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Abstract  

Metal organic frameworks (MOFs) are widely used as solid catalysts in the liquid 

phase under batch mode conditions. Moving towards the development of industrial processes, 

data of the performance of MOFs under continuous flow operation would be desirable. This 

feature article describes the state of the art regarding the use of MOFs as catalysts of 

continuous flow processes, paying special attention to the issue of catalyst stability. The 

review is organized according to the type of bond that is formed in the reaction from C-C, C-

O to C-N bonds. Examples are presented of MOF catalysts that are stable under continuous 

flow operation, even for those structures that are not very stable such as Cu3(BTC)2. It can be 

anticipated that there will be a growth in the percentage of studies carried out under 

continuous flow with the final goal of implementing a commercial chemical process using 

MOFs as catalyst.   
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1. Introduction 

Metal organic frameworks (MOFs) in where metallic nodes of one or few metal 

cations are coordinated to rigid organic linkers are becoming increasingly used in 

heterogeneous catalysis for liquid phase reactions under moderate conditions.
1-5

 The main 

reason to explain why these porous crystalline materials have gained such large importance 

as solid catalysts include their large surface area and porosity,
6, 7

 easy and reliable 

preparation, synthesis by design
8, 9

 and a large proportion of transition metals in their 

composition. There are many examples of MOFs in where the metal nodes contain some 

coordination positions not compromised with the construction of the lattice. These 

coordination positions are typically occupied by solvent molecules or other exchangeable 

ligands that can be easily removed, upon activation, generally by thermal treatment under 

vacuum, resulting in coordinatively unsaturated positions
10, 11

 around the metal clusters that 

can act as Lewis sites.
12

 In addition to exchangeable ligands, MOFs always contain a certain 

density of defects in which the metal ions are not well coordinated and these defects can 

behave also as catalytic sites.
13-16

 

 Compared to other porous solids used in heterogeneous catalysis,
17-20

 and zeolites
21

 

in particular, MOFs offer considerable flexibility in design and the possibility of select 

structures with large pore dimension in the range of mesopores and low framework density.
22, 

23
 MOFs are considered as the materials with the highest open porosity and the record of free 

empty space in the structure that often is over 50 % volume.
24

  

 Another especially important feature of MOFs is the large variety of transition metals 

and ligands that can be employed in their preparation.
25-27

 Moreover, by knowing the 

directionality of the coordination bonds around the metal clusters and the geometry and 

dimensions of the organic linkers, the topology of the voids in MOFs can be predicted.
28, 29
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This possibility to anticipate pore size and pore geometry in MOFs has led to the concept of 

synthesis by design meaning that there is a considerable predictive understanding in the 

porosity in MOFs.
30-32

  

For gas phase reactions, particularly in refining and petrochemical industry, zeolites 

and porous aluminosilicates are the preferable solid catalysts.
33-35

 However, due to the limited 

pore size of conventional zeolites the activity of these crystalline aluminosilicates in liquid 

phase reaction is considerably much lower
19

 and there was an interest in the development of 

other classes of porous solid catalysts for this type of reactions, particularly for the 

production of fine chemicals
36, 37

 where the size of the molecules are larger than normal 

alkanes found in refining and petrochemistry. In this context, since the first reports of MOF 

synthesis, it was clear that these materials should be very promising as solid catalysts, 

complementing zeolites, particularly in the liquid phase.
38

 

However, in spite of the previously commented positive structural features exhibited 

by MOF, one of the limiting factors that has hampered applications of MOFs at industrial 

scale has been the poor structural stability of many MOFs.
5, 39, 40

 In contrast to zeolites that 

can be reactivated by combustion of the organic matter at temperatures above 500 
o
C under 

air,
41, 42

 MOFs cannot stand thermal treatments above 400 
o
C and in many cases, even at 

much lower temperature. Besides thermal stability, MOFs can also be unstable in the 

presence of certain acidic/basic conditions, aggressive reagents or even solvents.
43

 For 

instance, MOFs can stand aqueous solutions in a certain range of pH value and amines and 

even carboxylic acids can deteriorate the structure of MOFs. 

 However, although the lack of stability is well known in the area, there are certain 

structures that are remarkably robust and stable both upon heating and in the presence of 

chemical reagents. Examples of these stable MOFs include certain materials of the MIL 
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series
44, 45

 (MIL: Materials Institute of Lavoisier) such as MIL-100(Cr), MIL-101(Cr) and 

different MOFs of Zr-based nodes, particularly UiO-66
9, 46, 47

 (UiO: University of Oslo). In 

the last case, it is possible to heat at 400 
o
C causing a reversible dehydration of the 

Zr6O4(OH)4 nodes, but without causing the collapse of the crystal structure. In the case of 

MIL-101, it is possible to perform harsh reactions at the organic linker such as sulfonation 

with highly corrosive chlorosulfonic acid without altering the crystallinity of the sample. The 

crystal structure of UiO-66 consists of a cubic framework of cationic Zr6O4(OH)4 nodes and 

1,4-benzenedicarboxylate (BDC) as linkers.
48

 UiO-66 is one of the most robust MOFs. UiO-

66 is often synthesised in the presence of modulators to introduce structural defects or 

increase crystallinity.
49

 Besides, it also can be subjected to post-synthetic modifications
50

 to 

tune further the active sites. The combination of these interesting properties together with 

high surface area and large pore size makes UiO-66 an attractive material for catalytic 

applications.
47, 51

  In many other cases, experimental evidence has shown that the crystal 

structure can stand the reaction conditions and they are acting as catalytically stable 

materials.
52

 Table 1 summarizes the most commonly used MOFs in catalysis indicating their 

metal ions/node, linkers, typical BET surface area and pore volume. 

Table 1. Some of the most often used MOF catalysts with their structural properties. 

Catalyst Metal ion/ 

node 

Linker BET surface 

area (m
2
/g)

a
 

Pore volume 

(cm
3
/g)

a
 

MIL-101(Cr) Cr
3+

 1,4-benzenedicarboxylic 

acid (BDC) 

2750 2.2 

MIL-100(Fe) Fe
3+

 1,3,5-

benzenetricarboxylic 

acid (BTC) 

2000 1.2 

Cu3(BTC)2 Cu
2+

 BTC 1200 0.7 

UiO-66 Zr6O4(OH)4 BDC 1250 0.5 
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a
These values are typical data reported in the literature and they may vary depending on the 

measurements. 

However most of the data on catalyst stability reported so far are based on batch 

conditions, evaluating the performance of the material in a series of consecutive reuses of the 

same sample.
53

 Reusability tests typically consider the initial reaction rates, conversions and 

selectivity values of the same sample submitted to consecutive runs. Catalytic tests are 

combined with complimentary analytical and structural characterization of the used solid 

showing that the crystallinity is preserved upon successive reuses and that the metal content 

of the materials has remained unchanged. 

 In spite of the considerable information gathered for the activity of MOFs as solid 

catalysts in liquid phase reactions, application of these materials for large scale reactions in 

industry still remains elusive. Implementation of commercial processes using MOFs as 

catalysts for the production of fine chemicals in the liquid phase is a long sought goal pursued 

in this field that will serve to demonstrate the superiority of MOF solid catalysts in liquid 

phase reactions over other alternative solid catalysts.   

Towards this final goal, one necessary step is to determine the catalytic behaviour of 

MOFs under continuous flow operation. Industrial processes typically prefer continuous flow 

operation versus batch reactions, since the former represents an intensive process, resulting in 

higher productivity.
54-56

 Compared to batch conditions, operation under continuous flow 

provides unique information about catalyst stability and the main deactivation pathways. In 

this context, it is remarkable that there is a paucity of information about the behaviour of 

MOFs as catalysts under continuous flow conditions in the liquid phase. Studies of the 

catalytic behaviour of MOFs under continuous flow can surely serve to demonstrate their 

stability under reaction conditions. 
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Compared to batch reactions, continuous flow present significant advantages, 

including high ratio of surface-to-volume, enhanced heat transfer and precise temperature 

control, higher reaction rates, operation under extreme conditions, safer handling of highly 

exothermic, explosive, or toxic reagents, good control of the residence time, easy automation 

and scale-up and cost effectiveness.  

Considering these beneficial advantages of continuous flow reactions compared to 

batch processes, many industrial process including pharmaceutical products are being 

manufactured under continuous flow mainly due to the easy recovery of products from 

catalysts and the remarkable process intensification in terms of production per unit of time. 

On other hand, efficient separation of the reaction mixture from the solid catalyst presents he 

two-fold advantages of isolating the final product in high purity and minimizing catalyst 

deactivation by poisoning. Furthermore, selectivity can be higher under continuous flow 

conditions by arresting consecutive reactions that could occur in the primary products. 

