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Zusammenfassung 
Das RACOON-Lab ist ein Robotersystem mit überdurchschnittlich komplexer 
Kinematik aufgrund seiner Anforderungen an die Sichtbarkeit. Diese Anlage soll 
Proximity Operations im Orbit simulieren, um Bilderkennungsalgorithmen zu testen. 
Aus diesem Grund wurde seine Geometrie mit der Absicht konzipiert, eine ungestörte 
Sichtverbindung zu erreichen. Folglich ist die Kinematik der beteiligten Roboter durch 
einen geringen Redundanzgrad und starke Einschränkungen in den vorhandenen 
Gelenken gekennzeichnet. Diese starke Beschränkung der Bewegungsmöglichkeiten 
hat einen nicht konvexen Lösungsraum mit mehreren Singularitäten zur Folge, was die 
Nutzung der Anlage in den letzten Jahren eingeschränkt hat. 
Die vorliegende Arbeit befasste sich mit dem inversen Kinematikproblem des 
RACOON-Labs unter Verwendung konventionaller Ansätze und entwickelte einen 
neuen Algorithmus. In Bezug auf die gewöhnlichen Ansätze wurden Automatic 
Supervisory Control (ASC) und Weighted Least Norm (WLN) als potenzielle Lösungen 
evaluiert. Darüber hinaus wurde ein neuartiger Ansatz entwickelt, der auf der 
analytischen Lösung der inversen Kinematik basiert. In diesem Fall wird die 
isokinematische Mannigfaltigkeit an jedem Punkt der Bahn berechnet und zur 
Erzeugung der Trajektorie des Roboters verwendet. 
Alle Algorithmen wurden auf zwei Fälle angewendet. Zunächst wurde ein reines Rollen 
untersucht. Diese Bewegung ist besonders relevant, da sie sich in früheren RACOON-
Lab-Studien als äußerst problematisch erwiesen hat. Die andere betrachtete Flugbahn 
war das Taumeln eines im All befindlichen Satelliten: MOVE-II. Die Rotation dieses 
Raumfahrzeugs wurde rekonstruiert, nachdem die von seinen Gyroskopen 
gesammelten Daten über einen Zeitraum verarbeitet wurden, in dem  MOVE-II ohne 
Aktuierung taumelte. 
Die konventionellenen Ansätze lieferten einen begrenzten Erfolg bei der Ausführung 
der Rollbewegung. In diesem Fall war es notwendig, auf hohe 
Verstärkungskoeffizienten zurückzugreifen, um eine realisierbare Bewegung zu 
erreichen. Diese hohen Verstärkungskoeffizienten erwiesen sich als wirksam, 
schienen jedoch gleichzeitig den Wirkungsgrad zu beeinträchtigen und Schwingungen 
auszulösen. Darüber hinaus konnte die Trajektorie von MOVE-II mit keiner dieser 
Methoden unabhängig von der Verstärkung vollständig nachempfunden werden. 
Der auf der analytischen Lösung basierende Ansatz übertraf in beiden Fällen die 
herkömmlichen Methoden. Für die Rollbewegung wurde ein Wirkungsgrad von 50% 
erzielt, verglichen mit ungefähr 10%, die durch ASC und WLN erreicht wurden. In 
Bezug auf die Simulation des Taumelns von MOVE-II konnte der auf der analytischen 
Lösung basierende Algorithmus diese mit einem Wirkungsgrad von 70% ausführen. 
Ergänzend zur Betrachtung des Trajektorienproblems wurde die entwickelte inverse 
Kinematiklösung zur Untersuchung der Fähigkeiten von RACOON-Lab angewandt. 
Insbesondere wurde die Effizienz des Roboters in Abhängigkeit der geometrischen 
Randbedingungen untersucht. Dies ermöglichte eine objektive Bestimmung der 
kinematischen Fähigkeiten des Roboters. 
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Abstract 
The RACOON lab is a robotic system with extremely complex kinematics due to its 
requirements on visibility. This facility intends to recreate on-orbit proximity operations 
in order to test visual recognition algorithms. Due to this, its geometry was conceived 
with the intention of promoting a diaphanous framework. Consequently, the kinematics 
of the involved robots is characterized by a low degree of redundancy and strong 
constrains in the existing joints. This severe narrowing of the motion possibilities 
determines a non-convex solution space with several singularities, which has limited 
the utilization of the facility over the last years.  

The present work addressed the inverse kinematics problem of the RACOON Lab 
using conventional approaches and by proposing a new algorithm. Regarding the 
ordinary approaches, Automatic Supervisory Control (ASC) and Weighted Least Norm 
(WLN) were evaluated as potential solvers. In addition, a novel approach based on the 
inverse kinematics was developed. In this case, the isokinematic manifold at each point 
of the trajectory is computed and used for guiding the robot’s trajectory.  

All these algorithms were applied to two trajectory problems. First, a pure roll rotation 
was studied. This motion is particularly relevant since it had proven to be significantly 
problematic in past RACOON-Lab studies. The other considered trajectory was the 
tumbling of an actual orbiting satellite: MOVE-II. This spacecraft’s attitude history was 
reconstructed after processing the data collected by its gyroscopes over a period of 
time when it orbited unactuated.  

The conventional approaches provided a limited success in the execution of the roll 
rotation. In this case, in order to achieve feasible motion it was necessary to resort to 
high gain coefficients. These high gain coefficients proved to be effective, but they 
simultaneously seemed to be detrimental for the efficiency and triggered oscillations. 
Furthermore, the execution of MOVE-II’s trajectory could not be completely achieved 
with any of these methods regardless of the gain.  

The approach based on the analytical solution outperformed the conventional 
methodologies in both cases. For the roll rotation, an efficiency of 50% was obtained, 
compared to the rough 10% achieved by ASC and WLN. Regarding the simulation of 
MOVE-II’s trajectory, the algorithm based on the analytical solution proved able to 
execute it with an efficiency of 70%. 

Complementary to the research in the trajectory problem, the developed inverse 
kinematics solution was applied for studying the facility’s capabilities. In particular, the 
robot’s efficiency was studied as a function of the geometrical constraints. This enabled 
an objective assessment of the robot’s kinematical capabilities. 
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1 Motivation 
The proliferation of defunct spacecraft and space debris, especially in Low Earth Orbit 
(LEO), poses an unprecedented challenge for the future of space operations. In order 
to overcome this problem, it is necessary to explore novel technologies able to cope 
with this issue. Among the different proposed alternatives, many require the mastering 
of proximity operations involving un-cooperative targets [1]. Facilities such as 
RACOON-Lab provide a realistic environment for extensive testing and simulation of 
on-orbit operations. 

To maximize the test’s validity, it is necessary to establish a framework as diaphanous 
as possible. A clear line of sight between the involved robots is essential for testing 
algorithms based on visual recognition techniques. These characteristics are achieved 
by limiting the number of actuators and imposing strong geometrical constrains on 
them. However, such designs cause convoluted kinematics with a great number of 
singularities.   

Such is the case for the RACOON-Lab. The utilization of this facility has been limited 
through its first years of operation due to its challenging inverse kinematics. Several 
past studies have tried to solve this problem but no robust and generalized solution 
has yet been found [2]. 

In order to maximize the capabilities of this research tool, it is necessary to develop 
algorithms capable of solving the inverse kinematics of the involved robots. Removing 
this hindrance would enable the use of the RACOON-Lab for the recreation of complex 
orbital trajectories and provide a functional framework for testing on-orbit proximity 
operations. 
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2 State of the Art 
The Rotator is the most challenging element within the RACOON-Lab from a kinematic 
perspective and it is the device on which the majority of this Thesis will focus. This 
mechanism can be described as a robot, since it is composed of several individual 
links that are interconnected through joints.  

