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Abstract The Combined matrix of a nonsingular matrix A is defined by φ(A) =
A ◦
(
A−1

)T where ◦ means the Hadamard (entrywise) product. If the matrix A de-
scribes the relation between inputs and outputs in a multivariable process control,
φ(A) describes the “relative gain array” (RGA) of the process and it defines the
Bristol method [1] often used for Chemical processes [13,15,16]and [11,8]. The
combined matrix has been studied in several works such as [3], [6] and [10]. Since
φ(A) = (ci j) has the property of ∑k cik = ∑k ck j = 1,∀i, j, when φ(A)≥ 0, φ(A) is a
doubly stochastic matrix. In certain chemical engineering applications a diagonal of
the RGA in wchich the entries are near 1 is used to determine the pairing of inputs
and outputs for further design analysis. Applications of these matrices can be found
in Communication Theory, related with the satellite-switched time division multiple-
access systems, and about a doubly stochastic automorphism of a graph. In this paper
we present new algorithms to generate doubly stochastic matrices with the Combined
matrix using Hessenberg matrices in section 3 and orthogonal/unitary matrices in sec-
tion 4. In addition, we discuss what kind of doubly stochastic matrices are obtained
with our algorithms and the possibility of generating a particular doubly stochastic
matrix by the map φ .
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Universitat Politècnica de València
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1 Introduction

Miroslav Fiedler ([5]) studied matrices of the form A◦A−1 and A◦A−T , where A is a
nonsingular matrix and ◦ means the Hadamard product. Furthermore, the combined
matrix φ(A) = A ◦A−T gives the relation between eigenvalues and diagonal entries
of a diagonalizable matrix ([9]). Results for the combined matrix of a nonsingular
matrix have been obtained, for instance in [6] and [10]. It is well known ([9]) that the
row and column sums of a combined matrix are always equal to one. Then, if φ(A)
is a nonnegative matrix, it has interesting properties and applications since it is a
doubly stochastic matrix. For instance, in [2], there are two applications, the first one
concerning a topic in communication theory called satellite-switched and the second
concerning a recent notion of doubly stochastic automorphism of a graph. In [14],
some implications on nonnegative matrices and doubly stochastic matrices on graph
theory, namely Graph spectra and Graph energy, are presented. In [3], conditions to
obtain a nonnegative φ(A) are obtained.

Not long after, Edgard H. Bristol [1] gives a method based on the Hadamard prod-
uct A◦A−T of the state matrix of a multivariable control process. In this context, this
product represents the ”relative gain array” and is known as RGA for some authors.
There are many works where the Bristol method has been used mainly in chemical in-
formation processing (see [13,15,16],[11]) for example in the extractive distillation
control, Hodvd et al ([17]) applied (RGA) as a loop pairing criterion. Specifically
the extractive distilation process for the separation of an ethyl formate-ethanol-water
mixture with ethylene glycol as the extractive solvent was investigated with an Ef-
fective Relative Gain Array is used in ([18]). By other hand, in the study of chemical
information processing, Golender et al.([8] ) introduced another important matrix:
doubly stochastic graph matrix associated with a graph, which may be used to de-
scribe some properties of the topological structure of chemical molecules.

In the next sections, we present new algorithms for constructing doubly stochastic
matrices with ( RGA) using Hessenberg matrices in section 3 and orthogonal/unitary
matrices in section 4. The algorithms we show here are been implemented in Scilab.

2 Notation and previous results

For any n×n matrix A, we denote the submatrix lying in rows α and columns β , in
which α,β ⊆N = {1, ...,n}, by A[α|β ], and the principal submatrix A[α|α] is abbre-
viated to A[α]. Similarly, A(α|β ) denotes the submatrix obtained from A by deleting
rows α and columns β and A(i| j) is abbreviated Ai j.
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We recall that a matrix A is P-matrix (P0-matrix) if all its principal minors of any
order are positive (nonnegative). That is, if for every subsets α ⊆N: det(A[α])> 0(≥
0) .

Remember that the Hadamard (or entry–wise) product of two n×n matrices A =
[ai j] and B = [bi j] is the matrix A◦B = [ai jbi j].

Definition 1 The combined matrix of a nonsingular real matrix A is defined as φ(A)=
A◦ (A−1)T . Then, if A = [ai j],

A−1 =

[
1

det(A)
(−1)i+ jA ji

]
and

φ(A) =
[

1
det(A)

(−1)i+ jai jAi j

]
.

