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Abstract 

Calcium is an element widely used in the development of biomaterials for bone tissue 

engineering as it plays important roles in bone metabolism and blood coagulation. The 

Ca ions can condition the microenvironment at the tissue-material interface, affecting the 

protein deposition process and cell responses. The aim of this study was to analyze the 

changes in the patterns of protein adsorption on the silica hybrid biomaterials 

supplemented with different amounts of CaCl2, which can function as release vehicles. 

This characterization was carried out by incubating the Ca-biomaterials with human 

serum. LC-MS/MS analysis was used to characterize the adsorbed protein layers and 

compile a list of proteins whose affinity for the surfaces might depend on the CaCl2 

content. The attachment of pro- and anti-clotting proteins, such as THRB, ANT3, and 

PROC, increased significantly on the Ca-materials. Similarly, VTNC and APOE, proteins 

directly involved on osteogenic processes, attached preferentially to these surfaces. In 

order to assess correlations with the proteomic data, these formulations were tested in 

vitro regarding their osteogenic and inflammatory potential, employing MC3T3-E1 and 

RAW 264.7 cell lines, respectively.  The results confirmed a Ca dose-dependent 

osteogenic and inflammatory behavior of the materials employed, in accordance with the 

protein attachment patterns.  

 

Keywords: 

Prothrombin, apolipoprotein E, blood clotting, vitronectin, bone regeneration   
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1. Introduction 

Calcium, one of the most abundant elements in the human body, forms very versatile ions 

and is critically involved in many processes in living organisms [1]. The bone tissue is 

the greatest reservoir of calcium in the body, where this element is one of the main 

components of biological apatite (Ca10(PO4,CO3)6OH2), the inorganic phase of bones [2]. 

Not surprisingly, this element is important in bone remodeling and recovery [3]. 

Extracellular calcium plays a crucial role in bone metabolism; it upregulates the calcium-

sensing receptor (CaSR), activating intracellular signaling pathways involved in the 

regulation of bone cell activity in vitro and in vivo [4]. The activation of Ca channels has 

been associated with an increase in the expression of growth factors such as IGF-I and 

IGF-II [5]. Increasing the levels of extracellular calcium elevates the expression of OCN, 

OPN, RUNX2, and BMP-2 genes in vitro [6] and can promote osteoblast proliferation, 

differentiation, and extracellular matrix mineralization [7]. 

Silica hybrid biomaterials have been proposed as potential controlled release vehicles [8]. 

These materials display important bioactive, biocompatible, and biodegradable 

properties, and can be synthesized using the sol-gel process with organically modified 

alkoxysilanes as precursors [9]. Moreover, the sol-gel technology allows modification of 

their properties (for example, their degradation rates). The resulting materials, with their 

strong adhesion properties, can be applied as coatings on metal surfaces [10]. They are 

now increasingly used in biomedical applications, in particular for implant surface 

functionalization [11, 12]. Some researchers have employed this vehicle type to develop 

new Ca-releasing biomaterials [13–16]. 

The specific physico-chemical properties of biomaterials ultimately affect the organism–

material interactions. The microenvironment formed immediately after the implantation 
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of biomaterials conditions their interactions with various molecules such as the bodily 

fluid proteins and, consequently, affects the characteristics of the protein layer deposited 

onto the material surface [17]. This protein deposition is a complex process ruled by the 

Vroman effect, based on the competitive displacement of already absorbed proteins by 

other proteins with higher affinity to the material surface [18]. Protein deposition depends 

on the surface properties such as wettability, roughness, and charge [19], determined by 

the chemical composition of the surface. The properties of the adsorbed protein layer play 

a pivotal role in the initiation and progress of biological processes occurring after 

implantation [20]. Apart from the initial activation of immune defenses in response to the 

foreign body [21, 22], the constitution of the layer is likely to affect other processes, such 

as coagulation, fibrinolysis, and even the bone cell response in the earlier stages of 

osteogenesis [23]. Coagulation plays a key role in the bone healing process; the blood 

clot formation is one of its incipient steps. Thus, a correct biochemical cascade initiation 

might be a crucial step in this process, regulating clot formation and subsequent fibrin 

architecture [24]. 