The state of a robot is characterized through its configuration vector 𝑞. In this array 
each element represents the position of one of its joints. The robot’s configuration 
determines spatial and orientation coordinates for each joint. These coordinates are 
summarized in the coordinates vector 𝑤, in which each element is associated with one 
of the robot’s degrees of freedom in space.  

The most relevant of a robot’s elements is its end effector. This link contains the robot’s 
termination point and it is responsible for interacting with the environment. Therefore, 
the robot’s behavior is usually defined by the end effector’s trajectory. The inverse 
kinematics problem consists of finding feasible configuration(s) vector(s) 𝑞, which lead 
to the desired coordinates of the end effector 𝑤   [3, 4]: 

 𝑞 = 𝑓(𝑤 ) ∀ 𝑞 ∈  𝑄 Eq. ( 2–1 ) 

Where 𝑄  denotes the set of configurations which comply with the robot’s physical 
limitations and are therefore feasible. This problem is only well posed for the extremelly 
limited number of cases in which a unique configuration provides the desired 
coordinates. In the most common scenario, the problem is ill-posed either because 
there are several or infinite solutions or because there is no solution at all [3, 4]. The 
variety of possibilities of the inverse kinematics is illustrated with an example in Fig.  
2-1. In this figure 𝑛𝑠𝑜𝑙 denotes the number of existing solutions which are available for 
the same robot depending on the desired coordinates. 

 
Fig.  2-1: Example of Solutions for the Inverse Kinematics for Different Desired Coordinates. Image 

Courtesy of [4]  

Most of the scientific literature has studied the inverse kinematics with a focus on its 
implementation for robotic arms, characterized by a high degree of redundancy. The 
common points between robotic arms and the RACOON-Lab’s Rotator is their 
redundancy (albeit in different degrees) and the geometrical constrains. The majority 
of the existing approaches originate from robotics, so this field will be the one 
considered for the identification of the top performing methodologies. Nonetheless, the 
RACOON-Lab’s rotator presents some remarkable differences from the conventional 
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robotic arms that should be noted. This multibody presents a freedom of motion 
restricted to the attitude domain, with extraordinarily constrained joints and a low 
degree of redundancy. Furthermore, its exotic kinematic chain is characterized by a 
significant number of singularities and a solution space that is not convex at all points.  

In the last decades, several algorithms have been proposed for addressing the inverse 
kinematics of redundant constrained robots. The wide diversity of these methodologies 
enables a myriad of possible ways for sorting them. In the context of the present 
project, the following classification will be used: 

 Solution in the velocity domain. In this group of methods, the problem is 
approached using the time derivatives of the coordinates and the result is 
integrated afterwards. Since the kinematic equations in the velocity domain 
constitute linear systems, its numerical solution is easier to obtain. 
 

 Analytical approach. In this case the kinematic equations are solved for each 
point of the trajectory. This implies the resolution of the non-linear geometrical 
equations. Such procedures are much more demanding from the point of view 
of mathematical complexity. 

2.1 Solution in the Velocity Domain 

The solution in the velocity domain requires solving the following undetermined linear 
system of equations for each point of the trajectory: 

 �̇� = 𝐽 ̇ ̇ �̇� Eq. ( 2–2 ) 

Where �̇�  denotes the desired time derivate of the the robot’s end effector’s 
coordinates, �̇� is the time derivative of the robot’s configuration and 𝐽 ̇ ̇  is the Jacobian 
tensor which relates both vectors. In this system of equations, the number of columns 
of 𝐽 ̇ ̇  is greater to its number of rows due to the robot’s redundancy. In order to handle 
this lack of conditions, additional tasks must be defined. These tasks are formulated 
as cost functions, which intend to minimize the possibility of reaching a terminal 
position while executing smooth trajectories. Therefore, the main distinctive feature of 
each algorithm is the philosophy used for the determination of the cost function. 

2.1.1 Resolved Motion Rate Control and Automatic Supervisory Control 

One of the first algorithms proposed for solving the inverse kinematics of redundant 
systems was the Resolved Motion Rate Control (RMRC). This method was introduced 
by Whitney in 1969 [5] and establishes an optimization problem with a cost function 
while simultaneously accounting for the compliance of the kinematic equations of the 
robot. The cost function is defined as: 

 Φ = �̇� 𝑊�̇�  Eq. ( 2–3 ) 

With 𝑊 being a weightning matrix and �̇� the time derivative of the robot’s configuration. 
The goal is to minimize the value of Φ  while simultaneously complying with the 
kinematic condition i.e. Eq. ( 2–1). This problem can be adressed efficiently using the 
Lagrange multiplicators method [4, 6]. The RMRC enables a linear formulation of the 
problem, which can be highly advantageous for introducing additional dependencies 
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such as momentum conservation [7]. Nevertheless, this method presents the 
disadvantage of not being able to incorporate geometrical restrictions of the joints. Its 
application is thus limited to unconstrained robots. 

2.1.2 Automatic Supervisory Control 

The Automatic Supervisory Control (ASC) is an extension of the RMRC proposed by 
Liégeois in 1977 [8]. This approach includes the dependency on the current 
configuration in the cost function using a smooth function 𝐻(𝑞) in the following fashion: 

 Φ = �̇� 𝑊�̇� + 𝛼
( )

�̇�  Eq. ( 2–4 ) 

With 𝛼 > 0 being an auxiliary parameter which can be tuned in order to variate the 
global authority of the current configuration in the cost. If one keeps the boundary 
kinematic condition of Eq. ( 2–1 )  as in RMRC it is possible to solve the problem using 
the Lagrange Multipliers method. 

This procedure enables strategies able to address the joints’ limitations problematic. 
For example, the function 𝐻 can be shaped in a way that tends to infinite when the 
joint’s configuration tends to its limit values. In particular, Liégeois proposed the use of 
quadratic hyperbolae with its singularities placed in the joint’s limits. The robot that 
Liégois used to test his method and its constrains are displayed in Fig.  2-2.  

This approach provides a good starting point for incorporating the joints’ limits into the 
control system but it has several shortcomings: 

 Only the homogeneous space is used for the task of optimization. The outcome 
of this limitation can be a low efficiency of the trajectory.  

 The value of the constant 𝛼 is not trivial and must be chosen for each robot and 
for each application. This is often done by trial and error, choosing a very high 
value and gradually decreasing it until the physical limitations are violated. 

 If the value of 𝛼  is too high, the trajectory tends to be attached to the 
intermediate position between the joints’ limits, which results in highly unefficient 
trajectories.  

 High values of the constant 𝛼  can produce important oscillations [9]. 

 
Fig.  2-2. Slave MA-23 Manipulator used in Liégois Study. Figure from [8]. 
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2.1.3 Weighted Least Norm Method 

The Weighted Least Norm (WLN) method is modification of the ASC Method proposed 
by Chan et.al in 1995 [10] in order to overcome some of its disadvantages.  

In this method, the optimization function Φ has the same form as in the Resolved 
Motion Rate Control in Eq. ( 2–3 ). This is achieved by incorporating the function 𝐻 into 
the weighting Matrix 𝑊 so that it depends on the robot’s configuration: 

 𝑊 = 𝑊(𝑞) = 𝑊 +
( )

  Eq. ( 2–5 ) 

This approach uses the space in a more efficient way and can avoid the problem with 
oscillations. In Chan’s study, a trajectory was simulated with the RMRC, ASC and the 
WLN Methods. The results are displayed in Fig.  2-3. As it can be seen, the RMRC 
ends up violating the joint’s limitation. Both the WLN and ASC methods are able to 
remain within the joint’s limit but the WLN algorithm results in a more efficient utilization 
of the space. This feature is evident if one observes the smoother trajectory of the WLN 
solution, which is able to fulfill the task without resorting to abrupt deviations as its 
joints approach to their limits. This is not the case for the ASC’s output trajectory, which 
has a much step response once it is close to a terminal position resulting in a less 
efficient motion. 