It is clear that the combined matrix has the following properties: (i) φ(A)= φ(AT )=
φ(A−1) and (ii) φ(A) is doubly stochastic if φ(A) is nonnegative.

3 An algorithm for constructing doubly stochastic matrices with upper
Hessenberg matrices

We will present an algorithm constructing doubly stochastic matrices from a special
kind of upper Hessenberg matrices.

Recall that a Hessenberg matrix is a square matrix almost triangular. More pre-
cisely, A is called upper Hessenberg if it has zero entries below the first subdiagonal,
i.e. if ai j = 0 when i > j + 1, and it is called lower Hessenberg if AT is an upper
Hessenberg matrix.

We can prove, by an inductive argument, that, if A is an upper Hessenberg matrix
with nonnegative entries above the diagonal, positive diagonal entries, and nonposi-
tive entries in the first sub-diagonal, namely, a matrix with this signpattern:

A =



+ · · · · · · · · · +

−
. . . · · · · · · +

0
. . . . . . · · · +

...
. . . . . . . . . +

0 · · · 0 − +


then, φ(A) is a doubly stochastic matrix.

We need the following technical lemmas in order to get the main result of this
section.
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Lemma 1 If H = [hi j] is an n×n matrix satisfying

hi+1,i ≤ 0
hi j ≥ 0, if i≤ j

hi j = 0, otherwise
(1)

then

(i) The matrix H is a P0-matrix.
(ii) If hii > 0, 1≤ i≤ n, then, matrix H is a P-matrix.

Proof The proof is by induction on n. To simplify notation we suppose ai j ≥ 0, i, j =
1,2, . . . ,n, to show the sign of H entries.

Note that for n = 1 and 2 (and principal minors of these orders) the Hessenberg
structure is not complete but the result is trivial. For n = 3 matrix H has the form

H =

 a11 a12 a13
−a21 a22 a23

0 −a23 a33


then detH = a23 detH23 +a33 detH33 ≥ 0.

Suppose that the result holds for (n−1)×(n−1) matrices. In order to proof it for
an n×n matrix H, we only need to prove that detH ≥ 0 (and detH > 0 when aii > 0):

detH =det



a11 a12 a1n−1 a1n
−a21 a22 a2n−1 a2n

0 −a32
. . . a3n−1 a3n

...
...

. . . . . .
...

...

0 0
. . . an−1n−1 an−1n

0 0 −ann−1 ann



=a11 det



a22 a23 a2n−1 a2n
−a32 a33 a3n−1 a3n

0 −a32
. . . a3n−1 a3n

...
...

. . . . . .
...

...

0 0
. . . an−1n−1 an−1n

0 0 −ann−1 ann



+a21 det



a12 a13 a1n−1 a1n
−a32 a33 a3n−1 a3n

0 −a32
. . . a3n−1 a3n

...
...

. . . . . .
...

...

0 0
. . . an−1n−1 an−1n

0 0 −ann−1 ann


=a11 detH11 +a21 detH21 ≥ 0
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Moreover, if aii > 0, then detH > 0, because a11 > 0 and detH11 > 0. ut

Lemma 2 Let H be a square matrix satisfying (1), then

(i) detHi+1,i ≥ 0, 1≤ i≤ n−1
(ii) (−1)i+ j detHi j ≥ 0, 1≤ i≤ j ≤ n

where detHi j = det(H(i| j) is the complementary minor of ai j.

Proof

(i) By using ai j ≥ 0, for all i, j, Hi+1,i has the form

Hi+1,i =



a11 a12 · · · a1,i−1 a1,i+1 · · · · · · a1,n−1 a1n
−a21 a22 · · · a2,i−1 a2,i+1 · · · · · · a2,n−1 a2n

0 −a32 · · · a3,i−1 a3,i+1 a3,n−1 a3n
...

...
. . . . . .

...
...

0 0 · · · −ai,i−1 ai,i+1 ai,n−1 ain

0 0 · · · 0 −ai+2,i+1
. . . ai+2,n−1 ai+2,n

...
...

. . . . . . . . .
...

...

0 0
. . . . . . an−1,n−1 an−1,n

0 0 −an,n−1 ann


So, applyng lemma 1, detHi+1,i ≥ 0.

