

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/158950

Reaño González, C.; Prades, J.; Silla Jiménez, F. (2019). Analyzing the performance/power
tradeoff of the rCUDA middleware for future exascale systems. Journal of Parallel and
Distributed Computing. 132:344-362. https://doi.org/10.1016/j.jpdc.2019.04.021

https://doi.org/10.1016/j.jpdc.2019.04.021

Elsevier

Analyzing the Performance/Power Tradeoff of the
rCUDA Middleware for Future Exascale Systems

Carlos Reañoa, Javier Pradesa, Federico Sillaa

aUniversitat Politècnica de València, Spain.

Abstract

The computing power of supercomputers and data centers has noticeably grown

during the last decades at the cost of an ever increasing energy demand. The

need for energy (and power) of these facilities has finally limited the evolution

of high performance computing, making that many researchers are concerned

not only about performance but also about energy efficiency. However, despite

the many concerns about energy consumption, the search for computing power

continues. In this regard, the research on exascale systems, able to deliver

1018 floating point operations per second, has reached a widely consensus that

these systems should operate within a maximum power budget of 20 megawatts.

Many efficiency improvements are necessary for achieving this goal. One of these

improvements is the usage of ARM low-power processors, as the Mont-Blanc

project proposes. In this paper we analyze the combined use of ARM processors

with the rCUDA remote GPU virtualization middleware as a way to improve

efficiency even more. Results show that it is possible to speed up applications by

almost 8x while reducing energy consumption up to 35% when rCUDA is used

to access high-end GPUs. These improvements are achieved while maintaining

a feasible average power consumption level for future exascale systems.

Keywords: GPU virtualization, HPC, energy, Exascale

Email addresses: carregon@gap.upv.es (Carlos Reaño), japraga@gap.upv.es (Javier
Prades), fsilla@disca.upv.es (Federico Silla)

Preprint submitted to Journal of Parallel and Distributed Computing January 13, 2021

1. Introduction

For many years, designers and administrators of computing facilities, such

as data centers and supercomputers, prioritized performance over energy and

power consumption. An example of this continuous search for performance is

the TOP500 list [1], where the most powerful supercomputers in the world are5

listed since June 1993. Supercomputers are included in this list according to

the computing power they deliver, regardless of the energy required to drive

them. Systems included in the TOP500 list are usually built upon mainstream

processors such as current Intel Xeon ones, which may require up to 145 watts to

work [2]. Furthermore, server nodes in these systems are usually populated with10

several of the aforementioned power-hungry multi-core CPUs, what increases

even more the demand for power. The overall result is a costly electricity bill

for the computing facility that represents a large portion of the total cost of

ownership (TCO) [3].

Given that the cost of the energy consumed by a computing facility during its15

lifetime can easily be higher than the cost of acquisition of the hardware itself,

more than one decade ago, total cost of ownership related to power consumption

became an important concern. In this regard, it is worth mentioning that the

cost of the infrastructure dedicated to supply power to data centers is an impor-

tant fraction of their TCO [4]. Other concerns related to these large computing20

facilities include, for instance, the variations in the power demand of these in-

stallations. In this regard, these peta-scale facilities present peak requirements

of over 30 MW with fluctuations that can range up to a few megawatts over

short periods of time [5]. One more example of the issues associated with these

large facilities is that they have a limited cooling capability when trying to keep25

a given temperature for the server room by dissipating the heat generated by

those servers [6].

Limiting power consumption in these large installations became important

not only from environmental and engineering points of view but also because

several governments, like the U.S. or the U.K. ones, created new taxes targeted30

2

to facilities that consume too much electricity [7][8]. Related to this, a study [9]

showed that large data centers available in Internet consumed about 0.5% of the

overall electricity in the world during 2005. When electricity needed for cooling

and power distribution was included, that number increased up to 1%. In a sim-

ilar way, the U.S. Environmental Protection Agency showed that during 200635

the power consumption of U.S. data centers accounted for 1.5% of the total elec-

tricity consumed in the country [10]. A few years later, it was pointed out that

the amount of electricity used by data centers worldwide during 2010 increased

by 56% with respect to the amount required in 2005 [11]. A more recent study,

conducted during year 2016, showed that U.S. data centers accounted for about40

2% of the total energy consumed in the U.S. that year [12]. This study also

revealed that this power consumption could have been much higher if efficiency

improvements would not have been applied. Efficiency improvements played a

very important role in flattening the ever raising curve for power demand, being

the improvements made to server nodes and data center infrastructure the ones45

that most contributed to energy savings, accounting for more than 95% of the

total energy saved.

Efficiency improvements turned out to be the key to address energy consump-

tion in supercomputers and large data centers, which traditionally were more

and more powerful at the cost of an unaffordable power consumption trend. In50

this way, the greedy search for increasing computing power was finally modu-

lated by the power wall [13], which become the primary concern for researchers.

Actually, many scientists claimed that the evolution of high performance com-

puting has reached the era when it is limited by power [14]. As a consequence

of this awareness, the GREEN500 list [15] was created in November 2007 (four-55

teen years after the creation of the TOP500 list) with the aim of publishing

information about the supercomputers presenting the highest energy efficiency,

measured as GFLOPS/watt. In this way, we can see a clear shift from FLOPS

to FLOPS per watt, in an attempt to rationalize the energy-hungry computing

power developed during the previous years where power consumption was only60

limited by heat dissipation.

3

However, despite the many issues related to large computing facilities, the

search for more computing power continues. Researchers, as well as many gov-

ernments, are considering how to implement exascale computing systems. The

goal of these studies is to build computing facilities able to deliver a peak-65

performance in the order of the Exaflop (1018 floating point operations per

second) while operating with a maximum power budget of 20 megawatts.

One of the efficiency improvements that has increasingly been considered

during the recent years is the use of ARM low-power processors for building

high performance computing (HPC) installations. Probably, the most widely70

known example of this trend is the Mont-Blanc project [16], although other

projects also exist, such as the Isambard one [17]. Many previous studies also

analyzed the usage of ARM processors for HPC, such as [18], [19], [20], among

others. Additionally, some companies such as Cray [21] or HPE [22] are creating

high performance systems based on ARM processors. The common character-75

istic of all these projects and proposals is that the use of GPUs is, in general,

not considered in these systems. Only the Mont-Blanc project has taken into

account the usage of CUDA GPUs by considering the use of the NVIDIA TK1

system [23] for its initial prototype.

In this paper we analyze the use of high-end GPUs in these low-power ARM-80

based systems by making use of the rCUDA middleware, which allows applica-

tions being executed in a cluster node to use GPUs located in other nodes of the

cluster. To that end, we leverage the Jetson TX1 NVIDIA board [24], which is

equipped with a 4-core ARM processor along with a 256-core CUDA compat-

ible GPU. We also make use of high-end Tesla K20m [25] and Tesla P100 [26]85

GPUs. The purpose of this study is to analyze whether it is beneficial to use

a high-end remote GPU [27] instead of the small local GPU. That is, in this

paper we analyze whether it is worth to introduce in computing deployments

such as the Mont-Blanc prototype few high-end GPUs that would provide GPU

services to applications being executed in the ARM-based nodes.90

The rest of the paper is organized as follows. In Section 2 the necessary back-

ground about the Mont-Blanc project and about the remote GPU virtualization

4

mechanism is introduced. The rationale behind our proposal is also described in

that section. In Section 3 the Jetson TX1 system, which will be used as testbed

in this paper, is described and its performance is analyzed. Later, Section 495

presents the performance results for our proposal: using remote high-end GPUs

from the Jetson TX1 system. In this section, we first analyze the performance

of several applications when they use the remote high-end GPUs without shar-

ing it with other applications. Next, a performance overview when the remote

high-end GPUs are concurrently shared among several Jetson TX1 systems is100

provided. Moreover, we also analyze in that section our approach in terms of

energy consumption. Afterwards, Section 5 introduces a brief discussion about

how the results presented in this work, obtained in a small scale cluster, are rep-

resentative of larger systems. Finally, Section 6 presents the main conclusions

of this work.105

2. Background, Related Work, and Rationale

2.1. The Mont-Blanc Project for Exascale Computing

The Mont-Blanc project [28] addresses the development of systems that make

use of compute efficiency and energy efficiency for future exascale computing

facilities. To that end, the Mont-Blanc project makes use of a new type of com-110

puter architecture built from energy efficient solutions leveraged in embedded

and mobile devices.

The first phase of the Mont-Blanc project, that started in 2011, was granted

with 8 million Euros by the European Commission. During this first phase of the

project, several approaches were considered to build the underlying hardware115

infrastructure. The first option for building the prototype was composed of a

large amount of compute cards comprising the SoC Samsung Exynos 5 Dual [29],

which included two Cortex A15 ARM cores and the Mali T-604 GPU, which

was OpenCL 1.1 capable.

Other possibility considered for building the prototype included the use of120

the NVIDIA Jetson TK1 system [23], composed of one Tegra K1 SoC (four

5

Cortex A15 ARM cores with one Cortex A7 core and a small 192-core Kepler

GPU) and 2 GB of memory. One more option taken into account for building the

underlying hardware infrastructure consisted of systems based on the Applied

Micro APM883208 SoC [30], which included 8 ARMv8 cores and 16 GB of125

DDR3 memory.

Among the aforementioned options, the usage of the Jetson TK1 system

as basic building block is very interesting, given that it is the only approach

that allows the execution of CUDA-accelerated applications. Nevertheless, the

small size of the GPU included in the Tegra K1 chip should be remarked, given130

that this GPU is about 20 times smaller than high-end GPUs such as the Tesla

K20 device [25]. The smaller size of the GPU present in the Tegra K1 chip

will cause that execution time of accelerated applications is not reduced as

noticeably as it is expected with high-end GPUs. Additionally, it is possible

that some applications cannot be executed in the Jetson TX1 system due to135

memory constraints.

2.2. Background on remote GPU Virtualization

Several solutions have been developed to provide remote GPU virtualiza-

tion. In this regard, we can find DS-CUDA [31], rCUDA [32], vCUDA [33],

GridCuda [34], GVirtuS [35] or GViM [36]. All these solutions follow a client-140

server approach similar to the one presented in Figure 1. The client part of the

middleware, which takes the form of a library that replaces the CUDA one [37],

is installed in the cluster node that executes the CUDA-accelerated application.

This client part receives CUDA requests from the application being executed

and forwards them to the server side, where the actual GPU is installed. Once145

the CUDA request is received at the server, it is forwarded to the GPU, where it

is executed. The result of this execution is appropriately returned to the client,

which delivers it to the application. This process is transparent to applications,

which are not aware of using a remote GPU.

Different GPU virtualization developments provide different features, be-150

ing rCUDA the most modern one and the one that provides the best perfor-

6

GPU

Application

client engine
CUDA libraries

server
engine

Hardware

Software

Client side Server side

CUDA API

Network

Figure 1: General architecture of remote GPU virtualization solutions.

mance [38]. The rCUDA (remote CUDA) middleware supports version 9.0 of

CUDA, being binary compatible with it, which means that CUDA programs do

not need to be modified for using rCUDA. Furthermore, it implements the entire

CUDA API (except for graphics functions) and also provides support for the155

libraries included within CUDA, such as cuFFT, cuBLAS, cuSPARSE, cuDNN,

cuSOLVER, etc.

