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Abstract: This work is focused on studying the capabilities of different Monte Carlo tools to complement the Full Energy 

Peak Efficiency (FEPE) calibration procedures of the Environmental Radioactivity Laboratory of the Universitat 

Politècnica de València, UPV. In this frame, detailed models of a High Purity Germanium detector have been 

implemented using MCNP6 and GEANT4. Accordingly, an inter-comparison with experimental values ensures the 

model validation and improves the analysis of the physics phenomena involved. The validation of the models is 

determined by a quantitative comparison between the simulated and the measured efficiencies over the energy range 

under study (59.54 keV – 1836.01 keV). The results show discrepancies between both Monte Carlo tools for 139Ce, 88Y 

and 60Co as GEANT4 is able to simulate the coincidence summing effect of these radionuclides.  

 

1. Introduction 

 

High Purity Germanium (HPGe) detectors are widely used in gamma-ray spectrometry for the determination of 

radionuclides and their activity in environmental samples. To obtain accurate measurements, a detailed characterization 

of the efficiency response is required. In this frame, computational techniques can be applied joint to experimental 

procedures to obtain the efficiency calibration curve of a detector system. The Full Energy Peak Efficiency (FEPE) can 

be performed using both Monte Carlo and deterministic-approach codes. In the literature, several codes and tools based 

on the Monte Carlo method can be found: GESPECOR [Sima et al., 2001], MCNP [Briesmeister, 1997], GEANT [Brun 

et al., 1986], PENELOPE [Salvat et al., 2003], EFFTRAN [Vidmar, 2005], EGS4 [Nelson et al, 1985], CYLTRAN 

[Halbleib and Mehlhorn, 1986] and FLUKA [Ferrari et al, 2005]. Deterministic-approach codes can be also suitable for 

this purpose: ETNA [Piton et al., 2000] and LABSOCS [Bronson et al., 2003]. The comparison between simulation and 

experimental efficiency curves, normally present discrepancies that can be attributed to the modelization of the geometry 

or other aspects like the dead layer thickness of the germanium crystal [García-Talavera et al., 2000, Jurado-Vargas et al., 

2006]. Therefore, it is mandatory to carry out a realistic geometric characterization considering the data provided by the 

manufacturer. 

This work is focused on studying the capabilities of two widely accepted Monte Carlo tools, MCNP6 and GEANT4 

[Ródenas et al., 2000, Hurtado et al., 2004], to complement the experimental calibration procedures of the Environmental 

Radioactivity Laboratory of the Universitat Politècnica de València (UPV). Accordingly, an inter-comparison between 

models ensures the validation of the model and improves the analysis of the physycs phenomena involved. In this context, 

the main difference between both codes is that GEANT4 simulates the radioactive decay of a radionuclide by using the 

Radioactive Decay Module (RDM) [Hurtado et al.,2009]. Moreover, the RDM allows simulating the Coincidence 

Summing (CS) effect present in the experimental measurements [Hauf et al., 2013]. This phenomenon takes places when, 

in close geometries, a radionuclide emits photons in cascade reaching the detector within the resolution time. 

Consequently, the efficiency of those radionuclides and their activity could be affected. 

 

2. Materials and Methods 

2.1. Experimental set-up 

The experimental set-up consists of a gamma spectrometer with an HPGe detector (ORTEC GMX series) and a 

multi-channel analyzer with 8192 channels. The system has a relative efficiency of 40% at 1.33 MeV and a nominal 

resolution of 0.76 keV and 2 keV at 5.9 keV and 1.332 MeV, respectively. Table 1 describes the geometry features of the 

detector provided by the manufacturer. 

 
Table 1: Geometric features of the detector (manufacturer values) 

Parameter Nominal values (mm) 

Ge crystal diameter 60 

Ge crystal total length 71.1 

Inner core depth 63.1 

Inner core radius 4.5 

http://www.upv.es/entidades/LRA/


 

External Dead Layer 0.0003 

Inner core Dead layer 0.7 

Be windows distance 4.0 

Be windows thickness 0.5 

Al/Mylar thickness 0.03/0.03 

Al cup thickness 1.0 

Al holder thickness 0.8 

 

The experimental measurements have been performed using a multigamma-ray standard source containing the 

following radionuclides: 241Am, 109Cd, 57Co, 139Ce, 113Sn, 85Sr, 137Cs, 54Mn, 88Y, 65Zn, and 60Co. Gamma-ray spectra has 

been analyzed using Gamma Vision Software [GammaVision V5.10, ORTEC] and the Full Energy Peak Efficiency 

(FEPE), ε, for a given photon energy has been obtained from the following expression: 

𝜀 =
𝑁

𝑡 ∙ 𝐴 ∙ 𝑃𝛾
 (1) 

where N is the number of net counts in the peak, A is the source activity, t the counting time and P is the photon emission 

probability. 