Solid catalyst stability in batch reactions is commonly ascertained by recovering the 

solid after the reaction and reusing in a subsequent run, measuring initial reaction rates and 

final conversions at a certain time. Although it is considered as the most convenient way to 

study catalyst stability in batch reaction, this method suffers from several disadvantages 

including unavoidable catalyst loss and tedious and time consuming workup. On other hand, 

the stability of a solid catalyst can easily be monitored under continuous flow operation by 

measuring the decay in conversion over the time on stream. Chart 1 shows examples of 

continuous flow reactors namely, capillary, packed-bed, honeycomb and monolithic reactors. 

These reactors are classified based on the dimension of the inner diameter varying between 

micro (10–500 μm) or mesofluidic (500 μm up to few mm) reactors and on the arrangement 

of the reactor channels.
57, 58

 It should be noted at this point that the previous classification is 

has been often employed for continuous flow process with solid catalysts and that the number 
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of reports using MOFs as solid catalysts for liquid-phase continuous flow is still very limited, 

particularly compared to the use of MOFs under batch conditions.  

 

Chart 1. A representation of most common reactor types for batch and continuous-flow 

reactions. Particles, layer or body of the catalyst are shown in grey. 

Development of continuous flow reactors is an important technological aspect for 

both synthetic chemists and process engineering.
57, 59-67

 Interestingly, various continuous flow 

reactors and processes have been reported for the synthesis of drug molecules through cross 

coupling reactions, including Suzuki-Miyaura, Sonogashira and Heck,
68, 69

 as well as for 

hydrogenation of alkynes
70

 and aerobic oxidations.
71

 Recently, Pd@MIL-101-NH2 was 

packed in a micro-flow reactor and employed as catalyst for the preparation of series of 

biaryls of commercial importance under continuous flow, exhibiting a remarkable stability up 

to 54 h.
72

  

Very recently, the main achievements, challenges and limitations regarding the 

synthesis of fine chemicals, pharmaceuticals and bulk chemicals under continuous flow has 
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been reviewed and readers are encouraged to refer this article for a detailed overview.
73

 In 

another review article, the use of MOFs and covalent organic frameworks packed in columns 

as stationary phase in chromatographic separation as well as continuous flow synthesis was 

discussed.
74

 In this context, the main objective of the present article is to show the relevance 

and opportunity for developing liquid-phase continuous flow reactions using MOFs as 

catalysts to achieve the final goal of implementing commercial synthetic processes based on 

these porous materials.  

Due to the significant advances in the field of micro- and mesoreactors, several 

examples of the synthesis of drugs and fine chemicals using continuous flow processes have 

recently been described. Some of the main reasons that make continuous flow preferable to 

batch processes include higher productivity for a given period of time, but also better yields 

or selectivity and safer process together with less environmental impact. Although batch 

reactions are more versatile and flexible being adequate for the first stages of catalytic studies 

at laboratory scale, they are less adequate than continuous flow processes for scaling up and 

present practical complications to implement adequate heat and mass transfer, which may 

heavily hinder productivity. Continuous flow processes are also better suited for automation 

and requires lesser manpower. Thus, continuous flow systems are characterised by reduced 

costs and maximize the economic viability of new drugs and products.
75-78

 For these reasons, 

studies under continuous flow conditions for liquid phase reaction generally correspond to 

reactions of potential industrial interest and are based on stable catalysts.  

The purpose of the present review is to cover the existing literature on the use of 

MOFs as catalysts under continuous flow operation in liquid phase reactions. The existing 

literature has been reviewed paying particular emphasis in the most recent achievements, 

especially in the use of MOFs in enantioselective continuous flow processes.
79

 It will be 

shown that in several cases, remarkably stable MOFs catalysts for certain reactions under 
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continuous flow such as acetalization, cyclocondensations, CO2 insertion and alcohol 

oxidation have been reported, illustrating the possibility to go one step further towards the 

implementation of MOFs as catalysts for large scale processes. Recently, Lin and co-workers 

have published a perspective on the various strategies employed in gas-phase reactions using 

MOFs as solid catalysts, discussing the various limiting factors in this type of processes.
80

 

Hence, the present review is exclusively focussed on the use of MOFs as catalysts in 

continuous flow reactions in the liquid phase, focussing mainly on activity and stability. 

Emphasis will be made in comparing the performance of MOFs as catalysts with other solid 

catalysts. Unfortunately, given the incipient development level of MOFs in continuous flow, 

the current lack of information makes not possible to provide a fair comparison for every 

reaction. 

 The following sections are organized based the type of bond formed in the final 

product. Emphases are given on the structural aspects of the MOF catalysts employed for the 

continuous flow processes, reactant conversion level, product selectivities, productivity data 

and catalyst stability based on catalytic data and on characterization of the catalyst after 

extensive use by analytical or microscopic techniques. Table 2 provides an overview of 

reactions that have been screened up to now under continuous flow in the liquid phase using 

MOFs as solid catalysts, the reactor type employed and the activity and stability reached.  

Table 2. List of liquid-phase continuous flow reactions using MOFs as heterogeneous 

catalysts.  

Catalyst Reactor type Reaction Activity Stability Ref. 

[Me2NH2][Mn2(L
1
)

(H2O)2]·2H2O·2D

MA
a 

stainless steel 

column filled 

with finely 

grounded solid 

Friedel-

Crafts 

reaction 

89-92 % yield 

with 91-94 % ee 

after 12 h  time on 

stream (TOS) 

Reused 

seven times 

81
 

nano-BIT-58 film
b 70 wt% nano Knoevena 100% conversion Reused 82
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BIT-58 in 

polyacrylonitrile 

fabricated 

by 

electrospinning 

gel 

condensati

on 

three times 

Cu3(BTC)2
c
  mixed matrix 

membranes of 

Cu3(BTC)2 and 

cellulose acetate  

Acetalizati

on 

0.59 mmol min
-1

g 

Cu3(BTC)2
-1

 

TOS of 24 

h 

83
 

Cu3(BTC)2 packed-bed  Acetalizati

on 

3.12 h
-1

 Reuse, 

XRD, BET 

84
 

copper 

hydroxysulfate@C

u3(BTC)2 

flow Acetalizati

on 

87 % yield and 99 

% selectivity 

- 
85

 

MIL-101(Sc) packed-bed CO2 

cycloaddit

ion to 

propylene 

oxide 

Turnover 

frequency (TOF) 

87 h
-1

 

Stable up to 

5 h, XRD 

86
 

Co(CO)4⊂MIL-

101(Cr) 

packed-bed  carbonylat

ion of 

β-lactones 

1300 

molAnhydride·molCo
-

1
 after 6 h 

- 
87

 

UiO-66(Zr) packed-bed methyl 

levulinate 

to γ- 

valerolact

one 

92.3 

mmolGVLg
-1

h
-1

  

TOS = 1 h 

BET, TEM 

88
 

Cu3(BTC)2-

MonoSil
d 

packed-bed (2 

cm length × 6 

cm diameter) 

Friedlande

r 

reaction 

826 g of the 

desired product 

per 

g of Cu3(BTC)2 

per day 

- 
89

 

Pd@MIL-88B-

NH2@nano-SiO2 

packed-bed alcohol 

oxidation 

conversion at 

around 80 %  

Conversion 

almost 

stable for 7 

days 

90
 

UiO-66(Zr,Ti) tubular glass 

column  

oxidative 

desulfuriz

ation of 

thioanisole 

<1 ppm of 

sulphur 

- 
91

 

OPH@MIL-

100(Fe)
e 

plug-flow cascade 

degradatio

retained more 

than 50 % of the 

retained 

more 

92
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n of 

organopho

sphate 

nerve 

agents to 

4-

aminophe

nol 

initial activity 

after nine cycles 

than 50 % 

of the 

initial 

activity 

after nine 

cycles 

a
L

1
 structure in Scheme  1; DMA: N,N-dimethylacetamide. 

b
BIT: Beijing Institute of 

Technology. 
c
BTC: 1,3,5-benzenetricarboxylate. 

d
silica monolith.  

e
OPH: organophosphorous 

hydrolase. 

2. C-C bond formation 

One of the fundamental challenges in heterogeneous catalysis is the appropriate 

design of an efficient catalyst featuring high activity and recyclability without deactivation 

exhibiting an exquisite selectivity. In this regard, stereoselective and enantioselective 

reactions correspond to the most challenging case, due to the structural similarity of the 

products. In a study of catalytic asymmetric induction, Cui and co-workers have recently 

developed high-performance heterogeneous asymmetric catalysts using a ligand design 

strategy. Three porous chiral MOFs with the general formula 

[Me2NH2][Mn2(L
i
)(H2O)2]·2H2O·nDMA (for L

i
 see structure in Figure 1, n =2 or 3) were 

prepared from enantiopure phosphono-carboxylate ligands of 1,1′-biphenol that are 

functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisperfluorophenyl substituents 

at the 3,3′-position.
81

 The carboxylate and phosphonate groups were coordinated to metal 

ions to form crystalline porous networks in where the metal nodes act as Lewis acids, while 

the 3,3′-substituents generate a chiral environment that dictates the stereochemical and 

electronic control over the organic reactions. TGA indicated that these solids are stable up to 

380 
o
C. Chemical stability experiments with acids and bases revealed that the stability 

increases in the order of [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA > 

[Me2NH2][Mn2(L
2
)(H2O)2]·2H2O·3DMA > [Me2NH2][Mn2(L

3
)(H2O)2]·2H2O·3DMA which 
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follows the same order as the increase in the size of the bulky phenyl substituent at the 3,3′-

position of the 1,1′-biphenyl ligands.  

