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Wireless sensor networks (WSNs) have been extensively studied in the literature. However, in hostile environments where node
connectivity is severely compromised, the system performance can be greatly affected. In this work, we consider such a hostile
environment where sensor nodes cannot directly communicate to some neighboring nodes. Building on this, we propose a
distributed data gathering scheme where data packets are stored in different nodes throughout the network instead to
considering a single sink node. As such, if nodes are destroyed or damaged, some information can still be retrieved. To evaluate
the performance of the system, we consider the properties of different graphs that describe the connections among nodes. It is
shown that the degree distribution of the graph has an important impact on the performance of the system. A teletraffic analysis
is developed to study the average buffer size and average packet delay. To this end, we propose a reference node approach, which
entails an approximation for the mathematical modeling of these networks that effectively simplifies the analysis and
approximates the overall performance of the system.

1. Introduction

Wireless sensor networks are deployed to monitor specific
physical variables for many applications, such as animal
tracking in forests, structural health monitoring in buildings,
or even ambulatory medical surveillance in body area net-
works. However, in some hostile environments, sensor nodes
are placed in adverse situations where they cannot directly
communicate to neighboring nodes due to obstacles, inter-
ference, noise, or even cyberattacks based on denial of service
techniques that shadow some specific connection among
nodes. Based on this fact, the remaining topology (connec-
tion among nodes) of the network becomes relevant. In this
work, we study the performance of the system based on the
specific topology of the network by using graph theory.

Graphs can be described by many properties such as degree
distribution (D. D.), defined as the probability distribution
of a node degree over the whole network; clustering coeffi-
cient (C. C.), defined as the measure of the degree to which
nodes in a graph tend to cluster together; density, defined
as the fraction of existing edges in the graph compared to a
complete graph; average distance (A. D.), defined as the aver-
age number of steps along the shortest paths for all possible
pairs of nodes in the graph; and diameter, which is the lon-
gest of all shortest paths. From these, the degree distribution
is of great interest. Indeed, this is a property that captures, to
a large extent, the essence of the form of the graphs that share
the same type of distribution.

Graph properties have been used before in the literature
to study the performance of the system. For instance, in [1],
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the author uses two types of graphs, random geometric and
clustered graphs, in order to select the position of sensor
nodes. Also, in the area of node localization, in [2], the esti-
mation of node’s localization in WSNs is proposed using
the concept of rigid graphs. However, in these works, the
impact of the graph’s properties on the average buffer size
and packet delay has not been studied. Graph theory is used
in [3] to reduce interference in resource allocation schemes
using the maximal independent set concept of graphs. How-
ever, in this work, the topology of the system is not consid-
ered since only small star networks are studied.

Additionally, in such hostile environments, sensor nodes
are prone to suffer damage which also reduces data gathering
efficiency [4–6]. Furthermore, when interference levels are
high or in case of a jamming attack [7], nodes cannot com-
municate to a sink node that may be found outside the mon-
itored area. If emergency personnel is relying on retrieving
information from nodes in the system, this becomes a major
issue since some nodes may be disconnected from the sink
node and cannot assist the police, military personnel, or fire-
fighters in their specific operation. Hence, we propose sensor
nodes to send information regarding the particular environ-
ment to other nodes in the system instead of a single sink
node as commonly proposed in WSNs. As such, data is not
sent to a single sensor node that may be out of reach from
many nodes or even destroyed. Conversely, we consider a
scenario where sensors send their information to other nodes
of interest in a specific area selected before the installation of
the WSN. For instance, the network administrator may be
interested in relaying information from the northern sur-
veilled area to the eastern area, or from one particular floor
of a building to another relevant floor. In this way, the emer-
gency personnel that passes close to the sensor nodes can

retrieve relevant information regarding the conditions on
different zones of the system.

For instance, consider the network depicted in Figure 1.
In this case, nodes are deployed in a forestal fire to assist
the personnel in rescue operations. Due to obstacles and
the fire itself, nodes can only connect to a few other nodes
in the network. These connections can be described by an
undirected graph with the following characteristics: (a) it
must be a simple graph, i.e., a pair of nodes can be connected
by at most one edge and (b) it must be connected. By know-
ing the properties of this graph, the network administrator
can know beforehand the performance of the system in terms
of average buffer size and average packet delay. Hence, they
can decide if more nodes are needed in order to enhance
the monitoring capabilities or even place a few nodes in very
particular areas to change or improve the underlying graph
and consequently reduce packet delay. Conversely, when a
sensor node can communicate with all neighbor nodes, i.e.,
there are no physical impediments (obstacles, interference,
or cyberattacks) for nodes to directly send packets to any
other node in its communication range, a random geometric
graph or a unit disk graph can accurately describe the topol-
ogy of the network. In Figure 2, we present such case. This
graph has the following characteristics: it is the intersection
graph of a set of unit disks in the Euclidean plane, i.e., it is
a graph with one vertex for each disk in the set, and there is
an edge between two vertices as long as the corresponding
vertices lie within a unit distance of each other.