Here, different hybrid sol-gel networks with increasing amounts of CaCl2 were applied 

as coatings onto titanium surfaces. The proteomic analysis of human serum proteins 

deposited onto these Ca-enriched surfaces was performed using mass spectrometry (LC-

MS/MS). This allowed us to obtain protein adsorption patterns for the materials with 

different CaCl2 content. The effects of Ca introduction on the osteogenic potential of 

materials and their interactions with immune cells were also assessed. The main objective 

of the study was to evaluate the effects of calcium on biological responses (inflammation, 

coagulation, fibrinolysis, and osteogenesis) from the proteomic perspective.  
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2. Materials and methods 

2.1. Sol-gel synthesis and coating preparation 

Grade-4 Ti discs (12-mm diameter, 1-mm thick) with the same commercial sandblasted 

acid-etched treatment explained in [21], and were employed as coating substrate. The sol-

gel route was followed to obtain hybrid coatings. Silica hybrid materials enriched with 

Ca were obtained using the sol-gel process, with the alkoxysilanes 

methyltrimethoxysilane, 3-(glycidoxypropyl)-trimethoxysilane, and tetraethyl 

orthosilicate (Sigma-Aldrich, St. Louis, MO, USA). The network types selected as Ca-

release vehicles contained 35%, 35%, and 30% (molar percentages) of these precursors, 

respectively. The base material, 35M35G30T, was chosen based on previous studies [10]. 

The Ca percentages applied to the coating (%) are shown in Table 1. 

Table 1. Chemical compositions of Ca-enriched materials expressed as CaCl2 weight 

percentage. 

Reference Sol-gel base network CaCl2 (%) 

0Ca 35M35G30T 0 

0.5Ca 35M35G30T 0.5 

1Ca 35M35G30T 1 

2.5Ca 35M35G30T 2.5 

5Ca 35M35G30T 5 

7.5Ca 35M35G30T 7.5 

 

In the synthesis, 2-Propanol (Sigma-Aldrich) was used as a solvent at a volume ratio 

(alcohol:siloxane) of 1:1. Hydrolysis of alkoxysilanes was carried out by adding (at a rate 

of 1 drop s-1) the corresponding stoichiometric amount of 0.1M HNO3 (Panreac, 

Barcelona, Spain). First, however, the required quantities of calcium chloride (Sigma-

Aldrich) were dissolved in this solution. The preparations were kept for 1 h under stirring 

followed by 1 h at rest. The samples were prepared immediately afterward, SAE-titanium 
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was used as the substrate for the sol-gel coatings. The coatings were made employing a 

dip-coater (KSV DC; KSV NIMA, Espoo, Finland). Discs were immersed in the sol-gel 

solutions at a speed of 60 cm min-1, left immersed for one minute, and removed at a 100 

cm min-1. In order to study Ca liberation, the coatings were applied using flow-coating 

onto glass slides, which were previously cleaned in an ultrasonic bath (Sonoplus HD 

3200) for 20 min at 30 W with nitric acid solution at 25 % volume. Finally, all of the 

samples were cured for 2 h at 80 ºC. 

2.2. Physicochemical characterization 

The surface topography of samples was characterized using scanning electron microscopy 

(SEM), employing the Leica-Zeiss LEO equipment under vacuum (Leica, Wetzlar, 

Germany). The materials were submitted to platinum sputtering to increase their 

conductivity for the SEM observations. An optical profilometer (interferometric and 

confocal) PLm2300 (Sensofar, Barcelona, Spain) was used to determine the roughness. 