The activity of these chiral solid catalysts was studied in the Friedel-Crafts reaction of 

N-methylindole with methyl(E)-2-oxo-4-phenylbut-3-enoate (Scheme 1). The experimental 

results have shown that [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA exhibits much higher 

activity and stereoselectivity induction ability than the other two solids. 

[Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA gave in chloroform at 30 °C the 1,4-addition 

product in 91 % yield with 96 % ee. Analogously, a wide range of β,γ-unsaturated α-keto 

esters with various electronic properties and different ring sizes were reacted with N-methyl 

or N-benzylindole, achieving the expected products in 84-95 % yields with 91-99.9 % ee. 

The 1,4-addition product was the only product observed in all substrates studied, 1,2-addition 

isomer being not formed. In comparison, the addition of N-methylindole to α-keto esters in 

the presence of [Me2NH2][Mn2(L
2
)(H2O)2]·2H2O·3DMA and 

[Me2NH2][Mn2(L
3
)(H2O)2]·2H2O·3DMA resulted in 73-82 % and 79-84 % yield and 55-74 

% and 71-85 % ee of the products, respectively, which are lower values than with 

[Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA under identical conditions. The enhanced activity 

of [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA is proposed to arise from the o-disubstitution of 

the aromatic ring with strong electron withdrawing -CF3 groups which should favour the  

increase of both the steric encumbrance around the sites and the Lewis acidity of metal ions, 

thereby resulting in a notable enhancement of the reaction rate and the ee values. In contrast, 

the activity of the ligand as well as the metal nodes in solution was lower in terms of yield 

and ee values under identical conditions. In addition, 

[Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA was reused for ten cycles without any decrease in 

its activity, regioselectivity and enantioselectivity. Powder XRD pattern and BET surface 

area of the ten-times reused solid remained unchanged compared to the fresh solid. Hot 
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filtration experiments showed also the absence of leaching of Mn ions. All these 

characterization data indicate the stability of the catalyst under reaction conditions. Further, 

the Friedel-Crafts reaction of trans-β-nitrostyrene with pyrrole (Scheme 1) was also catalyzed 

by [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA solid affording 87 % yield with 97 % ee in 

chloroform at 0 °C. The substrate scope of this solid catalyst was further exploited with other 

aryl-substituted nitroalkenes possessing electron-donating and electron-withdrawing groups 

on the aromatic rings, achieving excellent to high yields (79-93 %) and high 

enantioselectivities (62-97%). [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA MOF promoted 

pyrrole alkylation with stereoselectivities close to the values reached with other 

homogeneous and heterogeneous catalysts based on binaphthyl derived phosphoric acids 

(Table 3).  

Table 3. Comparison of the activity of [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA in Friedel 

Crafts alkylation reaction between pyrrole and t-β-nitrostyrene with other catalysts at room 

temperature. 

Catalyst Yield (%) ee (%) Ref. 

Binol derived phosphoric acid 

chloride (heterogeneous) 

91  96 
93

 

Tridendate Schiff base+Cu 

(homogeneous) 

>99 conv. 93 
94

 

Tridendate Schiff base+Cu 

(homogeneous) 

86 92 
95

 

Anthryl-Binol PA (homogeneous) 93 88 
96
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Figure 1. (a) Structure of the organic ligands H5L
1
-H5L

3
 employed in the synthesis of chiral 

MOFs; (b) Construction of enantioselectively pure MOFs from dimeric 

[Mn2(CO2)4(PO4)(H2O)2] linked by H5L to give 3D networks with fns topology; (c) 

Framework structures of the resulting chiral Mn MOFs with channel diameters of ∼2.5 × 2.5 
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nm
2
 and ∼0.68 × 0.68 nm

2
 along the c-axis (Mn, green polyhedra; O, red; P, yellow; C, 

black; F, light blue. H atoms are omitted for clarity). Reproduced with permission from ref.
81

 

 

Scheme 1. Enantioselective Friedel-Crafts alkylation reactions catalyzed by chiral 

[Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA. 

The performance of [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA was also evaluated 

under continuous flow set up as shown in Figure 2. The continuous flow reaction of N-

methylindole with α-keto esters was performed in a stainless steel column filled with finely 

grounded  [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA (0.4−5 µm) mixed with quartz sand. 

Under optimized flow conditions, a complete conversion of α-keto esters towards the 

formation of 1,4-addition product in 89-92 % yield with 91-94 % ee after a residence time of 

12 h was achieved. The comparison of the batch and flow processes shows that the flow 

process afforded a slight increase in the yield, but a slight decrease in enantioselectivity. This 

lower ee values for the continuous flow process were ascribed to the negative effect of the 

silica needed for packing the catalyst bed in the reactor that introduces adventitious sites 

deteriorating the enantioselectivity.  
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Figure 2. The experimental set up for the fixed bed reactor used for the enantioselective 

Friedel-Crafts reactions between N-methylindole with β,γ-unsaturated α-ketoesters under 

continuous flow conditions using [Me2NH2][Mn2(L
1
)(H2O)2]·2H2O·2DMA as catalyst. 

Yields of 89, 91, 92% with 94, 91, 94% ee was obtained for R2 with 4-MePh, 4-BrPh and 4-

thienyl, respectively. 

One of the key findings in this study is the proposal that the availability of large pore 

size in MOF catalyst assists the distribution of the heat generated during the reaction, 

avoiding coke formation generated by local over heating as observed with zeolites.
97

 This is 

one of the beneficial advantages of using MOFs as heterogeneous catalysts compared to other 

porous solids with smaller pore size and lower thermal conductivity like zeolites.  

The catalyst of the flow system was reused for seven cycles (each a 24 h cycle) 

without any decrease in activity and selectivity. This is one of the first reports of MOF-based 

heterogeneous asymmetric catalysts for continuous-flow reactions and illustrates the vast 

potential that MOFs offer in this area. 

Knoevenagel condensation between aldehyde and an active methylene compound is a 

very versatile reaction widely used in organic synthesis. In this context, a coordination 

modulation method was developed for the synthesis of nano-sized Ce-MOF through defect 
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engineering and electrospinning process (Figure 3). The nano-szied Ce-MOF was used as 

catalyst in Knoevenagel condensation.
82

 The Ce-BTB MOF (BIT-58; BIT: Beijing Institute 

of Technology) was obtained by coordination between Ce
3+

 as the metal center and 1,3,5-

tris(4-carboxyphenyl)benzene (BTB) as ligand. The crystal size and defects of BIT-58 were 

controlled by the presence of various nitrogen heterocycles such as 1-methylimidazole acting 

as modulator during the synthesis of the material.
98

 BIT-58 possesses a one-dimensional 

channel system with pore diameters of about 1 nm. Ce exists in BIT-58 structure as trivalent 

ion as revealed by XPS and coordinates to nine oxygen atoms as CeO9 cluster. BIT-58 

showed very high chemical and thermal stability. BIT-58 was stable at temperatures as high 

as 490 
o
C under N2 and 400 

o
C under air. The crystallite size of BIT-58 powders was adjusted 

by treating with 1-methylimidazole as modulator as well as monodendate ligand that 

competes with the coordination sites and controls the growth of MOF crystals.
99

 The average 

particle size of BIT-58 was greatly reduced from 25 µm to 30 nm, while preserving the 

crystallinity, rendering nano-BIT-58 samples.  
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Figure 3. Representation of the coordination modulation concept for lanthanide MOF 

synthesis of NPs and fabrication of a catalyst film by electrospinning. Reproduced with 

permission from ref.
82

 

Gas adsorption measurements indicated that nano-BIT-58 showed a slightly higher 

BET surface area of 1169 m
2
g

-1
 than BIT-58 (1075 m

2
g

-1
). Although, the micropore volume 

of nano-BIT-58 (0.39 cm
3
g

-1
, <2 nm) is similar as that BIT-58 (0.40 cm

3
g

-1
, <2 nm), the 

mesopore volume of nano-BIT-58 (0.35 cm
3
g

-1
, 2-40 nm) was around seven times bigger 

than that of BIT-58 (0.05 cm
3
g

-1
, 2-40 nm). This higher mesopore volume derives from the 

assembly of the nanoparticles (NPs) and is highly beneficial to avoid mass transport 

limitation of substrates to the active sites. Furthermore, NH3-TPD titration curves revealed 

that nano-BIT-58 contains a total acid site amount of 7.06 sites per gram which is 10.5 times 

higher than the micrometric BIT-58 sample (0.67 sites per gram). This enhancement is due to 

the higher density of Lewis acid sites arising from defects (e.g., unsaturated metal sites) and 

higher population of Brönsted acid sites (e.g. uncoordinated carboxy groups) present in the 

crystal structure upon treatment with 1-methylimidazole. It is unclear, however, what exactly 

the number of 7.06 sites per gram correspond in terms of mmols of acid sites per gram. 