The experimental detector efficiency is determined for different five samples: 25 ml Petri box filled with water 

(PS25W), 100 ml Petri boxes filled with water, sea sand and zirconium sand (PS100W, PS100SS, PS100ZrS) and 500 ml 

Marinelli beaker filled with water (MS500W). The composition of the sands (Table 2) has been analyzed by electronic 

microscopy. In each sample, the multigamma standard source has been homogeneously distributed. The maximum 

relative errors of the experimental measurements were about 2.4%. 

 

Table 2: Composition and density of sea sand and zirconium sand. 

 Sea sand Zr sand 

Silicon dioxide 86.57% 57.33% 

Calcium 11.48% - 

Aluminum 1.95% - 

Zirconium - 42.67% 

density 1.65 g/cm3 3.5 g/cm3 

 

2.2. Monte Carlo models 

MCNP6 (Monte Carlo N-Particles Transport Code) [MCNP6TM Monte Carlo team, 2013] is a Monte Carlo 

transport code system for coupled neutron, photon and electron, with all the corresponding cross-section data to transport 

calculation. The F8 tally for photons and electrons has been used to collect the deposited energy in the active crystal 

(Pulse Height Distribution, PHD) per emitted gamma particle. This tally provides the energy distribution of the pulses 

created in the active germanium crystal. The energy resolution has been simulated using the Gaussian Energy Broadening 

(GEB) card, obtaining a realistic spectrum performance. The GEB card characterizes the energy resolution using the 

following expression: 

𝐹𝑊𝐻𝑀(𝐸) = 𝑎 + 𝑏 ∙ √𝐸 + 𝑐 ∙ 𝐸2 (2) 

where E is the energy of the photon, a=0.00088692 MeV, b=0.00033971 MeV1/2 and c= 5.0257 MeV-1 [MCNP6 User’s 

Manual, 2013]. These constants are determined by mathematical regression from the experimental data. This option, 

along with the GEB card, provides a gamma spectrum comparable to the experimental one as the relation channel-energy 

and energy-resolution is the same. The efficiency calculation has been performed applying the same method as the 

experimental measurements by importing the MCNP6 output into Gamma Vision.  

The Geant4 toolkit [Agostinelli et al., 2003] presents an object-oriented programing that allows choosing among a wide 

range of physical processes or implementing them according to the experiment needs. The physics processes activated in 

the detector model of this work are the following: Auger electron production, Compton and Rayleigh scattering, pair 

production, photoelectric effect for photons, ionization processes and Bremsstrahlung for secondary particles. To simulate 

the coincidence summing effect and the decay of the different radionuclides, the Radioactive Decay Module (RDM, 

G4RadioactiveDecay class) was used [Truscott et al., 2002]. The RDM simulates radioactive decays by sampling 

secondary particles on a per-decay basis, using branching ratios from the Evaluated Nuclear Structure Datafile (ENSDF). 

The data output has been distributed into 8192 channels from 0 to 2040 keV simulating the multi-channel analyzer 

used in the experimental set-up and considering the energy calibration obtained with Gamma Vision from the 

experimental measurements. A variance reduction method consisting of a cut-off for secondary particles with energies 

below 10 keV (MCNP6) and a mean free path below 10 µm (GEANT4) has been applied. The number of histories in each 

simulation has been established in 20 million to achieve statistical errors lower than the 1.5%. 

Both Monte Carlo tools have been used to analyze the detector efficiency response of the system. Parameters such 

as the distance between the detector window and the germanium crystal, the dead layer thickness or the crystal volume, 

among others, are of relevance in the efficiency calibration and must be characterized [Chham et al., 2015]. A model of 



 

the detector was performed in a previous work [Giubrone et al., 2016], using GEANT4 to simulate the efficiency 

calibration curves for the PS25W, PS100W and PS100SS samples using the manufacturer’s parameters. In that model, 

the crystal shape and the inner core were simplified to a perfect cylinder, increasing the active detection volume and thus, 

overestimating the efficiencies. The external dead layer surrounding the crystal was taken as constant with a value of 75 

µm and without differencing the top from the lateral or the upper edges zones. The inner core dead layer was kept at 700 

µm (manufacturer’s value). 

In this work an optimized model of the detector has been implemented using MCNP6 and GEANT4 for all the 

samples mentioned in section 2.1. The geometry of the germanium crystal is now modeled considering the curvature of 

the edges as well as that of the inner core, obtaining a more realistic model (Fig. 1). The external dead layer has been 

characterized studying the efficiency of the 241Am (59.5 keV) due to its low penetration and dividing the crystal surface 

into three different zones: top, upper edges and side/bottom. The characterization of the inner core dead layer as well as 

the crystal volume has been performed using mainly medium and high energies, from 113Sn (391.7 keV) to 65Zn (1115.5 

keV). The window-to-crystal distance, as it affects the solid angle between the sample and the detector, has required all 

the energy range under study. The final optimized parameters are shown in Table 3. 