 

 
Fig.  2-3. Comparison of the Trajectory Solutions for the RMRC (Labelled as LN), ACS (Labelled as 

GPM) and WLN Methods [10].  

2.1.4 Further Upgrades 

Departing from the previously presented algorithms, several extensions and 
modifications have been proposed. Nevertheless, the general philosophy of 
incorporating a penalization which increases as the configuration moves towards one 
of its limits prevails. An inherent problem to this sort of algorithms is its strong tendency 
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to generate trajectories which move around the intermediate position between the 
joint’s limits without benefiting from all the solution space.  

This problematic can be addressed by certain workarounds. For example, Lee et al. 
2007 proposed a definition of a range of areas which proved able to improve the 
performance with respect to other conventional methods [11]. In the recent years, other 
approaches such as Nonlinear Model Predictive Control (NMPC) [12] or space 
transformations [13]  have been proposed. 

However, the tendency of a space’s underutilization always remains due to the 
complexity of coupling the cost function’s definition with a meaningful assessment of 
the configuration’s optimality. 

2.2 Topological Approach 

The topological approach addresses the inverse kinematics from an analytical 
standpoint. This perspective aims the study of the solution space for a given input 
desired coordinates. Such consideration enables a more comprehensive 
understanding of the robot’s kinematic capabilities.  

Most of the researches of the inverse kinematics focus on the solution to the point 
problem [14, 15]. Works that addressed trajectory planning strategies based on an 
analytical solution to the inverse kinematics are rather scarce. The The main studies 
in this direction were conducted by Lücke et.al in the 1990s decade [16, 17]. In these 
works, the self-motion topologies within the configuration space were studied. These 
regions are the set of configurations which result in the same coordinates for the end 
effector. 

Using the example of a planar arm, the solution space for the point problem considering 
joints’ limitations was studied. An example of these isokinematic regions is displayed 
in Fig.  2-4. 

 
Fig.  2-4. Example of of an Isokinematic Topology for a Constrained Robot and the Conectivity Bundle 

of its Elements [16]. 

This Figure illustrates the topology of the self motion space for a given desired 
coordinates of the robot and for a given value of 𝜃 . The actual solution space is a 
surface in a tridimensional space but the value of 𝜃  was fixed in order to produce a 
slice of this surface which provides a more intuitive visualization. As it can be seen, the 
solution space is composed of different segments, between which transitions can take 
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place by varying the value of 𝜃 . The associated graph which illustrates these feasible 
transitions is presented in Fig.  2-4 as well.  

Lück proposed a global trajectory planning strategy by discretization and the use of a 
Breadth First Search (BFS) heuristics considering the connectivity bundle at each point 
of the discretized trajectory. Its approach proved to improve the execution time of the 
task by a factor of 50 when compared with conventional methods [17]. 

The main shortcoming of these methodologies is the complexity of the inverse 
kinematics’ analytic solution even in eminently simple systems. This difficulty grows 
exponentially when the trajectory planning comes into play.  
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3 Goal of this Thesis 
In order to maximize the capabilities of the RACOON-Lab it is necessary to enable its 
use for the recreation of complex trajectories. This requires the implementation of an 
algorithm capable of solving this robotic systems’ inverse kinematics.  

Since this facility is highly constrained and presents a low degree of redundancy, the 
general approaches discussed in the previous section may result in an underuse of the 
system’s potential. Due to this, it becomes necessary to design a specific methodology 
which enables an optimal utilization of the facility. Therefore, the main goal of the 
present thesis is the development of an algorithm capable of solving the inverse 
kinematics problem for the RACOON-Lab. This implies to produce a methodology 
capable of generating real time and offline trajectories that simultaneously avoid 
unnecessary motions and forbidden states.  

Parallel to this objective, it will be aimed to assess the feasibility of optimal execution 
of trajectories within the use of the present robotic system. This involves the evaluation 
of the suitability of the RACOON-Lab’s design concept from the point of view of its 
kinematics. From this evaluation task it will be possible to determine the performance 
limits of the facility. This will provide an adequate framework for the appraisal of the 
developed algorithm’s aptness.  

Therefore, the main objective of the present thesis will be the implementation of a 
functional inverse kinematics algorithm and it will be coupled with the study of the 
facilities suitability for representing convoluted maneuvers. 
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4 Approach 
The robot whose inverse kinematics will be studied has three five rotational degrees of 
freedom for achieving the three attitude angles. This provides a degree of redundancy 
of two, which can be regarded as low. In addition, many of the joints are severely 
limited. Such disposition can be excessively challenging for the application of 
conventional methodologies. Furthermore, the task of evaluating the system’s 
suitability for the representation of complex maneuvers calls for a holistic approach. It 
will be necessary to address the problem with an integral strategy, capable of providing 
a comprehensive perspective of the facility’s potentials.  

The analytical approach is a suitable methodology for fulfilling such requirements. 
Furthermore, the low degree of redundancy of the involved robotic systems is an 
advantageous feature when considering this procedure. Due to this, the analytical 
approach will be the strategy followed for the development of the present project. 

Therefore, the work will begin with an extensive analysis of the facility’s robotic systems 
and their forward kinematics. This will provide a solid background for the following 
tasks 

Departing from this study, the inverse kinematics of the facility will be addressed from 
an analytical standpoint in order to provide a consistent mathematical expression of 
the robot’s configuration as a function of the desired coordinates. 

The next step will be the development of algorithms for implementing trajectory 
planning based on the developed formulations. These results will be compared with 
the outcome of some of the conventional algorithms present in the literature. This will 
provide an appropriate foundation in order to assess the achievements of the followed 
approach. 

The analytical approach will provide a set of tools that enable the analysis of the facility 
suitability’s through sensitivity and singularity analyses. This study will provide a 
deeper understanding of the facility’s capabilities and will be used for evaluating the 
goodness of the developed inverse kinematics algorithms.  

Subsequently, the elaborated methodologies will be applied for the trajectory planning 
of actual orbiting spacecraft within the RACOON-Lab’s framework. This will provide an 
actual example for a realistic scenario where the developed algorithms can be 
implemented. 

Finally, the achieved work will be summarized and discussed, stressing its comparison 
with the initially presented goals and next steps and possible improvements will be 
proposed in an outlook chapter
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5 Environment Description 
The Real-Time Attitude Control and On-Orbit Navigation laboratory (RACOON-Lab) 
was conceived in order to provide a flexible test bed for the research of new on-orbit 
servicing and space debris removal technologies [18]. Since the beginning of its 
operations, a decade ago, several research projects have benefitted from its use. This 
laboratory’s framework consists on several modules, but this text will pay special 
attention to the mechanical hardware facility.  

This chapter is devoted to the comprehensive description of the RACOON-Lab with a 
special focus on its multibody kinematics. This exposition will be structured in two 
different sections. In the first one, the RACOON-Lab environment will be illustrated 
from an architectural standpoint. In the following section, the kinematics of the robots 
present in the RACOON-Lab will be described in order to provide a solid background 
for addressing the system’s inverse kinematics in the following chapters. 