(ii)

Hi j =



a11 a12 · · · a1,i−2 a1,i−1 a1i · · · a1, j−1 a1, j+1 · · · · · · a1n
−a21 a22 · · · a2,i−2 a2,i−1 a2i · · · a2, j−1 a2, j+1 · · · · · · a2n

0
. . . . . . . . .

...
...
0 0 · · · −ai−1,i−2 ai−1,i−1 ai−1,i · · · ai−1, j−1 ai−1, j+1 · · · · · · ai−1,n
0 · · · 0 −ai+1,i · · · ai+1, j−1 ai+1, j+1 · · · · · · ai+1,n
...

... 0
. . .

...
...

...
0 · · · 0 0 · · · −a j, j−1 a j, j+1 · · · · · · · · · a jn
...

... 0 · · · 0 a j+1, j+1 · · · a j+1,n−1 a j+1,n
0 · · · 0 0 · · · 0 −a j+2, j+1 · · · a j+2,n−1 a j+2,n

0
. . . . . .

...
0 · · · 0 0 · · · 0 0 · · · −an,n−1 ann


If we denote by Bi, 1 ≤ i ≤ 3 the diagonal blocks of the previous block triangular
expression of Hi j then

detHi j = detB1 detB2 detB3 = (−1) j−i detB1

(
j

∏
k=i+1

ak,k−1

)
detB3.

By using the hypothesis of induction and (1),

(−1)i+ j detHi j = detB1

(
j

∏
k=i+1

ak,k−1

)
detB3 ≥ 0ut
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The next result is an immediate consequence of these lemmas.

Theorem 1 If H is a square matrix satisfying conditions (1) then φ(H) and φ
(
HT
)
=

φ(H)T are doubly stochastic matrices.

Using this result we can obtain several doubly stochastic matrices.

Algorithm 1 (This algorithm builds an n×n doubly stochastic matrix from (n2+
3n−2)/2 real numbers)

Given an arbitrary set of real numbers T = {ti, j : 1 ≤ i ≤ n, i−1 ≤ j ≤ n}
with ti,i 6= 0, 1≤ i≤ n,

– Define the H = [hi j] matrix as hi j =


|ti, j| if i≤ j
−|ti+1,i|
0 otherwise

– Compute A = H ◦H−T

Example 1 Applying algorithm 1, for T = {1,2, . . . ,13}, we obtain an upper Hessen-
berg matrix, H, and the doubly stochastic matrix, A:

H =


1 2 3 4
−5 6 7 8

0 −9 10 11
0 0 −12 13

 A = φ(H) =


0.332 0.268 0.179 0.221
0.668 0.161 0.084 0.088
0. 0.572 0.212 0.216
0. 0. 0.525 0.475


Note that, since φ(D1AD2) = φ(A) when D1,D2 are nonsingular diagonal ma-

trices, it is of no interest to study another signpattern. Moreover, since φ(P1AP2) =
P1φ(A)P2 where P1 and P2 are permutation matrices, we conclude the following state-
ment

Corollary 1 If A is an n×n upper Hessenberg matrix with the signpattern of theorem
1 and P1 and P2 are n×n permutation matrices, φ(P1AP2) and φ(P1AT P2) are doubly
stochastic matrices.

4 An algorithm for constructing doubly stochastic matrices from orthogonal
(or unitary) matrices

If Q is an orthogonal matrix then, φ(Q) is a doubly stochastic matrix, because Q ◦
Q−T = Q ◦Q is obviously a nonnegative matrix. So, an algorithm that provides an
orthogonal matrix defines a double stochastic matrix.

In the literature, we find several algorithms to construct orthogonal matrices,
especially orthogonal matrices with rational entries. For example, Cremona in [4]
shows how to generate all 3×3 orthogonal matrices with rational elements, working
with the real algebra of quaternions. More generally, [7, p. 289] shows a one-to-
one correspondence between skew-symmetric matrices and those orthogonal matri-
ces that not have −1 as an eigenvalue: S is a skew-symmetric matrix if and only if
Q = (I−S)(I+S)−1 is an orthogonal matrix (and−1 is not a spectral value of Q). He
also shows analogous bijections between skew-symmetric matrices and orthogonal
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matrices not having 1 as an eigenvalue (and, more generally, between skew-hermitian
and unitary matrices). Liebeck and Osborne [12] shows that all orthogonal matrices
are of the form DQ where D is a diagonal matrix of only ±1 values in the diagonal
and Q = (I− S)(I + S)−1, being S a skew-symmetric matrix. Since φ(Q) = φ(DQ)
for any diagonal matrix D, we can avoid this product.