The main difference between both MC tools regarding this work is the fact that MCNP6 code simulates the gamma 

particles emissions without considering the coincidence summing effect. Therefore, simulated and experimental 

efficiencies cannot be compared for those radionuclides with CS effect (139Ce, 88Y and 60Co) and it is not possible to 

characterize the detector for high energies (1173.2 – 1836.0 keV) using only MCNP6.  

 

Table 3: Optimized geometric parameter 

Parameter 
Manufacturer values 

(mm) 

Hole radius 7.5 

Top Ge dead layer 0.045 

Edges Ge dead layer 0.025 

Side Ge dead layer 0.130 

Bottom Ge dead layer 0.130 

Inner Ge dead layer 1.7 

Window distance 4.0 

 

 

 

Fig. 1: Detector model. The scheme is not to scale 
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3. Results 

 

Fig. 2 shows the experimental efficiencies for the three geometries with the multi-gamma standard source in a 

water matrix. The MS500W has the lowest efficiency as it contains a more dispersed source than the other two geometries. 

At high energies, efficiencies for MS500W and PS100W are almost overlapped. On the other hand, the PS25W represents 

the opposite case, with the highest efficiencies being more likely to a point source. 

Table 4 summarizes the simulated to experimental efficiency ratios obtained with MCNP6 and GEANT4 for the 

PS25W, PS100W and MS500W samples. The simulated-to-experimental efficiency ratios are within the acceptance range 

(±5%) except for 109Cd and 57Co in the MS500W sample. For the radionuclides with the CS effect, 139Ce, 88Y and 60Co, 

MCNP6 overestimates the efficiency obtaining ratios out of bounds. In order to achieve realistic and comparable results 

for these radionuclides, the use of GEANT4 is required as it can simulate this phenomenon activating the 

G4RadioactiveDecay class. If the RDM is deactivated, the efficiencies obtained for these radionuclides are comparable 

with those calculated by MCNP6 (Table 5). 

Table 6 summarizes the results for each sand sample. PS100SS results are in good agreement with the experimental 

efficiencies for all the energy range, taking into account the limitation of MCNP6 for the CS effect. PS100ZrS presents 

similar results than the sea sand matrix except for 113Sn in both codes (ratios of 1.07 and 1.06). The ratio obtained with 

MCNP6 for the 139Ce (165.9 keV) is considerably lower (1.06) in the Zr sand sample and almost the same than the one 

obtained with GEANT4 (1.04). This result implies that the CS effect is probably attenuated due to the higher density of 

this sand (3.5 g/cm3), increasing the auto absorption effect for low energies.  

 

 

Fig. 2: Experimental Efficiencies (water matrix) 

 

Table 4: Simulated to Experimental efficiency ratios (**) MCNP6 & GEANT4; PS25W, PS100W; MS500W 

* 88Y (PS25W) and 85Sr (MS500W) present high uncertainties in the experimental measurements. Therefore, the FEPE experimental calibration has 

been performed without considering these efficiencies. 

** Maximum relative error of 2.83% (𝐸𝑚𝑎𝑥 = √2.42 + 1.52) 

 

 

 

Radionuclide E (keV) 

PS25W PS100W MS500W 

Exp. 

Efficiency 

MCNP6 

ratio 

GEANT4 

ratio 

Exp. 

Efficiency 

MCNP6 

ratio 

GEANT4 

ratio 

Exp. 

Efficiency 

MCNP6 

ratio 

GEANT4 

ratio 
241Am 59.5 0.1692 0.99 0.99 0.0915 0.99 0.98 0.0662 1.02 1.02 
109Cd 88.0 0.1735 1.00 0.99 0.0972 0.99 0.98 0.0740 1.06 1.06 
57Co 122.1 0.1584 1.01 1.01 0.0899 1.02 1.01 0.0733 1.05 1.07 
139Ce 165.9 0.1151 1.18 1.05 0.0717 1.13 1.03 0.0711 1.16 1.04 
113Sn 391.7 0.0633 0.99 0.99 0.0396 1.01 0.99 0.0352 1.01 1.03 
85Sr 514.0 0.0499 0.98 0.98 0.0306 1.04 1.02 -* - - 

137Cs 661.7 0.0405 0.97 0.97 0.0264 0.95 0.97 0.0231 1.01 1.02 
54Mn 834.8 0.0333 0.97 0.97 0.0219 0.97 0.96 0.0192 1.02 1.03 

88Y 898.0 -* - - 0.0185 1.08 0.97 0.0174 1.06 0.97 
65Zn 1115.5 0.0261 0.99 0.98 0.0174 0.98 0.98 0.0154 1.02 1.03 
60Co 1173.2 0.0225 1.09 0.95 0.0154 1.07 0.96 0.0134 1.09 1.03 
60Co 1332.5 0.0196 1.14 0.98 0.0137 1.07 0.97 0.0121 1.11 1.04 
88Y 1836.0 0.0145 1.15 0.99 0.0106 1.07 0.96 0.0098 1.07 0.98 



 

 

Table 5: Simulated-to-efficiency ratios for 139Ce, 88Y and 60Co; PS100W; MCNP6 & GEANT4 (without RDM). 

