery, Bug Localization, or Feature Location.

Specifically, the systematic review (SR) was performed according to the
guidelines proposed in [47, 48, 49], in order to answer the following two research
questions:

SR-RQ1: What kind of software artifacts is the most common target for
Traceability Link Recovery, Bug Localization, or Feature Loca-
tion?

SR-RQ2: What are the most common ML techniques for Traceability Link
Recovery, Bug Localization, Feature Location?

The following sections present the search process (Section 3.2), the related
works selected by the search process (Section 3.3), and the answers for the
research questions (Section 3.4).

3.2 Search Process

To collect all the available published literature relevant for the research ques-
tions, we adopted a database search. Therefore, we defined a search string
as Kitchenham and Charters suggested in [47]. We used PICO (Population,
Intervention, Comparison, and Outcomes) criteria to derive the major terms.

Table 3.1 shows the search terms regarding the PICO criteria. From this
table, we used boolean operators to construct the search string. Specifically,
all Population terms were combined by using the Boolean “OR” operator; all
Intervention terms were combined by using the Boolean “OR”; and all the
Outcomes terms were combined by using the Boolean “OR”. Then, we combined
the Population terms, the Intervention terms, and the Outcome terms by using
the Boolean “AND” operator, which implies that an article only had to include
one of the terms for Population, one of the terms for Intervention, and one of
the terms for Outcomes.
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Table 3.1: Terms for the search string regarding PICO criteria

Terms

Population: In software engineering,
population may refer to specific software en-
gineering role, category of software engineer,
an application area or an industry group.

Traceability Link Recovery, Bug Lo-
calization, Feature Location, Software
Maintenance Task

Intervention: In software engineering,
intervention refers to a software methodology,
tool, technology, or procedure that addresses
a specific issue.

Machine learning, decision tree, re-
gression tree, classification tree, near-
est neighbo*, neural net*, genetic al-
gorithm, genetic program*, bayesian
belief network, bayesian net*, as-
sociation rule*, support vector ma-
chine, support vector regression, sup-
port vector*

Comparison: In software engineering,
the comparison is the software engineering
methodology, tool, technology, or procedure
with which the intervention is being com-
pared.

Given the goal of the systematic re-
view, the comparison is not applied.

Outcomes: In software engineering, the
outcomes should relate to factors of impor-
tance to practitioners.

Approach, method, tool, framework,
process, guidelines

Given the search string, we followed the article selection process depicted
in Fig. 3.1. Specifically, the selection process was composed of four steps:

1. The search string was used to collect the primary studies present in Sco-
pus, until May 2020. Through this search, we found 135 articles respect-
ing the search string.

2. The entire list of retrieved articles was filtered to exclude non-relevant
articles. Specifically, The exclusion criteria were: (EC1) Studies not pre-
sented in English, (EC2) Non-computer science literature, and (EC3)
Proceedings. These exclusion criteria were applied taking into account
the title, abstract, and keywords of the articles. As result, 38 articles were
discarded for satisfying the exclusion criteria. The remaining articles, 97
articles, were selected for the following step.

3. The 97 articles were filtered to include only the relevant articles to an-
swer the research questions. The inclusion criteria were: (IC1) Studies
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Total articles
selected
(56)

Exclusion Criteria
(title, abstract,
keywords)

Inclusion Criteria
(full text)

Manual search
(10)

Scopus
(135)

Initial
Selection
(97)

Final
Selection
(46)

Figure 3.1: Overview of the search process

for Traceability Link Recovery through ML techniques, (IC2) Studies for
Feature Location through ML techniques, and (IC3) Studies for Bug Lo-
calization through ML techniques. These inclusion criteria were applied
taking into account the full-text of the articles. As result, 51 articles were
discarded for not satisfying the inclusion criteria. The remaining, 46 ar-
ticles, were selected for this chapter, which is about 34% of the papers
found in Scopus. Moreover, it is noteworthy that among these 46 articles
are two of the articles for this dissertation [9] and [14].

4. Finally, we complete the search through a manual search, in order to
search for possible missing papers. In particular, 10 articles were included
through the manual search.

Therefore, the 56 articles, that were included through the Scopus search
and the manual search, were considered the related works for this dissertation.

3.3 Related Works

This section provides an overview of the related works, that were found through
the search. Specifically, these related works focus on applying ML techniques
for Traceability Link Recovery, Bug Localization, or Feature Location. Table
3.2 shows the related works (56 articles) grouped by these tasks. In the table,
our articles are highlighted using bold font.

According to the number of articles for each task, ML techniques are more
commonly used for Bug Localization than for Traceability Link Recovery or
for Feature Location. While 47% of the articles apply ML techniques for Bug
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Table 3.2: Articles grouped by Software Maintenance Task

Traceability Link Recovery Bug Localization Feature Location

[9], [14], [50], [51], [52],
[53], [54], [55], [56], [57],
[58], [59]

[60], [61], [62], [63], [64],
[65], [66], [67], [68], [69],
[70], [71], [72], [73], [74],
[75], [76], [77], [78], [79],
[80], [81], [82], [83], [84],
[85]

[10], [86], [87], [88], [89],
[90], [91], [92], [93], [94],
[95], [96], [97], [98], [99],
[100], [101], [102]

Localization, Feature Location and Traceability Link Recovery are only tackled
by 32% and 21% of the articles, respectively.

Moreover, Figure 3.2 shows the evolution of the articles taking into account
the publication dates. We can note a renewed interest for ML application in
software maintenance tasks. Specifically, the number of articles that apply ML
techniques in the last four years (between 2016 and 2019) has been doubled,
and even, tripled regarding previous years.
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Figure 3.2: Number of articles by year
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3.3.1 Related works regarding the kind of software artifacts

This section analyzes the works, that were found through the search, according
to the kind of software artifact. Figure 3.3 shows two plots that graphically
summarize the results. These plots show that most research articles target
source code, neglecting other software artifacts such as models and product
descriptions. In fact, on the left of Figure 3.3, the pie plot shows that only
12% of the articles target models, while 84% of the articles focus on source
code.

Source Code 
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Figure 3.3: Number of articles by software maintenance task according to their main
software artifact

Moreover, on the right part of the figure, the bar plot shows the number of
articles for each software maintenance task. According to this plot, the number
of articles that target source code is higher to the number of articles that target
models and product descriptions for each one of the software maintenance task.
In fact, regarding Bug Localization, the search performed did not find any
article that applies ML techniques on models or on product descriptions.

Table 3.3 shows the related works grouped by the software maintenance
task and the software artifact. 47 works focus on source code, 7 works focus on
models, and 2 works focus on product descriptions. In the table, our articles
are highlighted using bold font, to highlight the main difference between our
work and most related works. While most works focus on source code as the
main software artifact, our research work, and specifically this dissertation,
focuses on models.

In fact, without our articles, there are only five articles that target models
instead of source code [90, 91, 98, 99, 10]. All these articles tackle the same
software maintenance task: feature location. In contrast, our work is not
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Table 3.3: Articles grouped by software maintenance task and software artifact

Traceability Link Recovery Bug Localization Feature Location

Source Code [50], [51], [52], [53], [54],
[55], [56], [57], [58], [59]

[60], [61], [62], [63], [64],
[65], [66], [67], [68], [69],
[70], [71], [72], [73], [74],
[75], [76], [77], [78], [79],
[80], [81], [82], [83], [84],
[85]

[86], [87], [88], [89], [92],
[93], [94], [95], [96], [97],
[101]

Models [9], [14] [90], [91], [98], [99], [10]

Product Descriptions [100], [102]

focused on solving an specific maintenance task, but solving a problem that is
common to the three software maintenance tasks: fragment retrieval.

3.3.2 Related works regarding the ML techniques

This subsection analyzes the works, that were found through the search, ac-
cording to the ML techniques applied. Figure 3.4 shows two plots that graphi-
cally summarize the results. These plots show that most research articles apply
Neural Networks or Genetic Algorithms. In fact, on the top of Figure 3.4, the
pie plot shows that about 21% of the articles apply genetic algorithms and
25% of the articles apply neural networks.

Moreover, on the bottom of the figure, the bar plot shows the number
of articles for each maintenance task. According to this plot, most of the
articles that apply genetic algorithms tackle Bug Localization and most of the
articles that apply neural networks tackle Feature Location. In contrast, there
is an uniform range of ML techniques that are applied for Traceability Link
Recovery.

Table 3.4 shows the related works grouped by the software maintenance
task and the ML technique. In this table, our articles are highlighted using
bold font. Thanks to this table, we can see that genetic algorithms are not
only used for our works [9, 14], but they also are used for many other research
works [10, 54, 55, 87, 89, 90, 91, 94, 99, 62, 67, 79].

All these works apply genetic algorithms guided by different type of fitness
functions. Several works rely on genetic algorithms guided by Latent Semantic
Analysis [10, 89, 91, 99]. Other works rely on genetic algorithms guided by
Latent Dirichlet Allocation [54, 89]. The rest of the works rely on genetic
algorithms guided by fitness functions, which have been specifically defined for
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Figure 3.4: Number of articles by software maintenance task according to the ML technique
applied

their works. In [55], the fitness function uses semantic similarity. In [87, 94], the
fitness function uses a functional cohesion measure. In [90], the fitness function
uses placement signatures. In [62], the fitness function uses the lexical and
historical similarity. In [67], the fitness function uses a mathematical formula
designed to calculate the relative performance. Finally, in [79], the fitness
function uses a formula based on the positive and negative test cases.

In contrast, our work applies a genetic algorithm guided by a different
fitness function. Specifically, the fitness function uses a Learning to Rank
algorithm, which belongs to the ML techniques oriented to rank to objects.

In fact, among the retrieved articles, there are only three articles that use
Learning to Rank algorithms [74, 84, 85]. These three articles apply Learning
to Rank algorithms for Bug Localization on source code. None of them uses
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Table 3.4: Articles grouped by software maintenance task and ML technique

Traceability Link Recovery Bug Localization Feature Location

Decision, regression,
and classification tree

[50], [51], [52], [53] [95], [98]

Nearest Neighbors [51] [70], [80] [95]

Neural Networks [59], [58] [60], [61], [64], [65],
[66], [68], [69], [71],
[72], [73], [75], [76], [78]

[86], [93]

Bayesian Networks [51], [52], [53]

Support Vector Re-
gression and Machine

[51] [61], [63], [81], [83] [95]

Genetic algorithm and
programming

[9], [14], [54], [55] [62], [67], [79] [10], [87], [89], [90],
[91], [94], [99]

Association rules [53],[56] [88], [92], [96]

Others [9], [14], [57] [74], [77], [82], [84], [85] [97], [100], [101], [102]

the Learning to Rank algorithms to guide a genetic algorithm and none of
them target models as the main software artifact, as our work does.

3.4 Research Questions for the Systematic Review

This section provides answers for the two research questions, whose final goal
is to provide an overview of ML techniques for software maintenance tasks.

In response to SR-RQ1, source code is the most common target for Trace-
ability Link Recovery, Bug Localization, Feature Location. In contrast, our
work targets models for fragment retrieval in Traceability Link Recovery, Bug
Localization, or Feature Location.

In response to SR-RQ2, there is no a clear ML technique for Traceability
Link Recovery. Neural Networks are the most common ML techniques for Bug
Localization and Genetic algorithms are the most common ML techniques for
Feature Location. Furthermore, in our case, we propose the use of a genetic
algorithm guided by a Learning to Rank algorithm for fragment retrieval in
Traceability Link Recovery [9, 14], Bug Localization, or Feature Location [13].
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PART III

Treatment
Design

The way I see it, if you’re gonna to build a time
machine into a car, why not do it with some style?

Back to the Future
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Chapter 4. Ontological Evolutionary Encoding

4.1 Overview of the chapter

The second objective (OB2) of this dissertation is to provide a ML-based ap-
proach to automatically perform fragment retrieval in software maintenance
tasks on models, called FRAME. Specifically, the approach has to assess dif-
ferent model fragments of a model and identify which model fragment better
realizes a specific query. To assess the model fragments, the approach is based
on ML techniques. However, ML techniques cannot understand model frag-
ments without being characterized.

Most of the ML techniques are designed to process feature vectors as in-
puts [103]. Feature vectors are known as the ordered enumeration of char-
acteristics that describe the object being observed [46]. Therefore, to apply
ML techniques on model fragments, the first challenge consists in identifying
the characteristics from model fragments and selecting the most suitable ones
to encode the model fragments in feature vectors. To do this, this chapter
presents an ontological evolutionary encoding.

FRAME

Training Set

Ontology Knowledge Base

Ontological
Evolutionary
Encoding

Figure 4.1: Overview of the ontological evolutionary encoding in the FRAME approach

Figure 4.1 shows an overview of the FRAME approach. This figure high-
lights in black colour the steps and the artifacts of the approach that are
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described in this chapter. According to this figure, this chapter describes the
ontological evolutionary encoding, which is an step of the approach. More-
over, this chapter also describes the inputs (ontology and knowledge base) and
outputs (training set) for that step.

The following sections present the input and output artifacts (Section 4.2),
the three stages of this encoding (Section 4.3), and a summary of the ontological
evolutionary encoding (Section 4.4).

4.2 Input and output artifacts

The input of the ontological evolutionary encoding consists of a domain ontol-
ogy and a knowledge base (see Figure 4.1).

Ontology

R4 R5R3

R2

R1

PAC5

Circuit BreakerC2

PantographC1

CCTVC4 HVACC6

ConverterC3

R6

Figure 4.2: Example of a
domain ontology

The ontology represents the main concepts and
relations of a specific domain. Figure 4.2 shows an
example of the ontology according to the running ex-
ample. This ontology contains the main concepts for
the railway domain (e.g. Pantograph or Converter)
and the main relations between the concepts (e.g.
R1 is a relation between a Pantograph and a Circuit
Breaker).

The knowledge base consists in a set of sam-
ples, whose content depends of the object being ob-
served. If we want to predict the tomorrow’s weather,
we will need the analyses of the weather in the previ-
ous days. Therefore, the knowledge base would con-
tain these analyses. Similarly, if we want to assess
a model fragment according to a query, we will need
other model fragments that have been previously as-
sessed. Therefore, the knowledge base contains the
model fragments that have been manually retrieved
by the engineers and modellers for years.

Specifically, each sample in the knowledge base contains a query, a model
fragment, and a fitness value. The query describes using natural language the
requirement, bug, or feature, that was searched by the engineer in a product
model. The model fragment consists of the element or the set of elements
that the engineer manually retrieved from the model taking into account the
description in the query. The fitness value determines how well the model

43



Chapter 4. Ontological Evolutionary Encoding

fragment realizes the query. The better the model fragment realizes the query,
the greater the fitness value.

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Model Fragment

To close a
circuit

breaker, the
pantograph
has to be
raised.

Query

3.8 / 4

Fitness value

Knowledge Base

Figure 4.3: Example of a sample in the knowledge base

Figure 4.3 shows an example of a sample in the knowledge base. In this
sample, the query describes a requirement, the model fragment contains five
elements (i.e. a pantograph, a circuit breaker, a converter, and two connec-
tions), and the fitness value is high but it is not the maximum value possible.
This fitness value can indicate that the model fragment realizes well the query,
but the model fragment is not perfect or complete. The query could need
model elements that have not been considered in the model fragment or some
elements in the model fragment are not really necessary for the query.

Finally, the ontological evolutionary encoding has one output artifact: the
training set. The training set contains feature vectors, where each feature
vector encodes a sample of the knowledge base. Specifically, each feature vec-
tor contains a target value (the fitness value of the sample) and a set of the
characteristic/value pairs that characterizes the objects being observed (model
fragments regarding queries).

Figure 4.4 shows an example of a feature vector in the training set. The
first value in the feature vector is the target value, which corresponds to the
fitness value in a sample of the knowledge base. Then, the feature vector con-
tains a set of characteristic/value pairs that characterize the model fragment in
the sample of the knowledge base. In figure 4.4, the model fragment is encoded
using six different characteristics: C2, C3, C6, R3, R5, and R6. The numerical
values of these characteristics correspond to the model fragment characteri-
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Encoded Model Fragment

1 1 0 0 00

C2 C3 C6 R3 R5 R6

1 0 0

C1 C3 C6

Encoded Query

Feature Vector

Training Set

Fitness Value

3.8

Figure 4.4: Example of a feature vector in the training set

zation. Finally, the feature vector contains a set of characteristic/value pairs
that characterize the query in the sample of the knowledge base. In figure 4.4,
the query is encoded using three characteristics (i.e. C1, C3, C6 ) and their
numerical values correspond to the query characterization.

4.3 Stages of the ontological evolutionary encoding

The ontological evolutionary encoding consists of three stages: ontological en-
coding, evolutionary encoding, and feature selection.