Performance of WSNs in hostile environments has been
studied before in the literature. For instance, in [4, 5], nodes
may found themselves disconnected from the rest of the net-
work due to such hostile environments that cause unreliable
links. To address this issue, the authors propose the use of

Figure 1: Hostile environment network graph. Yellow arrows represent actual network links, while red dashed arrows represent broken links
due to environment conditions.
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mobile data carriers to temporarily provide connectivity to
the rest of the nodes. Unlike this work, we do not consider
the case where nodes are disconnected, i.e., we assume that
all nodes remain connected either directly or indirectly to
all other nodes in the system. Hence, we do not focus on
the problem of reconnecting parts of the network. In [6],
unreliable links are modeled using an on/off process and
the author studies the topology of the network related to
nodes degree. Unlike this work, we consider unreliable links
to be of no practical use throughout the operation of the sys-
tem. Additionally, [6] does not consider graph theory to infer
the performance of the system in terms of average buffer size
nor packet delay. Finally, in [7], links are unreliable due to
direct jamming cyberattacks. The authors propose a statisti-
cal approach to detect such attacks that may lead to discon-
nected segments in the system. Unlike this work, we do not
focus on detecting such attacks since we assume that opera-
tions in hostile environments are only for short operation
times and the WSNs are used for assistance in the work field.
Note that cyberattack detection requires a considerable
amount of time; hence, we believe that there is no real gain
on detecting these DoS (denial of service) attacks for these
applications since the rescue operation may be over before
the attack is detected. The main contributions of this paper
are as follows:

(i) A WSN in hostile environments is studied, evalu-
ated, and analyzed. In this case, the hostility is two-
fold: for one part, it prevents nodes from
connecting to neighbor nodes, and secondly, since

nodes are prone to malfunction or even destruction,
gathered information is disseminated throughout
the network instead of a single sink node

(ii) We use the properties of the graph that describe the
topology of the WSN in order to determine if the
performance of the system is adequate for different
system conditions. As such, the network administra-
tor can use a particular graph (by changing the
node’s position or the number of nodes) to achieve
a target performance metric

(iii) An approximate mathematical analysis is developed
to study the WSN is such a hostile condition, which
can also be used in other applications with similar
connectivity properties

The rest of the paper is organized as follows: in
Section 2, we present the main assumptions and implications
of the studied system. Then, Section 3 details the graph gen-
eration process and main properties. The mathematical
analysis is developed in Section 4 based on a discrete time
Markov chain (DTMC). Finally, the paper concludes pre-
senting relevant numerical results and conclusions.

2. System Model

We now describe the main assumptions and parameters con-
sidered in this work. Also, the general operation of the system
is presented.

Figure 2: Connectivity among nodes in a unit disk graph topology.
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Nodes are uniformly placed in the monitored area and
they are connected according to a specific topology to their
neighbor nodes considering that many direct wireless links
are not reliable, i.e., there are many obstacles, interference,
and/or noise in the path between two neighbor nodes (nodes
geographically close to each other such that they are in the
theoretical communication range) but they cannot directly
communicate among them. As such, only some connections
are practical among nodes in the network. These connections
in the system can be described by graphs with specific
characteristics.

Nodes do not transmit directly to a sink node, as conven-
tional WSNs. Rather, packets containing information from
the monitored phenomena are transmitted to other nodes
in the system. Indeed, since we are considering the deploy-
ment of nodes in hostile environments, we propose to have
redundancy in case of node’s malfunction or destruction.
Additionally, this data dissemination mechanism allows fas-
ter reporting data to be available in the area of interest, for
example, in forestal fires or tactical military operations
where the personnel is constantly moving inside the moni-
tored area and requires information regarding certain condi-
tions in other parts of the tactical operation. As such, a
firefighter crossing the northern area connects directly to a
node placed at that zone and can have relevant information
from the eastern area without directly connecting to a sink
node that may be out of reach. Building on this, nodes gen-
erate new packets with probability ρ to be conveyed to spe-
cific nodes selected in advance, depending on the system
conditions. These packets are routed using the shortest path
routing protocol to convey data from source nodes to desti-
nation nodes passing through intermediate nodes using the
available topology. On the other hand, packets are transmit-
ted with probability τ.

From this description, we can now have a general idea of
the system operation. Once that nodes have been deployed in
the hostile environment, the network administrator chooses
the pair of nodes to be connected, either directly or by multi-
hops, to each other for the duration of the operation, like a
fire, hostage situation, and industrial monitoring. At this
point, the system operation parameters can be carefully
selected by considering the number of nodes in the network
and the specific graph described by the available connection
among nodes. Specifically, by observing the topology of the
nodes, the degree of the graph can be calculated and its prob-
ability distribution can be inferred. Then, the values of ρ and
τ can be finely selected using the mathematical methodology
developed in the following sections in order to calculate aver-
age buffer size and packet delay for all of these parameters. As
such, the network operation can be known in advanced and it
can be improved if needed by adding additional nodes or
even changing the placement of some nodes to vary the
topology of the graph.

The aforementioned analysis considers a reference node
in order to simplify the complexity. Indeed, in a WSN where
multiple destination nodes are considered and multihop
transmissions are allowed, traffic at different nodes may be
very different, as traffic conditions depend on the routing

protocol and the network topology. By considering a single
reference node, we can focus on only one buffer behavior.
The reference node, however, can represent the worst case
scenario, since we consider that this reference node is
one of the nodes used as relay nodes (intermediate node).
Our mathematical analysis is an approximation of the real
system conditions in the sense that we assume that neighbor
nodes to this reference node have similar traffic conditions
and, consequently, similar packet arrival probabilities. The
validity of these assumptions and the accuracy of the approx-
imation are verified comparing to system simulation results.

3. Graph Generation

In this section, we explain in detail the graph generation
process that describes the connections among nodes in the
network. Specifically, we focus on generating simple and
connected graphs (also called strict graph [8] which is an
unweighted, undirected graph containing no graph loops
or multiple edges [9, 10]) with a certain degree distribution.
Recall that for a WSN with unreliable links, we are inter-
ested on investigating the impact of the graph’s properties
that describe node’s connections, on the performance of
the system.

3.1. Graphical Degree Sequence Generation. To obtain degree
sequences (a list of nonnegative integers that for each vertex
of the graph states howmany neighbors it has) of simple con-
nected graphs that also follow a certain degree distribution,
we first define the number of nodes of the graph, also called
the sequence of the graph. After this, we follow the next
steps: (a) pseudorandom number generation, (b) discretiza-
tion of generated number sequence, (c) checking the simplic-
ity of the degree sequence, (d) potentially connected graphic
sequences, and (e) forcibly 1-connected graphic sequences.
We now detail each of these steps.