5.1 System Architecture 

The experimental setup of RACOON-Lab is composed of two independent robots: A 
Chaser and a Target. The Chaser is the element which intends to represent the 
controlled spacecraft, that attempts to perform on-orbit operations requiring the 
interaction with another cooperative or uncooperative spacecraft. This secondary 
element is referred as the Target and within the RACOON-Lab it is represented by the 
other robot: the Rotator. This element receives this name due to the fact that it can 
only change its orientation. Therefore, any relative translational motions between both 
elements is executed by the Chaser. These two elements can be used for testing new 
technologies and algorithms in proximity operations. In Fig.  5-1 and Fig.  5-2 examples 
of possible scenarios that could be represented within the RACOON-Lab are 
displayed.  

 
Fig.  5-1. Artist Impression of ATV Docking 

with the ISS [19] 

 
Fig.  5-2. Deutsche Orbitale Servicing Mission 

(DEOS) [20] 

In order to reproduce the trajectories, typical for on-orbit operations, it is necessary to 
provide these robots with the necessary degrees of freedom that enable seamless 
relative motion in three-dimensional space. In total, the facility has eleven degrees of 
freedom, five of them are associated to the Target and the remaining six to the Chaser. 
Both elements and its degrees of freedom can be observed in Fig.  5-3. This disposition 
enables the simulation of proximity operations with real-time capabilities. A particularly 
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relevant simulation case is the interaction with uncooperative targets for de-orbiting 
purposes. In these cases, the rotator represents an uncontrolled, often defunct 
spacecraft which has to be captured by the chaser. Many of the novel technologies 
which attempt to perform such tasks relay in visual recognition algorithms [21]. 

 
Fig.  5-3: Photography oft he RACOON-Lab with all its degrees of Freedom [2] 

Due to this, it is essential to recreate the same illumination conditions that the robots 
would experience during an actual Space mission. With the exception of interstellar 
missions, the two main light sources that the spacecraft receives are the Sunlight and 
the Earth’s albedo. The former source is relevant for all missions, whilst the latter can 
be very significant for missions which take place in Low Earth Orbits (LEO) and MEO 
(Medium Earth Orbits). These lighting conditions are achieved with the use of Earth’s 
albedo and Sun simulators, which are capable of accurately mimicking the 
electromagnetic spectrum of these sources of light [18]. 

 

  
Fig.  5-4. Scheme of RACOON-Lab's Elements [22] and Illumination Instrumentation [18]  
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The goal of maximizing the simulations’ realism influences the kinematic disposition of 
the robots too. The main example is the C-Shape rail which enables partial rotations 
of the satellite mockup around axes contained in the horizontal plane. This disposition 
was chosen in detriment to a closed O-Ring in order to create a clear line of sight free 
of interruptions between the Chaser and the Rotator. Although this concept is highly 
advantageous from this perspective it difficults the solution of the inverse kinematics, 
especially when considering continuous rotations around axes contained in the 
horizontal plane. This problem will be discussed in further detail in the following 
sections.  

5.2 System Kinematics 

In this section the multibody systems present in the RACOON-Lab and its kinematics 
are presented. In order to provide the appropriate background for this description, an 
initial section will introduce the basic notions of robotic kinematics. Subsequently, the 
direct kinematics of the robots will be described. 

5.2.1 Basic Definitions 

The field of kinematics is the study of the movement’s geometry and its task is the 
description of the coordinates and configuration of bodies over time and space [23].  
For the scope of the present section only the definition over space is relevant and 
therefore we will restrict to this aspect of the kinematics. 

5.2.1.1 Coordinates in Space 

The coordinates of a body in space describe six degrees of freedom, three of them 
refer to the bodies’ position and the other three are related to the bodies’ orientation. 
There are infinite valid ways of representing this information. For the present work, the 
spatial coordinates and the Euler angles with respect to the inertial frame will be the 
ones used, as displayed in Fig.  5-1.  

 
Figure 5-1. Euler Angles in the Inertial Frame [24] 
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Therefore, the coordinates of a given body can be expressed as: 

 𝑊 = (𝑍 Ξ) = (𝑥 𝑦 𝑧 𝜑 𝜃 𝜓)   Eq. ( 5–1 ) 

Where 𝑍  is the 3x1 vector of the space coordinates and Ξ ist he 3x1 vector containing 
the Euler angles between the frame 𝐹 and the inertial frame. In this notation, the sub-
index 𝐹 denotes the framework in which these coordinates are provided. A central 
aspect of the kinematics is the expression of coordinates in different frames. A frame 
in a tridimensional space is defined by the coordinates of its origin and by the 
orientation of its main axes.  

If two different frames present a common origin, it is possible to transform the 
coordinates from one frame to another using a rotation matrix in the following fashion: 

 𝑍 = 𝑀 𝑍   Eq. ( 5–2 ) 

Where 𝑀  is the rotation matrix which is a function of the Euler angles between the 
frames 𝐴 and 𝐵. The rotation matrix depends on the axis, in which the rotation takes 
place and on the rotation angle 𝜌. The rotation matrices that represent these elemental 
rotations are the following: 

 𝑀 (𝜌) =

1 0 0
0 cos(𝜌) sin(𝜌)

0 −sin(𝜌) cos(𝜌)
  Eq. ( 5–3 ) 

 𝑀 (𝜌) =
cos(𝜌) 0 − sin(𝜌)

0 1 0
sin(𝜌) 0 cos(𝜌)

  Eq. ( 5–4 ) 

 𝑀 (𝜌) =
cos(𝜌) sin(𝜌) 0

−sin(𝜌) cos(𝜌) 0
0 0 1

  Eq. ( 5–5 ) 

 

If several elemental rotations take place with a given order it is possible to summarize 
all of them with a single rotation matrix which is the product of all the previous rotations: 

 𝑍 = 𝑀 𝑀 𝑀 … 𝑀( )( )𝑀( ) 𝑍 = 𝑀 𝑍   Eq. ( 5–6 ) 

The other differential element between two different frames is the offset between their 
origin. If we consider the simplest case of an offset in the origin between two frames 
that maintain the parallelism between their axes, the change of coordinates from one 
frame to another can be performed with the following operation: 

 𝑍 = 𝑅 + 𝑍   Eq. ( 5–7 ) 

Where 𝑅  represents the 3x1 vector connecting the origin of frame A and B. In the 
most common scenario, there is an both an offset in position and orientation between 
two frames. In this case, the manipulation of coordinates can be expressed as: 

 𝑍 = 𝑅 + 𝑀 𝑍   Eq. ( 5–8 ) 

Which can be formulated in a more compact manner using the so-called homogeneous 
transformation: 
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 𝑍
1

=
𝑀 𝑅

0 0 0 1
𝑍
1

= 𝐷
𝑍
1

  Eq. ( 5–9 ) 

As in the other two cases, it is possible to concatenate several transformations by 
multiplying the matrices 𝐷: 

 𝐷 = 𝐷 𝐷 𝐷 … 𝐷( )( )𝐷( )   Eq. ( 5–10 ) 

In the scope of the present thesis, whenever the space coordinates 𝑍 are mentioned, 
they will be assumed ot refer to the end effector’s coordinates expressed in the inertial 
frame. The reference system used as the inertial one for the RACOON-Lab is displayed 
in Fig.  5-5. In this image the two robots present its default configuration. The following 
sections will discuss with further detail the meaning of these configurations and its 
possible variations. 