The activity of BIT-58 was tested in the Knoevenagel condensation reaction under 

continuous flow conditions. The conversion efficiency for the reaction between benzaldehyde 

and malononitrile of nano-BIT-58 was 100 %, while the activity of BIT-58 was only 78 % 

which clearly indicates the superior activity of the former catalyst due to its higher acidity 

derived from defects. A similar reactivity trend was observed for the other substrates tested. 

Particularly, the conversion of 1-naphthaldehyde was under similar reaction conditions 31 

and 90 % with BIT-58 and nano-BIT-58, whereas the conversion of 9-anthraldehyde was 3 

and 42 % for BIT-58 and nano-BIT-58, respectively. These experimental results nicely agree 
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with lesser diffusion limitations for nano-BIT-58 compared to BIT-58, resulting in a higher 

activity of the former.  

A nano-BIT-58 film (70 wt% nanoBIT-58 in polyacrylonitrile (PAN)) was fabricated 

by electrospinning with intact internal topology of the nano MOF (Figure 4). This film 

displayed nanofiber-interweaved network, where nano-BIT-58 particles are uniformly 

dispersed. The porosity of nano-BIT-58 film was 409 m
2
g

-1
 as evidenced by BET analysis. 

The catalytic efficiency of this film was studied under continuous flow, observing 100 % 

conversion for the Knoevenagel condensation of benzaldehyde and malononitrile after 6 h. 

The catalytic film was recycled at least three times without any decay in activity.  

 

Figure 4. The experimental set up a beaker before and after treating with the coating of nano-

BIT-58 film for Knoevenagel condensation between benzaldehyde and malononitrile at 60 
o
C 

for a residence time of 6 h. 

 In this context, it is worth commenting that besides the importance in organic 

synthesis to form C-C bonds, the Knoevenagel condensation is one of the favourite probe 

reactions that has also been carried out with many other solid catalysts under continuous flow 

reaction, such as amino groups immobilized on mesoporous silicas,
100

 zeolites
101

 and organic 
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polymers,
102

 among others,
103

 and the present data do not allowed to have a clear picture of 

the possible advantages of the use of MOFs as solid catalysts for this process. 

3. C-O bond formation 

Polymer membranes have been extensively employed in continuous flow catalytic 

processes.
104

 Although these organic membranes have high fluxes, they generally suffer from 

short lifetime, low stability and insufficient selectivity.
105

 On other hand, mixed matrix 

membranes (MMMs) have been reported to overcome some of the limitations of polymeric 

membranes by introducing inorganic or organic fillers in the polymer matrix.
106

 MOFs have 

been identified as one of the possible fillers for polymeric membranes due to their large 

surface area, high porosity and tunable structures.
107

 One example of these MMMs containing 

MOF is the combination of Cu3(BTC)2 (BTC: 1,3,5-benzenetricarboxylate) and cellulose 

acetate (CA) that exhibits catalytic activity for the continuous production of acetals through 

acetalization of benzaldehyde.
83

 CA served as the matrix and Cu3(BTC)2 as the filler with 

catalytic activity. In this study, a series of catalytic membranes with different Cu3(BTC)2 

loading were prepared. SEM images revealed that CA fibres are twisted in the membrane and 

that the size of Cu3(BTC)2 particles are around 15-20 µm. It was proved that the MOF 

component was uniformly distributed on the CA membrane. Furthermore, Cu3(BTC)2-based 

MMMs exhibit the characteristic XRD peaks corresponding to CA and to Cu MOF.  

Acetalization of benzaldehyde was performed under continuous flow for 2 h as shown 

in Figure 5, reaching a benzaldehyde conversion of 94 % and an acetal selectivity of 99 %, 

with a productivity value of 0.59 mmol min
-1

gCu3(BTC)2
-1

 in the steady state regime. These 

values were maintained for 24 h, indicating the long-term stability of the catalytic membrane 

(Figure 6). Furthermore, upon increasing of benzaldehyde flow rate, the yields of 

benzaldehyde diethyl acetal were also increased. For example, the conversion of 
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benzaldehyde was found to be 79, 87 and 94 % for flow rates of 0.8, 1.6 and 3.2 µL min
-1

, 

respectively. No conversion of benzaldehyde was observed with CA. Under the same 

conditions, using 3.2 µL min
-1 

of benzaldehyde, the conversion of benzaldehyde was 78 % 

with 99 % selectivity and 99 % conversion with 82 % selectivity using methanol and ethylene 

glycol, respectively. Under identical conditions, Cu3(BTC)2 catalyst showed 16 % conversion 

with 99 % selectivity towards diethyl acetal, revealing the advantages of the MMM. This 

protocol was also extended to the synthesis of a series of acetals, reaching 68 to 94 % 

conversion values at a selectivity of 99 %.  

 

Figure 5. The experimental set-up used for continuous flow experiment for the acetalization 

of benzaldehyde.  

Shape-selective acetalization could also be performed with Cu3(BTC)2 MMM, 

providing an indirect evidence that the reaction takes place inside the pores of the Cu MOF. 

Thus, acetalization of benzaldehyde (0.53 × 0.66 nm
2
) was 94 % since its dimensions were 

smaller than the pore size of Cu3(BTC)2. In contrast, acetalization of 2-naphthaldehyde (0.77 
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× 0.66 nm
2
) gave 56 % yield, while the yield of 9-anthraldehyde (1.03 × 0.66 nm

2
) was only 

18 % under identical conditions. 

 

Figure 6. Time on stream conversion (triangle) and selectivity (square) for acetalization of 

benzaldehyde with ethanol on the Cu3(BTC)2. Reproduced with permission from ref.
83

 

In another precedent, acetalization of benzaldehyde with methanol was reported using 

Cu3(BTC)2 as heterogeneous catalyst, both under batch as well as continuous flow conditions 

(Figure 7).
84

 The focus of this study was to investigate catalyst stability during batch and 

continuous flow conditions. The productivity rate for benzaldehyde dimethyl acetal using 

Cu3(BTC)2 was 5.85×10
-2

  h
-1

 at room temperature after 24 h, while the rate was 6.83×10
-1

 h
-1

 

after 10 h at 70 
o
C. Besides temperature, the productivity rate could be enhanced to 3.12 h

-1
 at 

70 
o
C after 10 h by using ground fine particles of Cu3(BTC)2. A significant decay in the 

catalytic activity was observed after recycling the solid catalyst in repeated batch reactions. 

Under continuous flow tests a sudden deactivation occurs in the first minutes of time on 

stream, but after this period the catalytic activity grows moderately. Powder XRD and BET 

surface area analysis revealed the occurrence of structural as well as morphological changes, 

decreasing the intensities of the peaks and diminishing the surface area and pore volume, 
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respectively. Interestingly, fine particles of Cu3(BTC)2 exhibits the highest continuous flow 

activity and also presents the increase in the catalytic activity over the time on stream after 

the initial deactivation (Figure 8). 

 

Figure 7. Acetalization of benzaldehyde with methanol using Cu3(BTC)2 as solid catalyst 

under continuous flow conditions.  

 

Figure 8. Yield of benzaldehyde dimethyl acetal versus time for the continuous flow tests. 