In order to study the effect of different probability distri-
butions on the degree of the graph, the following distribu-
tions were selected:

(i) Binomial distribution

(ii) Exponential distribution

(iii) Extreme values distribution

(iv) Normal distribution

(v) Power law distribution

(vi) Discrete uniform distribution

These random numbers are generated using the native
libraries in C++ language with the only exception of the
power law distribution. For this case, the probability density
function (pdf) used is the one described in [11].

Now, for the discretization of generated number
sequence, we simply choose either the round or the ceil
functions. For specific parameters of some distributions, we
might get values below 0.5, which would become 0 if we only
use the round function. As seen in the next subsection, this
would lead us to nonconnected graph. For these cases, we
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use the ceil function. At this point, we have a sequence of
integers of length n.

Then, the simplicity of the degree sequence is verified. As
mentioned before, it is an important requirement that the
sequence of integers obtained in the previous step does form
a simple graph. To achieve this, we assure that the random
sequence complies with the conditions of the Havel-Hakimi
theorem [12, 13] as follows:

Theorem 1. Let S = ðd1, d2,⋯, dnÞ be a finite list of nonnega-
tive integers in nonincreasing order.

(1) The list S is graphic if and only if the sum of di is even,
d1 > jSj − 1, and the finite list S0 = ðd2 − 1, d3 − 1,⋯,
dd1+1 − 1, dd1+2,⋯, dnÞ has nonnegative integers and
is graphic

(2) The list is sorted in nonincreasing order on each itera-
tion if necessary

(3) Steps 1 and 2 will be applied at most n − 1 times, set-
ting in each further step S = S0

(4) If at any point the list has negative numbers or
d1 > jSj − 1, the theorem proves that the list S from
the beginning is not graphic

(5) Otherwise, if the whole list S0 consists of zeros, then the
list S from the beginning is graphic and the process
ends

Theorem 1 only guarantees that the sequence belongs to a
simple graph, but now we verify if it is connected. A poten-
tially connected degree sequence S is that which, of all graphs
whose degree sequence is S, at least one of them is connected.
In other words, if we want to build a graph from S, we have
the certainty that there exists a configuration in which the
graph is connected. In order to check if there is a simple con-
nected graph with the sequence of integers we have so far, on
Theorem 2 [14].

Theorem 2. Let S = ðd1, d2,⋯, dnÞ be a finite list of nonnega-
tive integers in nonincreasing order, n ≥ 2. A necessary and
sufficient condition for the existence of the simple connected
graph G with degree sequence S is that

dn ≥ 1: ð1Þ

〠
n

i=1
di ≥ 2 n − 1ð Þ: ð2Þ

〠
k

i=1
di is even: ð3Þ

〠
k

i=1
di ≤ 〠

k

i=1
�di  k = 1, 2,⋯, nð Þ: ð4Þ

Since in [14], it is stated that (3) and (4) guarantee the
existence of a simple graph with degree sequence S, which

is equivalent to the Havel-Hakimi algorithm; we only check
if S fulfills the conditions of (1) and (2).

Algorithm 3 in the Appendix implements both Theorem
1 and 2 conditions.

Additionally, we implement an algorithm that checks if a
given graph degree sequence is forcibly 1-connected. A forc-
ibly 1-connected sequence S is such that every graph whose
degree sequence is S is 1-connected, i.e., it does not matter
how the nodes are connected with each other, as long as the
rule of no loops or multiple edges is observed. Hence, the
graph has its nodes connected at most by one edge and there
is a path between any pair of nodes.

To this end, we use an algorithm based on Theorem 3
taken from [15] which defines a sufficient condition for a
degree sequence to be forcibly n-connected. As we are only
interested on simple graphs, we use n = 1.

It is important to note that this is only a sufficient condi-
tion, and therefore, the fact that a degree sequence does not
fulfill the condition does not necessarily mean that such
sequence is not forcibly connected. The full procedure to
check if a graphic sequence is forcibly connected is detailed
in Algorithm 4 in the Appendix.

3.2. Building Simple Graphs with Given Degree Sequence. At
this point, we already have a degree sequence that we know
describes a simple graph, either potentially connected or
forcibly connected. The next step is to build the graph from
that sequence. To achieve this, we consider the Havel-
Hakimi algorithm that we now describe.

This algorithm builds a graph using the method
described in Theorem 1 but adding some extra steps that pro-
vide randomness (this can be seen in lines 2 and 20, where
the shuffle in line 2 increases the chances for the degrees to
be assigned to different nodes on each run depicted in
lines 4-8). Algorithm 5 details the steps needed to build
graphs using this method. The purpose of shuffling in line
20 has a deeper reason. Sometimes, when the sequence pro-
vided as input is potentially connected, the output graph
may result disconnected, and if line 20 is not added, it would
always be the same, since the sort in line 21 does not change
the relative position of elements when their values are the
same [16]. To increase the chances of getting a connected

Input : A graph G(V,E)
Output: True if G is connected, False otherwise

1 begin
2 found ⟵ number of nodes found by BFS

algorithm ran over G.
3 if found == jVj then
4 return True
5 end
6 else
7 return False
8 end
9 end

Algorithm 1: Check connectedness of a graph.
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graph, line 20 is added, opening possibilities of getting a
different graph in multiple runs of the algorithm.

So far, we can produce a graph by one of the previously
mentioned methods. However, we have to check if such
graph is indeed connected when using the forcibly connected
degree sequences or the Chung-Lu method. To this end, we
follow the procedure presented in Algorithm 1, where we first
run a breadth-first search (BFS) algorithm over the graph we
want to test. If BFS can reach every node in the graph, then it
is connected.

In this section, we described the specific methods for gen-
erating the graphs that describe the connections among the
nodes in the system. Such connections imply a direct path
between any pair of nodes. We are now interested on analyz-
ing the performance of the sensor network when nodes are
connected in such manner. To this end, an analytical model
is derived in the following section.