Three discs of each type were tested. Three measurements were performed for each disc 

to obtain the average values of the Ra parameter. The contact angle was measured using 

an automatic contact angle meter OCA 20 (DataPhysics Instruments, Filderstadt, 

Germany). An aliquot of 10 µL of ultrapure water was deposited on the disc surfaces at a 

dosing rate of 27.5 μL s-1 at room temperature. Contact angles were determined using the 

SCA 20 software (DataPhysics Instruments). Six discs of each material were studied, after 

depositing two drops on each disc. In order to study the Ca release during time, it was 

employed the inductively coupled plasma mass spectrometer Agilent 7700 Series ICPMS. Ca 

release was assessed using samples submerged in ddH2O at 37 °C for 2 weeks. Aliquots of 500 

μL were taken after 1, 7, 14 and 28 days of immersion. Each data point was found by measuring 

three independent samples of each condition.  
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2.3. In vitro assays 

2.3.1. Cell culture 

The cell lines MC3T3-E1 (mouse calvaria osteosarcoma cell line) and RAW 264.7 

(mouse murine macrophage cell line) were employed and cultured on the distinct coatings 

at  a concentration of 1 × 104 cells well-1, on 24-well culture plates (Thermo Fisher 

Scientific, Waltham, MA, USA). Culture medium for both cell lines was composed of 

DMEM w/phenol red (Gibco-Life Technologies, Grand Island, NY, USA), 1% of 100× 

penicillin/streptomycin (Biowest Inc., Riverside, KS, USA) and 10 % of fetal bovine 

serum (FBS) (Gibco-Life Technologies). Following incubation for 24 hours at a 

temperature of 37ºC with 95% humidity and 5% CO2, the medium of the osteoblastic 

cell-line was replaced by an osteogenic medium (DMEM w/phenol red 1×, 1% 

penicillin/streptomycin, 10% FBS, 1% ascorbic acid (5 mg mL-1) and 0.21% β glycerol 

phosphate) followed by incubation at the initial conditions. At every 48 hours the 

osteogenic medium was renewed. These cells underwent on these conditions 7 and 14 

days to be allowed to differentiate to proceed to RNA isolation. 

RAW 264.7 macrophages cell medium was harvested at 2 and 4 days of culture to assess 

TNF-α release using ELISA. Cells at the same concentration (1×104 cells) incubated 

without biomaterials were used as a control of culture conditions. 

2.3.2. RNA isolation and cDNA synthesis 

Total RNA was prepared from both cell lines grown on the sol-gel coated titanium discs, 

using Qiagen RNeasy Mini kit (Qiagen, Hilden, Germany), following digestion with 

DNaseI (Qiagen), according to the manufacturer’s instructions. 1 µg of total RNA of each 

sample was transcripted onto cDNA with PrimeScript RT Reagent Kit (Perfect Real 
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Time) (TAKARA Bio Inc., Shiga, Japan). The product cDNA  was diluted in DNase-free 

water to be used for qRT-PCR. 

 

2.3.3. Quantitative real-time PCR 

The primers for the assessment of the expression levels of the osteogenic markers ALP 

and OPN and inflammatory markers TNF-α and IL-10 were designed using DNA 

sequences for these genes available from NCBI (https://www.ncbi.nlm.nih.gov/nuccore), 

employing PRIMER3plus software tool (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi) and are listed on Table 2.  

Table 2. Primer sequences for qRT-PCR. 

Gene Forward sense Reversed sense 

GADPH TGCCCCCATGTTTGTGATG TGGTGGTGCAGGATGCATT 

ALP CCAGCAGGTTTCTCTCTTGG CTGGGAGTCTCATCCTGAGC 

OPN TGGAACTTGCTTGACTATCGA GACCACATGGACGACGATG 

TNF-α AGCCCCCAGTCTGTATCCTT CTCCCTTTGCAGAACTCAGG 

IL-10 CCAAGCCTTATCGGAAATGA TTTTCACAGGGGAGAAATCG 

 

cDNA obtained from each MC3T3-E1 culture corresponding to each material was used 

for RT-qPCR with the ALP and OPN primers, to evaluate osteogenic induction. The TNF-

α and IL-10 primers were used to assess inflammation expression levels in the RAW 

264.7 cell culture. All primers are listed from 5′ to 3′. GADPH was used as a 

housekeeping gene to normalize the data obtained from the RT-qPCR and calculate the 

relative fold-change between conditions. qPCR reactions were carried out using SYBR 

PREMIX Ex Taq (Tli RNase H Plus; TAKARA Bio Inc.), in an Applied Biosystems 

StepOne Plus™ Real-Time PCR System (Foster City, California, USA). The cycling 

parameters were an initial denaturation step at 95 ºC for 30 s followed by 95 ºC for 5 s 

https://www.ncbi.nlm.nih.gov/nuccore
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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and 60 ºC for 34 s, for 40 cycles. The final melt curve stage comprised a cycle at 95 ºC 

for 15 s and at 60 ºC, for 60 s. 