 

 
Fig.  5-5: Reference System in RACOON-Lab with Chaser and Rotator in its default positions 

5.2.1.2 Robot’s Configuration 

Generally, robots are multibody systems, this means that they are the composition of 
a finite number of individual bodies. These bodies are connected with the use of joints. 
Depending of how these interconnections between the bodies are organized it is 
possible to distinguish different structures. For the scope of the present work, only 
chain structures are relevant. These structures are characterized by the fact that each 
body presents exactly one predecessor and one successor, with the exception of two 
bodies, that only present a neighbor element. These bodies are the base and the end 
effector, the base has no predecessor and the end effector has no successor [4]. Fig.  
5-6 illustrates an example of a typical chained multibody system. 
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Fig.  5-6: Chain Multibody System Example [25] 

The joints are critical elements in robotics as they are the responsible for the movement 
of the multibody system. Generally, there are two main kind of joints: revolute and 
prismatic. The first type allows a linear motion whilst the latter enable rotations around 
a certain axis. These different types of joints can be visualized in Fig:  5-7.  

 
Fig:  5-7: Examples of Revolute and Prismatic Joints [26] 

For the scope of the current work, we will restrain to these two kinds of joints since 
they are the only ones present at the RACOON-Lab. Every joint provides an additional 
Degree of Freedom (DoF) to the multibody that can be characterized either as an 
angular value or as a displacement for revolute and prismatic joints respectively. The 
conjunction of all these values expressed in a column vector 𝑞 is what constitutes a 
robot’s configuration. This vector suffices to describe the current state of the robot and 
it is possible to determine the space coordinates of every joint as a function of it. This 
can be done using the formulations introduced in the previous section, generating 
successive homogeneous transformations. For the particular case of the RACOON-
Lab, the Chaser presents three prismatic joints and three revolute joints whilst the 
Rotator is equipped with five revolute joints. Therefore, the configuration vectors for 
these robots can be expressed as follows: 

 
𝑞 = (𝑥 𝑦 𝑧 𝜑 𝜃 𝜓 )

𝑞 = (𝛼 𝛽 𝛾 𝛿 𝜀)
  Eq. ( 5–11 ) 

There are several methods available in literature which allow to automate the 
generation of the homogeneous transformation matrices as a function of a robot’s 
configuration. However, since the robots used in the present work are rather simple it 
will not be necessary to resort to them. 
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5.2.1.3 Direct and Inverse Kinematics 

Once the concepts of space coordinates and robot’s configuration has been 
introduced, it is possible to state robust definitions of the direct and inverse kinematics.  

The direct kinematics refers to the physical problem of obtaining the space coordinates 
𝑤 as a function of the robot’s configuration: 

 𝑤 = 𝑓 (𝑞)| 𝑓 ∶  ℝ → ℝ  Eq. ( 5–12 ) 

This task can be fulfilled easily using the equations presented in 5.2.1.1. The direct 
kinematics is a well-posed problem as there is a unique solution for a given robot’s 
configuration. 

The inverse kinematics refers to the opposite task and it is significantly more 
challenging. In this case what one wants to know is the robot configuration (or the set 
of robot’s configurations) that can lead to a given space coordinates. This can be 
expressed mathematically as follows: 

 𝑞 = 𝑓 (𝑤)| 𝑓 ∶  ℝ  → ℝ  Eq. ( 5–13 ) 

Unlike the direct kinematics, the inverse kinematics is only well posed for the very 
limited number of cases where there is a bidirectional univocal relationship between a 
robot’s configuration and its coordinates i.e. 𝑓  and 𝑓  are bijective. Very often, a 
given coordinate can be achieved by several configurations. Furthermore, it is also 
possible that due to the geometrical restrictions of a robot there is no configuration that 
provides a certain coordinate to the end effector. 

5.2.2 Chaser Kinematics 

The Chaser is equipped with six joints which provide the necessary degrees of freedom 
for operating in the space. This robot has three prismatic joints which can provide a 
linear motion across the three main axes and three revolute joints which are identified 
with roll, pitch and yaw angles. The transformations take place in the following order: 

1. Displacement in X through a prismatic joint: 𝑥  
2. Displacement in Y through a prismatic joint: 𝑦  
3. Displacement in Z through a prismatic joint: 𝑧  
4. Rotation around X through a revolute joint: 𝜑  
5. Rotation around Y through a revolute joint: 𝜃  
6. Rotation around Z through a revolute joint: 𝜓  

Considering all the previously stated transformations, it is possible to obtain the 
homogeneous transformation 𝐷 which relates the inertial frame to the end-effector’s 
frame: 

𝑥
𝑦
𝑧
1

=

𝑐(𝜃 ) 𝑐(𝜓 ) 𝑐(𝜑 ) 𝑠(𝜓 ) + 𝑐(𝜓 ) 𝑠(𝜑 ) 𝑠(𝜃 ) 𝑠(𝜑 ) 𝑠(𝜓 ) − 𝑐(𝜑 ) 𝑐(𝜓 ) 𝑠(𝜃 ) 𝑥

−𝑐(𝜃 )𝑠(𝜓 ) 𝑐(𝜑 )𝑐(𝜓 ) − 𝑠(𝜑 )𝑠(𝜃 )𝑠(𝜓 ) 𝑐(𝜓 )𝑠(𝜑 ) + 𝑐(𝜑 )𝑠(𝜃 )𝑠(𝜓 ) 𝑦

𝑠(𝜃 ) − 𝑐(𝜃 ) 𝑠(𝜑 ) 𝑐(𝜑 ) 𝑐(𝜃 ) 𝑧
0 0 0 1

𝑥
𝑦
𝑧
1

 Eq. ( 5–14 ) 

 

Where 𝑐(𝑥) and 𝑠(𝑥) stand for cos(𝑥) and sin(𝑥) respectively. 
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Although the Chaser has more degrees of freedom, its direct and inverse kinematics 
are significantly simpler than the ones of the Rotator. The reason for this is that both 
the revolute and prismatic joints are directly coupled to the spatial coordinates. 
Therefore, this robot belongs to the exceptionaly reduced group of multibodies which 
have a bijective function that links configuration to space coordinates. Due to this, the 
formulation of the inverse kinematics is extremely simple. 

5.2.3 Rotator Kinematics 

Unlike the Chaser, the Rotator does not have any prismatic joint and thus cannot 
experience displacements. Therefore, its only freedom in space is with respect to its 
orientation. Another important distinction of the chaser is that three out of its five 
revolute joints are limited in space. This is a critical aspect when addressing the inverse 
kinematics, but it does not make a significant difference regarding the direct 
kinematics. 

The first joint is the azimuth and it is referred with the angle 𝛼. It provides a rotation 
around the vertical axis. Since this rotation is the first one performed with respect to 
the inertial frame it is directly translated into yaw of the mockup spacecraft. 

The Second Joint is the elevation angle 𝛽  and it provides a rotation about axes 
contained in the horizontal plane. This actuator is limited due to the C-Ring Design. Its 
approximate boundaries are from -180º to 0º as it can be seen in Fig.  5-8. The robot 
in the actual facility is able to accommodate a range slightly larger. However, there are 
several uncertainties surrounding the actual value. First it is necessary to determine 
the exact values experimentally. Second, currently there is no safety lock that can 
prevent the robot from exiting the track and generating a dangerous situation. 
Therefore, even if the actual limits were known, it would be necessary to assume a 
slightly smaller range for the sake of safety. Due to these reasons, the range of [-180 
º- 0º] will be assumed for the present work since it provides a conservative approach. 

 
Fig.  5-8: Boundaries of the Elevation Angle 

The third and fourth rotations are performed by the A and B Nick angles which will be 
referred in future derivations as 𝛾  and 𝛿  respectively. These angles are strongly 
constrained since they can only rotate with a range of approximately ±30º as it can be 
seen in Fig.  5-9. 
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Too large angle name, as big as text, symbol 

 
Fig.  5-9: Limits of the Nick Angles 

The last rotation takes place around the Z axis and it is referred as the polar angle, 𝜀. 
This rotational degree of freedom is unrestricted as in the case of the azimuthal joint. 