2.3. Rationale behind our Proposal

The Mont-Blanc prototype is composed of a large amount of ARM-based

processors. The purpose of using ARM low-power processors is to keep energy160

budget as low as possible given that energy consumption is one of the most

important concerns in exascale systems, as well as reducing the impact of peak

power requirements. However, low-power processors typically provide less per-

formance than regular processors. This is why the use of CUDA accelerators

is very interesting in this scenario. Nevertheless, the acceleration provided by165

the GPU included in the Jetson TK1 system cannot be compared to the accel-

eration provided by high-end GPUs such as the Tesla K20 device. Therefore,

the best option would be to combine both approaches: using the power-efficient

ARM processors along with the high-end GPUs. This can be achieved by means

of rCUDA, as shown in Figure 2. This figure shows a cluster composed of 42170

small ARM systems (3 nodes per row) that is complemented with two nodes

that contain high-end GPUs. In this way, thanks to rCUDA, all the 42 ARM

nodes can offload their GPU computations to the high-end GPUs, which are

7

(a) Clus-

ter of

ARM-based

servers.

(b) Regular

servers with

high-end

GPUs.

Figure 2: ARM-based cluster complemented with a few nodes comprising high-end GPUs.

The high-end GPUs are shared among the many ARM nodes thanks to rCUDA.

much more powerful than the embedded GPU included in the Jetson TK1 sys-

tem. Additionally, the few high-end GPUs can be concurrently and dynamically175

shared among all the ARM systems on demand. As a result, applications being

executed in the ARM system are noticeably accelerated at the same time that

efficiency is maintained.

3. The NVIDIA Jetson TX1 System

According to NVIDIA, the Jetson TX1 [24] is a power-efficient AI (artifi-180

cial intelligence) supercomputer that features the NVIDIA Maxwell architecture

with 256 CUDA cores and includes 4 64-bit ARM A57 CPU cores with an overall

power-efficient design. Additionally, it includes the latest technology for deep

learning, computer vision, GPU computing, and graphics, therefore making this

system an ideal choice for embedded AI computing. The NVIDIA Jetson TX1185

is a system that features the Tegra X1 processor, which comprises four ARM

A57 big cores, four A53 little cores, and 2 MB of L2 cache along with a small

Maxwell GPU composed of 256 CUDA cores. The system is completed with 4

GB of LPDD4 memory, which is shared by all the devices in the Tegra X1 (the

CPU cores and the GPU).190

8

Table 1: Comparison among the technical specifications of the GPU included in the Tegra X1 chip and the Tesla K20m GPU (differences highlighted

in bold text).

Attribute GPU included in Tegra TX1 chip Tesla K20m

CUDA Capability Major/Minor version number 5.3 3.5

Total amount of global memory 3,983 MBytes (4,176,248,832 bytes) 4,742 MBytes (4,972,412,928 bytes)

Multiprocessors (MP) - CUDA Cores 2MP - 256 CUDA Cores 13MP - 2,496 CUDA Cores

GPU Max Clock rate 998 MHz (1.00 GHz) 706 MHz (0.71 GHz)

Memory Clock rate 1600 Mhz 2,600 Mhz

Memory Bus Width 64-bit 320-bit

L2 Cache Size 262,144 bytes 1,310,720 bytes

Maximum Layered 1D Texture Size, (num) layers 1D=(16,384), 2,048 layers 1D=(16,384), 2,048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16,384, 16,384), 2,048 layers 2D=(16,384, 16384), 2,048 layers

Total amount of constant memory 65,536 bytes 65,536 bytes

Total amount of shared memory per block 49,152 bytes 49,152 bytes

Total number of registers available per block 32,768 65,536

Warp size 32 32

Maximum number of threads per multiprocessor 2,048 2,048

Maximum number of threads per block 1,024 1,024

Max dimension size of a thread block (x,y,z) (1,024, 1,024, 64) (1,024, 1,024, 64)

Max dimension size of a grid size (x,y,z) (2,147,483,647, 65,535, 65,535) (2,147,483,647, 65,535, 65,535)

Maximum memory pitch 2,147,483,647 bytes 2,147,483,647 bytes

Texture alignment 512 bytes 512 bytes

Concurrent copy and kernel execution Yes with 1 copy engine(s) Yes with 2 copy engine(s)

Run time limit on kernels Yes No

Integrated GPU sharing Host Memory Yes No

Support host page-locked memory mapping Yes Yes

Alignment requirement for Surfaces Yes Yes

Device has ECC support Disabled Enabled

Device supports Unified Addressing (UVA) Yes Yes

9

Table 1 compares the technical specifications of a regular high-end GPU

for accelerating HPC applications, such as the NVIDIA K20 GPU [25], versus

the GPU included in the Jetson TX1 system. As can be observed, the main

differences are the much smaller amount of CUDA cores in the Jetson TX1

(10 times fewer CUDA cores than in the K20 GPU), the smaller amount of195

memory available for the GPU in the Tegra chip (notice, additionally, that this

memory is shared with the CPU cores), its higher clock rate (although with

a slower memory clock rate), the much narrower bus width (8 times narrower

with respect to the K20 GPU) and its much smaller L2 cache size as well as

fewer registers per block. Additionally, the GPU in the Tegra chip only features200

a single DMA engine.

In order to better characterize the Jetson TX1 system and put it into the

right perspective, Figure 3 shows a performance comparison of this system

against a regular system based on Intel Xeon processors. To that end, the Jetson

TX1 system, configured with a Linux Ubuntu 16.04.3 LTS (aarch64) along with205

CUDA 8.0, was compared to a 1027GR-TRF Supermicro server with two Intel

Xeon E5-2620v2 processors (Ivy Bridge) operating at 2.1 GHz, 32 GB of DDR3

memory at 1600 MHz, and one NVIDIA K20 GPU. Linux CentOS 7.3 was used

along with CUDA 8.0 in the Supermicro server. The sysbench1 benchmark was

used for the performance characterization.210

It can be seen in Figure 3 that the Tegra X1 chip performs pretty nicely

despite being a processor targeted for the embedded domain. Five different

metrics are shown in the figure. In the first one, events per second, the com-

puting power of the CPU is measured. To that end, a very small program

that fits into the cache is executed. This program looks for prime numbers by215

leveraging mathematical operations such as divisions, modulo calculations, and

square roots. Notice that in this test only one of the cores of the processors

under comparison has been used. According to the performance results shown

in Figure 3, the ARM core available in the Tegra X1 clearly outperforms the

1https://github.com/akopytov/sysbench

10

https://github.com/akopytov/sysbench

7
1

9
.2

8

3
5

5
7

.5
2

4
4

0
4

5
.6

0

1
.5

9

1
1

1
7

.9
0

1
3

5
9

.2
3

1
7

7
0

.7
9

1
3

7
4

0
.2

0

3
.0

4

1
1

0
.0

0

1

10

100

1000

10000

100000

CPU
(events/s)

Memory
(MiB/s)

Threads
(events)

Mutex
(seconds)

CPU Test
Energy (J)

Te
st

 u
n

it

Test

Xeon Jetson TX1

Figure 3: Performance comparison of NVIDIA Jetson TX1 and Supermicro 1027GR-TRF

systems using the sysbench benchmark. Notice that the Y-axis is in logarithmic scale.

Xeon core, almost doubling performance.220

The second test shown in Figure 3 refers to the bandwidth available to main

memory. In this test, a single core has been used, as in the previous test. In this

case, the Xeon-based system clearly attains a much higher bandwidth than the

Jetson TX1 system, providing the former twice the performance of the latter.

The third and fourth tests share dependencies among them. On the one225

hand, the threads test is intended for those cases when the process scheduler in

the operating system has a large amount of active threads competing for a set of

mutexes. On the other hand, the mutex test is intended for those cases when all

threads are concurrently running most of their execution time and only acquire

a mutex lock for very short periods of time. As can be seen, both tests consider230

the underlying hardware as well as the actual implementation of the operating

system. Figure 3 shows that in both tests the Xeon-based system outperforms

the Jetson TX1 system.

The last test shows the energy consumed when running the first test. As we

can see, the Xeon-based system consumes 10 times more energy than the Jetson235

TX1.

In summary, results presented in Figure 3 are the expected ones except for

the case of the CPU test, where the higher performance of the Tegra X1 chip is

surprising.

11

2
2

0
5

.9

2
2

3
8

.2

5
2

.4
4

0
.2

2

2
9

6
3

.3

2
8

8
4

.8

2
5

9
.5

3

0
.1

8

1.34
1.29

4.95

1.17

0

1

2

3

4

5

6

0.1

1

10

100

1000

10000

Memory copy to
GPU (MiB/s)

Memory copy from
GPU (MiB/s)

Matrix
multiplication

(GFlop/s)

Matrix
multiplication

Energy (J)

Sp
ee

d
-u

p

Te
st

 u
n

it

Tegra X1 Tesla K20m K20m speed-up

Figure 4: Performance comparison of the GPU included in the Tegra X1 chip and the Tesla

K20m GPU in terms of data transfer bandwidth, computational power, and energy. Notice

that primary Y-axis is in logarithmic scale.

Next step in characterizing the Jetson TX1 system and putting it into the240

right perspective is considering the GPU included in the Tegra X1 chip. To that

end, we have compared that GPU against the high-end Tesla K20 GPU installed

in the aforementioned Supermicro server. Figure 4 shows the performance com-

parison of both GPUs in terms of memory bandwidth and computational power.

It can be seen in Figure 4 that the Tesla K20 GPU presents higher memory245

bandwidth than the GPU included in the Tegra X1 chip, despite the former

makes use of a PCIe Gen2 link. Notice that pageable memory has been used

in this test. The high-end GPU outperforms the embedded GPU when mov-

ing data in both directions (from main memory to GPU memory and from

GPU memory to main memory). This result is very interesting because, in the250

case of the Tegra X1 chip, both main memory and GPU memory are located

in the system memory (remember that the 4GB of RAM in the Jetson TX1

are shared among the CPU and the GPU) and therefore some memory copies

could be avoided. Nevertheless, given that applications are written to perform

such copies (unless applications are explicitly ported to the Jetson TX1 system)255

measuring the performance of moving data is required. In any case, differences

in bandwidth are not too large. On the contrary, when computational power

is considered instead of data transfer bandwidth, the much smaller amount of

CUDA cores present in the Tegra X1 chip translates into a much lower computa-

12

tional power. It can be seen in the figure that the Tesla K20 GPU provides 4.95260

more computing power than the 256-core Maxwell GPU present in the Jetson

TX1 system. It can be also observed that the energy consumed by both GPUs

is similar.

Considering these results, the efficiency of the high-performance GPU is

similar to that of the Jetson TX1, offering the former higher performance. On265

the contrary, the energy consumption of the Xeon-based system is really high

in comparison to that of the Jetson one. For this reason, in our approach we

try to combine the best of both systems: the ARM cores for the CPU-part of

applications, and the high-performance GPU for the GPU-part of applications.

To that end, we propose offloading GPU workloads from ARM systems to remote270

Xeon-based GPU servers.