4.3.1 Ontological Encoding

In this first stage, the samples of the knowledge base are turned into feature
vectors based on a domain ontology. For each sample in the knowledge base,
the fitness value is assigned as the target value of a feature vector. Then, the
model fragment is encoded based on the ontology. We consider each concept
and relation in the ontology as a characteristic in the feature vector. The
value of each characteristic is computed as the frequency of the concept or the
relation in the model fragment. Similarly, the query is encoded as part of the
feature vector taking into account the ontology. Specifically, each concept in
the ontology is represented as a characteristic in the feature vector and the
value of each characteristic is computed as the frequency of the concept in the
query. Therefore, the output of this stage is a set of feature vectors, where
each feature vector represents a sample of the knowledge base according to the
concepts and the relations of the ontology.

Moreover, since model fragments and queries are based on natural lan-
guage, the terms used in the ontology do not always align well with the terms
in the model fragments and with the terms in the queries. For this reason,
Natural Language Processing (NLP) techniques are used to process both the
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model fragments and the queries before applying the encoding. Specifically,
the model fragments and the requirements are processed by a combination
of NLP techniques defined in [104], which consists of tokenizing, lowercasing,
removal of duplicate keywords, syntactical analysis, lemmatization, and stop-
word removal.

Feature Vector

Encoded Model Fragment

1 1 1 0 0 1 1 0 0 000

C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6

1 1 0 0 00

C1 C2 C3 C4 C5 C6

Encoded QueryFitness
Value

3.8

Ontology

R4 R5R3

R2

R1

PAC5

Circuit BreakerC2

PantographC1

CCTVC4 HVACC6

ConverterC3

R6

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Model Fragment

To close a
circuit

breaker, the
pantograph
has to be
raised.

Query

3.8 / 4

Fitness value

Knowledge Base

1st stage:
Ontological Encoding

Figure 4.5: Example of the inputs and output for the ontological encoding stage

Figure 4.5 shows an example of how the ontological encoding stage encodes
a sample of the knowledge base based on the ontology. The fitness value in
the feature vector is the same as in the sample of the knowledge base. Then,
the concepts and relations of the ontology are the characteristics to encode the
model fragment. For example, the concept Pantograph is mapped as C1, and
the relation between the concepts Converter and HVAC is mapped as R5. On
the one hand, these concepts and relations are compared with the model frag-
ment, so that the number of occurrences of the concept or relation in the model
fragment is the value of the correspondent characteristic in the feature vector.
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Therefore, the value of the characteristic C1 is 1 because there is one panto-
graph in the model fragment, and the value of the characteristic R5 is 0 because
there is no relation of the type Converter -HVAC in the model fragment. In
fact, the product model contains a relation of the type Converter -HVAC, but
the model fragments does not contain this relation. Therefore, the value for
R5 is 0 in the feature vector, because each feature vector only contains the
encoding of a model fragment, not the encoding of the whole model. Finally,
the concepts in the ontology are also the characteristics to encode the query.
The concepts are compared with the query, so that the number of occurrences
of the concept in the query is the value of the correspondent characteristic in
the feature vector. Therefore, the value of the C1 is 1 because the concept
pantograph appears once in the query.

ª
It is important to notice that all the feature vectors will have the
same length. No matters if a model fragment has five elements and
another model fragment has 50 elements, their feature vectors will
have the same number of characteristics. Similarly, the number of
characteristics is the same for all the queries, no matter how long
the queries are. This is fundamental for most of the ML techniques,
such as the Learning to Rank algorithms.

4.3.2 Evolutionary Encoding

In ML, feature selection is the name of the process used to reduce the number of
characteristics in feature vectors. This process selects only the most relevant
characteristics in the feature vectors, which reduces the time cost and the
redundant information [105, 106]. To take advantage of these benefits, the
evolutionary encoding stage analyzes different combinations of characteristics
in order to identify the most relevant characteristics and discard the others.
Specifically, an evolutionary algorithm generates and evolves different masks,
where each mask indicates what characteristics are enabled or disabled.

Figure 4.6 shows an example of the evolutionary encoding stage. Taking
into account the mask shown in this figure, only six of the twelve characteristics
for the model fragments are enabled: C2, C3, C6, R3, R5, and R6. The rest
of the characteristics for model fragments are disabled. Similarly, the mask
indicates that only three of the characteristics for the queries (i.e. C1, C3, and
C6 ) are enabled.
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Circuit BreakerC2
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ConverterC3
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2nd stage:
Evolutionary Encoding

Figure 4.6: Example of the input and output for the
evolutionary encoding stage

Therefore, the evolution-
ary algorithm generates and
evolves different masks. The
masks are tested over the
knowledge base and the one
that achieves the best results
is the output of the evolution-
ary encoding stage.

4.3.3 Feature Selection

In the third stage, the objec-
tive is to merge the outputs of
the two previous stages. The
ontological encoding stage re-
turns a set of feature vec-
tors and the evolutionary en-
coding stage returns a mask.
Therefore, this stage apply
the mask on the feature vec-
tors to reduce their number
of characteristics. As the Fig-
ure 4.7 shows, each disabled
characteristic in the mask is
discarded in the feature vec-
tors. Therefore, the feature
vector are only composed by
the characteristics that are
enabled in the mask. In the
mask of the Figure 4.7, the
enabled characteristics are C2, C3, C6, R3, R5, and R6 for the model frag-
ments and C1, C3, and C6 for the queries. Therefore, the feature vector in
the example is simplified using only these characteristics.

The output of the feature selection stage is the training set. The training
set contains all the simplified feature vectors; one simplified feature vector for
each feature vector in the input of the stage.
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Figure 4.7: Example of feature selection based on a mask

4.4 Summary of the ontological evolutionary encoding

This section provides a summary of the ontological evolutionary encoding,
which is described in the previous sections (see Section 4.2 and Section 4.3).
The objective of the ontological evolutionary encoding is to characterize the
object being observed (i.e. model fragments regarding queries) to be able to
apply ML techniques for fragment retrieval on models. To do this, the ontolog-
ical evolutionary encoding consists of three stages. The first one, ontological
encoding, turns the samples of a knowledge base into feature vectors, where
each sample contains a model fragment regarding a query. The second one, evo-
lutionary encoding, identifies what characteristics have to be enabled in order
to reduce the time cost and the redundant information. The third one, feature
selection, applies the mask on the feature vectors to reduce their number of
characteristics.
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Ontological
Evolutionary
Encoding

Knowledge Base

2nd stage:
Evolutionary Encoding

1st stage:
Ontological Encoding

3rd stage:
Feature Selection

Ontology

Feature Vector Mask

Training Set

Figure 4.8: Overview of the ontological evolutionary encoding approach.

As output, the ontological evolutionary encoding returns a training set,
which contains a set of feature vectors. Each feature vector corresponds to a
sample of the knowledge base that has been encoded based on the ontology
and simplified using a mask. Figure 4.8 shows an overview of the ontological
evolutionary encoding, including examples for the inputs and outputs of its
stages.
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Chapter 5. Fitness Function

5.1 Overview of the chapter

To determine what model fragment is the best realization of a specific query,
the FRAME approach needs to assess the different model fragments from a
product model. To do this, this chapter presents a fitness function based on
ML techniques. ML empowers us to take advantage of the knowledge and the
experience that have been generated in companies for years in order to auto-
matically assess the model fragments. Specifically, using the model fragments
that have been manually retrieved in the last years, the ML technique can
learn how to automatically assess new model fragments.

Learning to Rank (LtoR) is the name given to a family of ML techniques,
which automatically address ranking tasks. Specifically, the LtoR algorithms
make possible the construction of a classifier that contains a set of rules to
rank objects. The classifier automatically learns these rules by comparing the
objects within a knowledge base. Then, since the classifier knows how to rank
objects following these learned rules, the classifier can be used to rank new
objects. In other words, LtoR algorithms use a knowledge base to train a
classifier, which is called training phase. Then, the classifier is used to rank
new objects, which is called testing phase [107].

In the fitness function of the FRAME approach, a LtoR algorithm is used
to train a classifier. The classifier is trained using the retrieved model frag-
ments in the knowledge base. Therefore, the classifier can learn when a model
fragment is a bad or a good realization of a query and what fitness value has
to be assigned in each case. Once the classifier has been trained, the classifier
is used to assess a model fragment population, which is a set of model frag-
ments from a model. According to its rules, the classifier assesses the model
fragments assigning a fitness value to each model fragment. In this case, the
learned rules are oriented to assign a higher fitness value to the model frag-
ments that better realize the query. Then, using these fitness values, the model
fragments are ranked and the top model fragment is the best realization of the
query according to the classifier assessing.

Figure 5.1 shows an overview of the fitness function in the FRAME ap-
proach. This figure highlights in black colour the steps and the artifacts of
the approach that are described in this chapter. According to this figure, the
fitness function has two phases: training phase and testing phase. The training
phase is responsible of train the classifier, and the testing phase is responsible
of assessing the model fragment population through the classifier. As out-
put, the fitness function returns a model fragment ranking, which contains the
model fragments ordered by their fitness values.
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Figure 5.1: Overview of the process to evaluate and rank model fragments

While the testing phase is repeated for each new model fragment popula-
tion to be assessed, the training phase only is performed the first time. The
classifier is trained once, and then, this classifier is used for each new model
fragment population. In fact, the classifier is an artifact created in the training
phase and it is a step in the testing phase to rank new model fragment pop-
ulations. For this reason, Figure 5.1 shows the classifier in a black, rounded
rectangle to point out its double meaning. The following sections present the
training phase (Section 5.2) and the testing phase (Section 5.3) in more detail.
Moreover, the last section presents a summary of the fitness function (Section
5.4).

5.2 Training phase

To manually retrieve the model fragment that realizes a query, engineers or
modellers have to search in a model all the model elements that are related
to the query. To do this, engineers have to decide what model elements are
relevant for the query according to some criteria. These criteria are based
on the experience and the knowledge acquired by the engineers in previous
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searches. For example, in a railway domain, an engineer can note that if the
retrieved model fragment has a circuit breaker, the associated converter has
to be also included in the retrieved model fragment. Therefore, when a query
involves a circuit breaker, the engineer always considers the circuit breakers
and the associated converters.

Similarly, a LtoR algorithm can compare the retrieved model fragments
and related queries known beforehand, in order to imitate the experience and
knowledge of domain experts. Specifically, the comparisons allow to learn the
criteria or rules defined in the classifier. Therefore, the target of the training
phase is to generate the classifier, which in the testing phase will be used to
assess new model fragment populations. The right part highlighted in the Fig-
ure 5.1 shows the artifacts and steps of the training phase, which are described
in more details in the following subsections.

ª
Note that the LtoR algorithm is used not only to automate the
assessing of model fragments, but also to find criteria or rules that
can be too complex from a human perspective.

5.2.1 Input and output artifacts

The input artifacts of the training phase are the knowledge base and the on-
tology.

The knowledge base contains the model fragments that have been manu-
ally retrieved by the engineers and modellers for years. Specifically, the knowl-
edge base consists in a set of samples, where each sample contains a query,
a model fragment, and a fitness value. The query uses natural language to
describe the requirement, bug, or feature, that was searched by the engineer
in a product model. The model fragment consists of the element or the set
of elements that the engineer manually retrieved from the model taking into
account the description in the query. The fitness value determines how well the
model fragment realizes the query. There are more details about the knowledge
base and an example in Section 4.2.

The ontology contains the main concepts and relations of a domain.
Therefore, the ontology contains all the necessary information to encode the
knowledge base into feature vectors, following the encoding described in Chap-
ter 4. There are more details about the ontology and an example in Section
4.2.
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The other artifacts in the training phase are the training set and the clas-
sifier.

The training set contains feature vectors, where each feature vector en-
codes a sample of the knowledge base. Specifically, each feature vector con-
tains the fitness value of the sample and a set of characteristic/value pairs that
characterizes the model fragment and the query of the sample. There are more
details about the training set and an example in Section 4.2.

The classifier is the output of the training phase. A classifier is a rule-set
that is learnt from a given training set [108, 109]. The final purpose of this
classifier is the assessing of model fragments in the testing phase.

5.2.2 Steps of training phase

The training phase has two steps: ontological evolutionary encoding and classi-
fier training. The first one is applied to turn the knowledge base into a training
set. The second one is applied to train a classifier from the training set.

Ontological Evolutionary Encoding

Since most of the ML techniques (e.g. LtoR algorithms) are designed to process
feature vectors as inputs [103], the knowledge base has to be encoded. To do
this, we propose the ontological evolutionary encoding, which is described in
Chapter 4. Specifically, thanks to this encoding, each sample of the knowledge
base is encoded into a feature vector. The resulting set of feature vectors is
commonly called training set, because this set contains the feature vectors used
to train the classifier.

Classifier Training

Once the training set is available, the classifier is trained through a LtoR
algorithm. However, the classifier training step involves not only the training,
but also the tuning and validation of the classifier. To do this, 80% of the
feature vectors in the training set are used to train the classifier, and the rest
of the feature vectors (i.e. 20%) are used as a validation set for both the tuning
and the validation of the classifier.

The most common tuning methods are grid search and manual tuning
[110, 111]. Specifically, the FRAME approach is designed to use a grid search
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as it is described in [112]. Firstly, a grid search is built to determine the
values of the parameters. The parameters depend on the LtoR algorithm used.
For example, Rankboost algorithm has three tuning parameters: number of
iterations, threshold, and metric. Secondly, it is necessary to select the range
of each parameter. For example, the considered values for the number of
iterations could be in range [100,500]. Thirdly, the parameters are uniformly
sampled in their range. For example, if we take into account only hundreds in
range [100,500], the sampled values for the number of iterations will be 100,
200, 300, 400, and 500. Fourthly, all of the combinations of the sampled values
for each parameter are used to train and test the classifier. The combination
that obtains the best results is used to tune the LtoR algorithm.

Then, the classifier is validated through a cross-validation method. Cross-
validation is a statistical method of evaluating and comparing ML techniques
by dividing data into two segments: one used to train a classifier, and the
other used to validate the classifier [113]. Moreover, to reduce variability,
multiple rounds of cross-validation are performed using different partitions,
and the results are averaged over the rounds [114]. Among the cross-validation
methods, the most popular is k-fold. Specifically, this method consists of
randomly dividing the knowledge base into k-independent partitions. Then,
k− 1 of the partitions are used to train the classifier, and this classifier is then
used to test the partition that is left out. This procedure is repeated k times,
each time leaving out another partition. This produces k estimations of the
classifier, allowing assessment of its central tendency and variance [115].

If the central tendency and variance indicate that the classifier cannot
properly rank model fragments, it will be necessary to train again the classifier.
In this new training, some artifacts of the training phase (e.g. the ontology, the
knowledge base, or the ML technique) must be modified in order to improve
the classifier. Otherwise, if the central tendency and variance indicate that
the classifier can properly rank model fragments, the classifier obtains the go-
ahead. Therefore, the classifier is available for the testing phase.

Figure 5.2 shows an example of the application of k-fold method. This
method is applied on a knowledge base with twelve samples, using a k equals
to four. Therefore, the samples of the knowledge base are randomly divided
in four folds, where each fold contains three of the samples. Then, we have to
perform four iterations, the first iteration trains a classifier using the Fold 1,
the Fold 2, and Fold 3 ; and the Fold 4 is used to test the classifier obtaining
the first performance results. In the second iteration, the testing is performed
using the Fold 3 and the rest are used to train the classifier. In the third
iteration, the testing is performed using the Fold 2, and the rest are used to
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Performance 2
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Performance 4

Figure 5.2: Example of k-fold method

train the classifier. Finally, in the fourth iteration, the testing is performed
using the Fold 1, and the rest are used to train the classifier. Then, the
performances of the classifiers trained in each iteration are used to calculate
the central tendency and the variance. These help us to determine if a classifier
trained using the whole knowledge base will be able or not to properly assess
model fragments.

5.3 Testing phase

The target of the testing phase is to assess a model fragment population in
order to determine which model fragment better realizes a query. To do this,
the classifier, that is trained in the training phase, assigns a fitness value to
each model fragment in the population. This fitness value corresponds to how
well the model fragment realizes the query. Therefore, a high fitness value
means that the model fragment is a good realization of the query. In contrast,
a low fitness value means that the model fragment does not properly realize
the query.

When each model fragment in the population has a fitness value, the fitness
values are used to order the model fragments in a ranking. The top model
fragment is the best realization of the query according to the ranking. The left
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part highlighted in the Figure 5.1 shows the artifacts and steps of the testing
phase, which are described in more details in the following subsections.

5.3.1 Input and output artifacts

The input artifacts, that are used in the testing phase, are the query, the model
fragment population, and the ontology.

The query is a natural language description of a requirement, a bug,
or a feature depending on the software maintenance task. Traceability Link
Recovery focuses on retrieving the traces between requirements and models.
Therefore, the query corresponds to a requirement, which is written before
development, is client influenced, and is for contracts. Bug Location focuses
on locating the model elements affected by a bug. Therefore, the query cor-
responds to a bug description, which is written during the development, is
internal, and is for reporting possible technical problems. Feature Location
focuses on locating the model elements that realize a feature. Therefore, the
query corresponds to a feature description, which is written when products al-
ready exist, is internal, and is for reuse. Therefore, the queries can be written
in a different phase of the development, in a different style, and with a different
goal in mind. Figure 5.3 shows an example of a requirement and a feature in
railway domain, which were used in our works [9, 14] and [13], respectively.