These five degrees of freedom are theoretically enough to enable the full freedom of 
orientation in space. Nevertheless, this task might be strongly hindered due to the 
strong imitations in the nick and elevation angles. As it was previously introduced, the 
motivation behind the elevation angle’s limitation was to provide a diaphanous space 
between the Chaser and the Rotator. Such feature is highly beneficial if algorithms 
based on visual recognition are to be tested within the facility. However, this greatly 
increases the difficulty of performing rotations around axes contained in the XY plane. 
In these circumstances, when the elevation angle is close to its minimum, it is 
necessary that the azimuth and polar angles flip 180º degrees so that the rotator can 
continue the rotation. This sequence is illustrated in Fig.  5-10.  

 
Fig.  5-10: Possible Rotation Sequence Around the X Axis for RACOON-Lab’s Target 
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If the rotations of the azimuth and polar joints take place completely just after the 
minimum elevation angle has been reached as displayed in Fig.  5-10 it would require 
a sudden abort of the simulation as an instantaneous infinite angular velocity would be 
required. Therefore, a suitable trajectory would gradually rotate the azimuth and polar 
angles as the elevation angle approaches to its minimum value. 

This sort of movement can be addressed from an intuitive perspective very easily, but 
it has proven extremely difficult to implement such behavior in trajectory control 
routines. Most algorithms do not execute the rotations of azimuth and polar in time. 
This often results with the robot ending in a locking position and performing and abrupt 
transition. Such condition takes place when several joints of the robot have reached its 
limit value and the only possible way of the robot to keep its movement requires to 
surpass these limits or execute an abrupt transition. An example of such scenario is 
displayed in Fig.  5-11 where the elevation and one of the nick angles are saturated 
and it is not possible to continue a rotation around the X axis in a seamless way. The 
whole degrees of freedom that characterize the Rotator’s configuration are 
summarized in Table 5-1. In this table, the limits presented for the constrained joints 
are approximated and rather conservative. Nevertheless, these values ensure the 
validity of the work as it was experimentally determined that they are close to match 
the actual amounts. 

 
Fig.  5-11. Example of a Locking Configuration for the RACOON-Lab’s Rotator 

Table 5-1: Summary of Joints of the Rotator 

Joint Order Name Symbol Axis Minimum Maximum 
1  Azimuth  𝛼 Z -180º  +180º  
2  Elevation  𝛽 Y  -180º  0º 
3 A-Nick   𝛾 X -30º  +30º  
4  B-Nick  𝛿 Y -30º +30º 
5  Polar  𝜀 Z -180º  +180º  
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As in the previous case, it is possible to obtain the homogeneous transformation matrix 
considering the transformations that take place over all the robot’s joints. However, 
since there are no prismatic joints, it suffices the use of a rotation matrix, which 
converts the vectors in the rotator’s end effector to the inertial frame: 

𝑥
𝑦
𝑧

= 𝑀 (𝛼)𝑀 (𝛽)𝑀 (𝛾)𝑀 (𝛿)𝑀 (𝜀)

𝑥
𝑦
𝑧

= 𝑀

𝑥
𝑦
𝑧

 Eq. ( 5–15 ) 

With: 

𝑀 (1,1) = 𝑐(𝜀) 𝑠(𝛿) 𝑠(𝛼)𝑠(𝛾)  −  𝑐(𝛼)𝑐(𝛾)𝑠(𝛽)  +  𝑐(𝛼)𝑐(𝛽)𝑐(𝛿) −  𝑠(𝜀)(𝑐(𝛾)𝑠(𝛼)  +  𝑐(𝛼)𝑠(𝛽)𝑠(𝛾) 

𝑀 (1,2) = 𝑐(𝜀) 𝑠(𝛿) 𝑐(𝛼)𝑠(𝛾) +  𝑐(𝛾)𝑠(𝛼)𝑠(𝛽)  −  𝑐(𝛽)𝑐(𝛿)𝑠(𝛼) −  𝑠(𝜀) 𝑐(𝛼)𝑐(𝛾) −  𝑠(𝛼)𝑠(𝛽)𝑠(𝛾)  

𝑀 (1,3) = 𝑐(𝜀) 𝑐(𝛿)𝑠(𝛽) +  𝑐(𝛽)𝑐(𝛾)𝑠(𝛿)  +  𝑐(𝛽)𝑠(𝛾)𝑠(𝜀) 

𝑀 (2,1) = 𝑐(𝜀) 𝑐(𝛾)𝑠(𝛼)  +  𝑐(𝛼)𝑠(𝛽)𝑠(𝛾)  +  𝑠(𝜀) 𝑠(𝛿) 𝑠(𝛼)𝑠(𝛾) −  𝑐(𝛼)𝑐(𝛾)𝑠(𝛽)  +  𝑐(𝛼)𝑐(𝛽)𝑐(𝛿)  

𝑀 (2,2) = 𝑐(𝜀) 𝑐(𝛼)𝑐(𝛾)  −  𝑠(𝛼)𝑠(𝛽)𝑠(𝛾)  +  𝑠(𝜀) 𝑠(𝛿) 𝑐(𝛼)𝑠(𝛾)  +  𝑐(𝛾)𝑠(𝛼)𝑠(𝛽)  − 𝑐(𝛽)𝑐(𝛿)𝑠(𝛼)  

𝑀 (2,3) = 𝑠(𝜀) 𝑐(𝛿)𝑠(𝛽)  +  𝑐(𝛽)𝑐(𝛾)𝑠(𝛿)  −  𝑐(𝛽)𝑐(𝜀)𝑠(𝛾) 

𝑀 (3,1) = 𝑐(𝛿) 𝑠(𝛼)𝑠(𝛾) −  𝑐(𝛼)𝑐(𝛾)𝑠(𝛽)  −  𝑐(𝑎)𝑐(𝛽)𝑠(𝛿) 

𝑀 (3,2) = 𝑐(𝛿) 𝑐(𝛼)𝑠(𝛾)  +  𝑐(𝛾)𝑠(𝛼)𝑠(𝛽)  +  𝑐(𝛽)𝑠(𝛼)𝑠(𝛿) 

𝑀 (3,3) = 𝑐(𝛽)𝑐(𝛾)𝑐(𝛿)  −  𝑠(𝛽)𝑠(𝛿) 

This matrix is enough for describing the direct kinematics of the Rotator. Since this 
multibody has no freedom of motion around position, its space coordinates only consist 
on the Euler angles: 

 𝑊 = (𝜑 𝜃 𝜓 )  Eq. ( 5–16 ) 

Departing from the equations for the direct kinematics, it is possible to do a first 
assessment of the Robot’s capabilities. By generating random configurations within 
the physical capabilities, the resulting coordinates can be calculated and its Probability 
Distribution Function (PDF) can be plotted. This function is illustrated in Fig.  5-12. 
Since the yaw angle can be variated freely with the azimuthal joint, this function is 
independent of this coordinate.  