2.3.4. Cytokine quantification 

The ELISA kits for TNF-α (Thermo Fisher Scientific) were employed to quantify the 

proteins produced by RAW 264.7 cells cultured on each of the materials tested (following 

manufacturer’s instructions). 

2.3.5. Statistical analysis 

Data were submitted to one-way analysis of variance (ANOVA) and to a Newman-Keuls 

multiple comparison post-test, when appropriate. Differences with p ≤ 0.05 were 

considered statistically significant. 

2.4. Adsorbed protein layer 

Ca-doped and non-doped sol-gel biomaterials were incubated in a 24-well plate for 180 

min in a humidified atmosphere (37 ºC, 5% CO2), after the addition of 1 mL of human 

blood serum from male AB plasma (Sigma-Aldrich). The serum was removed, and, to 

eliminate the non-adsorbed proteins, the discs were rinsed five times with ddH2O and 

once with 100 mM NaCl, 50 mM Tris-HCl, pH 7.0. The adsorbed protein layer was 

collected by washing the discs in 0.5 M triethylammonium bicarbonate buffer (TEAB) 

with 4% of sodium dodecyl sulfate and 100 mM of dithiothreitol (DTT). Four 

independent experiments were carried out for each type of surface; in each experiment, 

four discs for each material were processed. The serum protein content was quantified 

before the experiment (Pierce BCA assay kit; Thermo Fisher Scientific), obtaining a value 

of 49 mg mL-1. 
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2.5. Proteomic analysis 

Proteomic analysis was performed as described by Romero-Gavilán et al. [17], with 

minor variations. Briefly, the eluted protein was digested in-solution, following the FASP 

protocol established by Wisnewski et al. [25], and loaded onto a nanoACQUITY UPLC 

system connected online to an SYNAPT G2-Si MS System (Waters, Milford, MA, USA). 

Each material was analyzed in quadruplicate. Differential protein analysis was carried out 

using Progenesis software (Nonlinear Dynamics, Newcastle, UK) as described before 

[17], and the functional annotation of the proteins was performed using DAVID Go 

annotation program (https://david.ncifcrf.gov/) and Panther classification system 

(http://www.pantherdb.org/). 

3. Results 

3.1. Synthesis and physicochemical characterization 

The sol-gel material was successfully synthesized, and well-adhering coatings were 

deposited on the Ti substrate (Fig. 1). The incorporation of small amounts of calcium salt 

resulted in homogeneous coatings. However, when more than 2.5% of CaCl2 was added 

to the sol-gel, some craters were observed in the coatings, likely due to the dehydration 

process in the network during the heating treatment. Nevertheless, no CaCl2 precipitates 

were detected in any of the cases (calcium salt was homogeneously distributed in the sol-

gel network). The coatings covered the initial roughness associated with the previous 

SAE treatment. In consequence, a decrease in Ra was observed (Fig. 1h). 

https://david.ncifcrf.gov/
http://www.pantherdb.org/
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Fig. 1. SEM microphotograph of SAE-Ti (a), 0Ca (b), 0.5Ca (c), 1Ca (d), 2.5Ca (e), 5Ca 

(f) and 7.5Ca (g). Scale bar, 10 µm. Roughness (h) and contact angle (i) results. Bars 

indicate standard deviations. One-way ANOVA with a Kruskal-Wallis post-test was used 

to perform the statistical analysis (***, p < 0.001). Significance levels are relative to the 

0Ca base material. 

The incorporation of small amounts of CaCl2 did not cause significant changes in Ra in 

comparison with the base composition. However, Ra increased significantly on 5Ca and 

7.5Ca surfaces, probably as a consequence of crater formation. Fig. 1i displays the contact 

angle measurements. The sol-gel base material was more hydrophilic than the SAE-Ti 

surface, with a decrease in contact angle of approximately 30º. The addition of CaCl2 to 

this base material caused a significant increase in the contact angle, reaching the values 

of approximately 65º. 
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Fig. 2. Kinetic liberation of Ca2+ from the coatings. Mt represents the total amount of Ca2+ 

release from the sol-gel network during time. 