4. Offloading Performance of GPU Workloads from ARM Systems to

Remote Xeon-based GPU Servers

After the performance characterization of the Jetson TX1 system carried

out in the previous section, in this section we introduce a performance analysis275

of our proposal: offloading the GPU-part of applications from power-efficient

ARM-based systems, such as the Jetson TX1, to remote high-end GPUs located

in servers built from regular Intel Xeon processors. Notice that it could also

be feasible to perform the offloading to remote OpenPower servers built from

Power8 or Power9 IBM processors. The idea would just be the same: using280

powerful remote high-end GPUs along with rCUDA in order to accelerate the

execution of applications being run in power-efficient ARM-based systems. In

this way, the CPU part of the application would be executed by a low-power

processor requiring much less energy than traditional processors, as done in

current proposals, such as the Mont-Blanc project, whereas the GPU part of285

the application would be executed in a powerful high-end GPU thus reducing

overall execution time.

To analyze the performance of our proposal, in next sections we have made

13

use of (i) the Rodinia benchmark suite, (ii) a software library for computing

discrete Fourier transforms (FFTW), (iii) routines for performing Basic Linear290

Algebra Subprograms (BLAS), and (iv) the MNIST Deep Learning application.

4.1. Rodinia benchmark suite

Rodinia [39] is a set of small applications and kernels that try to cover a large

number of computing areas, such as medical images, bioinformatics, fluid dy-

namics, physical simulations, shape recognition, data mining, graph algorithms,295

linear algebra, video compression and decompression, sorting algorithms, among

others. To this end, Rodinia comprises 21 applications and kernels carefully

selected, among them: Breadth-First Search, Gaussian Elimination, Particle

Filter, Needleman-Wunsch, Back Propagation, SRAD, Heart Wall, PathFinder,

HotSpot, Hybrid Sort.300

14

0
.3

9
7

0
.3

9
9

0
.4

2
4

0
.4

4

0
.4

5
1

0
.4

6
1

0
.4

8
5

0
.5

2
1

0
.6

0
1

0
.7

3
9

0
.9

2
8

1
.7

6
9

2
.0

7
5

2
.3

2
1

4
.0

1
6

4
.5

0
9

6
.7

0
4

7
.5

4
2

9
.0

6

1
3

.0
2

4

1
8

.1
4

5

0
.1

2
6

0
.2

3
9

0
.2

4
4

0
.1

7
8

0
.3

0
1

0
.2

7
9

0
.5

8
3 1
.6

1
9

0
.9

3
2

0
.8

3 2
.4

5

2
.7

1

3
.3

6

4
.9

0
7 1
4

.5
6

6

9
.1

7
7 3

3
.4

2
3

3
0

.5
1

9

6
5

.5
6

2

8
2

.6
3

4

0
.2

5
8 1

.1
1

6

1
.1

8
2

0
.2

7
8 0
.7

5 1
.5

3
1

2
.2

5
9

3
.0

3
8

1
.4

6
9

1
.3

6
1 6

.5
2

1

3
.3

8
8

3
.8

6
9

5
.0

2
8

3
8

.3
6

6

9
.9

0
6 4

5
.1

1
8

3
4

.5
2

2

2
4

.4
7

3

4
9

.3
1

8

2
9

.0
7

4

0.1

1

10

100

1000

Ti
m

e
 (

s)

Benchmark

1
4

4
.4

5
7Zone A

Xeon+K20m Jetson TX1 Jetson TX1 + remote K20m

Zone B Zone C

Figure 5: Comparison of Rodinia benchmarks executed in three different scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA

Jetson TX1, and (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one NVIDIA K20 GPU. Notice that the Y-axis is

in logarithmic scale.

15

We have executed the different small programs and kernels within the Ro-

dinia suite in the Jetson TX1 and compared their execution time with a new

scenario where a remote high-end GPU located in a regular Xeon-based server

is used instead of the small 256-core GPU included in the Jetson TX1 system.

We have made use of the rCUDA remote GPU virtualization framework in order305

to provide applications being executed in the Jetson TX1 system with access to

the remote GPU. rCUDAv16.11 was used. Figure 5 shows the execution time

for each of the programs within the Rodinia benchmark suite2. Bars labeled

as “Jetson TX1” refer to executions carried out using the small 256-core GPU

existing in the Tegra X1 chip. Bars labeled as “Jetson TX1 + remote K20m”310

refer to executions carried out in the Jetson TX1 system while using, thanks to

rCUDA, a remote K20 GPU installed in the Supermicro server described in the

previous section. Finally, bars labeled as “Xeon+K20m” refer to the execution

of the programs within the Rodinia suite in the Supermicro server using the

Xeon processor and using also the Tesla K20m GPU in that system (without315

requiring to use rCUDA, given that the GPU is local to the application). This

latter case study has been included just for comparison purposes, given that

it is the traditional way to execute CUDA-accelerated applications and it has

been widely analyzed in the literature.

Figure 5 shows that execution time of benchmarks when making use of our320

proposal (launching the application in the ARM-based system and using a re-

mote high-end GPU instead of the local one) is sometimes better than using the

local small GPU and it is sometimes worse than the local ARM-based scenario.

The conclusions that can be drawn from Figure 5 (taking execution time of

“Xeon+K20m” as reference) are the following:325

• When the execution time of the benchmarks is short, then they run faster

in the local scenario “Jetson TX1”. This can be seen for benchmarks with

2Readers interested in the overhead of the remote CUDA calls as compared to the local

CUDA calls can refer to [32],[40] or [41] for additional information.

16

execution times (in the Jetson TX1 system) shorter than 0.5 seconds, as

pointed out in Figure 5 in the “Zone A” left area of the plot.

• When the execution time, in the Jetson TX1 system, is medium to large330

(from 0.5 to about 30 seconds), benchmarks run faster in the regular server

with a high-end GPU (scenario “Xeon+K20m”). Furthermore, executions

in the local ARM-based scenario are still faster than using a remote GPU

from the Jetson TX1 system. The benchmarks that fall into this category

can be found in the “Zone B” central area of the plot.335

• For large execution time benchmarks (more than 60 seconds in the baseline

“Jetson TX1” scenario), it is worth to use a remote GPU. That is, it is

better to use the remote K20 GPU installed in a regular Xeon server

(scenario “Jetson TX1 + remote K20m”) instead of using the local GPU

available in the Jetson TX1 system. This can be seen in the “Zone C”340

right part of the plot.

Next, Figure 6 presents a comparison of Rodinia benchmark “gaussian“

varying the problem size, and executed in the same three different scenarios as

in previous section. Similar conclusions to the ones drawn from Figure 5 can be

extracted from Figure 6 (taking execution time of “Xeon+K20m” as reference):345

• Short execution time tests: tests run faster in “Jetson TX1”

• Medium execution time tests: tests run faster in “Xeon+K20m”

• Large execution time tests: it is worth to use a remote GPU (“Jetson TX1

+ remote K20m”) in comparison to running the tests in “Jetson TX1”

The previous results have shown that it is efficient to offload work from ARM-350

based systems to remote high-end GPUs located in regular Intel Xeon servers.

However, notice that the use of ARM-based systems is motivated by energy

consumption concerns. Therefore, it is not worth to include as many regular

Xeon servers as ARM-based systems exist in the cluster. On the contrary, the

really interesting approach is to offload work from multiple ARM-based systems355

17

0
.3

9

0
.4

0

0
.4

4

0
.9

3

2
.6

8 1
8

.5
2 1
6

3
.4

4

0
.1

8

0
.4

3

0
.9

4

2
.4

5 2
0

.2
9 2

5
2

.5
3 2
9

8
9

.4
3

0
.6

8

1
.9

9 4
.7

4

6
.5

2

1
6

.2
1

5
2

.9
8

2
3

8
.4

4

0

1

10

100

1000

10000

128 256 512 1024 2048 4096 8192

Ti
m

e
(s

)

Size

Xeon+K20m Jetson TX1 Jetson TX1 - rCUDA Xeon+K20m

Figure 6: Comparison of Rodinia benchmark “gaussian“ varying the problem size, and ex-

ecuted in three different scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a

NVIDIA Jetson TX1, and (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote

regular server with one NVIDIA K20 GPU. Notice that the Y-axis is in logarithmic scale.

to the same remote GPU in a shared way. In this manner, just with a few regular

servers equipped with GPUs it would be enough to accelerate the applications

being executed in the ARM-based nodes, as Figure 2 suggested.

In order to check the feasibility of sharing a remote high-end GPU located

in a regular Intel Xeon server among several ARM-based systems, we use the360

Rodinia benchmark “gaussian” with problem size 8,192, Figure 7 shows a com-

parison of executing this Rodinia benchmark, with problem size 8,192, in the

same three different scenarios as in previous figures. In the case of the sce-

nario with the NVIDIA Jetson TX1 offloading GPU work to a remote regular

server with one NVIDIA K20 GPU, the number of concurrent clients sharing365

the same remote server varies from 1 up to 6 (maximum number of instances of

benchmark “gaussian“ that can be concurrently allocated in the remote GPU

memory).

It can be seen in Figure 7 that executing the “gaussian” Rodinia benchmark

in the Jetson TX1 system (using its 256-core GPU) requires almost 50 minutes.370

Additionally, executing this benchmark in a regular Intel Xeon-based server

using a local high-end GPU only requires less than 3 minutes. On the contrary,

when the high-end GPU located in the Xeon-based server is used from the Jetson

18

3.97 6.33

12.27 17.59

2.72

49.82

12.54

7.87

4.06 2.83
0

5

10

15

20

0

10

20

30

40

50

60

1 2 4 6

Sp
ee

d
-u

p

Ti
m

e
(m

in
u

te
s)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote K20m Xeon+K20m

Jetson TX1 Remote K20m speed-up

Figure 7: Comparison of Rodinia benchmark “gaussian” with problem size 8,192 executed

in three different scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA

Jetson TX1, and (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server

with one NVIDIA K20 GPU (with up to 6 concurrent clients sharing the remote GPU).

TX1 system, the benchmark requires almost 4 minutes to be executed. This

translates into a speed up of more than 12x. When the high-end GPU located375

in the Xeon-based server is concurrently shared by several Jetson TX1 systems,

speed up is still obtained. In this regard, it can be seen that as more ARM-based

systems share the same high-end GPU, speed up is reduced. However, even in

the worst case, when 6 Jetson TX1 systems are sharing the same K20 GPU, a

speed up of almost 3x is achieved.380

In addition to analyze our proposal for offloading the GPU-part of appli-

cations from ARM systems to remote Xeon-based GPU servers in terms of

performance, it is also possible to carry out such an analysis in terms of power

and energy consumption. Next we use the Rodinia benchmark “gaussian”

with problem size 8,192 to analyze the power and energy consumption when385

sharing a remote high-end GPU located in a regular Intel Xeon server among

several ARM-based systems. Figure 8 shows the energy consumption in the

same three different scenarios considered in the performance analysis. Energy

has been measured by polling once every second the power distribution unit

(PDU) present in the cluster.390

19

56
50

59
65

38
44

0

10

20

30

40

50

60

70

1 2 4 6

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

 (
kJ

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote K20m Xeon+K20m Jetson TX1

Figure 8: Energy consumption of Rodinia benchmark “gaussian” with problem size 8,192

executed in three different scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii)

a NVIDIA Jetson TX1, and (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote

regular server with one NVIDIA K20 GPU (with up to 6 concurrent clients sharing the remote

GPU).