4. The Mathematical Model

In this section, we describe in detail the mathematical analy-
sis based on a DTMC to model the average buffer length and
packet delay. To this end, we propose the use of a reference
node, which is a conventional node, i.e., a node in no extraor-

dinary conditions. Like the majority of the nodes in the
system, such conventional node may not be placed in the
edges of the monitored area and it is not isolated from the
rest of the nodes. Rather, it would have an average number
of neighbor nodes and its nodes are likely to have similar traf-
fic conditions than this reference node. The reason for this
consideration is that traffic in WSNs where packets are no
longer directed to a single sink node greatly depends on the
network topology (given by the graphs described above)
and routing algorithm, which in turns corresponds to a very
complex system that could be described by a higher number
of variables and states. Conversely, by focusing on only one
reference node, with similar conditions to the majority of
the nodes in the system, it is possible to reduce such complex-
ity and derive close expressions for average buffer size and
packet delay irrespective of the network topology and routing
protocol.

Building on this, a slotted Non-Persistent Carrier Sense
Multiple Access (NP/CSMA) protocol where packets in
the buffer of nodes are transmitted with probability τ in
a given time slot. This system can be described by a
DTMC where state (Q) represents the number of packets
in the buffer at slot t of the reference node with valid state
space fΩQ : 0 ≤Qg as depicted in Figure 3.

Input : A simple connected graph G(V,E), τ, ρ, maxSlots
Output: Statistics of network’s performance

1 begin
2 Define if there will be a refNode and which of the

vi’s will be.
3 while slotCount < maxSlots do
4 foreach vi ∈V do
5 p ⟵ random(0, 1)
6 if vi = refNode and p ≤ ρ then
7 Choose a node t ∈ V uniformly at

random as destination; t = vi
8 cvi ,t ⟵ Shortest path from vi to t
9 Queue a new pkt in vi’s buffer with route

cvi ,t
10 end
11 end
12 foreach vi ∈ V do
13 p ⟵ random(0, 1)
14 if vi has packets in its buffer p ≤ τ then
15 Attempt to transmit the next pkt in vi’s

buffer
16 end
17 end
18 foreach vi ∈ V do
19 Check status of every pkt received in vi and

do counting.
20 end
21 slotCount++
22 end
23 Calculate Pa1, Pa+, P(Q= 0), E[Q]
24 Calculate E[De]
25 end

Algorithm 2: General operation of the simulator.
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Due to the fact that the reference node corresponds to
a node with similar traffic conditions than the majority of
the nodes and also to its neighbor nodes, we consider that
the probability that a single packet arrives to the reference
node is Pa1ðrÞ, and the probability that two or more
packets arrive to the reference node is given by Pa+ðrÞ.
Consequently, the probability that no packet arrives to this
node is given by Pa0ðrÞ = 1 − Pa1ðrÞ − Pa+ðrÞ.

It is important to remark that this proposed model is an
approximation to reduce the complexity of the system since
we are also considering that Pa1, Pa+, and Pa0 are also the
probabilities of a single, multiple, or no packet arrivals to
all the reference node’s neighbors, respectively. This is not
always the case, since the reference node can be close to
nodes in the borders of the surveilled area or can be in a par-
ticular environment where many links are not active, which
could drastically change the values of packet arrivals in the
reference node and neighbor nodes. However, we consider
this approximation to provide general and accurate results
for WSNs with unreliable links and multiple sink nodes, as
proven by comparing the analytical results to extensive sim-
ulation results presented further in the paper. To differentiate
an event at the reference node and neighbor nodes, we con-
sider the following variables: the probability that a single
packet arrives to a neighbor node is Pa1ðvÞ, and the probabil-
ity that two or more packets arrive to a neighbor node is
given by Pa+ðvÞ.

Valid state transition probabilities of the proposed
DTMC are as follows:

(i) From state 0 to state 0 with probability P0,0 = fPa1
ðrÞg which corresponds to the case when the buffer
is empty and there are no packet arrivals to the
reference node

(ii) From state 0 to state 1 with probability P0,1 = f1 −
Pa1ðrÞg which corresponds to the case where a sin-
gle packet is successfully received by the reference
node, i.e., no collision occurred at the reference node

(iii) From state Q to state Q − 1, Q > 1, with probability
PQ,Q−1 = fτ½1 − PðQ = 0Þ�½1 − Pa1ðvÞ − Pa+ðvÞ�g.
This transition corresponds to the case where a sin-
gle packet is transmitted by the reference node with
probability τ and it is correctly received by the
intended neighbor node, i.e., no other packets are
transmitted or received by the intended neighbor
node. This implies that no other neighbor node
transmitted to the intended reference node’s neigh-
bor node

(iv) From state Q to state Q − 1, Q > 1, with probability
PQ,Q = fτ½1 − PðQ = 0Þ�½τ½1 − PðQ = 0Þ� + ½1 − τ½1 −
PðQ = 0Þ��½Pa1ðvÞ + Pa+ðvÞ�� + ½1 − τ½1 − PðQ = 0Þ��
½1 − Pa1ðrÞ�g. In this case, no new packet is success-
fully received by the reference node. This occurs due
to the following cases: (a) the reference node trans-
mits the packet with probability τ. However, the
intended neighbor node also transmitted or does
not transmit but other neighbor nodes transmitted
to it, causing a packet collision; (b) this state transi-
tion can also occur when the reference node does
not transmit but no other packet is successfully
received by the reference node

(v) From state Q to state Q + 1, Q > 1, with probability
PQ,Q+1 = f½1 − τ½1 − PðQ = 0Þ��½Pa1ðrÞ�g. In this case,
a new packet is received by the buffer of the reference
node. This happens when the reference node does
not transmit, and only one packet is received by this
reference node, i.e., no packet collision occurred and
only one neighbor node transmitted

Note that in order to transmit a packet, the node’s buffer
has to be nonempty. Hence, the probability to transmit a
packet is always given by τ½1 − PðQ = 0Þ�.