This allows the passing
of current from one
converter to equipment
assigned to its peer for
coverage in case of
overload or failure of
the first converter.

Requirement Feature: Converter Assistance

Inhibit the
permission to
close the circuit
breaker, if the
order to lower
the pantographs
is active.

Figure 5.3: Example of queries: requirement and feature descriptions

Themodel fragment population is a set of model fragments that belong
to a model. The model fragments are composed for one or more elements of
the model, which is known as density [16]. The elements can be connected
between them or not, which is known as dispersion [16]. Moreover, the model
fragments can be unique or not in the model, which is known as multiplicity
[16].
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Figure 5.4 shows two examples of model fragments. The first model frag-
ment contains five model elements: a pantograph, a circuit breaker, a converter,
and two connections. In contrast, the second model fragment only contains two
model elements: a HVAC (air conditioning system) and a PA (public address
system). In the first model fragment, all the model elements are connected
between them. In contrast, in the second model fragment, the model elements
are not connected between them. Furthermore, the first model fragment is not
unique. The first model fragment is composed of the Pantograph 1, the Circuit
Breaker 1, the Converter 1, and the connections between them. These model
elements (a pantograph, a circuit breaker, a converter, and two connections)
can be found in another model fragment of the same model, which is com-
posed of the Pantograph 2, the Circuit Breaker 2, the Converter 1, and the
connections between them. In contrast, the second model fragment is unique,
because it is not possible to find other model fragment with a HVAC and a
PA.

Model Fragment Population

Circuit
Breaker 1

Converter 1

HVAC PA

Model Fragment 2

Pantograph 1

Circuit
Breaker 2

Pantograph 2

Circuit
Breaker 1

Converter 1

HVAC PA

Model Fragment 1

Pantograph 1

Circuit
Breaker 2

Pantograph 2

Figure 5.4: Example of two model fragments from the same model

The ontology contains the main concepts and relations of a domain.
Therefore, the ontology contains all the necessary information to encode the
knowledge base into feature vectors, following the encoding described in Chap-
ter 4. There are more details about the ontology and an example in Section
4.2.

The other artifacts in the testing phase are the testing set and the model
fragment ranking.

The testing set contains feature vectors, where each feature vector en-
codes a model fragment of the population and the query. Specifically, each
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feature vector contains a fitness value and a set of characteristic/value pairs
that characterizes a model fragment in the population and the query (see Fig-
ure 5.5. In fact, the model fragment population and the query are encoded
using the ontological evolutionary encoding presented in Chapter 4. However,
there are small differences between the encoding of a knowledge base and the
encoding of a model fragment population and a query. These differences are
described in the first step of the testing phase (see Section 5.3.2).

Encoded Model Fragment

1 1 0 0 00

C2 C3 C6 R3 R5 R6

1 0 0

C1 C3 C6

Encoded Query

Feature Vector

Testing Set

Fitness
Value

0

Figure 5.5: Example of a feature vector in the testing set
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Figure 5.6: Example of a
model fragment ranking

Themodel fragment ranking is the output
of the testing phase. The model fragment ranking
contains all the model fragments of the population
ordered by their fitness values. These values are
determined for the classifier in the testing phase
and indicate how well each model fragment re-
alizes the query. Figure 5.6 shows an example
of model fragment ranking. In this figure, two
model fragments are ordered taking into account
their fitness values. The model fragment with the
highest value is in the top of ranking.

5.3.2 Steps of testing phase

The testing phase has two steps: ontological evo-
lutionary encoding and Classifier. The first one
is applied to turn the model fragment population
and the query into a testing set. The second one
is applied to rank the testing set through the clas-
sifier.
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Ontological Evolutionary Encoding

In the training phase, the knowledge base has to be encoded into feature vectors
in order to train the classifier through a ML technique. In a similar way, the
input artifacts of the testing phase (i.e. the model fragment population and the
query) have to be encoded into feature vectors in order to use that classifier.
The ontological evolutionary encoding described in Chapter 4 is designed to
encode the samples of the knowledge base into feature vectors. Each sample
contains a model fragment, a query, and a fitness value. However, among
the input artifacts for the testing set, there is only a query and there are not
fitness values. Therefore, it may initially seem that the ontological evolutionary
encoding cannot be used to encode the input artifacts of the testing phase.

Nevertheless, regarding the query, the same query is considered for each
model fragment in the population. The target of the testing phase is to assess
which model fragment in the population better realizes the query. Therefore,
the query is the same for all the model fragments in the population. For this
reason, in the testing phase, each sample contains a model fragment of the
population and the same query.

On the other hand, regarding the fitness values, these numerical values
have no relevance in the testing phase. In the training phase, these values
are fundamental to train the classifier. However, the objective of the testing
phase, and of classifier in particular, is to determine these values for the model
fragments in the population. Therefore, when the classifier assesses the testing
set, it ignores these values and determine what fitness value is appropriated
for each model fragment.

Therefore, the model fragment population and the query can be embedded
into samples, where each sample contains a model fragment of the population,
the same query, and a default fitness value (e.g. 0 or -1). Then, the samples can
be encoded into feature vectors following the encoding described in Chapter 4.
The obtained feature vectors compose the testing set.

5.3.3 Classifier

In this step, the classifier is used to assess the testing set. Specifically, the
classifier assigns a fitness value to each feature vector in the testing set. The
assigned fitness values are numerical values greater than 0. In fact, the higher
the fitness value, the better the model fragment will be for the query.
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Since each feature vector in the testing set corresponds to a model fragment
in the population, the fitness values can be ordered in a ranking. The top
positions are occupied by the model fragments with the highest fitness values.
Therefore, the top model fragment is the best realization of the query according
to the fitness values assigned for the classifier. Moreover, the ranking is the
output of the fitness function.

5.4 Summary of the fitness function

This section provides a summary of the fitness function, which is described
in the previous sections. The objective of the fitness function is to assess
model fragments through ML techniques in order to determine which model
fragment of a product model better realizes a specific query. To do this, the
fitness function consists of two phases: training phase and testing phase.

In the training phase, a classifier is trained by a LtoR algorithm, which
belongs to a family of ML techniques for ranking tasks. Thanks to the training,
the classifier learns when a model fragment is a bad or a good realization of a
query and what fitness value has to be assigned in each case.

In the testing phase, the classifier is used to assess a model fragment pop-
ulation in order to determine which fragment better realizes a specific query.
Specifically, the classifier assigns a fitness value to each model fragment in the
population. Then, the model fragments are ordered in a ranking according to
their fitness values. Based on this ranking, the top model fragment is the best
realization of the query.

As output, the fitness function returns the model fragment ranking, which
contains the model fragments of the population ordered according to their
fitness values. Figure 5.7 shows an overview of the fitness function, including
examples for the inputs and outputs of the testing phase. The examples for
the inputs and outputs of the training phase (i.e. the knowledge base, the
ontology, and the training set) have been already shown in Section 4.1.
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Figure 5.7: Overview of the ontological evolutionary encoding approach.
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Chapter 6. Evolutionary Algorithm

6.1 Overview of the chapter

A high amount of model fragments can be extracted from a product model.
Even with an automatic approach, to assess all these model fragments would
take months of work. In this chapter, we propose the use of an evolutionary
algorithm to guide the extraction of the model fragments from a model. This
guide allows to extract model fragments based on fitness values instead of
extracting the whole set of model fragments from a model.

Specifically, the evolutionary algorithm extracts an initial model fragment
population, which is evolved using genetic operations. Then, the fitness func-
tion assesses the model fragments in the population, assigning a fitness value
to each model fragment. Then, model fragment population with the assigned
fitness values (i.e. the evaluated model fragment population) is used for the ge-
netic operations to extract more model fragments from the model. Taking into
account the fitness values, the genetic operations know which model fragments
better realize the query. Therefore, the genetic operations can extract similar
model fragments to the best ones in the evaluated model fragment population.
This guides the extraction towards model fragments that are good realizations
of the query.

The genetic operations and the fitness function are repeated until the solu-
tion converges to a certain stop condition. Then, the evaluated model fragment
population is ordered according to the fitness values in a ranking. The model
fragments with the highest fitness values are in the top of the ranking. This
ranking (i.e. the model fragment ranking) is the final output of the FRAME
approach.

Figure 6.1 shows an overview of the FRAME approach. This figure high-
lights in black colour the steps and the artifacts of the approach that are
described in this chapter. According to this figure, the evolutionary algorithm
is divided in three stages, but only this chapter focuses on the two first stages.
The first one, the initialization, extracts the initial model fragment population.
The second one, the genetic operations, evolves the model fragment popula-
tions to extract other model fragments from the model. The third one, the
fitness function, assesses the model fragment in the populations to determine
which model fragments better realize the query. As output, the evolution-
ary algorithm returns a model fragment ranking, which contains the model
fragments ordered by their fitness values.
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Figure 6.1: Overview of the evolutionary algorithm in the FRAME approach

The following sections present the input and output artifacts (Section 6.2)
and the three stages of the evolutionary algorithm (Section 6.3). Finally, the
last section presents an overview of the whole FRAME approach (Section 6.4).

6.2 Input and output artifacts

The input of the evolutionary algorithm consists of a model, a query, an on-
tology, and a knowledge base (see Figure 6.1).

The model is the artifact where the query has been searched. That is,
the model is composed of different elements and the aim of the evolutionary
algorithm is to extract model fragments that contain one or more of the model
elements.

The evolutionary algorithm, and the FRAME approach in general, have
been designed to work with models that conform to MOF (the OMG meta-
language for defining modeling languages). In particular, the approach has
been evaluated using models, taken from a real-world train, specified using a
Domain Specific Language (DSL) that formalizes the train control and man-
agement of the products manufactured by our industrial partner. The DSL
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has the expressiveness required to describe both the interaction between the
main pieces of installed equipment, and the non-functional aspects related to
regulation.

Circuit
Breaker 1

Circuit
Breaker 2

Pantograph 1 Pantograph 2

Converter 1

HVAC PA

Product Model

Figure 6.2: Example of a
model, taken from a real-world
train

Figure 6.2 depicts a model example, taken
from a real-world train, specified using the DSL
used by our industrial partner. Specifically, the
example of the figure presents a converter as-
sistance scenario where two pantographs (High
Voltage Equipment) collect energy from the over-
head wires, and send it to their respective cir-
cuit breakers (Contactors), which in turn send
it to their independent Voltage Converters. The
converters then power their assigned Consumer
Equipment: the HVAC on the left (air condition-
ing system) and the PA (public address system)
on the right.

The query is the artifact for which a model
fragment must be retrieved. Specifically, the
query is a natural language description of a re-
quirement, a bug, or a feature depending on the
software maintenance task. There are more de-
tails about the query and an example of a re-
quirement and a feature in Section 5.3.1.

The ontology is the artifact for encoding. The ontology contains the
main concepts and relations of a domain. Therefore, the ontology contains
all the necessary information to encode the model fragment population and
the knowledge base into feature vectors, following the encoding described in
Chapter 4. There are more details about the ontology and an example in
Section 4.2.

The knowledge base is the artifact used to learn how to assess the model
fragments. Specifically, the knowledge base contains the model fragments that
have been manually retrieved by the engineers and modellers for years. The
knowledge base consists in a set of samples, where each sample contains a
query, a model fragment, and a fitness value. The query uses natural language
to describe the requirement, bug, or feature, that was searched by the engineer
in a product model. The model fragment consists of the element or the set
of elements that the engineer manually retrieved from the model taking into
account the description in the query. The fitness value determines how well the
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model fragment realizes the query. There are more details about the knowledge
base and an example in Section 4.2.

The other artifacts of the evolutionary algorithm are the initial model
fragment population, the model fragment population, the evaluated model
fragment population, and the model fragment ranking.

Both the initial model fragment population and themodel fragment
population are sets of model fragments that belong to a model. The initial
model fragment population contains the model fragments extracted through
the initialization stage of the evolutionary algorithm. On the other hand, the
model fragment population contains the model fragments extracted through
the genetic operations stage of the evolutionary algorithm. There are more
details about the model fragments in the populations and two examples of
model fragments in Section 5.3.1.

The evaluated model fragment population and themodel fragment
ranking are the artifacts obtained from the fitness function. Specifically, these
artifacts contain model fragments associated to fitness values. Each fitness
value indicates how well the model fragment realizes the query. The unique
difference between these artifacts is that, in the model fragment ranking, the
model fragments are ordered by their fitness values. The model fragment with
the highest value is in the top of the ranking. There are more details about
the model fragment ranking and an example in Section 5.3.1.

6.3 Stages of the evolutionary algorithm

The evolutionary algorithm consists of three stages: initialization, genetic op-
erations, and fitness function.

6.3.1 Initialization

The initialization stage is to extract a population of model fragments from the
model, which serves as input for the evolutionary algorithm. The initialization
stage has only one step: extraction of the initial population, where the model
fragments are extracted.

To extract a model fragment, all the elements of the model are considered.
A selection function is used to randomly determine if each model element is or
is not part of the model fragment. Therefore, a model element can be present
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in different model fragments or a model element can be not present in any of
the model fragments.

The selection function is repeatedly used to extract several model frag-
ments for the initial population. This population is the output of the initial-
ization stage.

ª
Note that the initialization stage is performed only one time for
each query that wants to be searched.

6.3.2 Genetic Operations

The second stage of the evolutionary algorithm is the genetic operations. In
this stage, genetic operations are applied to a model fragment population in
order to generate a new model fragment population.

The initial model fragment population contains a small amount of the
model fragments in a model. Moreover, the model fragments of the population
are extracted by randomly selection of the model elements. Therefore, we
cannot ensure that the initial model fragment population contains a model
fragment that is a good realization of the query. In fact, the more fragments can
be extracted from a model, the lower the probability that the initial population
contains a model fragment that realize the query well. Therefore, three genetic
operators (selection, crossover, and mutation) are used to generate new model
fragment populations, which can contain better model fragments for the query.

To do that, the genetic operations stage has two steps: model fragment en-
coding for genetic operations and the genetic operators. The following sections
provide more details about these two steps.

Model Fragment Encoding for Genetic Operations

Traditionally, in evolutionary algorithms, each possible solution of the problem
is encoded as a string of binary values. However, encoding each model fragment
as a string of binary values is not straightforward. The authors in [99] propose
an encoding where each model fragment is encoded as an individual in relation
to the model. In other words, each individual is a set of model elements that
are present or absent in a model fragment.
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Figure 6.3: Examples of Model Fragment Encoding

Figure 6.3 shows two examples of the representation of model fragments.
Each letter labels a model element of the model. Therefore, the individual
contains as many positions as model elements in the model and the binary value
of these positions depends on the presence or absence of the model elements in
the model fragment. If the model element appears in the model fragment, the
value will be 1; if the model element does not appear in the model fragment
the value will be 0.

Figure 6.3 also shows that the encoding will be different for different mod-
els, even though the model fragment to be encoded is the same. Both of the
examples in Figure 6.3 represent the same model fragment. However, since
they come from different models, their representations are different.

ª
The FRAME approach has two encodings for model fragments: the
ontological evolutionary encoding and the model fragment encoding
for genetic operations. In the ontological evolutionary encoding,
both the model fragments and the query are encoded, the values
are integers, and the length is the same for all the encoded model
fragments. In the model fragment encoding for genetic operations,
the query is not considered, the values are binaries, and the length
depends on model elements. These differences highlight the need of
different encodings for ML techniques and genetic operations.
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Genetic Operators

The generation of new model fragments (based on existing ones) is done by
applying a set of three genetic operators, which are adapted to work on model
fragments. These genetic operations were introduced for the first time in [116]
to carry out the selection of parents, the crossover, and the mutation of model
fragments. Figure 6.4 shows an example of the application of the genetic
operators. Moreover, each genetic operator is described in more detail below.
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Figure 6.4: Example of genetic operations

• The selection operator picks the best candidates from the population
as input for the rest of the operators. There are different methods that
can be used to perform the selection of the parents. One of the most
widespread methods (adopted by our work) is to follow the wheel selection
mechanism [117], where each model fragment from the population has
a probability of being selected that is proportional to its fitness value.
Candidates with high fitness values have higher probabilities of being
chosen as parents for the next generation.

• The crossover operator enables the creation of two new individuals by
combining the genetic material from two model fragments. A randomly
generated mask determines how the combination is done, indicating for
each element of the model fragments if the offspring should inherit from
one model fragment or the other.
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Specifically, the mask is created randomly and all of the model elements
have a 50% probability of belonging to the mask. To do this, a random
number (0 or 1) is generated for each model element. The elements whose
value is 1 belong to the mask and the elements whose value is 0 belong
to the inverse of the mask. Moreover, a model fragment is a subset of the
elements that are present in a model.