We can see that the scenario with the regular Xeon server provides the best

results, followed by the Jetson TX1 one and finally our proposed one. Con-

cerning our approach, we expected that the energy consumption would decrease

proportionally to the number of concurrent clients sharing the same remote

server. This happens when moving from 1 client to 2 concurrent clients. How-395

ever, when the number of clients is over 2, the energy consumption starts in-

creasing again unexpectedly. This is due to the fact that the remote GPU has

not enough compute capability to run more than 2 concurrent instances of the

application without penalizing too much the execution time. This increase in

the execution time, translates into more energy consumption. To confirm this,400

we have repeated the same experiment but using a more powerful remote GPU:

an NVIDIA Tesla P100 [26].

Figure 9 presents the analysis of this test when using a remote P100 GPU

instead of the K20 one. In terms of performance, Figure 9(a) shows that the

regular Xeon server presents the best results. It can also be seen that using405

a remote P100 GPU clearly outperforms the Jetson TX1 system, achieving an

20

2
.0

3

2
.8

3

4
.6

5

6
.2

7

8
.3

1

1
0

.3
5

1
2

.3
3

1
4

.4
5

1
6

.4
6

1
8

.4
9

0.98

49.82

0

10

20

30

40

50

60

1 2 4 6 8 10 12 14 16 18

Ti
m

e
(m

in
u

te
s)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100 Jetson TX1

(a) Execution time.

7
2

3
3

3
0

2
8 3
0 3
2 3
3 3
5 3
6 3
8

21

44

0

10

20

30

40

50

60

70

80

1 2 4 6 8 10 12 14 16 18

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

 (
kJ

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100
Xeon+P100
Jetson TX1

(b) Energy consumption.

3
3

7

3
8

5

4
2

3

4
5

1

4
8

0

5
0

7

5
3

3

5
6

1

5
8

6

6
1

63
5

6

7
1

1

1
4

2
3 2
1

3
4

2
8

4
6 3
5

5
7 4
2

6
9 4
9

8
0 5
6

9
1 6
4

0
3

1
5 2
9 5
8 8
8 1
1

7

1
4

6

1
7

5

2
0

4

2
3

4

2
6

3

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 p
o

w
er

co
n

su
m

p
ti

o
n

 (
W

)

Number of instances

Jetson TX1 + remote P100

Xeon+P100

Jetson TX1

(c) Average power consumption.

Figure 9: Analysis of Rodinia benchmark “gaussian” with problem size 8,192 executed in

three different scenarios: (i) a regular server with one NVIDIA P100 GPU, (ii) a NVIDIA

Jetson TX1, and (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server

with one NVIDIA P100 GPU (with up to 18 concurrent clients sharing the remote GPU).

21

speed-up of up to 24.48x for 1 client. Regarding energy consumption, shown in

Figure 9(b), the regular Xeon server provides again the best results, but in this

case our approach provides better results than the Jetson TX1 one. The P100

GPU has more memory (16 GB) than the K20 GPU (4.7 GB) and therefore it410

can hold more concurrent clients (up to 18 concurrent clients in this test). As

we can see, the energy consumption of our proposal decreases proportionally to

the number of concurrent clients sharing the same remote server when up to 6

concurrent clients are used. At this point, the energy consumed by our approach

reaches a maximum energy reduction with respect to the Jetson TX1 scenario.415

In this case, the energy reduction of sharing the remote GPU among the Jetson

TX1 systems reaches a maximum (35%), with a performance speed-up of 7.94x.

When the number of concurrent clients is over 6, we observe a similar be-

havior than with the K20 GPU: the energy consumption starts increasing again.

This is again due to the fact that the remote GPU compute capabilities are over-420

loaded when running more than 6 concurrent instances of the application, and

the execution time is penalized. This translates into more energy consumption.

Nevertheless, our approach still consumes less energy than the Jetson TX1.

Another important factor to consider is the average power consumption along

application execution, shown in Figure 9(c). In this case, the Jetson TX1 sce-425

nario presents the best results, followed by our proposal. As expected, the

scenario using the regular Xeon server presents the highest average power con-

sumption, thus making this approach not feasible for future exascale systems.

4.2. FFTW: Fastest Fourier Transform in the West

The Fastest Fourier Transform in the West (FFTW) library [42] is a software430

library for computing discrete Fourier transforms (DFT). Similarly, the NVIDIA

CUDA Fast Fourier Transform library (cuFFT) [43] provides GPU-accelerated

FFT implementations. In this section we have used FFTW for experiments not

using GPU-accelerators and cuFFT for tests using GPU-accelerators.

Figure 10 shows the execution time of FFTW/cuFFT tests varying the prob-435

lem size. Bars are labeled in a similar manner to the one described in the pre-

22

1
.3

1

1
.7

1

2
.1

3

2
.5

1

2
.9

2

3
.2

8

3
.6

4

2
.5

6

3
.5

4

4
.6

9

5
.7

7

7
.1

4

8
.2

5

2
.1

1

3
.6

2

4
.9

4

6
.5

6

7
.9

0

9
.5

3

1
0

.8
6

3
.2

6 6
.7

3

9
.1

5 1
4

.0
6

1
6

.9
7 2

4
.1

4

2
6

.1
6

0

5

10

15

20

25

30

10K 20K 30K 40K 50K 60K 70K

Ti
m

e
(s

)

Size

Xeon+K20m Jetson TX1

Jetson TX1 - rCUDA Xeon+K20m Jetson TX1 (CPU)

Figure 10: Comparison of the FFTW test when varying the problem size, and executed in four

different scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA Jetson

TX1, (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one

NVIDIA K20 GPU, and (iv) a NVIDIA Jetson TX1 using only the CPU (not the GPU).

vious section, but adding a new scenario, referred to as “Jetson TX1 (CPU)”

when the executions are carried out in the Jetson TX1 CPU and not using its

GPU. Thus, in all scenarios cuFFT is utilized except in the last one, where

FFTW is used.440

The motivation to include the latter scenario is two-fold. On the one hand,

the Jetson TX1 is not capable of running some problem sizes using the GPU

due to memory constraints. As previously explained in Section 3, the Jetson

TX1 has 4 GB of memory, which is shared by both the CPU cores and the

GPU. Thus, when memory limitations happen, tests can only be run using the445

CPU cores. On the other hand, as commented in Sections 1 and 2, some ARM

systems do not include a GPU-accelerator. Thus, these results will allow us

to compare the performance of running the tests with a low-power processor

against using a remote GPU.

As we can observe in Figure 10, the best results are obtained when the tests450

are executed in the Xeon server with the local GPU. On the contrary, running

the tests in the Jetson TX1 without using its local GPU is the worst scenario.

Running the tests in the Jetson TX1 using its local GPU and using a remote

GPU thanks to rCUDA provide similar results, being the former slightly better.

23

1
0

.8
6

1
4

.4
3

1
8

.8
1

2
0

.6
2

3.64

26.16
2.41

1.81
1.39 1.27

0

1

2

3

0

5

10

15

20

25

30

1 2 3 4

Sp
ee

d
-u

p

Ti
m

e
 (

s)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote K20m Xeon+K20m

Jetson TX1 (CPU) Remote K20m speed-up

Figure 11: Comparison of FFTW test with problem size 70K executed in three different

scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA Jetson TX1 using

only the CPU (not the GPU), (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote

regular server with one NVIDIA K20 GPU (with up to 4 concurrent clients sharing the remote

GPU).

However, in the case of the larger test (i.e., size 70K), it is not possible to run455

it using the local GPU of the Jetson TX1 due to lack of memory. In that case,

the benefits of using a remote GPU are significant.

In order to check the feasibility of sharing a remote high-end GPU located

in a regular Intel Xeon server among several ARM-based systems, now we use

the same FFTW/cuFFT tests with fixed problem size 70K to that purpose.460

Figure 11 shows a comparison of executing this test in the same three different

scenarios as in previous figures. As commented before, notice that it was not

possible to run this test using the local GPU of the Jetson TX1 due to lack of

memory. For that reason, the test was run using only the CPU cores of the

Jetson TX1 (line labeled as “Jetson TX1 (CPU)”).465

As we can observe in Figure 11, offloading the GPU workload to the high-end

GPU located in the Xeon-based server from the Jetson TX1 system provides a

speed up of over 2.4x. Similarly as in the previous section, when the remote GPU

located in the Xeon server is shared among several ARM-based clients, lower

speed up is obtained (below 2x). As expected, the more clients concurrently470

using the remote GPU, the lower speed up is obtained, although some speed

24

880

336

2144

1389 1395
1194

0

500

1000

1500

2000

2500

1 2 3 4

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

(J
)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote K20m Xeon+K20m Jetson TX1

Figure 12: Energy consumption of FFTW with problem size 70K executed in three different

scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA Jetson TX1, and

(iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one NVIDIA

K20 GPU (with up to 4 concurrent clients sharing the remote GPU).

up is still obtained in the case of 4 concurrent clients. In any case, the energy

analysis shown next will provide even more interesting insights.

In a similar way to the experiments for the Rodinia benchmarks carried

out in previous section, it is possible to analyze the behavior of the FFTW475

application in terms of power and energy consumption in addition to looking

at performance. To that end, we use the FFTW test with problem size 70K

to analyze the power and energy consumption when sharing a remote high-end

GPU located in a regular Intel Xeon server among several ARM-based systems.

Figure 12 shows the energy consumption in the same three different scenarios480

considered in the performance analysis. In this case the Jetson TX1 presents

the lowest energy consumption, followed by the regular Xeon server and finally

our approach. Similarly to what happened in the previous test, we can see that

the energy decreases as the number of concurrent clients increases. However,

the remote GPU has not enough memory to allocate enough clients to observe485

a higher energy reduction. To check whether energy continues reducing while

adding more clients, we have repeated the same experiment but using a remote

GPU with more memory: the NVIDIA Tesla P100 [26], also used in the previous

25

1
0

.6
7

1
0

.6
9

1
0

.7
1

1
0

.9
5

1
1

.1
4

1
1

.5
7

1
1

.6
6

1
1

.8
3

1
1

.7
4

1
1

.8
3

26.16

2.71

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100 Jetson TX1 (CPU)

(a) Execution time.

3
5

1
2

2
1

8
2

1
6

2
1

1
3

8
0

1
2

5
1

1
0

7
3

9
5

3

8
5

2

7
6

8

7
0

1

1004

336

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

(J
)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100
Xeon+P100
Jetson TX1

(b) Energy consumption.

3
1

9

3
9

7

4
4

2

5
0

2

5
2

1

5
3

7

5
5

6

5
6

8

5
7

6

5
8

4

3
3

5 6
6

9 1
0

0
4

1
3

3
9

1
6

7
3 2
0

0
8

2
3

4
3

2
6

7
7

3
0

1
2

3
3

4
7

1
2 2
4 3
6 4
8 6
1 7
3 8
5 9
7 1
0

9

1
2

1

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 p
o

w
er

co
n

su
m

p
ti

o
n

 (
W

)

Number of instances

Jetson TX1 + remote P100

Xeon+P100

Jetson TX1

(c) Average power consumption.