To derive closed expressions for the performance of the
system, we first simplify the previous expressions as follows:

(i) a0⟵P0,1

(ii) 1 − a0⟵P0,0

(iii) a⟵PQ,Q+1

(iv) b⟵PQ,Q−1

(v) 1 − a − b⟵PQ,Q

Now, we recursively calculate the stable state probabili-
ties as follows:

π1 =
ao
b

⋅ π0 ;

π2 =
a
b
⋅ π1 ;

π3 =
a
b

� �2
⋅ π1 ;

⋯

πi =
a
b

� �i−1
⋅

a0
b

⋅ π0
� �

:

ð5Þ

0

b b

a

b

a

b

a

b

a

b

a

1 − a0 1 − a − b 1 − a − b 1 − a − b 1 − a − b

a0

1 Q − 1 Q+1Q

Figure 3: Markov chain state diagram.
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Figure 4: Comparative of E½Q� between the system simulation and DTMC model on networks of 200 nodes.
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And using the normalization equation

〠
∞

i=0
πi = 1, ð6Þ

we get

〠
∞

i=0
πi = π0 1 + a0

b
+ a0

b
a
b

� �
+ a0

b
a
b

� �2
+⋯

� �
: ð7Þ

From this, after some algebraic manipulation, we can
calculate π0 as follows:

π0 =
b − a

b − a + a0
: ð8Þ

Now, substituting π0 from (8) in (5) we get

πi =
a
b

� �i−1 a0
b

⋅
b − a

b − a + a0

� �
: ð9Þ

The average buffer size E½Q� can be calculated as
E½Q� =∑∞

i=0iπi. Hence, using (9) and after some alge-
braic manipulation, we can express E½Q� as follows:

E Q½ � = 〠
∞

i=0
i
a
b

� �i−1 a0
b

⋅
b − a

b − a + a0

� �
= a0b

b − að Þ b − a + a0ð Þ :

ð10Þ

To calculate the average packet delay, we use Little’s
theorem as follows:

E D½ � = E Q½ �
λ

, ð11Þ

where arrival rate λ packets per unit of time can be
described by λ = Pa1ðrÞ.

Finally, probabilities Pa1 and Pa+ cannot be directly
derived since they greatly depend on the network topol-
ogy and routing protocol. We believe that deriving
closed expressions for these probabilities falls outside
the scope of this work, and we leave this research area
open for future works. However, we obtain these prob-
abilities by means of numerical simulations using a
home-made network simulator built in C++ described
in Algorithm 2.

As mentioned in System Model, new packets are gener-
ated with probability ρ and are transmitted to specific desti-
nation nodes selected in advanced using many intermediate
nodes to reach them. Packets are transmitted between every
pair of nodes with probability τ. From this simulation, we
can obtain numerical values for the packet arrival probabili-
ties at each node in the system.

5. Numerical Results

In this section, we present the most relevant results that
describe the performance of the system based on the
properties of the graphs used to define the topology of
the network.

We first validate the mathematical model by comparing
the analytical results to the system simulation results. In
Figure 4, we have shown the comparison between results
of average buffer size from the system simulation and the
DTMC for networks with 200 nodes and different values
of τ. The system parameters used to obtain the numerical
results and absolute mean error are shown in Table 1. We
can see a very good match for all distributions and different
graphs. Specifically, the best approximations occur for the
exponential and power law distributions, where the pre-
dominant feature is that the C.C. value is much larger than
the density.

In order to see if the number of nodes in the network
has a relevant impact on the accuracy of the model, we
consider the case of networks from 10 to 50 nodes with
power law distribution as shown in Figure 5. It can be
seen that as the number of nodes in the system increases,
there is a lower error between the analytical and simula-
tion results.

So far, we have compared the DTMC results with
networks created by our algorithm, which can be consid-
ered to some extent to have random topologies. But there
are special cases of networks where the conditions of the
model are more suited to the conditions of the system.
Recall that the main assumption of the mathematical
model is that a reference node has similar traffic condi-
tions that its neighbors, in such a way as to consider
the packet arrival probabilities to be equal. To this end,
we consider a 51-node network with a topology where
all links are symmetrical in all directions, so the traffic
conditions are fulfilled in the reference node. In
Figure 6, we show the graphic representation of these
networks. Note that graph 1 is a tree, and the rest
of the graphs are some variations of graph 1 with

Table 1: Properties and mean absolute error of graphs with 200 nodes.

Distribution C.C. Density A.D. Diameter Mean absolute percentage error

Binomial (200, 0.95) 0.9537 0.953869 1.04613 2 10.2505%

Exponential (0.05) 0.3328 0.0998995 2.25 6 0.5596%

Extreme values (180, 4) 0.9195 0.917136 1.08286 2 4.3269%

Normal (195, 2) 0.9806 0.979799 1.0202 2 20.8797%

Power law (1.7) 0.664 0.0439196 1.98553 3 0.7926%

Uniform (190, 195) 0.9658 0.966884 1.03312 2 13.9472%
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(a) Graph 1 (b) Graph 2

(c) Graph 3 (d) Graph 4

(e) Graph 5 (f) Graph 6

Figure 6: 51 nodes graphs of ideal kind for the mathematical model.
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small mutations that change in some extent the graph’s
properties, as it is defined in Table 2, where we also
present the mean absolute percentage error between ana-
lytical and simulation results. Specifically, in graphs 1, 2,
and 3, the density increases while C.C. remains the same.
In this case, the error also increases but it does not
exceed 3%. In graph 4, the C.C. is smaller, while in
graph 5, the C.C. is higher than the density. In graph

6, the C.C. is quite larger than the density value and
the error is above 5%.