Fig.2 shows the liberation of Ca2+ ions released by the network during time. It is clear 

that with the addition of increasing quantities of CaCl2 to the network there is higher 

release of Ca2+ ions, as expected. Moreover, all the materials show a fast inicial release 

during the first 24h ; after this time, it is observable a constant and steady liberation the 

next 27 days. This fact is clearer for higher concentrations of Ca. 

3.2. In vitro assay - mRNA expression levels 

The expression of osteogenic markers is displayed in Fig. 3a and b. ALP gene expression 

levels show a tendency to increase after 14 days, with highest values for the formulation 

1Ca (decreasing for the higher Ca concentrations). As expected, the hybrid sol-gel silica 

material affects the expression of this gene (Fig. 3a). 

The OPN expression decreases on the compositions 0.5Ca and 1Ca at 7 days of culture; 

after 14 days, upregulation of this gene is observed in comparison with the base material 

with no calcium in its network 0Ca (Fig. 3b). 
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The expression of immune response genes TNF-α and IL-10 increases on the materials 

supplemented with calcium when compared with the base material (Fig. 3c and d). 

 

Fig. 3. Relative gene expression levels of osteogenic markers a) ALP and b) OPN in the 

MC3T3-E1 cells cultured on the different tested Ca formulations after 7 and 14 days of 

culture. Relative gene expression levels of the inflammatory markers c) TNF-α and d) IL-

10 in the RAW 264.7 cells cultured on the different formulations after 2 and 4 days of 

culture. The relative mRNA expression was determined by qRT-PCR Statistical analysis 

was performed using one-way ANOVA with a Kruskal-Wallis post-test (*, p < 0.05; **, 

p < 0.01; ***, p < 0.001). 1-Fold represents the basal expression of cells with no disc 

(dashed line). Significant difference levels are for the comparisons with the base material 

(0Ca). 

Fig. 4 shows the TNF-α release after RAW 264.7 cell incubation with the different 

formulations. There is a significant decrease in the release of this protein for the materials 
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with lower concentrations of Ca (0.5Ca and 1Ca). However, an increase was observed in 

the release of TNF-α from the cells on 5Ca coatings (significant after 4 days of culture). 

 

Fig. 4. TNF-α cytokine expression in RAW 264.7 macrophages at 2-day and 4-day time 

points. Statistical analysis was performed using one-way ANOVA with a Kruskal-Wallis 

post-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Significant differences are relative to 

the results for the base material (0Ca). 

 

3.3. Proteomic analysis 

The eluates of the proteins attached to the sol-gel coatings were analyzed using the LC-

MS/MS; 113 distinct proteins were identified. Statistical comparisons between the results 

for Ca-enriched compositions and the base sol-gel material (0Ca) were performed using 

the Progenesis QI software. DAVID and Panther databases were used to obtain functional 

protein classification. 

The Progenesis comparative analysis showed some differences between the patterns of 

proteins adsorbed on calcium-enriched materials and the reference material. The analysis 

revealed 45 differentially adsorbed proteins. Twenty-two of these proteins were more 

abundant on the surfaces of the Ca-doped biomaterials than to the reference surfaces 

(Table S1). The remaining 23 proteins showed reduced affinity to Ca-doped surfaces; the 
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amounts adsorbed on these materials decreased in comparison with the controls (Table 

S2).  

Among the 22 proteins with increased adsorption, several were associated with the 

immune system (SAMP, C4BPA, CLUS, C1QC, and KV302 immunoglobulin). The 

adsorption of SAMP increased 13.8-fold on the 7.5Ca-supplemented formulation in 

comparison with the reference material. However, the adsorption of some other proteins 

related to immunity processes (immunoglobulins LV301, LAC2, IGLL5, and IGHA and 

FHR2) was reduced on the Ca-doped surfaces. 