Figure 13: Analysis of FFTW test with problem size 70K executed in three different scenarios:

(i) a regular server with one NVIDIA P100 GPU, (ii) a NVIDIA Jetson TX1, and (iii) a

NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one NVIDIA P100

GPU (with up to 10 concurrent clients sharing the remote GPU).

26

experiment.

Figure 13 presents the analysis of this test when using a remote P100 GPU490

instead of the K20 one. As shown in Figure 13(a), the Xeon server obtains the

best performance, followed by the Jetson TX1 with the remote P100 GPU and

lastly the Jetson TX1. Regarding energy consumption, shown in Figure 13(b),

the Jetson TX1 presents the lowest one. When using the Jetson TX1 with the

remote GPU, energy keeps decreasing while adding more clients. In this way,495

with more than 6 clients the energy consumption is lower than with the regular

Xeon Server. Sharing the remote GPU with the maximum number of clients,

10 in this case, still consumes more energy than the ARM system. However,

the trend shows that if the GPU would have more memory to allocate more

concurrent clients, it would probably achieve the best energy consumption.500

The average power consumption during application execution in these ex-

periments is shown in Figure 13(c). Similarly to what happened in the previous

section, the Jetson TX1 scenario presents the best results, followed by our pro-

posal. Again, the scenario using the regular Xeon server exhibits the highest

average power consumption.505

4.3. BLAS: Basic Linear Algebra Subprograms

The Basic Linear Algebra Subprograms (BLAS) [44] are routines that pro-

vide standard building blocks for performing basic vector and matrix operations.

In the same manner, the NVIDIA CUDA Basic Linear Algebra Subroutines li-

brary (cuBLAS) [45] is a fast GPU-accelerated implementation of the standard510

BLAS routines. Similarly to the previous section, in this section we have used

BLAS for experiments not using GPU accelerators and cuBLAS for those tests

using GPU accelerators.

Figure 14 shows the execution time of BLAS/cuBLAS tests varying the

problem size. Bars are labeled in a similar manner to the one used in the515

previous section. As it can be seen, for small problem sizes (i.e., 1K and 2K)

running the tests in the Jetson TX1 without using its local GPU provides the

best results. For larger sizes, however, the best results are obtained when the

27

1
.0

2

1
.1

4 2
.0

4 3
.6

7

5
.4

0

8
.2

3

0
.9

6

1
.2

9 3
.3

8 1
1

.6
2

0
.6

1 1
.5

0 4
.4

1 9
.2

1

1
5

.9
0

2
5

.5
8

0
.2

8 1
.0

2

5
.6

3 1
6

.8
1

3
7

.1
6 69.54

0

1

10

100

1K 2K 4K 6K 8K 10K

Ti
m

e
(s

)

Size

Xeon+K20m Jetson TX1

Jetson TX1 - rCUDA Xeon+K20m Jetson TX1 (CPU)

Figure 14: Comparison of the BLAS test when varying the problem size, and executed in four

different scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA Jetson

TX1, (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one

NVIDIA K20 GPU, and (iv) a NVIDIA Jetson TX1 using only the CPU (not the GPU).

tests are executed in the Xeon server with the local GPU. As in the previous

section, running the tests in the Jetson TX1 using its local GPU and using a520

remote GPU thanks to rCUDA provides similar results, but we can observe that

now the latter provides better performance for large problem sizes (i.e., 6K).

Similarly to what happened in the previous section, it is not possible to run

larger tests (i.e., size 8K and 10K) using the local GPU of the Jetson TX1 due

to lack of memory. In that case, using a remote GPU clearly outperforms the525

results obtained by the executions using the CPUs in the Jetson TX1.

Next we use the BLAS/cuBLAS tests with fixed problem size 10K in order to

analyze how its performance varies when an increasing amount of clients share a

GPU located in a Xeon server. Figure 15 shows a comparison of executing this

test in the same three different scenarios as in previous figures. As commented530

before, it was not possible to run this test using the local GPU of the Jetson

TX1 due to lack of memory. For that reason, the test was run using only the

CPU cores of the Jetson TX1 (line labeled as “Jetson TX1 (CPU)”).

As it can be seen in Figure 15, running the test from the Jetson TX1 system

and using the remote GPU located in the Xeon-based server produces a speed535

up of over 2.7x. The same behavior as in previous sections can be observed

28

2
5

.5
8

3
2

.3
2

4
2

.3
5

8.23

69.54
2.72

2.15

1.64

0

1

2

3

4

0

20

40

60

80

1 2 3

Sp
ee

d
-u

p

Ti
m

e
(s

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote K20m Xeon+K20m

Jetson TX1 (CPU) Remote K20m speed-up

Figure 15: Comparison of BLAS test with problem size 10K executed in three different sce-

narios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA Jetson TX1 using only

the CPU (not the GPU), (iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular

server with one NVIDIA K20 GPU (with up to 3 concurrent clients sharing the remote GPU).

when the concurrent usage of the GPU is increased. Thus, sharing the same

remote GPU among several clients translates into a reduction of the speed up.

As mentioned before, the energy analysis shown later in the paper will provide

very valuable insights.540

In a similar way as we have done with the previous applications, now we use

the BLAS test with problem size 10K in order to analyze the power and energy

consumption when sharing a remote high-end GPU located in a regular Intel

Xeon server among several ARM-based systems. Figure 16 shows the energy

consumption in the same three different scenarios considered in the performance545

analysis. As in the previous test, the Jetson TX1 presents the lowest energy

consumption, followed by the regular Xeon server and finally our approach.

Again, we can see that the energy decreases as the number of concurrent clients

increases. However, the remote GPU does not have enough memory to allocate

an amount of clients large enough to observe a higher energy reduction. As550

we did in previous section, in order to check whether energy continues reducing

while adding more clients, we have repeated the same experiment using a remote

NVIDIA Tesla P100.

29

4568

3266 3083

1824
1330

0

1000

2000

3000

4000

5000

1 2 3

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

(J
)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote K20m Xeon+K20m Jetson TX1

Figure 16: Energy consumption of BLAS with problem size 10K executed in three different

scenarios: (i) a regular server with one NVIDIA K20 GPU, (ii) a NVIDIA Jetson TX1, and

(iii) a NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one NVIDIA

K20 GPU (with up to 3 concurrent clients sharing the remote GPU).

Figure 17 presents the analysis of this test when using a remote P100 GPU

instead of a K20 one. As shown in Figure 17(a), the Xeon server achieves the555

best performance, followed by the Jetson TX1 with the remote P100 GPU and

lastly the Jetson TX1. Regarding energy consumption, depicted in Figure 17(b),

the Jetson TX1 presents the lowest one. When using the Jetson TX1 with the

remote GPU, energy keeps decreasing while adding more clients. In this way,

with more than 7 clients the energy consumption is lower than with the regular560

Xeon server. Sharing the remote GPU with the maximum number of clients, 10

in this case, consumes slightly more energy than the ARM system. However, as

in the experiments with FFTW, the trend shows that if the GPU would have

more memory to allocate more concurrent clients, it would probably achieve the

best energy consumption.565

The average power consumption of these experiments is shown in Figure 17(c).

In a similar way to what happened in the previous section, the Jetson TX1 sce-

nario presents the best results, followed by our proposal. One more time, the

scenario using the regular Xeon server exhibits the highest average power con-

sumption.570

30

2
3

.8
8

2
4

.4
6

2
4

.5
5

2
4

.9
3

2
4

.8
9

2
6

.7
3

2
6

.7
1

2
6

.2
2

2
6

.2
1

2
7

.5
2

69.54

5.34

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100 Jetson TX1 (CPU)

(a) Execution time.

7
7

5
2

5
9

6
6

4
5

6
1

3
6

0
0

2
9

4
5

2
5

0
0

2
2

0
0

1
9

8
9

1
8

0
2

1
5

2
5

2035

1330
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4 5 6 7 8 9 10

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

(J
)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100

Xeon+P100

Jetson TX1

(b) Energy consumption.

3
2

3

4
7

7

5
4

7

5
7

6

5
8

9

6
0

0

6
1

6

6
3

6

6
4

9

6
1

0

3
3

9 6
7

8 1
0

1
7

1
3

5
6

1
6

9
5 2
0

3
5 2
3

7
4

2
7

1
3

3
0

5
2

3
3

9
1

1
6 3
3 4
9 6
6 8
2 9
8 1
1

5

1
3

1

1
4

8

1
6

4

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 p
o

w
er

co
n

su
m

p
ti

o
n

 (
W

)

Number of instances

Jetson TX1 + remote P100

Xeon+P100

Jetson TX1

(c) Average power consumption.

Figure 17: Analysis of BLAS test with problem size 10K executed in three different scenarios:

(i) a regular server with one NVIDIA P100 GPU, (ii) a NVIDIA Jetson TX1, and (iii) a

NVIDIA Jetson TX1 offloading GPU work to a remote regular server with one NVIDIA P100

GPU (with up to 10 concurrent clients sharing the remote GPU).

31

4.4. MNIST: Using Deep Learning Applications in Exascale Facilities

In the previous sections we have considered applications traditionally used

in high performance computing clusters. However, future exascale systems can

also be used for big data and AI machine/deep learning applications. In this

section we use the MNIST application, like the one leveraged in [46], in order575

to analyze the benefits of offloading the GPU computations to high-end remote

accelerators located in other nodes of the cluster. This application loads weights

and biases from a trained network, and then takes one or more images of digits

and recognizes them. The network was trained on the MNIST dataset using

Caffe. The network consists of two convolution layers, two pooling layers, one580

relu and two fully connected layers. Final layer gets processed by Softmax.

cublasSgemv is used to implement fully connected layers.

We first consider the performance of this application when executed in the

same three different scenarios as in previous sections. Figure 18(a) shows the

performance of this application when an increasing amount of images is classi-585

fied. It can be seen in the figure that performance results follow the same trend

as for previous applications. Figure 18(b) depicts the energy required in the

executions of Figure 18(a). It can be seen that energy required to perform the

classifications also follows a similar trend as for previous applications.

In a similar way as we did with previous applications, next we analyze how590

the performance and energy of the MNIST application varies when an increas-

ing amount of clients running in TX1 systems share a high-end GPU located

in a remote regular Xeon server. Figure 19 shows a comparison of executing

this test in the same three different scenarios as in previous figures when an

increasing amount of instances share the remote GPU. As it can be seen in Fig-595

ure 19(a), running the test from the Jetson TX1 system and using the remote

GPU located in the Xeon-based server produces a speed up of about 2x. The

same behavior as in previous sections can be observed when the concurrent us-

age of the GPU is increased. In this way, sharing the same remote GPU among

several clients translates into a reduction of the speed up (although some speed600

up is still achieved). However, if we look at the time per client metric (shown in

32

1
.0

0

4
.8

3

9
.7

2

1
4

.5
9

1
9

.4
6

2
4

.2
9

2
.3

3 1
2

.0
9 2

3
.5

8 3
6

.4
1 4
7

.4
8

6
0

.3
8

1
.1

1

5
.9

0 1
1

.6
0

1
7

.5
4

2
2

.9
8

2
9

.5
5

0

10

20

30

40

50

60

70

1 5 10 15 20 25

Ti
m

e
(s

)

Images classified

Xeon+P100 Jetson TX1 Jetson TX1 - rCUDA Xeon+P100

(a) Execution time.