Reproduced with permission from ref.
84
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A hierarchical yolk/shell copper hydroxysulfate@Cu3(BTC)2 (CHS@Cu3(BTC)2) was 

obtained at room temperature starting from a homogeneous yolk/shell copper hydroxysulfate 

(CHS) template composed of a reactive shell and a stabilized core.
85

 The active shell 

contributed as the source of Cu
2+

 ions that were in situ transformed to a well-defined MOF 

crystal shell upon reacting with 1,3,5-benzenetricarboxylate present in the solution. As result, 

the stabilized core retained during the formation of the MOF shell its own CHS nature. The 

process is illustrated in Figure 9. In the resulting CHS@Cu3(BTC)2, the core was constructed 

of tiny nanoplatelets with a thickness of ∼10 nm, and the outer shell is assembled of closely 

packed nanosheets, each with a thickness of ∼100 nm. The activity of CHS@Cu3(BTC)2 was 

tested in the room temperature acetalization of benzaldehyde with ethanol. Benzaldehyde was 

converted to benzaldehyde diethyl acetal in 88 % yield with 99 % selectivity. A blank in the 

absence of catalyst showed under identical conditions no benzaldehyde conversion, while the 

use of either pure CHS template or pure Cu3(BTC)2 as catalyst reaches a benzaldehyde 

conversion of 80 and 17 %, respectively. The superior activity of yolk/shell 

CHS@Cu3(BTC)2 has been attributed to the CHS core that primarily promotes benzaldehyde 

acetalization, while the Cu3(BTC)2 shell with large surface area behaves as a reactor 

impeding further agglomeration of CHS core and provides multiple access channels for the 

reactants to reach the active CHS surface. The CHS@Cu3(BTC)2 core-shell provides a close 

intimacy of reactants that should accelerate the reaction rate. CHS@Cu3(BTC)2 was reused 

five times without observing any notable change in its efficiency and selectivity. In contrast, 

the activity of CHS catalyst drastically decreased to 28 %. Since the morphology and crystal 

structure of the used CHS and CHS@Cu3(BTC)2 remained unchanged, the significant 

deactivation of CHS was attributed to benzaldehyde adsorption on its surface. This proposal 

was supported by GC-MS analysis. Powder XRD indicated that the phase of the three-months 

stored CHS was transformed from Cu2.5SO4(OH)3·2H2O to Cu4SO4(OH)6 and the 
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morphology is transformed from yolk/shell microsphere to stacked microsheets. On the other 

hand, the phase and morphology of three months stored CHS@Cu3(BTC)2 were retained 

without any change, thus indicating its stability.  

A flow reactor was developed using CHS@Cu3(BTC)2 as immobilized stationary-

phase catalyst (Figure 10). The reactant solution was injected into the reactor and the product 

was recovered at the exit. Under the continuous flow conditions, benzaldehyde was 

effectively converted to benzaldehyde diethyl acetal in 87 % yield and 99 % selectivity in a 

single pass, however, no details on residence time is provided. However, the catalyst stability 

under continuous flow conditions (time on stream) and its activity in terms of TOF remain to 

be determined. 

As in the case of the Knoevenagel reaction, there is a large variety of solid acids that 

have been reported as solid catalysts for the continuous flow acetalization of aldehydes in the 

liquid phase, particularly for their application as biofuels using including sulfonic acid 

resins,
108, 109

 zeolites
110

 and mesoporous silicas having grafted sulfonic acid groups.
111

 Some 

of the reported materials do not undergo deactivation upon time on stream and, therefore, 

there is still a need to find stable MOF that do not undergo the initial strong decline in its 

catalytic activity.   

 

Figure 9. Preparation of yolk/shell CHS@Cu3(BTC)2 catalyst.
85
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Figure 10. Schematic representation and photograph of the flow reactor using self-supported 

CHS@Cu3(BTC)2 catalyst with aldehyde and ethanol molar ratio of 1:80 at a flow rate of 

0.05 mL/min at 25 °C. Reproduced with permission from ref.
85

 

Cyclic carbonates are valuable commodity chemicals that find application as solvents 

for Li-ion batteries (propylene carbonate), as well as monomers for polycarbonate 

synthesis.
112

 One of the conventional synthesis of cyclic carbonates is the reaction of 

phosgene with the corresponding diol (Scheme 2).
113

 An attractive alternative strategy for the 

synthesis of these compounds is the cycloaddition of CO2 to epoxides to yield the 

corresponding cyclic carbonate (Scheme 2),
114

 a reaction with complete atom economy, and 

the use of inexpensive and convenient substrates, avoiding phosgene as reagent.
115

 Recently, 

MIL-101(Cr) has been reported as an effective catalyst for the CO2 cycloaddition to 

propylene oxide to give propylene carbonate under flow conditions without the need of halide 

co-catalyst (Figure 11).
86

 Under steady-state operation after 1 h, the propylene carbonate was 

obtained with a TOF of 20 h
-1

 using TBAB as co-catalyst. This TOF value is equivalent to 

0.033 mmol min
-1

 of propylene carbonate in a single pass, corresponding to 80 % yield 
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(Figure 12). Later, the reaction was performed without TBAB under identical flow 

conditions, reaching under these conditions 54 % yield in a single pass, which is a remarkable 

activity in the absence of bromide co-catalyst. Although these results are promising, the 

residence time is not provided which is very crucial to determine the activity of a solid under 

flow conditions. The effect of synthesis conditions on the catalytic performance of the 

resulting MIL-101(Cr) was studied by preparing MIL-101(Cr) using a series of acids, 

including hydrochloric acid, hydrofluoric acid, acetic acid and also under acid-free 

conditions. These four MIL-101(Cr) samples showed similar catalytic activity with single 

pass yield ranging between 33-41 %. In addition to MIL-101(Cr), analogous isostructural Fe- 

and Sc-based MOFs were also prepared and their activity under identical flow conditions 

tested. MIL-101(Cr) MOF prepared under acid free conditions afforded 41 % yield at steady 

state operation with a TOF of 21 h
-1

. In comparison, MIL-101(Fe) showed a very low activity 

of only 1-2 % yield under analogous conditions. In contrast, the more oxophilic Sc-based 

catalyst, MIL-101(Sc) exhibited  higher initial activity than MIL-101(Cr), with 53 % yield of 

propylene carbonate and TOF value of  87 h
-1

 for MIL-101(Sc) after 1 h. Unfortunately, the 

activity of MIL-101(Sc) decreased rapidly to < 10 % in 3 h. This result indicates catalyst 

deactivation under flow conditions. This was confirmed by recording the powder XRD 

pattern of the spent MIL-101(Sc) catalyst that showed a notable crystallinity loss after 3 h 

under the reaction conditions. In contrast, a minimal loss of crystallinity was seen for MIL-

101(Cr) under analogous conditions, thus showing superior stability of MIL-101(Cr) with 

time on stream. Interestingly, in contrast to the performance of MIL-101(Sc), the activity of 

MIL-100(Sc) was found to be superior than MIL-101(Cr) by affording a product yield of 57 

% and a TOF of 28 h
-1

 at steady state operation under the standard conditions. Furthermore, 

the activity of MIL-100(Sc) was maintained up to 5 h without any decay in its activity.  
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Figure 11 shows the experimental set-up for the packed bed-flow reactor. HPLC 

pump high-pressure mass flow controller was used to supply epoxide stock solution of CO2 

gas respectively. A four-way dynamic mixer was used for homogeneous mixing of reactants. 

The oven was constructed from copper pipe covered in silicone-wrapped heating tape 

connected to a temperature controller. The catalyst bed was made up of a glass tube fitted 

with Vespel/graphite ferrules and packed with a catalyst. A thermocouple was connected to 

the outside surface of the bed for regulating the temperature. Ice bath was attached to control 

the evaporation of solvent.  

 

Figure 11. Schematic representation of packed-bed flow reactor used for the cycloaddition of 

CO2 to epoxides. 

The structure activity relationship in Sc-based MOFs was studied by preparing several 

analogues with different crystal structures and node geometries which include MIL-88D(Sc) 

and MIL-68(Sc). MIL-88D(Sc) exhibit a yield of 11 % and TOF value of 12 h
-1

. Furthermore, 

the activity of MIL-68(Sc) was even lower, affording <1% yield of propylene carbonate 

under similar conditions. These results indicate that the presence of accessible Lewis acidic 
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sites on the metal nodes in these MOF-based catalysts is a key requirement for exhibiting 

activity. 

 

Scheme 2. Phosgene/diol (a) and CO2/epoxide (b) routes to propylene carbonate. 

 

Figure 12. Contrasting catalytic activity of different MOFs for the conversion of propylene 

oxide to propylene carbonate. Reproduced with permission from ref.
86

 

Recently, NaCo(CO)4-incorporated on MIL-101(Cr) [Co(CO)4⊂MIL-101(Cr)] was 

reported as the first heterogeneous catalyst for the selective ring-expansion carbonylation of 

β-lactones to succinic anhydrides.
87

 The main reasons to select MIL-101(Cr) as solid support 

for the deposition of Co(CO)4
-
 were its high surface area, large pore openings (12 and 16 Å) 

and pore diameters (29 and 34 Å) that should allow diffusion of reagents to the active sites. 
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Besides porosity, high chemical and thermal stability were other factors for the selection of 

this material.
116

 Initially, the catalytic activity of Co(CO)4⊂MIL-101(Cr) was tested in the 

carbonylation of β-butyrolactone at 80 °C in toluene with 15 bar of CO for 24 h, reaching full 

conversion. A similar reactivity was also observed for a homogeneous catalyst 

[(salph)Al(THF)2][Co(CO)4] (salph: N,N′-o-phenylenebis(3,5-di-tert-butylsalicylideneimine); 

THF: tetrahydrofuran).
117

 Unfortunately, product analysis indicated the formation of the 

desired product methylsuccinic anhydride together with unwanted poly(3-hydroxybutyrate) 

as a major side product.  