Apolipoproteins APOA4, APOA5, APOC4, APOE, and APOL1 and the high-density 

apolipoprotein SAA4 were more abundant on the materials with Ca, while APOA2, 

APOB, APOC1, APOC3, and APOD showed reduced affinity to these surfaces. All these 

apolipoproteins have functions related to the lipoprotein metabolic processes and 

phospholipid binding. 

 DAVID analysis revealed that THRB, ANT3, PROS, PROC, A2AP, and A2MG are 

proteins with important functions in the blood coagulation system. These proteins had 

increased affinity to the Ca-supplemented coating formulations. However, the abundance 

of KNG1, also linked to coagulation functions, was reduced on the 1Ca coating. 

The glycoproteins VTNC and SEPP1 were predominantly found on the Ca-doped 

materials, while DSC1, A1AG1, A1AG2, SPF4V, and ITIH4 glycoproteins had reduced 

affinity to these surfaces. The amounts of HEMO, KCRM, and ANGT adhering to the 

materials with calcium increased in comparison with controls. In contrast, ANXA2, 

A2G2, S10A7, GELS, VTDB, and TGM3 showed a higher affinity to the reference base 

material 0Ca. The proteins in this last group have, among others, some binding functions. 
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Fig. 5 shows the Ca content-dependent changes in the abundance of main preferentially 

adsorbed proteins involved in bone regenerative processes. 

 

Fig. 5. The normalized abundance of 9 proteins with more affinity to Ca-enriched 

coatings, in comparison with the base material (ANOVA: *, p < 0.05; **, p < 0.01; ***, 

p < 0.001). 

Panther analysis was used to find the involvement of the differentially adsorbed proteins 

in biological processes and pathway functions. The pie-chart diagrams in Fig. 6 display 

biological processes associated with the proteins differentially attached (increased or 

reduced affinity in comparison with the reference sample 0Ca) to 0.5Ca and 7.5Ca 
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coatings. Since the patterns were common for calcium-doped samples, with hardly any 

differences, only the data for the boundary concentrations are displayed. Some functions 

related to cellular, metabolic, and developmental processes were identified. The 

comparison of the functions characteristic for differentially adhering protein groups 

showed that the proteins with increased affinity to Ca-coatings were implicated in more 

biological processes than those with the reduced affinity. The biological adhesion, 

multicellular organismal and immune system functions were associated only with the 

former (enhanced adherence) group. On the whole, the incorporation of CaCl2 in the sol-

gel material increases the adherence of proteins associated with the coagulation pathway, 

as shown in Fig. 7. 

 

Fig. 6. PANTHER diagram showing biological functions of the proteins differentially 

adhering onto 0.5Ca and 7.5Ca in comparison with the reference sample (0Ca). 
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Fig. 7. PANTHER diagram with the pathway functions of the proteins with increased 

adherence to Ca-enriched sol-gel coatings in comparison with the reference sample (0Ca). 

 

3. Discussion 

Many macro- and micro-nutrients have been studied in search of new methods to improve 

the recovery after surgical interventions involving bone implants. Among those nutrients, 

calcium has attracted considerable attention as it is one of the structural elements in the 

mineral bone phase, and, thus, has a key role in bone metabolism [26]. The aim of this 

study was to examine the effect of this element on the protein–biomaterial interactions. 

The incorporation of CaCl2 into the 35M35G30T base material introduces, apart from the 

obvious chemical changes, modifications in surface properties such as roughness and 

wettability (Fig. 1h and 1i). The contact angle significantly increases when the calcium 

salt is incorporated into the sol-gel network, in comparison with the base material 