Since both model fragments are extracted from the same model, their
combination will always return a model fragment that is part of the orig-
inal product model. As a result of the crossover operation, two individuals
are generated: one by directly applying the mask, and the other one by
applying the inverse of the mask, as is usually done in genetic algorithms
[118].

Figure 6.4 shows an example of the application of the genetic operators.
Taking into account the crossover operation, the model fragment MF1
is combined with the model fragment MF2 according to a mask that
contains two sets of elements (one regular and one marked in black). To
create the first of the new candidate model fragment, we interpret the
mask by selecting the blackened elements from the first parent (MF1)
and the regular elements from the second parent (MF2). As a result, the
new model fragment (MF3) contains the set of elements that are present
in the mask in MF1 and the set of elements that are absent in the mask
in MF2. In addition, the mask is also interpreted in the opposite way by
selecting the blackened elements from MF2 and the regular elements from
MF1, thus producing another new and distinct model fragment (MF4).

• The mutation operator is used to imitate the mutations that occur
randomly in nature when new individuals are born. In other words, new
individuals have small differences with their parents that could make them
adapt better (or worse) to their living environment. Following this idea,
the mutation operator applied to model fragments [116] takes as input
a model fragment and mutates it into a new one, which is returned as
output.

Specifically, the mutation operator can perform two kinds of modifica-
tions: the addition of elements to the model fragment, or the removal of
elements from the model fragment. Since the approach is looking for frag-
ments of the model that realize a specific requirement, the new modified
fragment must remain a part of this model. Therefore, the modifications
that can be done to the model fragment must be driven by the model,
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which determines the additions and subtractions of elements that can be
applied to the model fragments in the population.

Figure 6.4 shows an example of the application of the genetic operations.
Taking into account this example, the mutation operation takes the first
offspring produced through the crossover operator and adds one element
(the second circuit breaker). Then, the mutation operation takes the
second offspring and removes one element (the first pantograph). The
resulting model fragments (MF5 and MF6) are new candidates in the
population for the realization of the query.

After applying the genetic operators, it may be that not all of the elements
of the new individuals are connected. Indeed, the query can be implemented
by several model elements that are not directly connected in the model [116].
Therefore, it is necessary to create model fragments of this kind since they
could be the ones realizing the query.

6.3.3 Fitness Function

Finally, the last stage of the evolutionary algorithm is the fitness function. The
fitness function is based on ML techniques, specifically in a LtoR algorithm.
The LtoR algorithm allows the fitness function to learn how to assess model
fragments based on a knowledge base. However, to apply the LtoR algorithm,
the fitness function has to encode the model fragments using an ontology.

Once the fitness function knows how to assess the model fragments, it can
assign a fitness value to each model fragment of the population. The fitness
value indicates how well a model fragment realizes the query. As output,
the fitness function returns the evaluated model fragment population, which
contains the model fragments with their assigned fitness values. The fitness
function is presented in more detail in the Chapter 5.

The last two stages of the evolutionary algorithm (genetic operations and
fitness function) are repeated until the solution converges to a certain stop
condition. Usually, the stop condition can be a time slot, a fixed number of
iterations, or a trigger value of the fitness that makes the process finish when
reached [116]. Since the stop condition greatly depends on the domain and the
problem being solved, it is adjusted depending on the results being output,
taking into account when the fitness values are converging and no further
improvements are being made by new iterations [116]. When the stop condition
is met, the evolutionary algorithm provides a model fragment ranking, which
contains the evaluated model fragments ordered by their fitness values.
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6.4 Overview of the FRAME approach

The second objective (OB2) of this dissertation is to provide a ML-based ap-
proach to automatically perform fragment retrieval in software maintenance
tasks on models. To do this, we need to tackle three design problems: the
characterization of model fragments, how to assess model fragments regarding
a query, and the extraction of model fragments from a model.

The solution for the first design problem is the ontological evolutionary
encoding, which is presented in Chapter 4. The solution for the second design
problem is the fitness function, which is presented in Chapter 5. Finally, the
solution for the third design problem is the evolutionary algorithm, which is
presented in the previous sections of this chapter (Chapter 6). Therefore,
taking into account these solutions, the design of the FRAME approach is
complete. In this section, we present an overview of the whole approach.

Figure 6.5 shows the overview of the approach. The top of figure shows the
input artifacts. The center of figure shows the main steps of our approach. The
bottom of the figure shows the output artifact. Rounded rectangles represent
the different steps of the approach, and straight rectangles represent the inputs
and outputs of each of the steps.

The approach has been designed to retrieve the model fragments, which
better realize a query in a model. To do this, the approach receives as input
the model, the query, an ontology, and a knowledge base (see the top of Figure
6.5). The approach relies on an evolutionary algorithm, which has three stages:

1 Initialization: The first stage is to extract a population of model frag-
ments from the model, which serves as input for the evolutionary algo-
rithm. In order to extract the population of model fragments, elements of
the model are randomly selected to compose different model fragments.
These model fragments are added to initial model fragment population.

2 Genetic operations: Second, genetic operations are applied to the
model fragment population in order to generate new candidate model
fragments for the query. To do this, the model fragments in the popu-
lation are encoded, and then, evolved using three genetic operators: the
selection operator, the crossover operator, and the mutation operator.

3 Fitness function: Third, the model fragment population is assessed
through the fitness function, which assign a fitness value to each model
fragment of the population. To do this, the fitness function has two
phases.
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Figure 6.5: Overview of the FRAME approach

The first phase, the training phase, is performed only in the first iteration
of the evolutionary algorithm. In this phase, the knowledge base is en-
coded into feature vectors through the ontological evolutionary encoding,
and then, used to train the classifier through a LtoR algorithm.

The second phase, the testing phase, is performed in all the iterations of
the evolutionary algorithm. First, the model fragments of the population
and the query are encoded using the ontological evolutionary encoding.
Second, the classifier, that has been trained in the training phase, is used
to assign the fitness value to each model fragment.

The last two stages of the evolutionary algorithm (genetic operations and
fitness function) are repeated until the solution converges to a certain stop con-
dition. However, after the first iteration, only the testing phase of the fitness
function is repeated in each new iteration of the evolutionary algorithm pro-
vides a model fragment ranking, where model fragments are ordered according
to their fitness values. The top positions are occupied by the model fragments
with the highest fitness values.
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Chapter 7. Evaluation Design

7.1 Overview of the chapter

This chapter presents the design of the evaluation to validate the FRAME
approach proposed in this dissertation. Specifically, our industrial partner
provided us the necessary documentation to evaluate our approach for Trace-
ability Link Recovery (TLR), as the software maintenance task. The goal of
this evaluation is not only to test out the approach, but also to compare our
approach against the approaches that have obtained the best results for this
software maintenance task in the literature.

Therefore, the evaluation was designed to address the following three re-
search questions:

Evaluation-RQ1: Is it feasible to retrieve model fragments in industrial do-
mains using the FRAME approach presented so far?

Evaluation-RQ2: What is the performance of FRAME approach on indus-
trial models?

Evaluation-RQ3: Can the FRAME approach outperform significantly the
results of the most common approaches for Traceability
Link Recovery?

Figure 7.1 shows an overview of the process that was followed to perform
this evaluation. The top part of Figure 7.1 shows the input artifacts, which are
extracted from the documentation provided by our industrial partner: queries
(requirements), models, an ontology, a knowledge base, and an oracle. Each
test case is comprised of a requirement, a model, the ontology, and the knowl-
edge base. The oracle is composed of the approved traceability between the
requirement and the model of each test case. In other words, for each test case,
the oracle contains a model fragment that is the correct solution to trace the
query in the model.

ª
Some of the approaches do not require all the input artifacts. For
example, the TLR-Linguistic approach does not require the ontol-
ogy or the knowledge base. In this case, the non-required artifacts
are ignored by the approach. However, all the approaches have all
the input artifacts at their disposal in the test cases.

Below the input artifacts, Figure 7.1 shows the approaches that are be-
ing evaluated and compared. The main techniques or methods used for each
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approach are highlighted in the figure. Specifically, the first approach the one
proposed in this dissertation (TLR-FRAME). Then , the following two ap-
proaches (TLR-Linguistic and TLR-IR) are the traditional approaches that
obtain the best results for Traceability Links Recovery on models. Both ap-
proaches are based on Natural Language Processing. Then, the following two
approaches (TLR-FNN and TLR-RNN) are based on deep learning techniques
that have also successfully been applied in Traceability Link Recovery in some
recent works. Finally, the last approach (TLR-LtoR) is also based on Learning
to Rank as our approach. However, this approach explores the model (search
space) by means of brute-force instead of using an evolutionary algorithm.

After the approaches, Figure 7.1 shows the solutions of the approaches.
Most of the approaches obtain a model fragment as solution. However, two
of the approaches do not obtain directly a model fragment as solution. The
FRAME approach obtains a model fragment ranking, so the model fragment in
the top of the ranking is selected as final solution of the approach. Moreover,
the TLR-IR approach obtains a model element ranking, so the model fragment
is composed by the model elements with a degree of similarity equal or greater
than to x = 0.7 in the ranking. Specifically, this degree of similarity was chosen
since this heuristic has yielded good results in other similar works [119, 120].

Therefore, although in some cases is not direct, all the approaches obtain
a model fragment as solution of each test case. Then, as Figure 7.1 shows, the
model fragments are evaluated through measures reporting the correspondent
results.

The following sections describe the real case (Section 7.2), describe the
approaches and their setup in this evaluation (Section 7.3), explain how results
are measured (Section 7.4), and present the threats to validity (Section 7.5).

7.2 Real Case: Test Cases and Oracle

The real case where we applied our approach was provided by our industrial
partner CAF, a worldwide provider of railway solutions. Specifically, our indus-
trial partner provided the necessary documentation to evaluate our approach
in a Traceability Link Recovery problem. Traceability Link Recovery on mod-
els focuses on recovering the model fragment that better realizes a requirement
(query) in a model. Therefore, the provided documentation consists in several
requirements to be searched, several models where to search the requirements,
the domain ontology and the knowledge base to apply the approach, and the
oracle with the correct solutions.
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From documentation, 20 test cases were defined. Each test case was com-
posed of a requirement, a product model, the knowledge base, and the ontology.
A detailed description of each of them is provided below:

• The requirements have about 25 words.

• The models have about 650 elements.

• The knowledge base includes 103 samples. Specifically, each of these
samples contains a requirement, a model fragment that has about 15
elements, and an fitness value. Figure 7.2 shows the distribution of fitness
values in the knowledge base, taking into account how many samples of
the knowledge base are in each range of fitness values.
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Figure 7.2: Distribution of fitness values in the knowledge base

• The ontology contains a total of 54 elements between concepts and re-
lations. Specifically, the ontology contains 24 concepts and 30 relations.
Therefore, based on this ontology, the feature vectors contain a total of
78 characteristics: 54 characteristics to encode the model fragments and
24 characteristics to encode the queries. Although, due to the feature
selection in the encoding, only around 90% of these features are enabled.

For each test case, we followed the experimental setup described in Fig-
ure 7.1. Each test case was run 30 times. As suggested by [121], given the
stochastic nature of the TLR-FRAME approach, several repetitions are needed
to obtain reliable results. Finally, the solutions were evaluated and compared
to the oracle. The oracle contains the approved traceability. In other words,
the oracle contains the model fragments, which are manually retrieved by the
domain experts and are the correct solutions for each test case. Since the case
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study contains 20 test cases, the oracle contains the 20 model fragments for
these test cases, one for each test case.

7.3 Approaches under Evaluation

This section provides a description and the setup of each approach that was
evaluated. In total, six approaches were considered in the evaluation. The first
one was the one proposed in this dissertation: (1) the FRAME approach.

Winkler et al. [122] classify several approaches that have been created over
the past 15 years that try to optimize the automatic identification of traces.
Based on this classification, we selected the two approaches that obtain the best
results for traceability links between requirements and models: (2) a rule-based
approach that deduces traces by applying rules (TLR-Linguistic) [123]; and (3)
an information retrieval approach that can detect candidate traceability links
through Information Retrieval (TLR-IR) [124, 125].

Deep learning techniques have also successfully been applied in Traceabil-
ity Link Recovery in some recent works [59]. Therefore, we decided to compare
our approach with two approaches that apply deep learning: (4) the first one
is based on a Feedforward Neural Network (TLR-FNN); and (5) the second
one is based on a Recurrent Neural Network (TLR-RNN).

Finally, to check the need for the evolutionary algorithm in our approach,
TLR-FRAME is also compared to (6) TLR-LtoR, which explores the search
space by means of brute-force. Therefore, the model fragments are generated
from the model and evaluated through LtoR, but the results obtained from the
LtoR process are not used to guide the generation of new model fragments.
Since there is no guide to explore the model, the search for the model fragment
that realizes a specific requirement is performed by brute-force.

ª
Note that since both requirements and models use the natural lan-
guage, Natural Language Processing (NLP) techniques are used to
process them before applying any approach. In fact, NLP has a
direct and beneficial impact on the results of some approaches (e.g.
the TLR-IR approach). Specifically, the queries and the models
are processed by a combination of NLP techniques defined in [104],
which consists of tokenizing, lowercasing, removal of duplicate key-
words, syntactical analysis, lemmatization, and stopword removal.

84



7.3 Approaches under Evaluation

7.3.1 TLR-FRAME: FRAME approach

The TLR-FRAME approach has been presented in the chapters 4, 5, and 6
of this dissertation. The approach is based on ML techniques, specifically
in a LtoR algorithm, to determine what model fragments better realize a re-
quirement (query). The model fragments are extracted from a model using an
evolutionary algorithm.

To setup the approach for the evaluation, four technical details are ad-
dressed: the stop condition, the hyperparameters for the evolutionary algo-
rithm, the LtoR algorithm with its tuning parameters, and the cross-validation
method.

The stop condition greatly depends on the domain and the problem being
solved. In general, there are two atomic performance measures for evolutionary
algorithms: one regarding solution quality, and one regarding algorithm speed
or search effort. In this paper, we focus on the solution quality (i.e., obtaining a
solution that is more similar to the one from the oracle in terms of precision and
recall). After running some prior tests to determine the number of iterations
to converge (and adding a margin to ensure convergence), we allocated a fixed
amount of iterations (200 iterations) to stop the execution.

For the evolutionary algorithm, we tuned the population size, the crossover
probability, and the mutation probability. We have chosen the values 100, 0.9,
and 0.1, respectively. These were selected based on the parameters that are
commonly used in the literature [126] and the results of some preliminary
tuning experiments.

The selection of the LtoR algorithm depends on several aspects, such as the
size of the knowledge base. RankBoost [127] belongs to the family of LtoR and
is well known for its efficiency and effectiveness in different domains [128, 129].
Moreover, Rankboost can benefit from a small knowledge base together with
a small number of characteristics in the encoding to reduce the overfitting
problem [130, 131]. Since this condition is satisfied by our real case, TLR-
FRAME is based on Rankboost. Moreover, Rankboost has three parameters:
number of iterations, threshold, and metric. These parameters were tuned
using a grid-search with the values 200, 10, and ERR10, respectively.

Finally, our approach uses cross-validation to validate the classifier in the
training phase of the fitness function. Specifically, in the evaluation, the cross-
validation method used was k-fold with a k value equals to 4.

85



Chapter 7. Evaluation Design

ª
The implementation for our approach is available at http://
bitbucket.org/svitusj/flame. We have also made the dataset
and the implementation for the other five approaches available in
the same location.

ª
We used the Eclipse Modeling Framework to manipulate the models
and Common Variability Language to manage the model fragments.
The genetic operations were built upon the Watchmaker Framework
for Evolutionary Computation [132]. Furthermore, RankBoost was
implemented using the RankLib library [133].

7.3.2 TLR-Linguistic: Linguistic Rule-Based approach

Spanoudakis et al. [123] present a linguistic rule-based approach to support the
automatic generation of traceability links between requirements and models.
Specifically, the traceability links are generated following two stages:

Stage 1: a Parts-of-Speech (POS) tagging technique [134] is applied on the
requirements that are defined using natural language.

Stage 2: the traceability links between the requirements and the models are
generated through the requirement-to-object-model rules.

RTOM_RULE Rule-1:
EXISTS
SEQUENCEo<x1/{NN1O NN2}>O<x2/{VBZO VBR}>O<x3/{JJ}>d in Requirement;
<x4/CLASS>O <x5/ATTRIBUTE> in Model

SUCH THAT
ATTRIBUTE_OFo<x5>O<x4>d and CONTAINSoNAMEo<x5>dO <x3>d and oCONTAINSoNAMEo<x4>dO <x1>d

ACTION GENERATE
OVERLAPSoRequirementO <x5>d

RTOM_RULE_END

Figure 7.3: Example of requirement-to-object-model rules

The requirement-to-object-model (RTOM) rules are specified by investi-
gating grammatical patterns in requirements. Figure 7.3 shows an example of
a RTOM rule. This rule establishes a relation between a requirement (third
line) and an attribute in a model (fourth line), if the following conditions are
satisfied:
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• The requirement contains a noun (<x1/{NN1, NN2}>), followed by the verb
to be in the present form (<x2/{VBZ, VBR}>), and then, there is an adjective
(<x3/{JJ}>).