Radionuclide E (keV) MCNP6 GEANT4 
139Ce 165.9 1.13 1.12 

88Y 898.0 1.08 1.08 
60Co 1173.2 1.07 1.06 
60Co 1332.5 1.07 1.08 
88Y 1836.0 1.07 1.07 

 

 

Table 6: Simulated to Experimental efficiency ratios (**) MCNP6 & GEANT4; PS100SS, PS100ZrS 

 

 

 

 

 

 

 

 
 
 

 

 
 

 

 
 

* The Zr sand, is a mineral sample containing 238U and 232Th. X-rays from Bismuth, from both decay series, with an energy of 87.35 keV overlaps 

gamma particles at 88.0 keV (109Cd) being impossible to difference the contribution of each one without avoiding high uncertainty. Therefore, the 
experimental efficiency calibration has been performed without considering the efficiency of the 109Cd. 

** Maximum relative error of 2.83% (𝐸𝑚𝑎𝑥 = √2.42 + 1.52) 

 

4. Conclusions 

 

MCNP6 code and GEANT4 toolkit have been used to obtain the FEPE calibration of an HPGe detector for 

environmental radioactivity measurements. Simulations of different geometries and matrices have been performed to 

validate the model by two complementary methods: comparison between simulated and experimental efficiencies and 

comparing the simulated-to-efficiency ratios obtained with both MC programs. 

The simulated to experimental efficiency ratios obtained with MCNP6 and GEANT4 for each sample are within 

the acceptance range of ±5% from 59.5 to 1115.52 keV except for 109Cd and 57Co in MS500W sample and 113Sn in 

PS100ZrS sample. Both tools are reliable to the FEPE calibration in that energy range for the HPGe detector and the 

multi-gamma standard source used in this particular work. However, from 1173.2 to 1836.0 keV (60Co and 88Y), as these 

radionuclides have coincidence summing effect, only GEANT4 is able to properly obtaining the efficiency curve as it 

simulates this effect using the RDM.  

On the other hand, comparing MCNP6 and GEANT4 efficiencies, both MC programs show almost exactly ratios 

for monoenergetic radionuclides in each sample regardless the geometry or the matrix. Moreover, results show that the 

resolution, modeled only in MCNP6 simulations, has barely any effect on the efficiency values. These results contribute 

to validate the optimized detector model not only because of the good agreement with the experimental data but between 

both MC tools.   

The particular case of 139Ce in the PS100ZrS shows a ratio of 1.06 and 1.04 for MCNP6 and GEANT4, 

respectively. This result indicates that, probably, the summing-out effect for this radionuclide (X-ray-gamma) is 

attenuated due to the high density of the sand. 

The use of realistic Monte Carlo HPGe detectors models will lead to replace experimental measures by simulations 

with the consequent waste reduction and the simplification of working procedures in the laboratory. 
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Radionuclide 
E 

(keV) 

PS100SS PS100ZrS 

Exp. 

Efficiency 

MCNP6 

ratio 

GEANT4 

ratio 

Exp. 

Efficiency 

MCNP6 

ratio 

GEANT4 

ratio 
241Am 59.5 0.0715 1.02 1.00 0.0089 1.04 1.01 
109Cd 88.0 0.0831 1.03 1.02 -* - - 
57Co 122.1 0.0800 1.04 1.04 0.0382 1.05 1.05 
139Ce 165.9 0.0682 1.15 1.04 0.0454 1.06 1.04 
113Sn 391.7 0.0364 1.05 1.03 0.0291 1.07 1.06 
85Sr 514.0 0.0297 0.97 1.00 0.0257 0.99 0.98 

137Cs 661.7 0.0247 0.99 0.98 0.0212 0.99 0.99 
54Mn 834.8 0.0205 1.00 0.99 0.0183 0.98 0.98 

88Y 898.0 0.0178 1.09 0.97 0.0158 1.08 0.96 
65Zn 1115.5 0.0164 1.02 1.00 0.0147 1.00 0.99 
60Co 1173.2 0.0143 1.11 1.00 0.0131 1.08 0.97 
60Co 1332.5 0.0130 1.10 0.98 0.0118 1.09 0.97 
88Y 1836.0 0.0102 1.08 0.97 0.0095 1.07 0.95 
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