Finally, as the number of nodes increases, we can see a
better fit between the analytical results and the simulation
results for all distributions as depicted in Figure 7.

Now that we validated our mathematical model, we
investigate the effects of the properties of graphs on the
performance of the system. To this end, we first study

Table 2: Properties and mean absolute error for networks of degree distribution uniform (5, 10).

Graph name C.C. Density A.D. Diameter Mean absolute percentage error

Graph 1 0 0.0392157 4.47843 6 1.9978%

Graph 2 0 0.0431373 4.20784 6 3.4965%

Graph 3 0 0.0509804 4.12549 6 2.8714%

Graph 4 0.0222 0.0431373 4.08627 6 5.0145%

Graph 5 0.08834 0.0509804 4.01569 6 3.8470%

Graph 6 0.71935 0.0627451 4.00392 6 5.1753%
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Figure 7: Behavior of mean absolute percentage error from the number of node point of view.
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Table 3: Test graphs degree distribution parameters.

Number of nodes 50 nodes 100 nodes 150 nodes 200 nodes

Distribution parameters

Binomial (50, 0.95) Binomial (100, 0.95) Binomial (150, 0.95) Binomial (200, 0.95)

Exponential (0.05) Exponential (0.05) Exponential (0.05) Exponential (0.05)

Extreme values (30, 4) Extreme values (80, 4) Extreme values (130, 4) Extreme values (180, 4)

Normal (45, 2) Normal (95, 2) Normal (145, 2) Normal (195, 2)

Power law (1.7) Power law (1.7) Power law (1.7) Power law (1.7)

Uniform (40, 45) Uniform (90, 95) Uniform (140, 145) Uniform (190, 195)
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Figure 8: Comparative of E½Q� between graphs with the same number of nodes.
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the effect of the different degree distributions for different
numbers of nodes in the network. To this end, we consider
the different probability distribution functions describe above
with their specific parameters for each network density. These
parameters and numerical values are presented in Table 3.

These graphs were built from these sequences using the
Havel-Hakimi method described in Algorithm 5. The follow-
ing parameters were used for data packet traffic 0:1 ≤ τ ≤ 0:8
and 1 × 10−5 ≤ ρ ≤ 1 × 10−4. We took a reference node as the
node present in most of the short paths between every pair of

nodes to calculate E½Q�. The reason behind choosing the refer-
ence node in this way is because every packet generated fol-
lows the shortest path to its destination node. Hence, the
reference node is one of the bottlenecks of the network. In
other words, the chosen node can be seen as the “worst case”
and we can expect that the rest of the nodes in the net-
work have equal or lower values of their buffer size.

Since a network simulator was developed, we now vali-
date the mathematical approximated model to the simulation
results in order to determine the accuracy of the proposed
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analytical framework. We first compared the values of the
average buffer size and average packet delay for all of the
degree distributions for graph generation for different num-
bers of nodes in the network as shown in Figures 8 and 9,
respectively. It can be seen that as the density of the network
graph is higher, the measurements of the mean buffer size in
the reference node and the mean end-to-end packet delay
both decrease. Also, a low average buffer size does not neces-
sarily imply a low average packet delay. For instance, con-
sider the case of a network with 100 nodes and low new
packet generation probability (low reporting environment)
and low transmission probability (low values of τ). In this
case, there are just a few packets in the system as the reference
node has a low average buffer size. However, these packets
can take a long time to be transmitted due to the very low
value of τ. As data traffic increases (ρ increases), buffer size
always increases but average packet delay does not. From
these results, it is important to note that the increase on the
data reporting (the number of new packets generated by
nodes) does not imply a degradation of the system as long
as an adequate value of τ is selected. This fine selection can
be done using these results presented in order to achieve a
specific average packet delay target.

In Table 4, we show the most relevant values of the
graphs used in these experiments, such as minimum and
maximum values of E½Q� and E½De�, and average clustering

coefficient, density, average distance, and diameter. These
results can be used by the network administrator in order
to achieve key performance metrics of the network based
on the given topology. Furthermore, if the current topology
is not the best suited, it can be modified by adding or moving
some nodes. For instance, consider the case when the topol-
ogy of the current network is described by an exponential dis-
tribution when 150 nodes are placed in the hostile
environment. In this case, the maximum packet delay would
be 21.25 time slots. This value may be higher than desired for
the specific service provided by the WSN. Then, the network
administrator can replace some nodes in order to have now a
normal distribution entailing a 10.52 time slots maximum
packet delay.

We also compared all of the graphs that shared the
same degree distribution irrespective of the number of
nodes in the network in terms of average buffer size
and packet delay presented in Figures 10 and 11, respec-
tively. In Figure 10, we can see that the extreme values,
normal, and uniform distributions have very similar
results, while in Figure 11, we can see a similar tendency
in the binomial, normal, and power law distributions. We
also noticed that for each network of certain number of
nodes, both C.C. and density values are quite close in
most cases,and as the number of nodes increases, these
values also increase, but the A.D. decreases.

Table 4: Simulation outcomes and properties of graphs used.