• The model contains at least a class that has one attribute
(ATTRIBUTE_OF(<x5>,<x4>)). The name of the attribute is equal to the ad-
jective in the requirement (CONTAINS(<x5>,<x3>)) and the name of class
is equal to the noun in the requirement (CONTAINS(<x4>,<x1>)).

When these conditions are satisfied, the rule establishes a relation
(GENERATE OVERLAPS(Requirement,<x5>)) between the requirement and the class
in the model. Therefore, taking into account several rules, the TLR-Linguistic
approach can identify the model elements that are related to the requirement.
These model elements compose the model fragment, that is the output of the
approach.

In [123], there are two different types of traceability rules: RTOM for
traceability relations between requirements and model elements, and inter-
requirement rules for traceability relations between different parts of a require-
ment statement. In total, the authors propose 26 rules for two domains: a
software-intensive TV system created by Philips, and a university course man-
agement system. Since our approach is focused only on the traceability between
requirements and model elements, this approach only tackles the RTOM trace-
ability rules for our domain. Therefore, based on the guides and the examples
of rules that are provided by [123], a domain expert who was not involved
in the research generated an initial set of rules for our domain. In addition,
to mitigate the dependence on a single domain expert, a second expert who
also was not involved in the research extended the set of rules. In the end,
the extended set contains nine RTOM rules, which is similar to the number
proposed by [123]. However, there is no significant difference between the re-
sults obtained using the initial set and the results obtained using the extended
set. Specifically, the results described in this dissertation correspond to the
extended set, which are a bit better than those obtained from the initial set.
Nonetheless, in both cases, the results are not as good as the ones obtained
with our approach.

ª
The Stanford POS Tagger [135] was utilized for the development of
the TLR-Linguistic approach.
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7.3.3 TLR-IR: Information Retrieval approach

Information Retrieval (IR) [136, 137, 138] is a sub-field of computer science that
deals with the automated storage and retrieval of documents. IR techniques
have been successfully used to retrieve traceability links between different kinds
of software artifacts in different contexts [139, 140, 141, 142, 143]. Specifically,
in [124] and [125], De Lucia et al. use Latent Semantic Indexing (LSI) to
recover traceability links between requirements and different kinds of software
artifacts, including models in the form of use-case diagrams, among others.
We use LSI to recover traceability links between requirements and models as
one of the approaches for our evaluation.

Latent Semantic Indexing (LSI) [144] is an automatic mathematical/statistical
technique that analyzes relationships between queries and documents (bodies
of text). LSI constructs vector representations of both a user query and a cor-
pus of text documents by encoding them as a term-by-document co-occurrence
matrix and analyzes the relationships between those vectors to get a similarity
ranking between the query and the documents (see Figure 7.4).
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QueryDocuments

Singular Value Decomposition

ME1
0 2 … 2 1

Circuit Breaker 0 2 … 5 2

Door 3 0 … 1 1

… … … … …

Model Fragment
Similitude Scores

ME2 = 0.93

MEN = 0.85

…

ME1 = -0.87

MFN

MF2

MF1

Q

ME2
MEN

ME1

Pantograph

Scores

ME2 ... MEN Q

Figure 7.4: Example of Traceability Link Recovery using Latent Semantic Indexing

In Traceability Link Recovery, the query corresponds to the requirement
and each document is a natural language representation of a model element
extracted using the technique in [145]. The top of Figure 7.4 shows an example
of term-by-document co-occurrence matrix, with values associated to our real
case. Each row in the matrix (keywords) stands for each of the words that
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compose the query and the documents (e.g. pantograph or door). Each column
in the matrix stands for a document and the final column stands for the query.
Each cell in the matrix contains the frequency with which the term (keyword)
of its row appears in the document denoted by its column. For instance, in
Figure 7.4, the term ‘pantograph’ appears twice in the document of the second
model element (ME2) and once in the query.

Then, vector representations of the documents and the query are obtained
by normalizing and decomposing the term-by-document co-occurrence matrix
using a matrix factorization technique called Singular Value Decomposition
[144]. The bottom of Figure 7.4 shows a three-dimensional graph of the Sin-
gular Value Decomposition technique. For legibility reasons, only a small set
of the columns is represented. To measure the degree of similarity between
vectors, the cosine between the query vector and the document vectors is cal-
culated. Cosine values that are closer to 1 denote a higher degree of similarity,
and cosine values that are closer to -1 denote a lower degree of similarity. Sim-
ilarity increases as vectors point in the same general direction (as more terms
are shared between documents). With this measurement, the model elements
are ordered according to their degree of similarity to the requirement (see on
the bottom left part of Figure 7.4). This ranking of model elements is returned
as output of the TLR-IR approach.

ª
The LSI technique used within the TLR-IR approach was imple-
mented using the Efficient Java Matrix Library (EJML [146]).

7.3.4 TLR-FNN: Feedforward Neural Network approach

Feedforward Neural Networks (FNNs) represent a traditional neural network
structure and lay the foundation for many other structures [147]. Data flow
always moves one direction, from input layer to hidden layer, then to output
layer; it never goes backwards. Figure 7.5 shows the structure of a FNN where
the FNN receives a vector of I input signals, z = (z1, z2, ..., zI). The neurons
of the hidden layer assign to each input signal, Zi, its respective weight, vi, to
strengthen or deplete the input signal. Weighted inputs are accumulated at
each neuron and then an activation function determines the output (or firing
strength) of each neuron, o. In fact, the strength of the output is further
influenced by a threshold value, which is also referred to as the bias; thus, the
activation function receives both the input signal and the bias to determine
the output of each neuron [148].
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In Traceability Link Recovery, the input signals of FNN corresponds to the
query and one of the model elements. As output, FNN returns a binary value
that indicates if the model element should be or not included in the model
fragment. Then, the following model element is evaluated through FNN, and
the process is repeated for each element in the model. The model elements,
that returns 1 as its binary value, are included in the model fragment, which is
the output of the approach. In [14], there is a more detailed explanation about
the application of neural networks on models for Traceability Link Recovery.

Z1

ZI

Zi o

v11

v1i

vJI

Input Layer Hidden Layer Output Layer

vji

Figure 7.5: Feedforward Neural Network

While Figure 7.5 shows only one hidden layer, a FNN can have more than
one hidden layer. However, it has been proved that FNNs with monotonically
increasing differentiable functions can approximate any continuous function
with one layer, provided that the hidden layer has enough hidden neurons
[149]. Specifically, the network architecture of the FNN defined for the evalu-
ation is a dense layer that is followed by the final softmax layer. Moreover, we
performed a hyperparameter optimization based on the random search opti-
mization provided by the Deep Learning for Java library. For all of the layers,
the hyperparameter optimization resulted in an initial learning rate of 0.0035,
and the Gaussian distribution recommended in [150] for weight initialization.
In addition, for the dense layer, the hyperparameter optimization resulted in
a layer size of 128 and the randomized rectified linear unit (RRELU) as the
activation function.

ª
The neural networks in TLR-FNN and TLR-RNN were developed
and tuned by means of the Deep Learning for Java library [151].
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7.3.5 TLR-RNN: Recurrent Neural Network approach

Since the number of parameters in a fully connected FNN can grow extremely
large as the width and depth of the network increases, researchers have pro-
posed other neural network structures targeting different types of practical
problems. Recurrent Neural Networks (RNNs) are particularly well suited for
processing sequential data such as text and audio. While FNNs have no feed-
back connections to previous layers, RNNs have these feedback connections to
model the temporal characteristics of the problem being learned [148]. More-
over, RNNs have successfully been applied in Traceability Link Recovery in
some recent works [59].

Although RNNs are specifically designed to process sequential data, RNNs
have showed great results in some cases of non-sequential input information,
for instance, image captioning [152] or prediction of hospital readmission [153].
In these works, even if the input data is not in the form of sequences, they
can make classifiers able to learn so that they process data in sequential order
only [153]. In our case, even if the models are not sequential data, we can
order the model elements so that a classifier trained by a RNN benefits from
the sequential order of the model elements.

Imagine that, among the model elements, the model contains a panto-
graph, a circuit breaker, and the connection between them (pantogragph-
circuit breaker). First, we evaluated the pantograph through RNN. Even if we
knew that pantograph is related to the requirement, we could not determine
if the other two model elements are related to the requirement. Therefore, we
evaluated the connection through RNN. If we knew that the pantograph and
the connection (pantogragph-circuit breaker) are related to the requirement, it
would be certainly reasonable to assume that the circuit breaker is related to
the requirement. Therefore, the sequential order of the model elements may
be exploited by RNN.

Figure 7.6 shows the structure of an Elman RNN, which is a RNN based
on the extension of a FNN. As illustrated in Figure 7.6, data flow moves from
an input layer to a hidden layer, but there is a new layer, named context layer,
that makes a copy of the hidden layer. This context layer serves as an extension
of the input layer, feeding signals that represent previous network states to the
hidden layer. Therefore, the input vector is z = (z1, ..., zII, zI+1, ..., zI+J),
where the first I signals are the actual inputs of the network and the J signals
are the context units [148].
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Zi

Context Layer

Z1

ZI

ZI+1

ZI+j

ZI+J

Input Layer Hidden Layer Output Layer

Figure 7.6: Elman Simple Recurrent Neural Network

As in the TLR-FNN approach, the input signals of RNN corresponds to
the query and one of the model elements. As output, FNN returns a binary
value that indicates if the model element should be or not included in the
model fragment. This process is repeated for all the model elements, obtaining
a model fragment as output. Specifically, the network architecture of the RNN
implemented is a Long Short Term Memory layer followed by the final softmax
layer. Moreover, we performed a hyperparameter optimization based on the
random search optimization provided by the Deep Learning for Java library.
For all of the layers, the hyperparameter optimization resulted in an initial
learning rate of 0.02 and the Normal distribution described in [154] for the
weight initialization. In addition, for the LSTM layer, the hyperparameter
optimization resulted in a layer size of 223 and the standard sigmoid activation
function as the activation function.
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7.3.6 TLR-LtoR: Learning to Rank approach

Taking into account this approach, we want to determine if the better results
of TLR-FRAME are due to the combination of the evolutionary algorithm
and LtoR, or there is no need to combine the two to get these results. For
this purpose, this approach is based only on LtoR, and the model fragments
that are used as input for the LtoR process are extracted randomly through a
standard random search.

We used this algorithm as outlined in Algorithm 2 (available in [10]). The
algorithm starts with a random initial model fragment, as the best fragment.
A new random model fragment is then assessed using LtoR. Then, the values
provided by LtoR for both fragments, the best one and the new one, are
compared and the model fragment with the greatest value is selected as the best
one. The search then goes back to the second step, extracting and assessing a
new model fragment, and this loop is repeated until a stop condition is met.

Therefore, this approach does not take advantage of evolving model frag-
ments to guide the exploration of the models, as our approach does thanks to
the evolutionary algorithm. Since there is no a guide to extract the models, the
search for the model fragment that realizes a specific requirement is performed
by brute-force.

Since TLR-LtoR is also based on LtoR such as TLR-FRAME, training and
testing are also required. Therefore, this approach follows the same steps of the
fitness function of the TLR-FRAME (Chapter 5). The ontological evolutionary
encoding encodes the knowledge base as feature vectors, to train a classifier
from these feature vectors. Then, this classifier is used to assess the model
fragment, which are extracted through the standard random search. When
the stop condition is met, the model fragment with the highest fitness value is
returned as the output of the approach.

The LtoR algorithm (Rankboost) and the cross-validation method (k-fold)
are the same as for the TLR-FRAME approach. However, the stop condition is
different from TLR-FRAME in order so that the comparison between them is
fair. For the TLR-FRAME approach, the stop condition was set up to perform
200 iterations of the evolutionary algorithm, where each iteration evaluated 120
model fragments. Therefore, for each test case, the approach evaluated a total
of 24000 model fragments. However, TLR-LtoR approach only evaluates one
model fragment for each iteration, so the stop condition was set up to perform
24000 iterations in order to evaluate the same number of model fragments.
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7.4 Comparison and Measure

For each test case, each approach obtains a model fragment. This model
fragment realizes the requirement to a greater or lesser extent. Therefore, to
evaluate how well the model fragment realizes the requirement, this model
fragment is compared against the correct solution. Since the oracle contains
the correct solutions for each test case, we can compare the obtained solution
to the correct solution. This comparison is performed through a confusion
matrix.

A confusion matrix is a table that is often used to describe the performance
of a classification model (in this case, the approaches) on a set of test data (the
obtained solutions) for which the true values are known (the correct solutions
in the oracle). In our case, each solution that is outputted by the approaches
is a model fragment that is composed of a subset of the model elements that
are part of the product model. Since the granularity is at the level of model
elements, the presence or absence of each model element is considered as a
classification. The confusion matrix distinguishes between the predicted values
and the real values, classifying them into four categories:

• True Positive (TP): values that are predicted as true (in the obtained
solution) and are true in the real scenario (the correct solution).

• False Positive (FP): values that are predicted as true (in the obtained
solution) but are false in the real scenario (the correct solution).

• True Negative (TN): values that are predicted as false (in the obtained
solution) and are false in the real scenario (the correct solution).

• False Negative (FN): values that are predicted as false (in the obtained
solution) but are true in the real scenario (the correct solution).

Then, some performance measurements are derived from the values in
the confusion matrix. Specifically, we create a report that includes four per-
formance measurements (precision, recall, the F-measure, and the Matthews
Correlation Coefficient) for the test case.

Precision and recall are commonly used in information retrieval for eval-
uating retrieval (classification) performance [155, 156, 157] In fact, the two
traditional approaches under evaluation (TLR-Linguistic and TLR-IR) were
evaluated in [123] and in [124, 125] respectively, obtaining the best results for
recall and precision in Traceability Links Recovery on models.
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Precision measures the proportion of elements from the obtained solution
that are correct according to the correct solution and is defined as follows:

Precision =
TP

TP + FP

Recall measures the proportion of elements of the correct solution that are
correctly retrieved by the obtained solution and is defined as follows:

Recall =
TP

TP + FN

The F-measure corresponds to the harmonic mean of precision and recall
and is defined as follows:

F −measure = 2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2TP + FP + FN

However, precision, recall, and F-measure are typically used only to eval-
uate the skill of information retrieval systems, where there is only interest in
the positive findings (i.e. the quality of the retrieved results) [157]. Indeed,
none of these performance measurements correctly handle negative examples
(TN). In the case of fragment retrieval, we do care about true negatives as
the retrieval of model elements that are non-related to the query comes at en
additional effort and cost by the engineers. The MCC is a correlation coeffi-
cient between the observed and predicted binary classifications that takes into
account all of the observed values (TP, TN, FP, FN) and is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Precision values can range between 0% (i.e., no single model element from
the obtained solution is present in the correct solution) and 100% (i.e., all
of the model elements from the obtained solution are present in the correct
solution). Recall values can range between 0% (i.e., no single model element
from the correct solution is present in the obtained solution) and 100% (i.e.,
all of the model elements from the correct solution are present in the obtained
solution). A value of 100% precision and 100% recall implies that both the
obtained solution and the correct solution are the same. MCC values can
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range between −1 (i.e., there is no correlation between the prediction and the
correct solution) to 1 (i.e., the prediction is perfect). Moreover, a MCC value
of 0 corresponds to a random prediction.

This process was repeated for all test cases and for all the approaches.
Whenever an approach was tested out from a test cases, the obtained solution
was compared through a confusion matrix and the previous measures (Recall,
Precision, F-measure, and MCC) where used to evaluate the results.

7.5 Threats to validity

Finally, we use the classification of threats to validity of [158] to acknowl-
edge the limitations of the evaluation. Following the [158] definitions for
the experiment processes, the treatments are the different approaches: TLR-
FRAME, TLR-Linguistic, TLR-IR, TLR-FNN, TLR-RNN, and TLR-LtoR.
All the treatments were applied by a Lenovo with a processor Intel(R) Core(TM)
i5-3210M @2.5GHz with 4GB of RAM and running Windows 10 Pro N 64 bits
as the hosting Operative System (subject). Moreover, all the treatments were
tested using all the test cases (objects).

Therefore, taking into account the treatments, the subject, and the objects,
Table 7.1 presents the threats that can be applicable to our evaluation. In this
table, the threats (column 2) are grouped by type (column 1) and defined
briefly (column 3). In addition, the last column (column 4) of the table shows
how the threats have been dealt with.