1
8

1

8
7

9

1
7

6
9

2
6

5
5

3
5

4
1

4
4

2
1

1
3

4
4

63
2

.6
5

1
6

9

3
3

0

5
1

0

6
6

5

8
4

5 2
5

5
2

2
2

7

1
2

0
7

2
3

7
3

3
5

8
6

4
6

9
9

6
0

4
2

1
8

1
3

4

1

10

100

1000

10000

1 5 10 15 20 25 TOTAL

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
J)

Images classified

Xeon+P100 Jetson TX1 Jetson TX1 + remote P100

(b) Energy consumption.

Figure 18: Comparison of the MNIST deep learning application when classifying an increasing

amount of images. It is executed in three different scenarios: (i) a regular server with one

NVIDIA P100 GPU, (ii) an NVIDIA Jetson TX1, and (iii) an NVIDIA Jetson TX1 offloading

GPU work to a remote regular server with one NVIDIA P100 GPU.

33

2
9

.5
5

3
0

.4
8

3
3

.7
3

4
0

.9
2

6
0

.6
8

8
8

.7
5

1
4

6
.2

8

2.04 1.98 1.79 1.48 1.00 0.68 0.41

60.38

24.29

-13
-11
-9
-7
-5
-3
-1
2

1

10

100

1 2 4 8 16 24 32

Sp
ee

d
-u

p

Ti
m

e
(s

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100

Jetson TX1 Remote P100 speed-up

(a) Total execution time.

2
9

.5
5

1
5

.2
4

8
.4

3

5
.1

1

3
.7

9

3
.7

0

4
.5

7

24.29

60.38

2.04
3.96

7.16

11.81

15.92 16.33
13.21

-10

-5

0

5

10

15

20

0

20

40

60

80

100

1 2 4 8 16 24 32

Sp
ee

d
-u

p

Ti
m

e
p

er
 C

lie
n

t
(s

)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100

Jetson TX1 Remote P100 speed-up

(b) Execution time per client.

6
0

4
2

3
3

1
6

1
8

3
5

1
1

1
3

8
2

5

8
0

5

9
9

5

4408

845

0
1000
2000
3000
4000
5000
6000
7000

1 2 4 8 16 24 32

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

(J
)

Clients concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100 Jetson TX1

(c) Energy consumption.

Figure 19: Comparison of the MNIST deep learning application when several instances share

the remote GPU. It is executed in three different scenarios: (i) a regular server with one

NVIDIA P100 GPU, (ii) an NVIDIA Jetson TX1, and (iii) an NVIDIA Jetson TX1 offloading

GPU work to a remote regular server with one NVIDIA P100 GPU. All the different instances

sharing the remote GPU have started execution at the same time.

34

Figure 19(b)), it can be seen that increasing the concurrent usage of the remote

GPU provides clear benefits on the overall throughput of the system. In this

way, when up to 24 concurrent instances share the remote GPU, we can observe

performance benefits. In the case for 32 concurrent instances it can be seen that605

time per client is increased. This is due to the saturation of the GPU resources

(either computing resources or communications resources). Figure 19(c) depicts

the energy required by each of the clients running in the TX1 system when

the remote GPU is shared. In a similar way to the performance results shown

in Figure 19(b), energy consumption per client is reduced up to 24 concurrent610

clients. It is noteworthy that both performance and energy per client are notice-

ably better for a large amount of clients than those for the Xeon+P100 scenario.

Similarly, these metrics are also better than those for the Jetson TX1 when 16

or 24 concurrent instances share the remote GPU.

Results shown in Figure 19 have been gathered when all the different in-615

stances that share the remote GPU start execution at the same time. This is

the worst possible scenario because all the instances compete for the GPU com-

munication resources as well as for the GPU computation cores. A more realistic

scenario would consider that the different instances that share the remote GPU

do not start execution at the same time. In addition to being a more realistic620

scenario, this case would provide better results because competition among the

instances sharing the remote GPU would not be as strong as in the previous

case. Figure 20 shows the performance and energy measurements when 24 con-

current instances sharing the remote GPU are launched with some delay among

them. Considered delays are 0ms, 100ms, 200ms, 400ms and 500ms. It can625

be seen that introducing delays between two consecutive instances noticeably

improves both performance and energy. Therefore, it is expected that for the

applications shown in the previous sections, a real scenario where the appli-

cations sharing the remote GPU start execution at different times would also

improve performance and energy metrics.630

35

8
8

.7
5

4
9

.4
1

4
7

.2
4

4
3

.9
0

4
2

.5
4

0.68 1.22 1.28 1.38 1.42

60.38

24.29

-13
-11
-9
-7
-5
-3
-1
2

1

10

100

0ms 100ms 200ms 400ms 500ms

Sp
ee

d
-u

p

Ti
m

e
(s

)

Delay between the start of each of the 24 clients
concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100

Jetson TX1 Remote P100 speed-up

(a) Total execution time.

8
0

5

4
3

7

4
1

8

3
8

9

3
7

7

4408

845

0

1000

2000

3000

4000

5000

0ms 100ms 200ms 400ms 500ms

En
er

gy
 C

o
n

su
m

p
ti

o
n

p
er

 c
lie

n
t

(J
)

Delay between the start of each of the 24 clients
concurrently sharing the same rCUDA server

Jetson TX1 + remote P100 Xeon+P100 Jetson TX1

(b) Energy consumption.

Figure 20: Comparison of the MNIST deep learning application when 24 instances share the

remote GPU. It is executed in three different scenarios: (i) a regular server with one NVIDIA

P100 GPU, (ii) an NVIDIA Jetson TX1, and (iii) an NVIDIA Jetson TX1 offloading GPU

work to a remote regular server with one NVIDIA P100 GPU. All the 24 instances sharing

the remote GPU start execution at different times. Values in the X axis represent the delay

between two consecutive application launches.

36

4.5. Summary

We have analyzed our proposal for offloading the GPU part of applications

from ARM systems to remote Xeon-based GPU servers using three different

kind of high-performance applications depending on their duration: (i) a large

execution time application (Rodinia gaussian benchmark, almost 70 minutes in635

the Jetson TX1 system), (ii) a medium execution time application (BLAS, over

1 minute in the Jetson TX1 system), and (iii) a short execution time application

(FFTW, over 20 seconds in the Jetson TX1 system). Additionally, we have used

the MNIST deep learning application, which presents a behavior (attending to

execution time) similar to that of the Rodinia benchmark despite having a much640

shorter execution time.

Table 2 summarizes the main results of this analysis, considering not only

power and energy consumption, but also performance. Regarding performance,

all the four applications present the expected behavior. The regular Xeon server

always provides the best performance results, followed by our proposal of sharing645

remote high-end GPUs among ARM-based systems, and finally the ARM-based

system presents the worst performance.

With respect to the average power consumption, the applications under anal-

ysis show the inverse behavior to performance. In this manner, the ARM-based

system always presents the lowest average power consumption, followed by our650

approach. Lastly, the Xeon server shows the highest values.

The energy consumption is the metric providing more variability. When the

duration of the application is large, then the Xeon server presents the lowest

energy consumption, followed by our approach and the ARM system. On the

contrary, when the duration of the test is medium or small, then it is the ARM655

system which shows the lowest one, followed by our proposal and the Xeon

server.

One important factor to consider regarding the energy consumption of our

approach is the GPU memory and compute power. We have observed that

the remote high-end GPU shared among the ARM-based systems must have a660

large memory to allocate as many concurrent client applications as possible. In

37

Table 2: Summary of results shown in this section.

Test duration Scenario Performance Energy Average power

Large (Rodinia)

Jetson TX1 + remote P100 Average Average Average

Xeon + P100 Best Best Worst

Jetson TX1 Worst Worst Best

Medium (BLAS)

Jetson TX1 + remote P100 Average Average Average

Xeon + P100 Best Worst Worst

Jetson TX1 Worst Best Best

Small (FFTW)

Jetson TX1 + remote P100 Average Average Average

Xeon + P100 Best Worst Worst

Jetson TX1 Worst Best Best

Small (MNIST)

Jetson TX1 + remote P100 Best Average Average

Xeon + P100 Average Worst Worst

Jetson TX1 Worst Best Best

addition, it is also important that the remote GPU has a high compute power, to

be able to concurrently served multiple clients without penalizing performance

too much. Nevertheless, these requirements are aligned with current technology

trends, given that recent NVIDIA Tesla V100 GPUs [47] feature 32 GB of RAM665

in addition to the largest core count up to now.

In summary, these results show that our proposal is the one providing the

best trade off between performance, energy and power consumption.

5. Moving to Larger System Sizes

In the previous section we have presented a performance and energy anal-670

ysis of several CUDA-accelerated applications being executed in a small scale

Jetson-based cluster. The analysis shows that using remote GPUs is beneficial.

However, our purpose in this paper is to target exascale systems, which are com-

posed of hundreds or thousands of nodes. Therefore, the question now is how

representative of larger systems are the results presented in previous section.675

In order to answer this question, we should identify the main differences

between the small Jetson-based cluster used in the experiments in this paper

and a large deployment of such systems, as it could be the proposal for the

MontBlanc project previously revisited in Section 2.

38

From our point of view, the main difference among the small cluster used680

in the experiments in this paper and a large deployment used in the exascale

domain is the size of the network fabric used in both cases. In this regard,

although both systems would use a switched-based network, the much larger

size of the interconnect used in the exascale domain will not only impact the

latency of the communications among the Jetson system and the remote high-685

end GPU but also congestion may occur.

In the absence of congestion, a larger network fabric will necessarily present

larger latencies among rCUDA clients and servers. Intuitively, these larger laten-

cies would translate into larger execution times of the CUDA calls forwarded to

the remote GPU, thus negatively impacting application performance. Neverthe-690

less, notice that the actual latency introduced by the network hardware is orders

of magnitude smaller than the latency introduced by the network software. In

this regard, it is well-known that the latency introduced by the hardware of the

network fabric is in the nanosecond scale (for high performance interconnects)

whereas the latency introduced by the software of the communication stack is in695

the microsecond scale. As a consequence, when moving to larger deployments,

and in the absence of congestion, we can expect similar performance results to

those presented in the previous section because the latency due to the software

stack will absorb the increment in latency of the larger hardware size.