This graph reveals several patterns of the robot’s kinematics. It can be seen that the 
pitch and roll multiples of 180º present a higher probability density compared to the 
other combinations. These areas correspond to the case in which the end effector’s 
vertical axis is quasi aligned with the vertical axis in the inertial frame. These regions 
with easy access extend with a radius of approximately 30º, which corresponds to the 
range of the nick angles. This is a logical result as the higher probability densities are 
a consequence of the easier reachability. For situations in which the end effector’s 
vertical axes are almost aligned, it is possible to resort either to the nick angles or the 
other joints in order to achieve the desired attitude. However, as the angle between 
the vertical axes increases, the possibilities of using the nick angles are narrowed. 
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Fig.  5-12. Probability Density Function of the Robots Coordinates as a Function of the Roll and Pitch 

Angles 

 



Solution of the Inverse Kinematics 
 

 

 

Page 22 
 

6 Solution of the Inverse Kinematics 
Once the direct kinematics of the Rotator have been introduced, it is possible to 
address the inverse kinematics problem in a robust way. Unlike most of the usual 
works, here the inverse kinematics is approached analytically. This means, that the 
manifold of solutions is determined for a given desired pose instead of for its time 
derivative. Furthermore, the usual approach is followed too, and in the second section 
of this chapter the inverse kinematics will be solved in the velocity domain. This will be 
useful for comparing the performance of conventional algorithms with respect to the 
one developed in this thesis. 

6.1 Analytical Solution 

The analytical approach intends to find a robust formulation that links the space 
coordinates to the manifold of configurations that leads to such coordinates. In this 
section, the process for reaching such expression for the case of the RACOON-Lab’s 
Rotator is presented and the performance of the described method is assessed. 

In order to do this, the problem is initially stated stressing the particularities of the 
considered framework. Subsequently, an overview of the solution strategy is presented 
in an intuitive way. Finally, this strategy is executed detailing the involved steps. During 
this exposition, some examples of the inverse kinematics are computed in order to 
provide a mean for an initial assessment of the proposed methodology. These first 
evaluations are complemented with the final sub-section, where the developed 
algorithm is tested with random inputs in order to prove its robustness.  

6.1.1 Problem Statement 

As it was introduced in the previous chapter, the inverse kinematics problem for the 
RACOON-Lab is restricted to the attitude coordinates. Therefore, the inputs will be the 
Euler angles, and the output the robot configurations that lead to such angles. 
Therefore, the problem can be stated as follows: 

Given the desired Euler angles 𝜑 , 𝜃 , 𝜓 , which provide the rotation matrix: 

 𝑀 (Ξ) = 𝑀 (𝜑 , 𝜃 , 𝜓 ) = 𝑀 (𝜓 )𝑀 (𝜃 )𝑀 (𝜑 ) Eq. ( 6–1 ) 

Find the manifold �̇� , consistent of all configurations 𝑞 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜀)  that fullfills the 
following equality: 

 𝑞 ∈ 𝜎(Ξ) ↔ 𝑀 (𝑞) = 𝑀 (Ξ) ∧ 𝑞 , ≤ 𝑞 ≤ 𝑞 ,  ∀ 𝑖     Eq. ( 6–2 ) 

With 𝑀  being the rotation matrix from the Rotator’s end effector to the inertial frame 
and 𝑞 , /  denotes the minimum/maximum configuration of the 𝑖  entry of the 
configuration’s vector. 

6.1.2 Strategy Overview 

The matrixial equality presented in the problem statement can be split into the following 
nine individual equations: 
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𝑀 (1,1) = 𝑐(𝜀) 𝑠(𝛿) 𝑠(𝛼)𝑠(𝛾)  −  𝑐(𝛼)𝑐(𝛾)𝑠(𝛽)  +  𝑐(𝛼)𝑐(𝛽)𝑐(𝛿)

−  𝑠(𝜀)(𝑐(𝛾)𝑠(𝛼)  +  𝑐(𝛼)𝑠(𝛽)𝑠(𝛾) = 𝑐(𝜃 ) 𝑐(𝜓 ) 
Eq. ( 6–3 ) 

𝑀 (1,2) = 𝑐(𝜀) 𝑠(𝛿) 𝑐(𝛼)𝑠(𝛾) +  𝑐(𝛾)𝑠(𝛼)𝑠(𝛽)  −  𝑐(𝛽)𝑐(𝛿)𝑠(𝛼)

−  𝑠(𝜀) 𝑐(𝛼)𝑐(𝛾) −  𝑠(𝛼)𝑠(𝛽)𝑠(𝛾) =

= 𝑐(𝜑 ) 𝑠(𝜓 ) + 𝑐(𝜓 ) 𝑠(𝜑 ) 𝑠(𝜃 ) 

Eq. ( 6–4 ) 

𝑀 (1,3) = 𝑐(𝜀) 𝑐(𝛿)𝑠(𝛽) +  𝑐(𝛽)𝑐(𝛾)𝑠(𝛿)  +  𝑐(𝛽)𝑠(𝛾)𝑠(𝜀) =

= 𝑠(𝜑 ) 𝑠(𝜓 ) − 𝑐(𝜑 ) 𝑐(𝜓 ) 𝑠(𝜃 ) 
Eq. ( 6–5 ) 

𝑀 (2,1) = 𝑐(𝜀) 𝑐(𝛾)𝑠(𝛼)  +  𝑐(𝛼)𝑠(𝛽)𝑠(𝛾)  

+  𝑠(𝜀) 𝑠(𝛿) 𝑠(𝛼)𝑠(𝛾) −  𝑐(𝛼)𝑐(𝛾)𝑠(𝛽)  +  𝑐(𝛼)𝑐(𝛽)𝑐(𝛿) =

= −𝑐(𝜃 )𝑠(𝜓 ) 

Eq. ( 6–6 ) 

𝑀 (2,2) = 𝑐(𝜀) 𝑐(𝛼)𝑐(𝛾)  −  𝑠(𝛼)𝑠(𝛽)𝑠(𝛾)  

+  𝑠(𝜀) 𝑠(𝛿) 𝑐(𝛼)𝑠(𝛾)  +  𝑐(𝛾)𝑠(𝛼)𝑠(𝛽)  − 𝑐(𝛽)𝑐(𝛿)𝑠(𝛼) =

= 𝑐(𝜑 )𝑐(𝜓 ) − 𝑠(𝜑 )𝑠(𝜃 )𝑠(𝜓 ) 

Eq. ( 6–7 ) 

𝑀 (2,3) = 𝑠(𝜀) 𝑐(𝛿)𝑠(𝛽)  +  𝑐(𝛽)𝑐(𝛾)𝑠(𝛿)  −  𝑐(𝛽)𝑐(𝜀)𝑠(𝛾) =

= 𝑐(𝜓 )𝑠(𝜑 ) + 𝑐(𝜑 )𝑠(𝜃 )𝑠(𝜓 ) 
Eq. ( 6–8 ) 

𝑀 (3,1) = 𝑐(𝛿) 𝑠(𝛼)𝑠(𝛾) −  𝑐(𝛼)𝑐(𝛾)𝑠(𝛽)  −  𝑐(𝑎)𝑐(𝛽)𝑠(𝛿) = 𝑠(𝜃 ) Eq. ( 6–9 ) 

𝑀 (3,2) = 𝑐(𝛿) 𝑐(𝛼)𝑠(𝛾)  +  𝑐(𝛾)𝑠(𝛼)𝑠(𝛽)  +  𝑐(𝛽)𝑠(𝛼)𝑠(𝛿) = − 𝑐(𝜃 ) 𝑠(𝜑 ) Eq. ( 6–10 ) 

𝑀 (3,3) = 𝑐(𝛽)𝑐(𝛾)𝑐(𝛿)  −  𝑠(𝛽)𝑠(𝛿) = 𝑐(𝜑 ) 𝑐(𝜃 ) Eq. ( 6–11 ) 

Since the Euler angles 𝜑 , 𝜃 , 𝜓  are given as an input, the values of each entry can 
be assumed to be known. Therefore, the set of equations that must be fulfilled can be 
re-written as: 

𝑀 =

𝑓(𝛼, 𝛽, 𝛾, 𝛿, 𝜀) 𝑓(𝛼, 𝛽, 𝛾, 𝛿, 𝜀) 𝑓(𝛽, 𝛾, 𝛿, 𝜀)