Table 7.1: Threats to Validity

Type of
threat Threat Due to How we have dealt with

it

Conclusion
Validity

Fishing Researchers may
influence the result
by looking for a
specific outcome

We avoided this threat by us-
ing all of the test cases for
all of the approaches; none of
the test cases were removed
for any reason whatsoever.
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Table 7.1: Threats to Validity

Type of
threat Threat Due to How we have dealt with

it

Reliability
of measures

When you measure
a phenomenon
twice, the outcome
shall be the same

We reduced this threat by us-
ing four measures: precision,
recall, F-measure, and MCC,
which are widely accepted in
the software engineering re-
search community. Moreover,
as suggested by [121], sev-
eral repetitions have been per-
formed to obtain reliable re-
sults. Specifically, each test
case was run 30 times for each
approach.

Lower
statistical
power

Sample size is not
enough

We reduced this threat by us-
ing 20 different test cases and
statistically analyzing the re-
sults.

Reliability
of treat-
ment
implemen-
tation

The implementa-
tion is not similar
between different
persons, applying
the treatment, or
between different
occasions

We avoided this threat by tun-
ing the parameters to max-
imize the performance of all
of the approaches and to per-
form a fair evaluation.

Internal
Validity

Instrumenta-
tion

Effect caused by
the artifacts used
for experiment exe-
cution

We avoided this threat by bal-
ancing the knowledge base,
which is in the test cases. The
knowledge base contains sam-
ples with high and low fitness
values.
We reduced this threat by val-
idating the ontology, which is
in the test cases. Different do-
main experts check that the
ontology is well designed, so
that it does not negatively af-
fect to the evaluation.
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Table 7.1: Threats to Validity

Type of
threat Threat Due to How we have dealt with

it

Influence of
the domain

This threat appears
when the outcomes
depend on a spe-
cific domain

We reduced this threat by de-
signing and developing the ap-
proach independently of the
domain. Nevertheless, the
experiment and its results
should be replicated in other
domains before assuring their
generalization.

External
Validity

Interaction
of set-
ting and
treatment

This is the effect of
not having the ex-
perimental setting
or material repre-
sentative of indus-
trial practice

We avoided this threat by us-
ing the last version of the
Eclipse Modeling Framework
to perform the implementa-
tion.
We reduced this threat by
using formats that are fre-
quently leveraged to specify
all kinds of different software,
for example MOF.

Construct
validity

Interaction
of test-
ing and
treatment

Subjects apply
the metrics to the
treatments

The experiment suffers from
this threat since, the com-
puter is responsible to apply
the metrics. However, the
metrics are automatically ap-
plied through the same pro-
gram for the results of all the
approaches. Therefore, this
threat can be considered not
applicable.

Mono-
operation
bias

A single treatment
or case can lead to
bias

We avoided this threat by
applying five different ap-
proaches to compare our ap-
proach.
We avoided this threat by us-
ing 20 different test cases.
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Table 7.1: Threats to Validity

Type of
threat Threat Due to How we have dealt with

it

Author
bias

People that define
the artifacts can
subjectively influ-
ence the obtain-
ment of the results
that they are look-
ing for

We avoided this threat using
the documentation provided
by our industrial partner. The
test cases were prepared from
this documentation by a do-
main expert who was not in-
volved in the experiment and
the research.
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Chapter 8. Results of the Evaluation

8.1 Overview of the chapter

This chapter presents the results of the evaluation. Specifically, this chapter
presents the reported results for each approach, the statistical analysis, the
answers to the research questions, and the discussion.

8.2 Reported results

In Table 8.1, we outline the results, which are aggregated for each of the
approaches. Each row shows the Precision, Recall, F-measure, and MCC values
reported for each approach.

Table 8.1: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
Matthews Correlation Coefficient (MCC) for the approaches

Precision Recall F-Measure MCC

TLR-FRAME 59.91 ± 33.39 78.95 ± 15.16 62.50 ± 27.76 0.64

TLR-Linguistic 37.38 ± 16.18 48.61 ± 19.78 40.41 ± 16.19 0.40

TLR-IR 18.09 ± 25.55 53.45 ± 38.70 21.69 ± 23.95 0.21

TLR-FNN 8.20 ± 0.10 100 ± 0.00 14.06 ± 0.14 -0.84

TLR-RNN 8.37 ± 0.09 100 ± 0.00 14.34 ± 0.14 -0.77

TLR-LtoR 13.01 ± 26.08 11.85 ± 18.24 10.27 ± 17.57 0.07

As the table shows, our FRAME approach achieves the best results for
most performance indicators, providing a mean precision value of 59.91%, a
recall value of 78.95%, a combined F-measure value of 62.50%, and a MCC
value of 0.64. In contrast, the TLR-Linguistic approach, the TLR-IR approach,
and the TLR-LtoR approach present worse results in all of the measurements:
the TLR-Linguistic approach attains 37.38% precision, 48.61% recall, 40.41%
F-measure, and 0.40 MCC; the TLR-IR approach achieves 18.09% precision,
53.45% recall, 21.69% F-measure, and 0.21 MCC; and the TLR-LtoR approach
attains 13.01% precision, 11.85% recall, 10.27% F-measure, and 0.07 MCC. On
the other hand, both the TLR-FNN approach and the TLR-RNN approach
achieve the best results for recall, but they present the worst results for the
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rest of the indicators: the TLR-FNN attains 8.20% precision, 100% recall,
14.06% F-measure, and -0.84 MCC; and the TLR-RNN baseline achieves 8.37%
precision, 100% recall, 14.34% F-measure, and -0.77 MCC.

8.3 Statistical Analysis

To properly compare the results of the different approaches, the data resulting
from the empirical analysis was analyzed using statistical methods. Specifi-
cally, we first run a statistical test to state that there is no difference between
the approaches (the null hypothesis H0), or on the contrary, to state that the
approaches differ (the alternative hypothesis H1). Then, since the null hy-
pothesis is rejected, the approaches are individually compared. An additional
post hoc analysis is performed to determine if there are significant differences
among the results of two specific approaches. Finally, we measured the effect
size in order to assess whether an approach is statistically better than another
and to assess the magnitude of the improvement.

8.3.1 Statistical Test

Since our data does not follow a normal distribution in general, our analysis
required the use of nonparametric techniques. There are several tests for an-
alyzing this kind of data; however, the Quade test is the most powerful one
when working with real data [159]. In addition, according to Conover [160],
the Quade test is the one that has shown the best results for a low number of
approaches.

Table 8.2: Quade test statistic and p− V alues

Precision Recall

p-Value 1.7× 10−10 2.20× 10−16

Statistic 14.41 35.27

Table 8.2 shows the Quade test statistic and p − V alues for recall and
precision. The null hypothesis can be rejected taking into account the proba-
bility value, p − V alue. The p − V alue obtains values between 0 and 1. The
lower the p− V alue of a test, the more likely that the null hypothesis is false.
It is accepted by the research community that a p − V alue under 0.05 is sta-
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tistically significant [161], and so the hypothesis H0 can be considered false.
Therefore, since the p − V alues are smaller than 0.05, we rejected the null
hypothesis. Consequently, we can state that there are differences among the
six approaches.

8.3.2 Post Hoc Analysis

This kind of analysis performs a pair-wise comparison among the results of
each approach, determining whether statistically significant differences exist
among the results of a specific pair of approaches.

Table 8.3: Holm’s Post Hoc p− V alues

Precision Recall

TLR-FRAME vs TLR-Linguistic 8.4× 10−03 3.3× 10−06

TLR-FRAME vs TLR-IR 7.3× 10−05 0.041

TLR-FRAME vs TLR-FNN 1.9× 10−07 8.3× 10−06

TLR-FRAME vs TLR-RNN 1.9× 10−07 8.3× 10−06

TLR-FRAME vs TLR-LtoR 3.8× 10−06 2.7× 10−07

TLR-Linguistic vs TLR-IR 6.1× 10−04 0.49

TLR-Linguistic vs TLR-FNN 3.4× 10−07 1.0× 10−07

TLR-Linguistic vs TLR-RNN 3.4× 10−07 1.0× 10−07

TLR-Linguistic vs TLR-LtoR 2.5× 10−03 1.9× 10−05

TLR-IR vs TLR-FNN 0.04 4.2× 10−06

TLR-IR vs TLR-RNN 0.04 4.2× 10−06

TLR-IR vs TLR-LtoR 0.27 1.1× 10−03

TLR-FNN vs TLR-RNN 1.1× 10−03 0.0

TLR-FNN vs TLR-LtoR 0.97 2.9× 10−08

TLR-RNN vs TLR-LtoR 0.97 2.9× 10−08
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Table 8.3 shows the p−V alues of Holm’s post hoc analysis for each specific
pair of approaches. Almost of all the p−V alues shown in this table are smaller
than 0.05, except for some cases: the precision comparison between TLR-
IR and TLR-LtoR, the precision comparison between TLR-FNN and TLR-
LtoR, the precision comparison between TLR-RNN and TLR-LtoR, and the
recall comparison between TLR-Linguistic and TLR-IR. Therefore, significant
differences for one of the performance measurements were obtained in all of
the comparisons.

8.3.3 Effect Size

Statistically significant differences can be obtained even if they are so small
as to be of no practical value [161]. It is then important to assess whether an
approach is statistically better than another and to assess the magnitude of
the improvement. Effect size measures are needed to analyze this.

For a non-parametric effect size measure, we used Vargha and Delaney’s
Â12 [162]. Â12 measures the probability that running one approach yields
higher values than running another approach. If the two approaches are equiv-
alent, then Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain better results in 70%
of the runs with the first of the pair of approaches that have been compared,
and Â12 = 0.3 means that we would obtain better results in 70% of the runs
with the second of the pair of approaches that have been compared. Thus, we
have an Â12 value for every pair of approaches.

Table 8.4 shows the values of the effect size statistics between every pair
of approaches.

TLR-FRAME vs TLR-Linguistic: The Â12 measure value indicates that,
of the two approaches, TLR-FRAME will obtain better results than TLR-
Linguistic in 70% of the cases for precision, and better recall values in
83% of the cases.

TLR-FRAME vs TLR-IR: The Â12 measure value indicates that, of the
two approaches, TLR-FRAME will obtain better results than TLR-IR
in 85% of the cases for precision, and better recall values in 68% of the
cases.

TLR-FRAME vs TLR-FNN: The Â12 measure value indicates that, of the
two approaches, TLR-FRAME will obtain better results in 93% of the
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Table 8.4: Â12 statistic for each pair of approaches

Precision Recall

TLR-FRAME vs TLR-Linguistic 0.70 0.83

TLR-FRAME vs TLR-IR 0.85 0.68

TLR-FRAME vs TLR-FNN 0.93 0.15

TLR-FRAME vs TLR-RNN 0.93 0.15

TLR-FRAME vs TLR-LtoR 0.89 0.97

TLR-Linguistic vs TLR-IR 0.81 0.45

TLR-Linguistic vs TLR-FNN 0.93 0.0

TLR-Linguistic vs TLR-RNN 0.93 0.0

TLR-Linguistic vs TLR-LtoR 0.86 0.91

TLR-IR vs TLR-FNN 0.55 0.13

TLR-IR vs TLR-RNN 0.54 0.13

TLR-IR vs TLR-LtoR 0.65 0.78

TLR-FNN vs TLR-RNN 0.48 0.5

TLR-FNN vs TLR-LtoR 0.67 1

TLR-RNN vs TLR-LtoR 0.68 1

cases for precision, while TLR-FNN will obtain better recall values in
85% of the case.

TLR-FRAME vs TLR-RNN: The Â12 measure value indicates that, of the
two approaches, TLR-FRAME will obtain better results in 93% of the
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cases for precision, while TLR-RNN will obtain better recall values in
85% of the case.

TLR-FRAME vs TLR-LtoR: The Â12 measure value indicates that, of the
two approaches, TLR-FRAME will obtain better results than TLR-LtoR
in 89% of the cases for precision, and better recall values in 97% of the
cases.

TLR-Linguistic vs TLR-IR: The Â12 measure value indicates that, of the
two approaches, TLR-Linguistic will obtain better results in 81% of the
cases for precision, while TLR-IR will obtain better recall values in 55%
of the case.

TLR-Linguistic vs TLR-FNN: The Â12 measure value indicates that, of
the two approaches, TLR-Linguistic will obtain better results in 93% of
the cases for precision, while TLR-FNN will obtain better recall values
in 100% of the case.

TLR-Linguistic vs TLR-RNN: The Â12 measure value indicates that, of
the two approaches, TLR-Linguistic will obtain better results in 93% of
the cases for precision, while TLR-RNN will obtain better recall values
in 100% of the case.

TLR-Linguistic vs TLR-LtoR: The Â12 measure value indicates that, of
the two approaches, TLR-Linguistic will obtain better results than TLR-
LtoR in 86% of the cases for precision, and better recall values in 91% of
the cases.

TLR-IR vs TLR-FNN: The Â12 measure value indicates that, of the two
approaches, TLR-IR will obtain better results in 55% of the cases for
precision, while TLR-FNN will obtain better recall values in 87% of the
case.

TLR-IR vs TLR-RNN: The Â12 measure value indicates that, of the two
approaches, TLR-IR will obtain better results in 54% of the cases for
precision, while TLR-RNN will obtain better recall values in 87% of the
case.

TLR-IR vs TLR-LtoR: The Â12 measure value indicates that, of the two
approaches, TLR-IR will obtain better results than TLR-LtoR in 65% of
the cases for precision, and better recall values in 78% of the cases.
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TLR-FNN vs TLR-RNN: The Â12 measure value indicates that, of the two
approaches, TLR-FNN will obtain better results than TLR-RNN in 52%
of the cases for precision, and better recall values in 50% of the cases.

TLR-FNN vs TLR-LtoR: The Â12 measure value indicates that, of the two
approaches, TLR-FNN will obtain better results than TLR-LtoR in 67%
of the cases for precision, and better recall values in 100% of the cases.

TLR-RNN vs TLR-LtoR: The Â12 measure value indicates that, of the two
approaches, TLR-RNN will obtain better results than TLR-LtoR in 68%
of the cases for precision, and better recall values in 100% of the cases.

The obtained Â12 values show that TLR-FRAME is superior to all of the
approaches for precision. Moreover, TLR-FRAME is also superior to TLR-
Linguistic, TLR-IR, and TLR-LtoR on recall, meaning that TLR-FRAME will
obtain better results than these three approaches in most of the cases. Over-
all, these measurements confirm that, for recall and precision, TLR-FRAME
outperforms the approaches (TLR-IR and TLR-Linguistic) that obtain the
best results for TLR between requirements and models. Moreover, these mea-
surements confirm that, for precision, TLR-FRAME outperforms the ML ap-
proaches (TLR-FNN and TLR-FNN) that have successfully been applied re-
cently in Traceability Link Recovery. Finally, these measurements confirm
that, for recall and precision, TLR-FRAME outperforms the approach (TLR-
LtoR) that explores the search space by means of brute-force.

8.4 Research Questions for the Evaluation

In response to Evaluation-RQ1, we can affirmatively answer to this research
question. It is feasible to retrieve model fragments in industrial domains using
the FRAME approach presented in this dissertation. The FRAME approach
was successfully used to retrieve the model fragments related to several re-
quirements in an industrial domain like CAF.

In response to Evaluation-RQ2, the performance of FRAME approach on
the industrial models of CAF is determined by the results of the evaluation.
The FRAME approach achieved a mean precision value of 59.91%, a recall
value of 78.95%, a combined F-measure value of 62.50%, and a MCC value of
0.64.

In response to Evaluation-RQ3, the FRAME approach can significantly
outperform the results of the most common approaches for Traceability Link
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Recovery. Taking into account the statistical analysis, the FRAME approach
outperforms the most common approaches (TLR-IR and TLR-Linguistic) for
recall and precision. Moreover, for precision, the FRAME approach outper-
forms the ML approaches (TLR-FNN and TLR-FNN) that have successfully
been applied recently in Traceability Link Recovery. Furthermore, for recall
and precision, the FRAME approach outperforms the TLR-LtoR approach,
which indicates that the evolutionary algorithm is useful and necessary for our
approach.

8.5 Discussion

In this section, we discuss what prerequisites are needed by each approach,
what properties affect the results and limit the approaches. We also discuss
why TLR-FRAME is less sensitive to tacit knowledge and vocabulary mis-
match than the other approaches. These advantages lead to the better results
of TLR-FRAME.

8.5.1 Prerequisites and Properties

Both our approach and the other approaches need some prerequisites to be
applied. If one of their prerequisites is not satisfied, the approach would not
be used in that domain. Table 8.5 shows what artifacts are needed to apply
each approach.