A different issue is related to congestion in the network. Notice that net-700

work congestion is not desired and, therefore, networks are usually designed so

that enough resources are provided. A good example of this overprovisioning

is fat-tree networks. On the other hand, congestion has been widely studied in

the past and several proposals have been made [48][49] in order to tackle this

complex problem. In any case, even if the network is designed to provide enough705

resources and even if an efficient congestion-management solution is included in

the network, congestion may still appear. When this happens, congestion will

negatively impact the performance of CUDA applications using remote GPUs,

in a similar way as congestion impacts performance of general distributed ap-

plications using MPI, for instance. In order to reduce the impact of congestion710

39

in the performance of CUDA-accelerated applications using remote GPUs, the

resource manager used to assign remote GPUs to applications should be en-

riched to consider not only the availability of resources across the cluster but

also the exact location of the application and that of the remote GPU within

the cluster. In this way, by properly choosing a node for the application which715

is close to an rCUDA server, the impact of network congestion could be lowered.

Additionally, in order to support the aforementioned proximity selection policy,

rCUDA servers should be placed across the cluster in such a way that every

Jetson-based node would have a set of n remote GPUs within j hops. This

design policy would increase locality in the communications between rCUDA720

clients and rCUDA servers thus reducing the negative impact of congestion.

Furthermore, the multi-tenancy approach already used in the previous section

would help the resource manager to take good decisions. Notice that with the

arrival of newer GPU models, such as the V100, which owns 32 GB of memory,

multi-tenancy is an increasingly appealing option. The resource manager would725

also control the multi-tenancy degree applied to the rCUDA servers. Addition-

ally, it is also important to note that even in the case of a wrong placement

decision, it is possible to use the GPU-job migration feature included in the

rCUDA middleware [50] in order to provide a better choice during application

execution. To that end, the resource manager should decide a better placement730

by leveraging system-wide data such as network conditions, state of the rCUDA

servers, etc. In any case, it is important to notice that even with a compre-

hensive design of the resource manager and the network fabric, the problem of

congestion is too complex to be completely solved.

6. Conclusions735

A new proposal for improving the efficiency of future exascale systems has

been presented in this paper. The proposal considers the use of rCUDA in order

to provide ARM-based systems with access to high-end remote GPUs. In this

way, the power efficiency of these processors is leveraged along with the power

40

efficiency of high-end accelerators, which are additionally dynamically shared on740

demand among multiple ARM-based systems. Results shown in this paper are

very important for future exascale systems based on the use of nodes leveraging

ARM processors, such as the Mont-Blanc or Isambard proposals, because of two

reasons.

The first reason is that these results demonstrate that for scientific appli-745

cations (usually requiring large amount of time to be executed) it is worth to

offload the GPU part of the application to a remote high-end GPU instead of

using a small embedded one such as the GPU included in the Jetson TX1 sys-

tem. Furthermore, presented results have demonstrated not only the benefits

of offloading computations to remote high-end GPUs located in regular Xeon750

servers but also that these results are expected to be stable over time and their

impact on the performance of future exascale systems will be even larger as tech-

nology improves. In this regard, notice that these results will become even more

noticeable for new-generation high-end GPUs such as the V100 [47] one, which

is much more powerful and, additionally, features up to 32 GB of RAM memory.755

In this way, future GPUs are expected to be even better aligned with the results

of this paper. Results in this paper show the significance of our proposal, which

allows to speed up applications being executed in ARM-based systems just by

attaching to the ARM nodes a few regular Intel servers with GPUs. Moreover,

regarding energy and power consumption, our study shows that it is possible to760

speed up applications by almost 8x while reducing energy consumption up to

35%. Furthermore, this is achieved while maintaining a feasible average power

consumption level for future exascale systems.

The second reason for the importance of our results for future exascale sys-

tems is that, if future exascale systems are based on the use of low-power ARM765

processors but do not include a small GPU (think about the ThunderX [51] or

ThunderX2 [52] processors, for instance, instead of the Jetson TX1 system), the

results presented will be even more relevant. Effectively, given that GPUs re-

duce execution time of applications by one or two orders of magnitude, if future

exascale computing systems based on the use of ARM processors do not include770

41

an embedded GPU, then the differences in execution time of the applications

when run using CPUs or when run using remote GPUs is more significant, as

previously shown.

On the other hand, notice that the presented analysis shows that our pro-

posal is the one providing the best compromise between performance, energy775

and power consumption. Results also reveal that for our approach being effec-

tive, GPUs must have large memory and large compute power in order to serve

as many concurrent clients as possible without losing performance. Modern

GPUs, such as the new NVIDIA Tesla V100 [47], with up to 32 GB of memory,

over 7 TeraFLOPS in double precision, and a maximum power consumption of780

300 W, will certainly help to increase the efficiency of our approach. Moreover,

it is important to note that when future exascale systems become a reality,

GPUs available at that time will likely present more resources than current

V100 GPUs.

Finally, it must be noticed that the rCUDA middleware can be seen just785

as tool to provide remote concurrent access to GPUs in the cluster. In this

regard, the rCUDA middleware should be augmented with a resource man-

ager [53], which is the one that has the smartness for carrying out load balanc-

ing, thus making an even better usage of the GPU resources. Furthermore, the

resource manager could make use of the GPU-job migration feature included in790

the rCUDA middleware [50]. This feature allows to migrate to another cluster

node the GPU part of an application while it is in execution. The CPU part

of the application remains in the same node. As can be seen, the rCUDA mid-

dleware is only one of the pieces of the puzzle. In this paper we have focused

on the possibilities that the rCUDA middleware provides to future exascale sys-795

tems, without considering the resource manager and/or migration features. If

those pieces were considered, performance and energy metric would probably

be improved.

42

Acknowledgments

This work was funded by the Generalitat Valenciana under Grant PROM-800

ETEO/2017/077. Authors are also grateful for the generous support provided

by Mellanox Technologies Inc and for the equipment donated by NVIDIA Cor-

poration.

References

References805

[1] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, The TOP500 List,

https://www.top500.org/, accessed 28 December 2017 (2017).

[2] I. Corporation, Intel Xeon Processor E5 v4 Family Product

Specification, https://ark.intel.com/products/series/91287/

Intel-Xeon-Processor-E5-v4-Family, accessed 29 December 2017810

(2017).

[3] G. Group, TCO Analyst: A White Paper on Gartner Group’s Next Gen-

eration Total Cost of Ownership Methodology, http://www.netvoyager.

co.uk/pdf/TCO_analyst.pdf, accessed 29 December 2017 (1997).

[4] X. Fan, W.-D. Weber, L. A. Barroso, Power provisioning for a warehouse-815

sized computer, in: Proceedings of the 34th annual international sympo-

sium on Computer architecture, ISCA ’07, ACM, 2007, pp. 13–23.

[5] N. Bates, G. Ghatikar, G. Abdulla, G. A. Koenig, S. Bhalachandra,

M. Sheikhalishahi, T. Patki, B. Rountree, S. Poole, Electrical grid and

supercomputing centers: An investigative analysis of emerging opportuni-820

ties and challenges, Informatik-Spektrum 38 (2) (2015) 111–127.

[6] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pet-

tis, D. M. Tullsen, T. S. Rosing, Managing distributed ups energy for ef-

fective power capping in data centers, in: 2012 39th Annual International

Symposium on Computer Architecture (ISCA), 2012, pp. 488–499.825

43

https://www.top500.org/
https://ark.intel.com/products/series/91287/Intel-Xeon-Processor-E5-v4-Family
https://ark.intel.com/products/series/91287/Intel-Xeon-Processor-E5-v4-Family
https://ark.intel.com/products/series/91287/Intel-Xeon-Processor-E5-v4-Family
http://www.netvoyager.co.uk/pdf/TCO_analyst.pdf
http://www.netvoyager.co.uk/pdf/TCO_analyst.pdf
http://www.netvoyager.co.uk/pdf/TCO_analyst.pdf

[7] Department of Energy and Climate Change, UK, CRC Energy Ef-

ficiency Scheme, http://webarchive.nationalarchives.gov.uk/

20121217154717tf_/https://www.decc.gov.uk/en/content/cms/

emissions/crc_efficiency/crc_efficiency.aspx, accessed 29 Decem-

ber 2017 (2012).830

[8] John Carey, Obama’s Cap-and-Trade Plan, https://www.bloomberg.

com/news/articles/2009-03-04/obamas-cap-and-trade-plan, ac-

cessed 2 January 2019 (2009).

[9] J. G. Koomey, Worldwide electricity used in data centers, Environmental

Research Letters 3 (3) (2008) 034008.835

URL http://stacks.iop.org/1748-9326/3/i=3/a=034008

[10] R. E. Brown, E. R. Masanet, B. Nordman, W. F. Tschudi, A. Shehabi,

J. Stanley, J. G. Koomey, D. A. Sartor, P. T. Chan, Report to congress

on server and data center energy efficiency: Public law 109-431 (06/2008

2008).840

[11] Jonathan G. Koomey, Growth in data center electricity use 2005

to 2010, https://www.missioncriticalmagazine.com/ext/resources/

MC/Home/Files/PDFs/Koomey_Data_Center.pdf, accessed 2 January 2018

(2011).

[12] Yevgeniy Sverdlik, Heres How Much Energy All U.S. Data Centers845

Consume, http://www.datacenterknowledge.com/archives/2016/06/

27/heres-how-much-energy-all-us-data-centers-consume, accessed

29 December 2017 (2016).

[13] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens,

N. Sakharnykh, P. Wang, P. Micikevicius, A. Scudiero, S. W. Keckler, W. J.850

Dally, Scaling the power wall: A path to exascale, in: SC14: International

Conference for High Performance Computing, Networking, Storage and

Analysis, 2014, pp. 830–841.

44

http://webarchive.nationalarchives.gov.uk/20121217154717tf_/https://www.decc.gov.uk/en/content/cms/emissions/crc_efficiency/crc_efficiency.aspx
http://webarchive.nationalarchives.gov.uk/20121217154717tf_/https://www.decc.gov.uk/en/content/cms/emissions/crc_efficiency/crc_efficiency.aspx
http://webarchive.nationalarchives.gov.uk/20121217154717tf_/https://www.decc.gov.uk/en/content/cms/emissions/crc_efficiency/crc_efficiency.aspx
http://webarchive.nationalarchives.gov.uk/20121217154717tf_/https://www.decc.gov.uk/en/content/cms/emissions/crc_efficiency/crc_efficiency.aspx
http://webarchive.nationalarchives.gov.uk/20121217154717tf_/https://www.decc.gov.uk/en/content/cms/emissions/crc_efficiency/crc_efficiency.aspx
https://www.bloomberg.com/news/articles/2009-03-04/obamas-cap-and-trade-plan
https://www.bloomberg.com/news/articles/2009-03-04/obamas-cap-and-trade-plan
https://www.bloomberg.com/news/articles/2009-03-04/obamas-cap-and-trade-plan
http://stacks.iop.org/1748-9326/3/i=3/a=034008
http://stacks.iop.org/1748-9326/3/i=3/a=034008
https://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/Koomey_Data_Center.pdf
https://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/Koomey_Data_Center.pdf
https://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/Koomey_Data_Center.pdf
http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume
http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume
http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume

[14] W. A. Ahmad, A. Bartolini, F. Beneventi, L. Benini, A. Borghesi, M. Ci-

cala, P. Forestieri, C. Gianfreda, D. Gregori, A. Libri, F. Spiga, S. Tinti,855

Design of an energy aware petaflops class high performance cluster based on

power architecture, in: 2017 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), 2017, pp. 964–973.