# nodes Degree distribution Min. E Q½ � Max. E Q½ � Min. E De½ � Max. E De½ � C.C. Density A.D. Diameter

50 nodes

Binomial (50, 0.95) 0.000011 0.001545 1.265287 10.514759 0.9774 0.974694 1.02531 2

Exponential (0.05) 0.000472 0.037791 2.133920 17.778186 0.7908 0.282449 1.71755 2

Extreme values (30, 4) 0.000224 0.017376 1.661500 14.223935 0.6952 0.666122 1.33388 2

Normal (45, 2) 0.000042 0.003875 1.340659 11.135802 0.928 0.925714 1.07429 2

Power law (1.7) 0.000579 0.044836 2.438283 20.272008 0.6832 0.106939 1.94776 3

Uniform (40, 45) 0.000066 0.004988 1.419981 11.716424 0.8653 0.866122 1.13388 2

100 nodes

Binomial (100, 0.95) 0.000051 0.003903 1.302432 10.634500 0.9564 0.958788 1.04121 2

Exponential (0.05) 0.001025 0.085422 2.323515 19.670225 0.5585 0.193939 1.87495 2

Extreme values (80, 4) 0.000202 0.017992 1.424887 12.046218 0.8273 0.830101 1.1699 2

Normal (95, 2) 0.000058 0.003936 1.292603 10.533097 0.9624 0.961212 1.03879 2

Power law (1.7) 0.001235 0.099275 2.555177 21.917932 0.6524 0.0682828 2.04909 4

Uniform (90, 95) 0.000081 0.005701 1.338307 11.239774 0.9371 0.936364 1.06364 2

150 nodes

Binomial (150, 0.95) 0.000101 0.006693 1.306539 10.841755 0.9535 0.955884 1.04412 2

Exponential (0.05) 0.001815 0.145864 2.492453 21.259371 0.4343 0.137987 1.97423 5

Extreme values (130, 4) 0.000260 0.016563 1.407530 11.340467 0.8906 0.889217 1.11078 2

Normal (145, 2) 0.000049 0.004271 1.278812 10.525010 0.9711 0.972617 1.02738 2

Power law (1.7) 0.001647 0.152268 2.609807 22.765497 0.7357 0.0519016 2.10631 4

Uniform (140, 145) 0.000072 0.006639 1.286138 10.630950 0.9554 0.955973 1.04403 2

200 nodes

Binomial (200, 0.95) 0.000118 0.008768 1.326301 10.694603 0.9537 0.953869 1.04613 2

Exponential (0.05) 0.002327 0.200372 2.852023 24.528760 0.337 0.0998995 2.25 6

Extreme values (180, 4) 0.000255 0.017480 1.369051 11.104683 0.916 0.917136 1.08286 2

Normal (195, 2) 0.000064 0.004584 1.286624 10.063900 0.9768 0.979799 1.0202 2

Power law (1.7) 0.002587 0.232759 2.466938 22.316455 0.664 0.0439196 1.98553 3

Uniform (190, 195) 0.000091 0.006431 1.293636 10.683731 0.9658 0.966884 1.03312 2
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Additionally, it is interesting to note that as the num-
ber of nodes grow, the value of A.D. remains almost con-
stant. For example, in the binomial distribution, the A.D.
values remain mostly in 1.04 approximately and the nor-
mal, power law, and uniform distribution graphs also
have similar behaviors but it exists a most noticeable dif-
ference. As expected, the A.D. values in these distribu-
tions have small changes as the number of nodes
increases, but they are higher in contrast with the bino-
mial distribution graphs. Now, concerning the exponential
distribution graphs, it produces the more variations
between different numbers of nodes. For instance, when
the network has 50 nodes, the graph has an A.D. of

Table 5: Network graphs with 100 nodes with A.D. values of 2.55.

Distribution C.C. Density A.D. Diameter

Binomial (35, 0.21) 0.101 0.0769697 2.54869 4

Exponential (0.1) 0.3055 0.107475 2.54646 7

Extreme values (7, 4) 0.1448 0.089697 2.54889 5

Normal (7, 1) 0.0713 0.0715152 2.55475 4

Power law (1.8) 0.4344 0.0567677 2.55556 5

Uniform (1, 20) 0.1453 0.101818 2.55495 7
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Figure 12: Comparative of E½De� between networks with A.D. of
2.55 approx.

Table 6: Network graphs with 100 nodes with C.C. values of 0.7.

Distribution C.C. Density A.D. Diameter

Binomial (100, 0.69) 0.70714 0.704848 1.29515 2

Exponential (0.05) 0.71241 0.218586 1.93354 5

Extreme values (65, 5) 0.69599 0.687879 1.31212 2

Normal (70, 15) 0.70733 0.708889 1.29111 2

Power law (1.8) 0.69055 0.0652525 1.96343 3

Uniform (64, 74) 0.6942 0.69697 1.30303 2

5

0

10

15

20
E (De) for graphs with 100 nodes

Binomial (100, 0.69)
Exponential (0.05)
Extreme values (65, 5)

Normal (70, 15)
Power law (1.8)
Uniform (64, 74)

0.1 0.2 0.3 0.4 0.5
𝜏

0.6 0.7 0.8

E
 (D

e)

Figure 13: Comparative of E½De� between networks with C.C. of
0.7 approx.

Table 7: Network graphs with 100 nodes with density values of 0.2.

Distribution C.C. Density A.D. Diameter

Binomial (100, 0.2) 0.21879 0.200202 1.82808 3

Exponential (0.05) 0.5642 0.205051 1.97172 4

Extreme values (18, 4) 0.2354 0.200404 1.83434 3

Normal (20, 10) 0.2039 0.2 1.81677 3

Uniform (16, 24) 0.207 0.20101 1.81596 3

E (De) for graphs with 100 nodes

Binomial (100, 0.2)
Exponential (0.05)
Extreme values (18, 4)

Normal (20, 10)
Uniform (16, 24)
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Figure 14: Comparative of E½De� between networks with density of
0.2 approx.
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Input: A list of integers L
Output: True if the L is potentially connected, False

otherwise
1 begin
2 n ⟵ jLj
3 Sort L in non-increasing order
4 if Ln ≤ 0 then
5 return False
6 end
7 if ∑n

i=1Li ≤ 2ðn − 1Þ then
8 return False
9 end
10 if L1 ≤ n − 1 then
11 continue ⟵ True
12 end
13 else
14 continue ⟵ False
15 end
16 integrity ⟵ False
17 while continue do
18 actualValue = L1
19 Delete L1 from L
20 for i=1 : i≤actualValue do
21 Li ⟵ Li − 1
22 if Li < 0 then
23 continue ⟵ False
24 break
25 end
26 else
27 continue ⟵ True
28 end
29 end
30 if There’s some Li ∈ L > 0 then
31 Sort L in non-increasing order
32 end
33 else
34 continue ⟵ False
35 break
36 end
37 end
38 if integrity then
39 for i = 1: i ≤ n do
40 if Li ≥ 0 then
41 result ⟵ True
42 end
43 else
44 result ⟵ False
45 break
46 end
47 end
48 end
49 if result then
50 return True
51 end
52 else
53 return False
54 end
55 end

Algorithm 3: Check if a list of integers L is a graphical potentially connected degree sequence.
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1.71, while for the case of 100 nodes, the graph has an
A.D. of 1.87, and with 150 nodes, the graph has A.D.
of 1.97, and in the 200 nodes case, the graph has A.D.
of 2.25.