(reaching moderate hydrophilic values around 65°). The roughness parameter Ra 

increases for both 5Ca and 7.5Ca materials when compared to 0Ca. The kinetic liberation 

studies display that Ca is present on the network, with a controlled release, detected even 

after 28 days of immersion in water. These physicochemical changes modify the tissue–

biomaterial interface. Such changes will also affect the protein attachment, thus 

conditioning the microenvironment in which the tissue repair occurs.  
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At the cellular level, Ca2+ has a stimulatory effect on the osteoblasts, promoting their 

proliferation and differentiation. Indeed, the treatment with CaCl2 can enhance the 

osteogenesis of stem cells [6]. Here, we observed that ALP gene expression (an 

osteogenesis marker) tends to increase during the 14 days of incubation with Ca-doped 

materials, with the highest values for 1Ca formulation (Fig. 3a). The macrophage 

expression of the TNF-α gene increased in a Ca dose-dependent manner after 2 and 4 

days of incubation on Ca-supplemented coatings in comparison with the 0Ca base 

material. Similarly, the macrophages increased their IL-10 gene expression, even for the 

lowest Ca concentration (0.5Ca). IL-10 is said to have an anti-inflammatory role and is 

known as a marker for M2 macrophages, a pro-regenerative phenotype [19]. These data 

were consistent with the ELISA results, which showed that the low Ca doses (0.5Ca and 

1Ca) decreased the release of TNF-α, thus reducing the inflammatory response in 

comparison with the base material. In contrast, some other Ca formulations stimulate the 

production of inflammatory markers (5Ca). 

The LC-MS/MS characterization of protein layers deposited onto different Ca-enriched 

coatings detected 113 proteins. The Progenesis comparative analysis identified some 

changes in their adsorption patterns, dependent on the amount of CaCl2 incorporated into 

the coating material. Varying results were obtained for different apolipoproteins. APOA4, 

APOA5, APOC4, APOE, APOL1, and SAA4 increased their affinity to the biomaterials 

containing CaCl2. However, the abundance of APOA2, APOB, APOC1, APOC3, and 

APOD decreased on some of these surfaces. Apart from its known functions in lipid 

metabolism, this protein family might also play a role in preventing the initiation of innate 

immune response [27]. Meerasa et al. [28] have found that the preferential attachment of 

lipoproteins on a material could reduce the complement system activation. It is difficult 

to form a clear general picture of the effect of Ca on apolipoprotein adsorption as two 
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opposing tendencies were observed. Some apolipoproteins decreased their affinity to the 

coatings with 5Ca composition. However, APOA5 and APOE were preferentially 

adsorbed onto the Ca-enriched coatings, beginning with the lowest Ca content (0.5Ca), 

reaching abundance ratios (Ca-doped/0Ca) of 5.8 and 8.3, respectively, for the 7.5Ca 

composition. The significant increase in the APOE affinity to the Ca-coatings might be 

important since this protein can promote macrophage polarization from its pro-

inflammatory M1 to the reparative M2 phenotype, showing an anti-inflammatory effect 

[29]. 

APOE has also been described as a protein essential for bone metabolism due to its 

involvement in the vitamin K uptake by the osteoblasts [30]. Moreover, it can inhibit 

osteoclastic differentiation by suppressing RANKL-dependent activation of nuclear 

factor ҡd ligand and induction of C-Fos and nuclear factor of activated T cells c1 [31]. 

The adsorption of pentraxin SAMP onto the coatings rose with the increasing CaCl2 

content. This is consistent with its structure; this glycoprotein consists of five subunits, 

each containing two Ca2+ binding positions [32]. The interactions between SAMP and 

other proteins and molecules are also dependent on Ca2+ concentration [33]. Although the 

SAMP function is still unclear, it is associated with inflammation, tissue remodeling and 

coagulation processes [34]. C1QC (serum complement subcomponent C1q), whose 

adsorption was enhanced only on the 5Ca material, is directly involved in the complement 

system activation through the classical pathway [33]. The increased adhesion of C1QC to 

this specific formulation might be related to the enhanced inflammatory response 

observed in the in vitro experiments. The addition of CaCl2 to the coatings resulted in a 

decrease in immunoglobulin adsorption; the relative abundance of LV301, LAC2, 

IGHG4, IGLL5, and IGHA2 on these materials was reduced, only KV302 increased its 

affinity (to 2.5Ca). C4BPA and CLUS showed enhanced adsorption to the Ca-enriched 
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materials. These two proteins are complement cascade inhibitors, restricting the pathway 

activation by regulating its intensity [35]. They modulate the immune/inflammatory 

response to achieve the correct tissue regeneration [19]. Panther analysis did not find 

many immune functionalities among the proteins differentially adsorbed to Ca-materials; 

the proportion of the proteins involved in immune functions was only moderate, i.e., 5% 

and 3% for 0.5Ca and 7.5Ca, respectively (Fig. 6). This might mean that the incorporation 

of CaCl2 in sol-gel should not result in immune problems, at least from the proteomic 

perspective. 