Using this result the following algorithm gives us a doubly stochastic matrix:

Algorithm 2 (This algorithm builds an n× n doubly stochastic matrix from an
arbitrary set of (n−1)n/2 real numbers)

Given an arbitrary set of real numbers T = {ai, j : 1≤ i≤ n, i < j ≤ n}

– Define the S = [si j] matrix as si j =


ai, j if i < j
0 if i = j
−a j,i otherwise

– Compute Q = (I−S)(I +S)−1

– Compute A = Q◦Q

Example 2 Applying algorithm 2, for T = {1,2,3,4,5,6}, We obtain these skew-
symmetric, orthogonal and stochastic matrices:

S =


0 1 2 3
−1 0 4 5
−2 −4 0 6
−3 −5 −6 0

 Q =


0. −0.923 0.308 −0.231
0.333 −0.359 −0.769 0.410
−0.667 −0.051 −0.538 −0.513

0.667 0.128 −0.154 −0.718

 A =


0. 0.852 0.095 0.053
0.111 0.129 0.592 0.168
0.444 0.003 0.290 0.263
0.444 0.016 0.024 0.515


Algorithm 2 can be generalised to the complex case, because if S is a skew-

hermitian matrix then, Q = (I−S)(I+S)−1 is a unitary matrix and, then, A = φ(Q) =
Q◦Q is also a doubly stochastic matrix.

Algorithm 3 (This algorithm builds an n× n doubly stochastic matrix from an
arbitrary set of n(n+1)/2 complex numbers)

Given an arbitrary set of complex numbers T = {ai, j : 1≤ i≤ n, i≤ j ≤ n}

– Define the S = [si j] matrix as si j =


ai, j if i < j
(ai,i−ai,i)/2 if i = j
−a j,i otherwise

– Compute Q = (I−S)(I +S)−1

– Compute A = Q◦Q

Example 3 Applying algorithm 2, for T = {−2i,1+ i,−2i,0,1− i,6i}, we obtain the
doubly stochastic matrix

A =

0.632 0.298 0.07
0.298 0.405 0.298
0.07 0.298 0.632

ut
Another well known method to generate orthogonal matrices is based on House-

holder transformations: if u is a unitary vector (an n× 1 matrix such that uT u = 1),
then the Householder matrix Q = I− 2uuT is an orthogonal matrix. Then, Q ◦Q is
a doubly stochastic matrix. Here, you can substitute Q by a product of Householder
matrices.
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5 Conclusions and future work

In the present work we have developed different algorithms in order to obtain doubly
stochastic matrices. Recognize what kind of doubly stochastic matrices are obtained
with each algorithm and if, with these or similar algorithms, we can obtain any such
matrix is the work that remains to be performed.

Johnson and Shapiro say in [10] that a basic question about the map φ is to de-
termine its range, both for the case where the domain consist of real nonsingular
matrices, and for the domain of complex nonsingular matrices, and conclude that
φ(A) = 1

3 J3 has no real solution, where Jn denotes the n×n all-one matrix.
Moreover, Horn and Johnson in [9] gave an exemple (B = 1

2 (J3− I)) to show
that not every doubly stochastic matrix is orthostochastic (the combined matrix of a
unitary/orthogonal matrix). Thus, matrix B cannot be obtained from algorithm 2. We
have another examples illustrating this result, also in the complex case. However, one
can observe that B = φ(A) when

A =

0 a b
a 0 c
b c 0

 abc 6= 0

In the case of algorithm 1, it can be thought that there is greater freedom to obtain
different matrices, however, the obtained matrices are always permutations of Hes-
senberg matrices.
By other hand, the next example is a doubly stochastic graph matrix

A =


0.3784 0.1622 0.1081 0.1622 0.1892
0.1622 0.4505 0.1892 0.1171 0.0811
0.1081 0.1892 0.4595 0.1892 0.0541
0.1622 0.1171 0.1892 0.4505 0.0811
0.1892 0.0811 0.0541 0.0811 0.5946


that was introduced in the study of chemical information processing, by Golender et
al. [8] .

We ask two questions: Is there a nice characterization of those doubly stochastic
matrices which are generated with our algorithms? When a doubly stochastic matrix
is generated by the map φ?
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grants MTM2014-58159-P , MTM2017-85669-P and MTM2017-90682-REDT.
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