Later, the carbonylation activity of Co(CO)4⊂MIL-101(Cr) was studied for β-

propiolactone (Scheme 3), targeting the synthesis of the commercially desirable unsubstituted 

succinic anhydride. Gratifyingly, Co(CO)4⊂MIL-101(Cr) efficiently promoted the 

carbonylation of β-propiolactone at room temperature in toluene with 15 bar of CO to give 

exclusively succinic anhydride in 92 % yield without observing the formation of the poly(3-

hydroxypropionate) byproduct. This activity corresponds to an overall site time yield (the 

number of molecules of a specified product made per catalytic site and per unit time) of 16 h
-

1
 which is higher than the value provided by the homogeneous [(salph)Al(THF)2][Co(CO)4] 

catalyst (12 h
-1

) under analogous conditions. MIL-101(Cr) and Na[Co(CO)4] exhibited 0 and 

12 % yields, respectively. This poorer catalytic performance of the individual components 

was attributed to the lack of Co(CO)4
−
 active species required for CO insertion in one case 

and to the absence of strong Lewis acids to activate the lactone in the other one (Figure 13). 

Further, an equimolar mixture of MIL-101(Cr) and Na[Co(CO)4] as catalysts gave 43 % 

yield, which is, also, higher compared to the use of either precursor individually. In any case, 

the activity of the physical mixture was much inferior to that of Co(CO)4⊂MIL-101(Cr) with 

well-defined Cr/Co sites which can efficiently activate both substrate and CO that become 

inserted into the lactone. Hot filtration experiment verified the heterogeneity of the process. 
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Powder XRD of the spent Co(CO)4⊂MIL-101(Cr) showed identical crystalline structure as 

that of the fresh solid, thus confirming the stability under the reaction conditions.  

A laboratory-scale packed-bed reactor was designed to examine the activity of 

Co(CO)4⊂MIL-101(Cr) under continuous flow conditions (Figure 14). Using 

Co(CO)4⊂MIL-101(Cr) as solid catalyst operating at 0.1 mL/min flow of 0.1 M β-

propiolactone in CH2Cl2, equivalent to a weight hourly space velocity of 1200 h
−1

, with an 

excess CO flow of 30 mL/min at 45 bar renders succinic anhydride as the sole product 

reaching at room temperature a productivity of 1300 molAnhydride·molCo
−1

 after 6 h on stream 

(Figure 15). Among all catalysts reported, the activity reached by Co(CO)4⊂MIL-101(Cr) is 

one of the best values achieved for β-carbonylation. Similarly, Co(CO)4⊂MIL-101(Cr) was 

also efficient to carbonylate β-butyrolactone to the desired methylsuccinic anhydride as the 

only product with an activity at 40 °C of 360 molAnhydride·molCo
−1

 after 60 h on stream (Figure 

15). One of the main advantages of the packed-bed reactor is that solvent evaporation affords 

succinic anhydride crystals of very high purity. This process based on Co(CO)4⊂MIL-

101(Cr) greatly contrasts with alternative procedures consisting on poorly-selective 

hydrocarbon oxidation or microbial fermentation processes that require NH3/H2SO4-assisted 

succinate precipitation or NaOH-assisted electrodialysis or amine-assisted reactive 

extraction.
118

  

 

Scheme 3. Carbonylation of β-propiolactone. 
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Figure 13. (A) Proposed mechanism for the ring-expansion carbonylation of β-lactones 

requiring the combination of [Lewis acid] and [Co(CO)4]
−
; (B) Proposed active sites in 

Co(CO)4⊂MIL-101(Cr) with coordinated tetrahydrofuran molecules. Reproduced with 

permission from ref.
87
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Figure 14. Process flow diagram and experimental setup of the packed bed reactor process for 

continuous-flow β-lactone carbonylation. 
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Figure 15. (A) Yield-time on stream plot for continuous-flow carbonylation of β-

propiolactone by Co(CO)4⊂MIL-101(Cr) and (B) continuous flow carbonylation of β-

butyrolactone by Co(CO)4⊂MIL-101(Cr). Reproduced with permission from ref.
87

 

A UiO-66(Zr) sample with  1147 m
2
/g and a total pore volume of 0.58 cm

3
/g was 

tested as heterogeneous catalyst for the conversion of methyl levulinate (ML) to γ-

valerolactone (GVL) through catalytic transfer hydrogenation under continuous flow 

conditions.
88

 The conversion of ML to GVL under batch reaction was optimized employing 
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0.23 g of UiO-66(Zr) as catalyst and 2.4 M of ML in isopropanol at 240 °C under 35 bar. 

This study was also extended by performing continuous flow reaction as shown in Figure 16. 

The results obtained are given in Figure 17. The catalytic activity of UiO-66(Zr) was 

considerably stable up to 9 h on stream, observing a slight decrease of ML conversion at 

longer times. ML conversion reached to 56 % after 30 h time on stream with GVL 

productivity of 58.94 mmolGVL g
−1

 h
−1

 and very high selectivity to GVL. The initial GVL 

productivity using UiO-66(Zr) was 92.3 mmolGVLg
−1

h
−1

 (TOS = 1 h), while it decreased to 

58.9 mmolGVL g
−1

 h
−1

 after 30 h on stream. These values are much superior than with UiO-

66(Zr) as catalyst under batch conditions (1 mmolGVLg
−1

 h
−1

) as well as with other earlier 

mixed oxide Zr-FeO (1:1)-300 catalyst (39.2 mmolGVL g
−1

 h
−1

) (Table 4).
119

 Further, the 

catalytic performance of UiO-66(Zr) for the production of GVL under continuous flow was 

also compared with series of heterogeneous solid catalysts under batch conditions and these 

catalytic data clearly indicate that UiO-66(Zr) exhibits better performance under continuous 

flow than under batch conditions. These results clearly reveal the efficiency of UiO-66(Zr) as 

catalyst under continuous flow providing very high productivity of GVL. The decrease in the 

conversion of ML was due to catalyst decomposition, a proposal that was based on the 

detection of diisopropyl terephthalate by GC-MS analysis. Furthermore, the BET surface area 

of the catalyst recovered after continuous flow reaction decreased considerably to 109 m
2
/g 

compared to the value of the fresh sample. This low surface area value suggests the collapse 

of the crystalline framework, this being compatible with the detection of BDC ester 

derivative. TEM images of fresh and used UiO-66(Zr) indicated that the surface of fresh 

UiO-66(Zr) becomes transformed from smooth to rough after continuous flow operation 

which can be due to the loss of organic linkers and possibly formation of amorphous ZrO2 

phase. These results indicate that further modification of UiO-66(Zr) is still necessary, 
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together with milder reaction conditions to develop a continuous flow process in which UiO-

66(Zr) can enjoy stability. 

 

Figure 16. Experimental set up for the conversion of ML to GVL using UiO-66 as catalyst 

under continuous flow conditions. 

Table 4. Comparison of UiO-66 (Zr) activity of with other catalysts for GVL synthesis.  

catalyst 

 

 

 

 

Conditions Conversio

n (%) 

Selectivity 

(%) 

GVL 

productivity 

(mmolg
-1

 h
-1

)  

Ref. 

UiO-66(Zr) 0.23 g of catalysts, 2.4 M 

ML in isopropanol, flow 

rate = 0.2 mL/min, 240 °C, 

35 bar, TOS = 1 h 

83  89 92.3 
88

 

UiO-66(Zr) 0.22 g of catalysts, 4 mmol 

of EE
b
 in 400 mmol of 

isopropanol, 130 °C, t = 3 h 

(batch reaction) 

43.3  18.5 0.534 
120

 

MOF-808 0.22 g of catalysts, 4 mmol 

of EE
b
 in 400 mmol of  

isopropanol, 130 °C, t = 3 h 

(batch reaction) 

 

100 85 5.66 
120

 

UiO-66(Zr) 0.1 g of catalysts, 1 mmol 

of ML in 5 mL of 2-butanol, 

140 °C, Ar, 0.5 MPa, t = 9 h 

(batch reaction) 

 

70 51 0.4 
121

 

UiO-66-S60
a
 0.1 g of catalysts, 1 mmol 

of ML in 5 mL of 2-butanol, 

98 82 0.889 
121
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140 °C, Ar, 0.5 MPa, t = 9 h 

(batch reaction) 

 

Al 

7Zr3-300
b
 

0.072 g of catalysts, 1 mmol 

of EE
b
 in 5 mL of 

isopropanol, 220 °C, t = 4 h 

(batch reaction) 

 

95.5 87.1 2.89 
122

 

Zr(OH)4 

 

 

 

1 g of catalysts, 2 g of EE
b
 

in 38 g ethanol, 240 °C, t = 

1 h 

(batch reaction) 

89.1 

 

 

 

84.5 

 

 

 

10.7 

 

 

 