Now, we observe numerical results using graphs with
the same A.D. In these results, we use a fixed value of
ρ = 5 × 10−5. Specifically, we created a set of networks
whose A.D. is approximately 2.55 and compared their
values of average packet delay. The properties of the net-
work graphs are detailed in Table 5, and in Figure 12, we
show the comparative plot. It can be seen that, when
A.D. remains constant, even if the values of C.C. and
density are different, the performance of the system is
not affected.

We are now interested on using graphs with the same
values of C.C. to see the impact on the system’s perfor-
mance. To this end, we created a set of networks whose
C.C. is approximately 0.7 and compared their values of
average packet delay. The properties of the network graphs
are detailed in Table 6, and in Figure 13, we show the
comparative plot. In this case, the power law and expo-
nential distributions entail higher average packet delays,
while the rest of distributions achieve a better perfor-
mance. The rationale behind this is that both power law
and exponential distributions have similar A.D. values,
while the rest of the considered distributions also have
similar values of A.D. From this, we can infer that as
the A.D. increases, also packet delay increases.

Onemore set of networks whose density is approximately
0.2 was created and then we show the system performance.
The properties of the network graphs are detailed in
Table 7, and in Figure 14, we show the comparative plot. In
this tests, we have omitted the power law distribution since
it was not possible to create a graph of this degree distribu-
tion with density of 0.2. The reason of this is related to the
probability distribution properties that do not allow to create

Input: A potentially connected degree sequence S
Output: True if S is forcibly 1-connected, False

otherwise
1 begin
2 Sort S in non-increasing order
3 n⟵1
4 p⟵ jSj
5 kinitial ⟵ n + 2
6 for k = kinitial : k ≤ p do
7 if Sk ≥ p − k + n then
8 res ⟵ True
9 end
10 else
11 res ⟵ False
12 break
13 end
14 end
15 return res
16 end

Algorithm 4: Check if a graphic potentially connected degree sequence S is also forcibly connected.

Input: A simple potentially/forcibly connected degree
sequence D={d0,d1,...,dN−1}

Output: A simple graph G(V,E) whose degree
sequence is D

1 begin
2 Shuffle D
3 V⟵Ø
4 for i = 0 : i ≤N − 1 do
5 vi:availableDegree ⟵ di
6 vi:actualDegree ⟵0
7 V⟵V ∪ f vig
8 end
9 Sort V in non-increasing order according to their

availableDedgree.
10 E⟵Ø
11 while vo: availableDegree
12 k⟵ vo:availableDegree
13 u⟵ v0
14 for i = 1 : i ≤ k do
15 v⟵ vi
16 E⟵E  ∪ f u, v g
17 u.availableDegree −−
18 v.availableDegree −−
19 end
20 Shuffle V
21 Sort nodes in V in non-increasing order
22 according to its availableDegree.
23 end
24 end

Algorithm 5: Building graphs based on Havel-Hakimi.
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dense graphs. In this case, we confirm our previous observa-
tion that when graphs have similar density values, the aver-
age packet delay is not affected even if the rest of
parameters vary.

6. Conclusions

In this work, we consider a WSN in hostile environments
where many links between neighbor nodes are unreliable
and, hence, cannot be used to establish direct communication
among them. Based on this environment, we propose to map
the topology of the network to specific graphs with different
characteristics such as cluster coefficient, degree distribution,
A.D., and diameter. We propose to use these properties to
evaluate the performance of the system beforehand in terms
of average buffer size and average packet delay by using an
approximation methodology that greatly simplifies the analyt-
ical framework. We validate the accuracy of the approxima-
tion by comparing to extensive simulation results showing
an absolute error lower than 5% for most results.

From the different graphs used to represent the topol-
ogy of the network, we can see that the only property of
its graph that clearly affects the system performance in
terms of average buffer size and packet delay are the
values of the A.D. degree distribution does not have a rel-
evant role in the performance of the system. However, not
all values of A.D. can be achieved with all of the consid-
ered distributions. For example, with exponential and
power law distributions, we can achieve a minimum A.D.
value much larger than the ones we can achieve with the
rest of the distributions. This is because the first two
belong to graphs less dense than the ones we can create
with the rest of the distributions.

In future works, we will focus on developing closed
expressions for the packet arrival probabilities to provide
closed expressions on the average end-to-end packet
delay.

Appendix

In this appendix, we present some useful algorithms used
throughout the paper. First, we present the theorem that
gives a sufficient condition for a graphical sequence to be
forcibly n-connected. After this, Algorithm 3 is used to know
whether a list of integers is a graphical potentially connected
degree sequence. Then, we detail Algorithm 4 used to
know if a known-to-be potentially connected degree sequence
is also forcibly connected. Finally, we show Algorithm 5
(Havel-Hakimi) used to build graphs from a graphical
degree sequence.

Theorem 3. Let n ≥ 1 be an integer. Then a graphic sequence
π : d1 ≥ d2≥⋯≥dp is forcibly n−connected if

dk ≥ p − k + n, for every k, k ≥ dn + 2: ð12Þ
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