Table 8.5: Required artifacts for each approach

Approaches

TLR-Linguistic TLR-IR TLR-FNN TLR-RNN TLR-LtoR TLR-FRAME

Models X X X X X X

Requirements X X X X X X

Knowledge Base X X X X

Ontology X X X XA
rt
ifa

ct
s

Rules X

Table 8.5 shows that all of the approaches need models and requirements.
Specifically, the models where requirements have to be located must conform
to MOF (the OMG metalanguage for defining modeling languages) and that
requirements must be provided using natural language. Moreover, all of the
approaches that are based on Machine Learning (TLR-FRAME, TLR-LtoR,
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TLR-FNN, and TLR-RNN) need a knowledge base to train and an ontol-
ogy to encode the models and requirements. Finally, the TLR-Linguistic ap-
proach needs rules to identify relations between model elements and require-
ment words. The rules have to be defined following the guides and examples
in [123].

Therefore, even though the training in TLR-FRAME is beneficial in avoid-
ing to a large extent issues such as tacit knowledge and vocabulary mismatch,
it is necessary to have access to a knowledge base and an ontology to perform
the training. In industrial domains, especially long-living ones, where require-
ments and models have been stored for years, a knowledge base may be easily
available. Also, thanks to the wide experience of the employees in companies
of this kind, the main concepts and relations could be identified by experts in
the domain. However, in other scenarios, such as when only the first product
has been developed, TLR-FRAME cannot be applied.

In addition, even though we had all the necessary artifacts to apply our
approach, the results may not be as good as possible. In fact, some properties of
the artifacts have an impact on the results. For example, if there is not enough
information in the knowledge base, TLR-FRAME would not train properly, so
the results would be worse than expected. Table 8.6 shows the properties that
we have identified in this work and that had an impact on the obtained results.

Table 8.6: Artifacts whose properties have an impact on the results

Properties

Homogeneity Completeness Heterogeneity Size Volume

Models X X

Requirements X X

Knowledge Base X X X

Ontology X XA
rt
ifa

ct
s

Rules X X

The following paragraphs provide more details about the properties iden-
tified in Table 8.6:

• Models may be developed by several engineers and at different times, so
the terms used to describe model elements may be different (e.g., panto-
graph and panto are two different terms used in our models to refer to
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the same concept: pantograph). Therefore, the first model property that
affects to the results is homogeneity. The second one is the size, which
has an impact on the result based on the understanding of the models
[163].

• Requirements may be defined by different engineers and at different
times, so the homogeneity of the requirements, like the homogeneity of
the models, has an impact on the results. The results are also affected
by the completeness of the requirements. Often, when requirements are
written, part of the domain knowledge related to the requirements is not
embodied in them because tacit knowledge about the domain is assumed
to be known by all of the domain experts. Therefore, the requirements
are more or less complete in accordance with how many assumptions are
made by the engineers. In the end, requirements may lose part of the
information that is required because of these assumptions.

• Knowledge Base contains the information necessary to train the clas-
sifier, so this information must be enough to train it. If the knowledge
base only contains the information to recover the traces between one re-
quirement and one model, the classifier may not learn how to recover
the traces for other requirements or models. Therefore, including hetero-
geneity samples of traces in the knowledge base provides more complete
information for the training. In addition, some ML techniques require
a larger knowledge base than others to provide suitable results, so the
technique must be selected based on the available knowledge base.

• Ontology is composed of the main concepts and relations of a domain.
Therefore, if a relevant concept or relation is not present in the ontology,
the encoding for the fitness function will not take it into account and the
training may be incomplete, leading to worse results. For this reason, the
first property to keep in mind for the ontology is completeness. Moreover,
if the ontology contains unnecessary concepts or relations, the number of
characteristics for the encoding would be greater and a great number of
characteristics in the training step leads to overfitting. Therefore, we
must also take into account the size of the ontology.

• Rules are defined by humans through the manual comparison of the mod-
els and requirements. Therefore, the completeness of the rules depends
on how well engineers understand the models and requirements and how
complex these models and requirements are. The volume of rules also
affects the results. If only one rule is defined, the approach only recov-
ers one type of model element, so the approach may need several rules.
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However, a large number of rules does not guarantee the best results.
Therefore, both completeness and volume must be taken in account.

8.5.2 Advantages of TLR-FRAME

This section discusses why TLR-FRAME achieves better results than the base-
lines regarding three aspects: tacit knowledge, vocabulary mismatch, and avail-
able documentation.

Tacit Knowledge

Often, when requirements are written, part of the domain knowledge related
to the requirements is not embodied in them. The tacit knowledge about the
domain is assumed to be known by all of the domain experts, so it is never
formalized in writing. This behavior has been reported in previous works
[164, 165]. For example, given the requirement: At all stations, the doors
are automatically opened, the engineers understand that the doors have to be
opened in all of the stations, without being requested by a passenger. How-
ever, this requirement also embodies tacit knowledge that is not written but is
obvious to the domain engineers: The train has doors on both sides, but only
the doors on the side of the platform will be opened, while the doors on the side
of the tracks will remain closed, and all of the doors on one side will be opened,
except the driver’s door in the cabin.

The tacit knowledge is not reflected in the text of the requirements. This
tacit knowledge is shared among the engineers that write the requirements
and the engineers that read the requirements. Therefore, both the text of the
requirements and tacit knowledge are used to build the models. As a result, the
model contains elements that are related to text of the requirement, but the
model also contains elements that are related to the tacit knowledge. However,
since part of the knowledge is not reflected in the text of the requirement,
recovering the most relevant model fragment for a requirement is complex.

Both TLR-IR and TLR-Linguistic depend, to a large extent, on the text
of the requirement. TLR-IR evaluates the similarity between the requirement
and the model fragment according to the co-occurrences of terms between the
two. TLR-Linguistic evaluates the similarity between the requirement and the
model fragment according to patterns that relate the terms in the requirement
with the elements in the model fragment. In both cases, the lack of terms that
is caused by the tacit knowledge makes it impossible to locate the elements
from the model that are relevant to the requirement.
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In contrast, TLR-FRAME is less sensitive to tacit knowledge due to train-
ing. In the training, the requirements of the knowledge base are linked to
the model fragments of the knowledge base. Even though the text of require-
ments is inaccurate due to tacit knowledge, the linked model fragments are
complete. Consequently, the classifier is not only trained from the text of the
requirements, but also from the elements of the model fragments. Therefore,
the classifier learns that certain elements of models are relevant to certain re-
quirements even though these elements are not described properly in the text
of the requirements. As TLR-FRAME depends, to a lesser extent, on the text
of the requirement than TLR-IR and TLR-Linguistic, when the requirements
have a lack of terms due to tacit knowledge, the results that are obtained
through TLR-FRAME are better than the results obtained through TLR-IR
and TLR-Linguistic.

Vocabulary Mismatch

Vocabulary mismatch is caused by the use of different terms to reference the
same concept in the requirement and the model. In industrial environments,
sometimes the engineer who is in charge of writing the requirement is not the
same engineer assigned to building the model. Moreover, both the requirement
and the model may be manipulated by different engineers.

Even though TLR-IR, TLR-Linguistic, and even TLR-FRAME, may use
Natural Language Processing (NLP) to homogenize the terms between require-
ments and models, vocabulary mismatch continues to be an issue that must
be taken into account. Since the in-house terms that are used in a specific
domain or company are not known synonyms, these in-house terms may not
be included in NLP, causing vocabulary mismatch. For example, the terms
PLC and system may be recognized as synonyms, but the terms PLC and
COSMOS are definitely not known to be synonyms because COSMOS is an
in-house term that is used exclusively by our industrial partner to refer to
PLC.

As in the tacit knowledge issue, TLR-IR and TLR-Linguistic are seriously
affected by vocabulary mismatch because both of them depend, to a large
extent, on the text of the requirements. If the terms that are used in the re-
quirements and the terms that are used in the models are not known synonyms,
they cannot be related, and therefore the requirement cannot be correctly re-
lated to the elements of the model. Therefore, the lack of awareness that is
caused by vocabulary mismatch makes it impossible to locate the elements
from the model that are relevant to the requirement.
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In contrast, TLR-FRAME is less sensitive to vocabulary mismatch for the
same reason described for the tacit knowledge issue. The evaluation of TLR-
FRAME depends on the information provided by training. If the information
that is extracted through the training indicates that a term of the requirement
is related to a term of an element in the model, the classifier learns that both
terms are related to each other even when they are not considered synonyms.
Therefore, TLR-FRAME depends, to a lesser extent, on the synonyms than
TLR-IR and TLR-Linguistic, which leads to our approach having better results
than the these approaches.

Available Documentation

Since TLR-FNN and TLR-RNN are trained using the same knowledge base
than TLR-FRAME, they should also be less sensitive to tacit knowledge and
vocabulary mismatch. However, our knowledge base may be unsuitable for
properly training a Neural Network. For example, in [59], the training set is
composed of 45% of the 769,366 artifacts, so this training set contains about
423,151 feature vectors. However, our training set is composed of the encod-
ing of the knowledge base that has 103 samples whose model fragments have
around 15 elements. Therefore, since the ending is performed at the model-
element level, the training set contains about 1545 (103 x 15) feature vectors.

Some works analyze the impact of the number of samples on the perfor-
mance of the neural networks. The authors in [166, 167] suggest the use of a
minimum of 10–30p samples for training, where p is the number of features
vectors used. However, this rule is often universally enforced in remote sens-
ing without questioning its relevance to the complexity of the specific problem
[168]. In fact, in some domains, the best result are obtained with 2p or 4p
samples for training [169, 168]. Therefore, a small knowledge base may be
insufficient and a large knowledge base may introduce noise.

On the other hand, the knowledge base may also be affected by the vapor-
ization problem [170]. In fact, some industrial companies do not store enough
information to create a knowledge base with the necessary completeness and
size. However, these domains also need to recover the traceability links, and
our approach can be successfully used even if the knowledge base is small, as
our evaluation proves.

Since TLR-LtoR is based on LtoR as TLR-FRAME also is, we might
expect that TLR-LtoR will not have the problems described. However, TLR-
LtoR obtained the worst results because the search space was too big, so
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the exploration of this search space randomly required many more iterations.
Therefore, by evaluating the same number of model fragments using the two
approaches, the TLR-FRAME obtained the best results thanks to the com-
bination of the LtoR, which provides a successful evaluation of the model
fragments, and the evolutionary algorithm, which allows the search space to
be explored in an effective way.
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PART V

Conclusion

Everything that has a beginning has an end.
The Matrix Revolutions
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9.1 Overview of the chapter

This chapter recapitulates the results presented so far and concludes the disser-
tation. First, we provides answers to the research questions formulated in the
first chapter (Section 9.2). Then, the ongoing research is described (Section
9.3). Finally, we conclude the dissertation (Section 9.4).

9.2 Research Questions

Throughout this dissertation, we have been working toward answers for the
research questions associated to the objectives defined in the first chapter (see
Chapter 1).

9.2.1 Results of the Objective 1

The first objective (OB1) consists of reviewing the works related to the ap-
plication of ML techniques for software maintenance tasks on models. Along
Chapter 3, we answered the research question associated to OB1 through a
preliminary systematic review (SR).

RQ1: What other approaches for software maintenance tasks on models are
there?

SR-RQ1: What kind of software artifacts is the most common target for
Traceability Link Recovery, Bug Localization, or Feature Loca-
tion?

SR-RQ2: What are the most common ML techniques for Traceability Link
Recovery, Bug Localization, Feature Location?

Answer to RQ1: To address RQ1, we analyzed the state-of-the-art through
a preliminary systematic review. To do so, we used the guidelines proposed
in [47, 48, 49]. The search shows that most research works, that apply ML
techniques for software maintenance tasks, target source code instead of mod-
els. However, some works tackle Feature Location on models applying ML
techniques [90, 91, 98, 99, 10]. One of these works applies decision and clas-
sification trees [98]. The remaining works apply genetic algorithms, which is
the most common ML technique for Feature Location.
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9.2.2 Results of the Objective 2

The second objective (OB2) of this dissertation consists of providing a ML-
based approach to automatically perform fragment retrieval in software main-
tenance tasks on models, which is called FRAME. Along Chapters 4, 5, and
6, we answered the set of research questions associated to OB2:

RQ2: How to apply ML techniques on models?

Answer to RQ2: To address RQ2, we encode the model fragments and the
queries into feature vectors. To do so, we design an ontological evolutionary
encoding that turn the model fragments and the queries into the characteristic-
value pairs of the feature vectors. Each characteristic correspond to a concept
or a relation in an ontology, and each value is computed as the frequency of
the concept or relation in a model fragment or a query. Results show that
the ontological evolutionary encoding can be used to characterize the model
fragments and the queries from a industrial domain like CAF. This allows to
apply ML techniques for fragment retrieval on models.

RQ3: How to assess model fragments through ML techniques?

Answer to RQ3: To address RQ3, the fitness function has been designed so
a ML technique trains a classifier able to assess new model fragments regard-
ing a query. To do so, we focus on LtoR algorithms that are ML techniques
oriented to rank objects. In the fitness function, a LtoR algorithm trains a clas-
sifier using the model fragments that have been manually retrieved for several
queries. Comparing those model fragments and queries, the classifier learns if
a model fragment is or not a good realization of a query. Then, the classifier
can assess new model fragments based on the previous learning. Specifically,
the classifier assigns a fitness value to each new model fragment. This fitness
value indicates how well the model fragment realizes the query. Therefore, the
new model fragments can be ranked according to their fitness values, in order
to find the model fragment that better realizes the query. Results show that
ML techniques can be applied to address the fragment retrieval in software
maintenance tasks, as in the Traceability Link Recovery task tackled for our
industrial partner. In addition, in [13], we tackled a different maintenance task
(Feature Location) applying a preliminary version of the fitness function and
we obtained successful results.

RQ4: How to extract model fragments from a model?

Answer to RQ4: To answer RQ4, we use an evolutionary algorithm to ef-
fectively extract model fragments from a model. To do so, the evolutionary
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algorithm is guided by the fitness function. The fitness function assigns to
each model fragment a fitness value, which indicates how well a model frag-
ment realizes the query. Then, these fitness values are exploited by the genet-
ics operators to select, crossover, or mutate the best candidates for the query.
Then, the evolved model fragments are assessed through the fitness function.
Both the fitness function and the genetics operations are repeated until a stop
condition is satisfied. When the stop condition is met, the evolutionary algo-
rithm returns a set of model fragment ranked according to their fitness values.
Therefore, thanks to the evolutionary algorithm, we do not need to assess all
the model fragments from a model. Only the best candidates for the query are
assessed. Results show the evolutionary algorithm can be used to address the
extraction of model fragments from a model. In addition, in the evaluation
of the approach, we compare our approach with the evolutionary algorithm
and the approach using brute-force to extract the model fragments. Results
show that the evolutionary algorithm allows to explore the search space in an
effective way, significantly outperforming the results of the approach without
the evolutionary algorithm.

9.2.3 Results of the Objective 3

The third and last objective (OB3) of validating the contribution of this re-
search in an industrial context. Along Chapter 8, we answered the research
question associated to OB3 through the evaluation of the FRAME approach
in a real case.

RQ5: What results does the designed approach achieve in comparison to other
approaches for software maintenance tasks on models?

Evaluation-RQ1: Is it feasible to retrieve model fragments in industrial do-
mains using the FRAME approach presented so far?

Evaluation-RQ2: What is the performance of FRAME approach on indus-
trial models?

Evaluation-RQ3: Can the FRAME approach outperform significantly the
results of the most common approaches for Traceability
Link Recovery?

Answer to RQ5: To answer RQ5, we performed an evaluation of the approach
designed for OB2 (FRAME) and compared it with other five approaches. To
do so, our industrial partner provided us with a real case, for Traceability Link
Recovery in the train domain. We designed the evaluation taking into account
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the real case, the approaches and their settings, the measurements for the re-
sults, and the threats to validity. The results of the evaluation show that it
is feasible to successfully retrieve model fragments in industrial domains using
the FRAME approach. In fact, the FRAME achieves the best results for most
performance indicators, providing a mean precision value of 59.91%, a recall
value of 78.95%, a combined F-measure value of 62.50%, and a MCC value of
0.64. Furthermore, the statistical analysis shows that the FRAME is superior
to all of the other approaches for precision and is superior to three of the five
approaches for recall. In addition, we included a discussion about prerequi-
sites for each approach, relevant properties for the results of the approaches,
and three domain aspects identified during the evaluation: tacit knowledge,
vocabulary mismatch, and available documentation.

9.3 Ongoing Research

The contributions presented in this dissertation are the results of an ongoing
work that is currently being developed further. Specifically, the FRAME ap-
proach is being currently applied to other software maintenance tasks, such as
Feature Location or Bug Localization. Moreover, some aspects of the FRAME
approach are being currently further researched to increase the performance
of the approach. This section presents some open research questions and the
ongoing work that is being done to address them.

9.3.1 Feature Location and Bug Localization

In this dissertation, the presented approach (FRAME) is applied for fragment
retrieval in Traceability Link Recovery, so the approach recovers the model
fragment that better realizes a requirement. Similarly, the FRAME is designed
to locate a model fragment for a feature or to locate a model fragment for a
bug. However, the performance of the approach for these software maintenance
tasks still remains to be seen.