123
 

ZrFeO(1:1)-

300
c
 

0.2 g of catalysts, 0.65 g of 

EE
b
 in 11.8 g of 

isopropanol, 

230 °C, t = 0.5 h (batch 

reaction) 

94.2 

 

92 39.2 
119

 

 
a
S60 represents 60 mol% sulfonated ligand; 

b
molar ratio Al/Zr is7:3 and the sample was 

calcined at 300 °C; 
c
molar ratio Zr/Fe is 1:1 and the sample was calcined at 300 °C. 

b
 EE: 

ethyl levulinate 

 

Figure 17. Continuous flow cyclization of ML to GVL catalyzed by UiO-66(Zr). Reproduced 

with permission from ref.
88

 

4. C-N bond formation 
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Powder Cu3(BTC)2 of large sized grains around 20 µm has been reported as 

heterogeneous catalyst for a wide range of organic reactions under batch conditions.  A 

continuous flow process in a fixed-bed reactor packed with large MOF grains has as 

drawback the high pressure drop throughout the reactor due to the very high resistance 

against flow. Deposition or in-situ growth of MOFs forming a 10-30 µm thick layer on 

supports such as conventional millimetric pore monoliths or non-porous alumina beads have 

been reported under batch conditions.
124-126

 Non-conventional silica monoliths offer many 

advantages like a hierarchical macro- and mesoporosity which is an important prerequisite for 

catalysis in flow to avoid mass transfer limitations between the liquid and the solid phases. 

Further, these non-conventional monoliths are highly promising due to their highly 

interconnected and isotropic network of macropores (5 µm) with small internal diffusion 

paths (3 µm skeleton thickness), and high surface area (605 m
2
g

-1
). Hence, Cu3(BTC)2 was 

synthesized in-situ as NPs within the mesopores of these silica monoliths to be used for 

continuous flow in the liquid phase Friedlander condensation.
89

 The in-situ synthesis of 

Cu3(BTC)2 NPs was evidenced by powder XRD and TEM images. Also, a control Cu3(BTC)2 

catalyst was prepared with 1 µm size crystals. Gas adsorption isotherm measurements of bulk 

Cu3(BTC)2 showed BET surface area of 1812 m
2
g

-1
 and a micropore volume of 0.71 mL g

-1
. 

In addition, the in-situ synthesis of Cu3(BTC)2 on the silica monolith (Cu3(BTC)2-MonoSil) 

was supported by EDX analysis. SEM images did not show any growth of Cu3(BTC)2 crystals 

on the monolith macropores and TEM images showed the formation of 7-12 nm nanocrystals 

located inside the monolith structure and few 50 nm NPs at the rims of the monolith. In 

addition, gas sorption measurements provide a convincing evidence in support of the 

existence of Cu3(BTC)2 NPs inside the mesopores of the silica monolith by decreasing the 

mesopore volume from 1.24 to 0.77 mL g
-1

 and concomitantly showing an increase in the 

microporosity from 0.04 to 0.23 mL g
-1

 as well as showing higher BET surface area from 605 
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to 971 m
2
g

-1
 compared to the parent silica monolith. The catalytic performance of 

Cu3(BTC)2-MonoSil was tested in the Friedlander reaction as shown in Figure 18 under 

continuous flow conditions as shown in Figure 19. The Cu3(BTC)2-MonoSil was covered 

with a heat shrinkable clad and placed in a chamber heated at 80 
o
C. The solution of 

reactants, 2-aminobenzophenone and acetylacetone, was passed through the monolith at a 

flow rate of 0.5 mL min
-1

. The experimental results showed that the initial activity reaches 90 

% conversion and a steady-state value of 85 % was attained after 4 h on flow and maintained 

for 24 h. The productivity at the steady-state was 0.5 mmol min
-1

gMonolith
-1

 or 2.2 mmol min
-

1
gCu3(BTC)2

-1
. This value is about 2.5 times superior than the activity reported for commercial 

Cu3(BTC)2 powder (10-20 µm) in a batch reactor that reaches a conversion rate of 0.86 mmol 

min
-1

 gCuBTC
-1

.
127

 In another report, the Friedlander reaction between 2-aminobenzophenone 

and acetylacetone condensation was almost quantitative after 1.5 h with Cu3(BTC)2, while 75 

and 52 % yields
128

 were obtained with H-BEA and Cu-BEA catalysts, respectively. The 

enhanced activity of Cu3(BTC)2 was attributed to its low energy barrier for the annulation 

step and the favourable geometry of reaction precursors adsorbed on two adjacent Cu
2+

 sites 

in Cu3(BTC)2. On the other hand, Cu3(BTC)2 possessed high population of active sites 

together with the concerted effect of adjacent active sites. These two factors are much less 

important in the case of H-BEA or Cu-BEA catalysts.
128

 A continuous flow process operated 

successfully with Cu3(BTC)2-MonoSil as catalyst to produce 826 g of the desired product per 

g of Cu3(BTC)2 per day. These results clearly establish the superior activity of Cu3(BTC)2 

under continuous flow operation provided that the active MOF is suitably deposited on the 

reactor.  
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Figure 18. Conversion and productivity for the Friedlander reaction between 2-

aminobenzophenone and acetylacetone as a function of time on Cu3(BTC)2-MonoSil under 

continuous flow conditions. Reproduced with permission from ref.
89

 

 

Figure 19. The experimental set up for the Friedlander reaction with cladded Cu3(BTC)2-

MonoSil of 2 cm length and 6 mm diameter (a) and flow reactor design for in-flow catalysis 

(b). 
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5. Oxidation reactions 

Aerobic oxidations using molecular oxygen at quasi ambient conditions as the 

terminal oxidant are gaining considerable importance due to the greenness of the process, but 

require of highly selective catalysts. Noble metals such as Pd are typically active centres for 

this type of oxidation. 

In this context, Pd NPs were encapsulated within the pores of MIL-88B-NH2 to 

achieve Pd@MIL-88B-NH2 (8 wt % Pd). This was later protected by SiO2 NPs to obtain 

Pd@MIL-88B-NH2@nano-SiO2 (Scheme  4)
90

 with the purpose to increase catalyst stability. 

The activity of this solid was tested in the oxidation of alcohols using air as the oxidant at 

ambient pressure under batch as well as continuous flow conditions. Powder XRD 

ascertained no changes in the structural integrity of MIL-88B-NH2 during Pd NP 

encapsulation. The average particle size of Pd NPs was 2-3 nm and they were uniformly 

distributed in the MOF matrix as shown by TEM images. Gas adsorption measurements 

indicated that the BET surface area and pore volume for Pd@MIL-88B-NH2@nano-SiO2 are 

603 m
2
/g and 1.82 cm

3
/g, respectively. The activity of Pd@MIL-88B-NH2@nano-SiO2 for 

the oxidation of 1-phenylethanol using air as oxidant in p-xylene was tested at 150 °C, 

reaching 98 % yield. Interestingly, a wide range of secondary alcohols could also be oxidized 

to their respective ketones in high yields (68-97 %) under identical conditions. The superior 

stability of Pd@MIL-88B-NH2@nano-SiO2 was established by performing comparative 

reusability experiments with Pd@MIL-88B-NH2, without silica protecting shell. Due to the 

small particle size and the tedious recovery through centrifugation, a tea-bag system was 

developed by taking 200 mg of 0.51 Pd wt % Pd@MIL-88B-NH2@nano-SiO2 (1 mol% 

respect to the substrate) tied with a teflon wire and dipped into 1-phenylethanol in p-xylene 

solution. The catalyst introduced inside the tea-bag was pulled out and subsequently 

immersed in a fresh reaction batch. This batch process was repeated for four recycles 
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observing a significant catalyst deactivation from 85 to 38 %.  One of the main causes for 

catalyst deactivation was Pd leaching. 1-Phenylethanol was selected as substrate to measure 

the oxidation activity in a continuous flow process using synthetic air (20.9 ±1% pure O2) as 

oxidizing agent. The packed-bed reactor was assembled in a fritted-glass chromatography 

column loaded with 0.51 wt % Pd@MIL-88B-NH2@nano-SiO2 (800 mg, 0.0385 mmol of 

Pd, ca. 40 mm bed height) thermostated at 110 °C (Figure 20) with the residence time of 

around 10 min. After 6 h, the conversion was almost stable at around 80 % until the 

experiment was stopped after 7 days (168 h) (Figure 21). Selectivity was also constant during 

the run forming acetophenone and ethylbenzene in 75 and 5 % yield, respectively. These 

results are, certainly, remarkable and show the possibility to develop industrial processes 

using MOFs as catalysts. Although metal NPs have been frequently used as catalysts for 

continuous flow benzylic alcohol oxidation,
129

 including metal NPs supported on various 

MOFs,
130

 the activity of Pd@MIL-88B-NH2@nano-SiO2 is an exclusive example of efficient 

aerobic oxidation of 1-phenylethanol under continuous flow conditions using Pd NPs. On 

other hand, Au/MIL-101(Cr) (29300 h
-1

)
131

 and Au/MIL-101(Cr)-NH2 (10
3
 h

-1
)
132

 have also 

shown to be effective solid catalysts in promoting alcohol oxidation under batch conditions. 