One of the key processes in bone tissue regeneration is blood coagulation. This process 

is initiated after implantation, as a consequence of the injury. Besides its osteogenic role, 

Ca ions are also associated with blood clotting. It has been reported that CaCl2 modulates 

blood clot formation and stability in a dose-dependent manner [36]. The Ca-networks 

might also boost the coagulation pathway activities as suggested by the specific adsorbed 

proteins identified by Panther: THRB, ANT3, PROS, PROC, A2AP, and A2MG (Fig. 7). 

After an injury, the coagulation cascade is activated, leading to blood clotting. During 

this process, THRB undergoes a succession of transformations, with thrombin as a final 

product, whose interaction with fibrinogen triggers the fibrin clot formation The Ca2+ ions 

and phospholipids are cofactor intermediators in this process [37]. Nevertheless, 

excessive activation of coagulation could trigger thrombotic and acute inflammatory 

reactions [38]. The increased deposition of ANT3, PROS, or PROC might control this 

process. Both PROS and PROC are involved in the regulation of the coagulation pathway, 

inactivating factor Va and VIIIa and then controlling thrombin generation [39]. Similarly, 

ANT3 might regulate thrombin formation through the inhibition of FIIa and FXa [40]. 

A2MG can suppress serine proteinases in the plasma by inhibiting thrombin, kallikrein, 

and plasmin. Biltoft et al. [41] have proposed that the A2MG found on artificial surfaces 
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could serve as a global marker of biomaterial blood compatibility. However, Cvirn et al. 

[42] have reported that this protein displays both procoagulant and anticoagulant 

functions depending on the levels of antithrombin. 

In contrast, the affinity of high molecular weight type KNG1 was reduced on the 1Ca and 

5Ca coatings. This protein has a role in the intrinsic coagulation pathway, the surface-

activating coagulation system [43]. After clot formation, the fibrinolysis causes fibrin 

degradation, driving correct tissue repair. This process depends on the outcome of 

coagulation and its resulting clot structure. A2AP, with its increased adsorption to the 

2.5Ca coating, is involved in the regulation of this process through the inhibition of 

plasmin [24]. 

The glycoprotein VTNC also increased its deposition levels with increasing CaCl2 

content in the biomaterials (up to 11.2-fold on 7.5Ca). This protein is known as biological 

“superglue” and is considered a key controller of the bone tissue repair and remodeling 

processes. It participates in essential physiological events associated with tissue 

regeneration. VTNC takes part in establishing the vascular homeostasis and coagulation 

system by its contribution to thrombus formation [44]. It also interferes in the immune 

response, regulating the complement cascade activation, in the same way that CLUS and 

C4BPA [35]. VTNC might also have osteogenic properties as it can promote the 

osteogenic differentiation of mesenchymal stem cells [45]. These properties are 

consistent with the results of Cacchioli et al. [46] who have found that the attachment of 

human VTNC peptides to titanium implant surfaces improves the in vivo osteointegration 

of the implant. 
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4. Conclusion 

In conclusion, the addition of CaCl2 to the silica sol-gel coatings increases their 

osteogenic potential in vitro, at the same time affecting inflammatory processes in a 

dose-dependent manner. The proteomic characterization revealed changes in the 

adsorption patterns of serum proteins, dependent on the content of CaCl2 in the hybrid 

sol-gel network. Ca-coatings displayed an enhanced affinity for some key pro- and 

anti-clotting proteins, suggesting an increase in the coagulation potential of these 

materials. The rise in the relative abundance of APOE and VTNC on the Ca-doped 

coatings suggests enhanced osteogenic potential of these materials. These results should 

improve our understanding of biomaterial–protein interactions, especially in the case of 

Ca-releasing materials. 
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