[15] W. Feng, T. Scogland, The GREEN500 List, https://www.top500.org/

green500/, accessed 28 December 2017 (2017).860

[16] N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O. Vilarrubi, C. Gomez,

L. Backes, D. Nieto, H. Servat, X. Martorell, J. Labarta, E. Ayguade,

C. Adeniyi-Jones, S. Derradji, H. Gloaguen, P. Lanucara, N. Sanna, J. F.

Mehaut, K. Pouget, B. Videau, E. Boyer, M. Allalen, A. Auweter, D. Bray-

ford, D. Tafani, V. Weinberg, D. Brmmel, R. Halver, J. H. Meinke, R. Bei-865

vide, M. Benito, E. Vallejo, M. Valero, A. Ramirez, The mont-blanc pro-

totype: An alternative approach for hpc systems, in: SC16: International

Conference for High Performance Computing, Networking, Storage and

Analysis, 2016, pp. 444–455.

[17] GW4 Alliance, Isambard, http://gw4.ac.uk/isambard/, accessed 2 Jan-870

uary 2018 (2011).

[18] V. Nikl, M. Hradecky, J. Keleceni, J. Jaros, The Investigation of the

ARMv7 and Intel Haswell Architectures Suitability for Performance and

Energy-Aware Computing, Springer International Publishing, 2017, pp.

377–393.875

[19] E. L. Padoin, D. A. G. de Oliveira, P. Velho, P. O. A. Navaux, B. Videau,

A. Degomme, J.-F. Mehaut, Scalability and energy efficiency of hpc cluster

with arm mpsoc, in: Workshop on Parallel and Distributed Processing,

2013, pp. 1–4.

[20] A. Selinger, K. Rupp, S. Selberherr, Evaluation of mobile arm-based socs880

for high performance computing, in: Proceedings of the 24th High Perfor-

mance Computing Symposium, HPC ’16, 2016, pp. 21:1–21:7.

45

https://www.top500.org/green500/
https://www.top500.org/green500/
https://www.top500.org/green500/
http://gw4.ac.uk/isambard/

[21] Cray, Cray XC50 Compute Blade for Arm Processors, https://www.

cray.com/sites/default/files/Cray-XC50-ARM-Product-Brief.pdf,

accessed 2 January 2018 (2017).885

[22] HPCWire, HPE Launches ARM-based Apollo System

for HPC, AI, https://www.hpcwire.com/2017/11/14/

hpe-launches-arm-based-apollo-system-hpc-ai/, accessed 2 January

2018 (2017).

[23] NVIDIA, Jetson TK1 Embedded Development Kit, http://www.nvidia.890

com/object/jetson-tk1-embedded-dev-kit.html, accessed 3 January

2018 (2013).

[24] NVIDIA, Jetson TX1, https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems-dev-kits-modules/, ac-

cessed 15 December 2017 (2017).895

[25] NVIDIA, TESLA K20 GPU ACCELERATOR Board Spec-

ification, http://www.nvidia.com/content/pdf/kepler/

tesla-k20-passive-bd-06455-001-v07.pdf, accessed 3 January

2018 (2013).

[26] NVIDIA, NVIDIA Tesla P100 GPU ACCELERA-900

TOR, http://images.nvidia.com/content/tesla/pdf/

nvidia-tesla-p100-PCIe-datasheet.pdf, accessed 3 January 2018

(2016).

[27] F. Silla, J. Prades, S. Iserte, C. Reaño, Remote GPU Virtualization: Is It

Useful?, in: 2016 2nd IEEE International Workshop on High-Performance905

Interconnection Networks in the Exascale and Big-Data Era (HiPINEB),

2016, pp. 41–48.

[28] M.-B. Project, Mont-Blanc: European Approach towards Energy Efficient

High Performance, http://www.montblanc-project.eu/home, accessed 3

January 2018 (2015).910

46

https://www.cray.com/sites/default/files/Cray-XC50-ARM-Product-Brief.pdf
https://www.cray.com/sites/default/files/Cray-XC50-ARM-Product-Brief.pdf
https://www.cray.com/sites/default/files/Cray-XC50-ARM-Product-Brief.pdf
https://www.hpcwire.com/2017/11/14/hpe-launches-arm-based-apollo-system-hpc-ai/
https://www.hpcwire.com/2017/11/14/hpe-launches-arm-based-apollo-system-hpc-ai/
https://www.hpcwire.com/2017/11/14/hpe-launches-arm-based-apollo-system-hpc-ai/
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf
http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf
http://www.nvidia.com/content/pdf/kepler/tesla-k20-passive-bd-06455-001-v07.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://www.montblanc-project.eu/home

[29] Samsung, Mobile Processor Exynos 5 Dual: The Industry’s First

Cortex-A15 Dual-core Mobile Processor, http://www.samsung.com/

semiconductor/minisite/exynos/products/mobileprocessor/

exynos-5-dual-5250/, accessed 3 January 2018 (2011).

[30] applied micro, APM883208-X1: X-Gene Multi-Core 64-bit Pro-915

cessor, https://myapm.apm.com/technical_documents/download/

apm883208-product-brief1, accessed 3 January 2018 (2014).

[31] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa, T. Narumi,

DS-CUDA: A Middleware to Use Many GPUs in the Cloud Environment,

in: Proc. of the SC Companion: High Performance Computing, Networking920

Storage and Analysis, SCC, 2012, pp. 1207–1214.

[32] C. Reaño, F. Silla, G. Shainer, S. Schultz, Local and Remote GPUs Perform

Similar with EDR 100G InfiniBand, in: Proceedings of the Industrial Track

of the 16th International Middleware Conference, Middleware Industry ’15,

2015.925

[33] L. Shi, H. Chen, J. Sun, vCUDA: GPU accelerated high performance com-

puting in virtual machines, in: Proc. of the IEEE Parallel and Distributed

Processing Symposium, IPDPS, 2009, pp. 1–11.

[34] T. Y. Liang, Y. W. Chang, GridCuda: A Grid-Enabled CUDA Program-

ming Toolkit, in: Proc. of the IEEE Advanced Information Networking and930

Applications Workshops, WAINA, 2011, pp. 141–146.

[35] G. Giunta, R. Montella, G. Agrillo, G. Coviello, A GPGPU Transparent

Virtualization Component for High Performance Computing Clouds, in:

Proc. of the Euro-Par Parallel Processing, Euro-Par, 2010, pp. 379–391.

[36] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar,935

P. Ranganathan, GViM: GPU-accelerated virtual machines, in: Proc. of

the ACM Workshop on System-level Virtualization for High Performance

Computing, HPCVirt, 2009, pp. 17–24.

47

http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-dual-5250/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-dual-5250/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-dual-5250/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-dual-5250/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-dual-5250/
https://myapm.apm.com/technical_documents/download/apm883208-product-brief1
https://myapm.apm.com/technical_documents/download/apm883208-product-brief1
https://myapm.apm.com/technical_documents/download/apm883208-product-brief1

[37] NVIDIA, CUDA C Programming Guide. Design Guide, http://

docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf, accessed940

26 March 2017 (2017).

[38] C. Reaño, F. Silla, A Performance Comparison of CUDA Remote GPU

Virtualization Frameworks, in: 2015 IEEE International Conference on

Cluster Computing, 2015.

[39] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, K. Skadron,945

Rodinia: A benchmark suite for heterogeneous computing, in: 2009 IEEE

International Symposium on Workload Characterization (IISWC), 2009,

pp. 44–54.

[40] C. Reaño, J. Prades, F. Silla, Exploring the use of remote gpu virtualization

in low-power systems for bioinformatics applications, in: Proceedings of the950

47th International Conference on Parallel Processing Companion, ICPP

’18, 2018, pp. 8:1–8:8.

[41] C. Reaño, F. Silla, A comparative performance analysis of remote gpu

virtualization over three generations of gpus, in: 2017 46th International

Conference on Parallel Processing Workshops (ICPPW), 2017, pp. 121–128.955

[42] M. Frigo, S. G. Johnson, The design and implementation of FFTW3, Pro-

ceedings of the IEEE 93 (2) (2005) 216–231, special issue on “Program

Generation, Optimization, and Platform Adaptation”.

[43] NVIDIA, CUDA Fast Fourier Transform library (cuFFT), https://

developer.nvidia.com/cufft, accessed 23 March December 2018 (2018).960

[44] University of Tennessee, Basic Linear Algebra Subprograms (BLAS), http:

//www.netlib.org/blas/, accessed 23 March 2018 (2018).

[45] NVIDIA, CUDA Basic Linear Algebra Subroutines (cuBLAS), https://

developer.nvidia.com/cublas, accessed 23 March 2018 (2018).

48

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas

[46] C. Reaño, F. Silla, A live demo on remote gpu accelerated deep learning965

using the rcuda middleware, in: Proceedings of the Posters and Demos Ses-

sion of the 16th International Middleware Conference, Middleware Posters

and Demos ’15, 2015, pp. 3:1–3:2.

[47] NVIDIA, NVIDIA Tesla V100 GPU ACCELERATOR, https:

//images.nvidia.com/content/technologies/volta/pdf/970

tesla-volta-v100-datasheet-letter-fnl-web.pdf, accessed 3 Jan-

uary 2018 (2017).

[48] J. Escudero-Sahuquillo, P. J. Garcia, F. J. Quiles, G. Maglione-Mathey,

J. Duato, Feasible enhancements to congestion control in infiniband-based

networks, Journal of Parallel and Distributed Computing 112 (2018) 35 –975

52.

[49] J. Escudero-Sahuquillo, E. G. Gran, P. J. Garcia, J. Flich, T. Skeie,

O. Lysne, F. J. Quiles, J. Duato, Efficient and cost-effective hybrid con-

gestion control for hpc interconnection networks, IEEE Transactions on

Parallel and Distributed Systems 26 (1) (2015) 107–119.980

[50] J. Prades, F. Silla, Turning gpus into floating devices over the cluster: The

beauty of gpu migration, in: 2017 46th International Conference on Parallel

Processing Workshops (ICPPW), 2017, pp. 129–136.

[51] Cavium, ThunderX ARM Processors: High Performance Workload Opti-

mized Processors For Data Demanding Applications and Cloud Infrastruc-985

ture, http://www.cavium.com/product-thunderx-arm-processors.

html, accessed 3 January 2018 (2013).

[52] Cavium, ThunderX2 ARM Processors: High Performance ARMv8 Proces-

sors for Cloud and HPC Server Applications, http://www.cavium.com/

product-thunderx2-arm-processors.html, accessed 3 January 2018990

(2018).

49

https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
http://www.cavium.com/product-thunderx-arm-processors.html
http://www.cavium.com/product-thunderx-arm-processors.html
http://www.cavium.com/product-thunderx-arm-processors.html
http://www.cavium.com/product-thunderx2-arm-processors.html
http://www.cavium.com/product-thunderx2-arm-processors.html
http://www.cavium.com/product-thunderx2-arm-processors.html

[53] S. Iserte, J. Prades, C. Reaño, F. Silla, Increasing the performance of data

centers by combining remote gpu virtualization with slurm, in: 2016 16th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-

puting (CCGrid), 2016, pp. 98–101.995

50