In [13], the first results for Feature Location are promising. However, in
that work, we used a preliminary version of the FRAME approach. There-
fore, we still have to ensure that this promising results are achieved for the
final approach. Moreover, given the differences between requirements, bugs,
and features the ongoing work also has to consider to compare the results of
the approach for Traceability Link Recovery, Bug Localization, and Feature
Location, in order to identify the advantages and limitations of the approach
for these software maintenance tasks.
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In addition, the current evaluation has only taken into consideration the
performance of the proposed approach. However, we hope to evaluate the
benefits of the approach from the engineers’ perspective (e.g. satisfaction, time
reduction, or ease of understanding) regarding the three software maintenance
tasks: Traceability Links Recovery, Bug Localization, and Feature Location.

9.3.2 Ontological Evolutionary Encoding: Granularity

In this dissertation, we proposed the ontological evolutionary encoding to en-
code model fragments and queries into feature vectors. Specifically, the encod-
ing uses the concepts and the relations of a domain ontology as characteristics
in the feature vectors. ER'17 provides evidence that by using the ontological
evolutionary encoding, ML techniques are applicable to Software Engineer-
ing tasks such as traceability link recovery. In fact, the performance of the
encoding in this work is determined by the recovery of traces between the
requirements and the models with an average value of 90.47% in recall and
75.19% in precision. However, in some cases, this encoding is not enough.

Imagine that a query requires to open the doors on the left side of the
train. The ontology identifies the term Door as concept, so it will be used
to encode the model fragments and the queries. However, the term Right is
discarded, because it is not a concept or a relation in the ontology. Therefore,
the approach has no way to differentiate a door on the left side to a door on
the right side, so any model element that is a Door can be considered correct.
This has an impact on the performance of the approach.

To solve it, we are currently working on the extension of the ontology
using properties associated to the concepts. In fact, in [14], the ontology was
extended with 14 properties to mitigate the problem. However, taking into
account all the concepts, the properties, and the relations of a domain could be
drawback for ML, where a great number of characteristics leads to overfitting.
Therefore, the granularity of the ontological evolutionary encoding (concept
level or property level) requires a further research.
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9.3.3 Fitness Function: Deep Learning

The fitness function in the FRAME approach was designed to apply a LtoR
algorithm. LtoR algorithms were selected for our design mainly for two reasons:

1. The model fragments can be ranked, because LtoR algorithms assign
integer values. For example, support vector machine (SVM) is a ML
technique more known than LtoR algorithms, but this technique returns
binary values. Therefore, the fitness value for each model fragment would
be zero or one. If we have several values with one, we cannot know what
model fragment better realizes the query.

2. The LtoR algorithm have obtained good results even in cases where the
knowledge base contains few samples. In industrial domains, especially
long-living ones, where queries and models have been stored for years, a
knowledge base may be easily available. However, to manually retrieve
model fragments consume high amounts of time and effort. Therefore, the
knowledge base cannot be as big as we wanted. A knowledge base with
thousands or hundreds of samples may not be available. For this reason,
we decided to apply the ML techniques that mitigate this situation.

However, in view of the results obtained, we are currently working on the
application of deep learning in the fitness function. Specifically, we want to
know if a feedforward neural network can properly assess the model fragments
in the fitness function. The feedforward neural networks allow to assign integer
values, so our research question focuses on the size of the knowledge base. What
should be the size of the knowledge base for the neural network to obtain good
results?

9.3.4 Domain Ontology: Metamodel

In this dissertation, the ontological evolutionary encoding is based on a domain
ontology to turn the model fragments and queries into feature vectors. How-
ever, this ontology is not always available. In industrial domains, especially
long-living ones, thanks to the wide experience of the employees, the main
concepts and relations could be identified by experts in the domain. However,
another possibility to be explored is the use of the metamodel to characterize
the model fragments and the queries, instead of a domain ontology.

A metamodel is a description of the language’s abstract syntax since it
defines: (i) a set of constructs selected for the purpose of performing a specific
(set of) task(s) and, (ii) a set of well-formedness rules for combining these
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constructs in order to create grammatically valid models in the language [171].
Therefore, we are currently exploring the possibility of using the constructs
and the rules of the metamodel to characterize the model fragments and the
queries, instead of using the concepts and the relations of a domain ontology.

9.3.5 Knowledge Base: Size and Model Fragments

The knowledge base is one of the main artifacts to successfully apply ML
techniques. In fact, the influence of the knowledge base on the ML-based
approaches is one of the points discussed in Section 8.5. The neural networks
seem to require a bigger knowledge base than the FRAME approach.

On the other hand, in [16], we identify three properties of the model frag-
ments: density, dispersion, and multiplicity. Since the knowledge base contains
model fragments, we believe that these properties may have an impact on the
training of the classifier. For example, we wonder if the classifier could prop-
erly assess big model fragments (high density), when it is trained only with
small model fragments (low density).

Therefore, we are currently working towards a deeper research of the
knowledge base. A research that tackles not only the size of the knowledge
base, but also the model fragments that comprise it.

In addition, we will also tackle the Reinforcement Learning as part of this
study or as an additional research. Specifically, we would like to analyze the
advantages and drawbacks of including the solutions provided by FRAME in
the knowledge base. This would require a re-training of the classifier and have
an impact in the size and the distribution of the knowledge base.

9.4 Concluding Remark

As a concluding remark, although there are some open research questions,
the work presented in this dissertation has provided a step forward in terms
of addressing the issue of software maintenance tasks on models through ML
techniques. In particular, the work presented in this dissertation: (1) review
the works related to the application of ML techniques for software maintenance
tasks on models; (2) provide a ML-based approach to automatically perform
fragment retrieval in software maintenance tasks on models; and (3) validate
the proposed approach in an industrial context. Moreover, in regard with the
impact of our work:
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Workshops: Our work was first introduced in a scientific workshop (specifi-
cally in 5th International Workshop on Reverse Variability Engineering
[13]).

Conferences: Our work has been presented at scientific venues (specifically
in the 36th International Conference on Conceptual Modeling [9], in the
25th International Conference on Cooperative Information Systems [15],
and in the 21st International Conference on Model Driven Engineering
Languages and Systems [16]).

Journals: Our work has been published in an international journal (specifi-
cally in Journal of Systems and Software [14]).

Research Projects: has been contributed to local, national, and interna-
tional research projects such as ACIF (Local Spanish grant), VARI-
AMOS, ALPS, and DataME (Spanish national research project), and
REVaMP2 (an international ITEA 3 Call 2 project).

Industrial Scenarios: has been evaluated in an industrial scenario: CAF (a
worldwide provider of railway solutions).
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ABSTRACT
In this work, we propose a feature location approach to discover
software artifacts that implement the feature functionality in a
model. Given a model and a feature description, model fragments
extracted from the model and the feature description are encoded
based on a domain ontology. Then, a Learning to Rank algorithm
is used to train a classifier that is based on the model fragments
and feature description encoded. Finally, the classifier assesses
the similarity between a population of model fragments and the
target feature being located to find the set of most suitable feature
realizations. We have evaluated the approach with an industrial
case study, locating features with mean precision and recall values
of around 73.75% and 73.31%, respectively (the sanity check obtains
less than 35%).

CCS CONCEPTS
• Information systems → Learning to rank; • Software and
its engineering→ Software product lines;
ACM Reference format:
Ana C. Marcén, Jaime Font, Óscar Pastor, and Carlos Cetina. 2017. Towards
Feature Location in Models through a Learning to Rank Approach. In Pro-
ceedings of SPLC ’17, Sevilla, Spain, September 25-29, 2017, 8 pages.
https://doi.org/10.1145/3109729.3109734

1 INTRODUCTION
Feature location is known as the process of finding the set of soft-
ware artifacts that realize a particular functionality of software
system. No maintenance activity can be completed without locat-
ing in the first place the software artifact (e.g., code) that is relevant
∗Also with Centro de Investigación en Métodos de Producción de Software, Universitat
Politècnica de València.
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to the specific functionality [10]. Since Feature Location is one of
the main activities performed during software evolution [14] and
up to an 80% of a system’s lifetime is spent on the maintenance
and evolution of the system [21], there is a great demand for Fea-
ture Location approaches that can help developers to find relevant
software artifacts in a family of software products.

Learning to Rank is known as a family of Machine Learning algo-
rithms that automatically address ranking tasks [22]. The topic has
gained interest in recent years [9], and Learning to Rank has been
applied in a lot of fields [7] like document retrieval, collaborative
filtering, expert finding, anti web spam, sentiment analysis, product
rating, and feature location.

However, most of the research on Feature Location through
Learning to Rank has been directed towards the location of fea-
tures in source code artifacts [5, 10, 33], neglecting other software
artifacts such as models. Therefore, there is a dearth of Feature
Location approaches that research how to apply Learning to Rank
in order to locate the model elements that realize a feature.

In this work we propose LRFL-M (Learning to Rank for Feature
Location in Models), which is an Feature Location approach that
locates features in models through Leaning to Rank. The approach
is based on Learning to Rank to assess the similarity between a
feature description and the model fragments that could be the
realizations of this feature. Given feature descriptions and model
fragments known beforehand, the LRFL-M approach encodes them
based on a domain ontology. Then, the classifier is trained based on
the feature descriptions and the model fragments encoded. Finally,
the similarity between a population of model fragments and the
target feature being located are assessed through the classifier in
order to find the set of most suitable feature realizations. Therefore,
a rank allows knowing what model fragments best realize the target
feature as output.

The presented approach was evaluated in CAF, a worldwide
provider of railway solutions. Their trains can be found all over the
world in different forms (regular trains, subway, light rail, monorail,
etc.). The application of the approach shows that the mean values
of precision and recall are 73.75% and 73.31%, respectively, while
the sanity check is around 46% less than the presented approach.

The contribution of this paper is twofold. First, we show how
to encode model elements and feature descriptions by means of a
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Universitat Politècnica de València Camino de Vera, s/n, 46022 Valencia, Spain

2 SVIT Research Group, Universidad San Jorge
Autov́ıa A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain

{acmarcen,mfperez,ccetina}@usj.es

Abstract. In this work, we propose an evolutionary ontological encod-
ing approach to enable Machine Learning techniques to be used to per-
form Software Engineering tasks in models. The approach is based on
a domain ontology to encode a model and on an Evolutionary Algo-
rithm to optimize the encoding. As a result, the encoded model that is
returned by the approach can then be used by Machine Learning tech-
niques to perform Software Engineering tasks such as concept location,
traceability link retrieval, reuse, impact analysis, etc. We have evaluated
the approach with an industrial case study to recover the traceability link
between the requirements and the models through a Machine Learning
technique (RankBoost). Our results in terms of recall, precision, and the
combination of both (F-measure) show that our approach outperforms
the baseline (Latent Semantic Indexing). We also performed a statistical
analysis to assess the magnitude of the improvement.

Keywords: Machine Learning, Traceability Link Recovery, Evolution-
ary Computation, Model Driven Engineering

1 Introduction

Machine Learning (ML) is known as the branch of artificial intelligence that
gathers statistical, probabilistic, and optimization algorithms, which learn em-
pirically. ML has a wide range of applications, including search engines, medical
diagnosis, text and handwriting recognition, image screening, load forecasting,
marketing and sales diagnosis, etc. Even though the research on ML has been
applied in Software Engineering tasks that target source code artifacts [7, 33],
other software artifacts such as conceptual models have been neglected.

Most of the ML techniques are designed to process feature vectors as inputs
[8]. Feature vectors are known as the ordered enumeration of features that char-
acterize the object being observed [10]. Therefore, to apply ML techniques in
models, the first challenge consists in identifying the features from models and
selecting the most suitable ones to encode the models in feature vectors.
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Abstract. Feature Location (FL) is one of the most important tasks
in software maintenance and evolution. However, current works on FL
neglected the collaboration of different domain experts. This collabora-
tion is especially important in long-living industrial domains where a
single domain expert may lack the required knowledge to fully locate
a feature, so the collaboration among different domain experts could
alleviate this lack of knowledge. In this work, we address collaboration
among different domain experts by automatically reformulating their fea-
ture descriptions. With our approach, we extend existing FL approaches
based on Information Retrieval and Linguistic rules to locate features in
models. We evaluate our approach in a real-world case study from our
industrial partner, which is a worldwide leader in train manufacturing.
We analyze the impact of our approach in terms of recall, precision, and
F-Measure. Moreover, we perform a statistical analysis to show that the
impact of the results is significant. Our results show that our approach
for collaboration boosts the quality of the results of FL.

Keywords: Collaborative information retrieval · Feature location ·
Query expansion · Model driven engineering

1 Introduction

Nowadays, work environments are characterized by an emphasis on collabora-
tive team work [9]. Many empirical studies identified collaborative information
seeking and retrieval as everyday work patterns in order to solve a shared infor-
mation need and to benefit from the diverse expertise and experience of the team
members [13].

Despite the importance of collaboration, Feature Location (FL) approaches
neglected collaboration among different domain experts to find the set of soft-
ware artifacts (e.g., code or models) that realize a specific feature. Even though
collaboration is a useful and often necessary component of complex projects in
industrial contexts when the task at hand is difficult or cannot be carried out
by one individual [36].

To cope with this lack, the contribution of this paper is the introduction
of collaboration for locating a target feature in models from different domain

c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part I, LNCS 10573, pp. 114–131, 2017.
https://doi.org/10.1007/978-3-319-69462-7_9
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ABSTRACT
Model Fragment Location (MFL) aims at identifying model ele-
ments that are relevant to a requirement, feature, or bug. Many
MFL approaches have been introduced in the last few years to ad-
dress the identification of the model elements that correspond to
a specific functionality. However, there is a lack of detail when
the measurements about the search space (models) and the mea-
surements about the solution to be found (model fragment) are
reported. Generally, the only reported measure is the model size. In
this paper, we propose using five measurements (size, volume, den-
sity, multiplicity, and dispersion) to report the location problems.
These measurements are the result of analyzing 1,308 MFLs in a
family of industrial models over the last four years. Using two MFL
approaches, we emphasize the importance of these measurements
in order to compare results. Our work not only proposes improving
the reporting of the location problem, but it also provides real mea-
surements of location problems that are useful to other researchers
in the design of synthetic location problems.

CCS CONCEPTS
• Information systems→ Presentation of retrieval results; •
Software and its engineering → Model-driven software en-
gineering;

KEYWORDS
Model Fragment Location, Feature Location, Traceability Link Re-
covery, Bug Location
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1 INTRODUCTION
From the timeless traceability activity [21] to recent research efforts
on Feature Location [16], [6], [7] and Bug Location [2], Model Frag-
ment Location (MFL) has been gaining momentum. Overall, these
MFL approaches address the identification of the model elements
that are relevant to a requirement, feature, or bug.

Current MFL approaches have leveraged Information Retrieval,
Linguistic techniques, and Search-based techniques to achieve the
location of relevant model fragments. These approaches provide
the algorithms and the parameters used to tune them in detail.
Nonetheless, there is a lack of detail when the measurements about
the search space (models) and the measurements about the solution
(model fragment) are reported. Generally, the only reported mea-
sure is the model size. However, in most of the cases, the model-size
values are not comparable among different works since different
models are measured in different ways.

In this paper, we propose using five measurements (size, volume,
density, multiplicity, and dispersion) to report the location prob-
lems during MFL. On the one hand, size and volume measure the
search space. On the other hand, density, multiplicity, and disper-
sion measure the solution to be located. Our proposed measures
are the result of analyzing 1,308 MFLs performed over the last four
years in models of the industrial dimensions of CAF 1.

Properly reporting the location problem is important because
otherwise it is not possible to compare the performance of different
approaches with each other. It is not the same challenge to locate a
large model fragment in a small model than to locate a small and
scattered model fragment over several large models. We illustrate

1http://www.caf.net/en
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Abstract

Traceability Link Recovery (TLR) has been a topic of interest for many
years within the software engineering community. In recent years, TLR has
been attracting more attention, becoming the subject of both fundamental
and applied research. However, there still exists a large gap between the
actual needs of industry on one hand and the solutions published through
academic research on the other.

In this work, we propose a novel approach, named Evolutionary Learning
to Rank for Traceability Link Recovery (TLR-ELtoR). TLR-ELtoR recovers
traceability links between a requirement and a model through the combina-
tion of evolutionary computation and machine learning techniques, generat-
ing as a result a ranking of model fragments that can realize the requirement.

TLR-ELtoR was evaluated in a real-world case study in the railway do-
main, comparing its outcomes with five TLR approaches (Information Re-
trieval, Linguistic Rule-based, Feedforward Neural Network, Recurrent Neu-
ral Network, and Learning to Rank). The results show that TLR-ELtoR
achieved the best results for most performance indicators, providing a mean
precision value of 59.91%, a recall value of 78.95%, a combined F-measure
of 62.50%, and a MCC value of 0.64. The statistical analysis of the results
assesses the magnitude of the improvement, and the discussion presents why
TLR-ELtoR achieves better results than the baselines.
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