Among the probable reasons for the enhanced activity of Pd@MIL-88B-NH2@nano-SiO2 

under continuous flow conditions those that have been proposed include Pd NP stabilization 

by amino groups and the silica coating protecting effect minimizing Pd leaching/deactivation. 

 

Scheme 4. Synthetic procedure for Pd@MIL-88B-NH2@nano-SiO2. Reproduced with 

permission from ref.
90
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Figure 20. Process for the aerobic oxidation of 1-phenylethanol under continuous flow. 

Reproduced with permission from ref.
90

 

 

Figure 21. Conversion and metallic leaching in the aerobic oxidation of 1-phenylethanol 

catalyzed by Pd@MIL-88B-NH2@SiO2 for 7 days. Reproduced with permission from ref.
90

 

Very recently, a crystalline UiO-66 solid was functionalized with Ti to obtain UiO-

66(Zr, Ti) that was tested in the oxidative desulfurization (ODS) of diesel.
91

 The parent UiO-
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66 was prepared using HCl as crystallization agent without any modulator. Ti
IV

 was anchored 

to the µ3 hydroxyl groups located on the faces of the octahedral UiO-66 nodes to provide 

UiO-66(Zr, Ti) (Figure 22) without altering the structural integrity of UiO-66 as evidenced by 

powder XRD. The introduction of Ti at the nodes of UiO-66 slightly reduced BET surface 

area of the parent UiO-66(Zr) from 1328 to 1229 m
2
/g. The activity of UiO-66(Zr) and UiO-

66(Zr, Ti) was established in the ODS of a solution of dibenzothiophene (Scheme 5) in 

dodecane (1 mL; 1,000 ppm of sulphur) with 1 mL of 9:1 mixture of acetonitrile/30% 

aqueous H2O2 at 60 °C (Figure 23). Analysis of the mixture showed that the model fuel still 

contained after the treatment 82 ppm of residual sulphur with UiO-66(Zr), while the sulphur 

content was 75 ppm with UiO-66(Zr, Ti). Under continuous flow conditions, the suphur 

content in the ODS process of dibenzothiophene using UiO-66(Zr) and UiO-66(Zr, Ti) was 

535 and 276 ppm, respectively. These results imply that there is no much difference in the 

sulphur removal efficiency between batch versus continuous flow processes. One of the 

probable reasons for these results would be the limited diffusion of dibenzothiophene to the 

active sites. In order to confirm this hypothesis, a smaller size sulphur molecule like 

thioanisole (Scheme 5) was selected as sulphide source. UiO-66(Zr) as catalyst gave 21 ppm 

of residual sulphur, a value close to the specification for ULSD (< 10 ppm). Interestingly, 

UiO-66(Zr, Ti) as catalyst showed complete desulfurization with <1 ppm of sulphur in the 

model fuel under identical continuous flow conditions. These results clearly indicate the 

remarkable beneficial impact of the Ti atoms on the catalytic process under continuous flow 

conditions, in agreement with the well-known activity of Ti as Lewis acid to activate 

H2O2.
133, 134
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Scheme 5. ODS of dibenzothiophene and thioanisole catalyzed by UiO-66(Zr, Ti). 

 

Figure 22. Synthesis of UiO-66(Zr, Ti) from UiO-66(Zr) using TiO(acac)2 as Ti precursor. 

Reproduced with permission from ref.
91

 

 

Figure 23. Continuous flow set up for the ODS reaction using UiO-66(Zr,Ti) as catalyst. 

6. Reduction reactions 
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Recently, organophosphorous hydrolase (OPH) was encapsulated within the 

framework of MIL-100(Fe) to obtain an integrated nanocatalyst denoted as OPH@MIL-

100(Fe) and its activity was tested in the cascade degradation of organophosphate nerve 

agents to 4-aminophenol.
92

 OPH is responsible for the hydrolysis of organophosphate nerve 

agents into 4-nitrophenol, while MIL-100(Fe) provides active sites for the reduction of 4-

nitrophenol to 4-aminophenol (Scheme 6). Fluorescence experiments and acid treatment 

clearly confirmed that OPH is covalently attached to MIL-100(Fe) rather than adsorbed as 

physical mixture. The optimal OPH loading was found to be 53 mg gMIL-100(Fe)
-1

. The activity 

of OPH@MIL-100(Fe) was studied by constructing a simple plug-flow reactor by dispersing 

20 mg of OPH@MIL-100(Fe) in Tris-HCl solution and loaded onto a commercial polymer 

membrane by filtration as shown in Figure 24. The solid catalyst OPH@MIL-100(Fe) 

retained more than 50 % of the initial degradation activity after nine cycles for four 

organophosphate nerve agents (Figure 25). Furthermore, the crystalline structure of 

OPH@MIL-100(Fe) remained unchanged after nine cycles compared to the fresh solid. A 

total leaching of 0.55 wt% of the initial Fe content was detected. Furthermore, OPH 

maintained approximately 96 and 95 % of its original activity after being incubated, 

respectively, in a solution of 4-nitrophenol and 4-aminophenol for 90 min. Figure 26 clearly 

indicates that the hydrolytic activity of OPH and the hydrogenation activity of MIL-100(Fe) 

were reduced after nine catalytic cycles to 53 % and 95 % of the original activity, 

respectively. These results suggest that the decrease in the degradation activity of this 

integrated catalyst was mainly due to the effect of NaBH4 on the hydrolytic activity of OPH. 

On other hand, the degradation performance of OPH@MIL-100(Fe) was improved by 

reducing the contact time between the solid and NaBH4. Hence, NaBH4 was added to the 

reaction after the hydrolysis step. A complete degradation of methyl parathion to 4-

aminophenol was observed in 45 min, which was higher activity than 85 % degradation at 90 
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min, when NaBH4 was added at the beginning of the cascade reaction. Similarly, other three 

tested parathions were completely degraded by this procedure.  

 

Figure 24 (a) Schematic representation of the OPH@MIL-100(Fe) plug-flow reactor and (b) 

OPH@MOF-808-based plug-flow reactor for hydrolysis of methyl parathion into 4-

nitrophenol. 

 

Scheme 6. The schematic illustration of a cascade methyl parathion degradation using 

OPH@MIL-100(Fe) as catalyst. 
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Figure 25. Relative degradation activity of OPH@MIL-100(Fe) with four substrates after 

multiple degradation cycles through a plug-flow reactor. Reproduced with permission from 

ref.
92

 

 

Figure 26. Relative hydrolysis activity of OPH and relative hydrogenation activity of MIL-

100(Fe) after multiple degradation cycles. Reproduced with permission from ref.
92
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7. Summary and outlook 

As commented in the introduction, MOFs are intensively studied as solid catalysts for 

liquid phase reactions, but scarce attention has been paid to their use under continuous flow 

reactions. Continuous flow operation requires of stable catalysts that do not undergo 

deactivation under reaction conditions. Since this operation mode represents a higher level of 

process intensification compared to batch-like processes, they are widely used in industrial 

processes. The purpose of the present review was to spur the interest of researchers in the 

area for performing continuous flow reactions using MOFs as catalysts, by showing that there 

are certain reaction types in where the stability has allowed the use of MOF as catalysts. The 

reactions include acetalizations, CO2 insertion, carbonylations, aerobic oxidations, reductions 

and even enantioselective Michael additions. It is remarkable that several of the examples 

reported use Cu3(BTC)2 as catalyst. This Cu MOF exhibits certainly a wide range of catalytic 

activity as Lewis acid and oxidation catalyst, but it is not the most stable material. On one 

hand, the reports on the use of Cu3(BTC)2 under continuous flow illustrate that even those 

MOFs that are less robust can enjoy stability in a window of experimental conditions that 

could permit continuous flow operation. On the other hand, the current prevalence of studies 

using Cu3(BTC)2 as catalyst is, in our opinion, a reflection of the lack of maturity of this field 

and it can be predicted that the area will be finally dominated by structurally robust MOFs. 

The long term goal is the implementation of MOFs as catalysts for industrial 

processes, probably replacing metal salts. Compared to metal salts, MOFs offer much higher 

activity of the fresh material due to the high surface area and porosity that makes the metals 

accessible to substrates and reagents. Towards this objective of commercial preparation of 

fine chemicals in the liquid phase using MOFs as catalysts, a possible way to proceed is the 

scaling up of processes carried out at smaller scale under continuous flow. Thus, it can be 
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predicted that considering the proven activity under batch conditions, there will be in the near 

future an increasing interest in developing continuous flow reactions using MOFs. 
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