𝑓(𝛼, 𝛽, 𝛾, 𝛿, 𝜀) 𝑓(𝛼, 𝛽, 𝛾, 𝛿, 𝜀) 𝑓(𝛽, 𝛾, 𝛿, 𝜀)

𝑓(𝛼, 𝛽, 𝛾, 𝛿) 𝑓(𝛼, 𝛽, 𝛾, 𝛿) 𝑓(𝛽, 𝛾, 𝛿)
=

𝑀 (1,1) 𝑀 (1,2) 𝑀 (1,3)

𝑀 (2,1) 𝑀 (2,2) 𝑀 (2,3)

𝑀 (3,1) 𝑀 (3,2) 𝑀 (3,3)
 Eq. ( 6–12 ) 

At a first glimpse, it could be concluded that the problem is an overdetermined system 
with five unknowns and nine equations. However, this is far from being accurate. Due 
to the properties of the rotation matrices, they already include several constrains. 
Indeed, it can be shown that a rotation matrix in the tridimensional space only has three 
degrees of freedom. This means, that it is possible to use three known entries in order 
to determine the other six.  

However, not every freely chosen trio of entries leads unambiguously to the other six 
entries. Some unfavorable combinations may lead to two possible values for some or 
all the undefined entries or even to infinite possibilities. This problem will be addressed 
at the end of the section, but at this stage it will remain ignored. Under this assumption, 
it is possible to choose any three of the nine equalities provided for solving the inverse 
kinematics problem.  

The RACOON Lab’s rotator has five degrees of freedom that can be used for achieving 
the three chosen equalities. This means that our problem is indeed undetermined with 
two degrees of freedom.  
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Therefore, a possible procedure for determining the whole domain of solutions could 
be to define two degrees of freedom of the robot: 𝑞  and 𝑞  as parameters, and then 
determine the value of the remaining angles as a function of the parametrized variables 
and the input desired attitude matrix: 

𝑞 = 𝑓 (𝑀 , 𝑞 , 𝑞 ) 𝑤𝑖𝑡ℎ 
𝑖 ≠ 𝑎
𝑖 ≠ 𝑏

 Eq. ( 6–13 ) 

6.1.3 Individual Solutions 

At this point, it is necessary to introduce a useful result which will be applied repeatedly 
in this approach for solving the inverse kinematics. 

Let us consider an entry of a rotation matrix 𝑀(𝑖, 𝑗) with 𝑛 degrees of freedom. Each of 
these degrees of freedom corresponds to the angle of a joint. We want to find a 
combination of all these angles that make  𝑀(𝑖, 𝑗) take the value of 𝑚. If we constrain 
𝑛 − 1 of all the possible angles only one angle 𝜔 remains free, then it is possible to re-
write the equation of our problem as: 

𝐾 sin(𝜔) + 𝐾 cos(𝜔) = 𝑚 Eq. ( 6–14 ) 

Where 𝐾  and 𝐾  are a function of the degrees of freedom that we have constrained. 
This equation has two solutions: 

𝜔 =

⎩
⎪
⎨

⎪
⎧− log

𝑚𝑗 − 𝐾 + 𝐾 − 𝑚

𝐾 + 𝐾 𝑗
· 𝑗

− log
𝑚𝑗 + 𝐾 + 𝐾 − 𝑚

𝐾 + 𝐾 𝑗
· 𝑗

 Eq. ( 6–15 ) 

And the condition for these two solutions to be within the real domain is: 

𝜔 ∈  ℝ ↔
𝐾

𝑚
+

𝐾

𝑚
≥ 1 Eq. ( 6–16 ) 

If the result of 𝜔 lays within the imaginary domain, then it is physically impossible to 
reach the input desired attitude with the given configuration of the other degrees of 
freedom. With this result, it is possible to individually address each equation associated 
to every entry of the attitude matrix, in which only one of its angles remains unknown. 

6.1.4 Complete Solution 

Under the previously enunciated assumptions it is possible to sketch a general 
blueprint for solving the inverse kinematics for a given desired attitude. First of all, 𝑛 −
3 angles must be predefined. Then, it is necessary to find entries that only present an 
undefined angle and determine it with Eq. ( 6–15). This procedure has to be executed 
thrice in order to compute the 3 non-predefined degrees of freedom. The following 
sections describe this method in detail for the case of the RACOON-Lab. 
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6.1.4.1 Determination of the Constrained angles: 𝛽, 𝛾, 𝛿 

The first step consists on choosing which 𝑛 − 3  angles must be pre-defined and 
choose which entry must be the first one used to begin the calculation of the remaining 
undefined 3 angles. Since in this case two angles must be pre-defined, the ideal 
starting point is an entry that has three degrees of freedom. 

If one has a closer look to the individual entries of the attitude matrix in Eq. ( 6–12), it 
can be observed how the degrees of freedom of each entry vary. For example, the 
entries in the XY plane (rows and columns from one to two) have five degrees of 
freedom, whilst the entry 𝑀(3,3)  has only three. This is an ideal starting point. 
Therefore, the initial step will be to solve the following equation: 

cos(𝛽) cos(𝛾) cos(𝛿) − sin(𝛽) sin(𝛿) = 𝑀(3,3) Eq. ( 6–17 ) 

At this point, there are three different pathways to follow: 

 
1. Define 𝛾 and 𝛿 (𝑞 = 𝛾, 𝑞 = 𝛿) and then calculate 𝛽 with Eq. ( 6–15 ) 

2. Define 𝛽 and 𝛿 (𝑞 = 𝛽, 𝑞 = 𝛿) and then calculate 𝛾 with Eq. ( 6–15 ) 

3. Define 𝛽 and 𝛾 (𝑞 = 𝛽, 𝑞 = 𝛾) and then calculate 𝛿 with Eq. ( 6–15) 

In order to decide which strategy is the most suitable it is necessary to consider the 
physical limitations present at the Rotator. If all the degrees of freedom could range 
from 0 to 360 º, it wouldn’t make a difference to choose any of the three different 
possibilities. However, this is not the case. The angles that are defined at the beginning 
𝑞  and 𝑞  can be easily set with physically possible values. However, there is no 
control over the three remaining degrees of freedom. This implies, that they may take 
any value, even if it is outside its physical capabilities. Therefore, it is desirable that the 
degrees of freedom that we don’t pre-define are the less constrained ones. 

Since the nick angles are the ones which are more strictly constrained, they are the 
best candidates for being the ones defined at the beginning of the algorithm. Therefore, 
the optimal strategy at this first stage will be to define the values of the nick angles 𝛾 
and 𝛿 and then calculate the elevation angle 𝛽, since this angle has a much wider 
range. If this procedure is followed, it is necessary to consider the following equation: 

𝐾 sin(𝛽) + 𝐾 cos(𝛽) = 𝑚 Eq. ( 6–18 ) 

With: 

 𝐾 = −sin (𝛿) 

 𝐾 = cos(𝛾) cos(𝛿) 

 𝑚 = 𝑀 (3,3) = 𝑐𝑜𝑠(𝜑 ) 𝑐𝑜𝑠(𝜃 )  

Although it is theoretically possible to choose any desired combination for the nick 
angles, it is important to argument the implication of these values in the global solution 
to the robot’s configuration. The reason for this is that it is possible that for some 
combinations of 𝛾  and 𝛿  there may not exist a solution to the inverse kinematics. 
Indeed, it will be shown that in certain extreme cases there is a unique value of one of 
the nick angles that can lead to a physically meaningful solution. In such cases, the 
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manifold of solutions to the inverse kinematics would be confined to a differential part 
of the configuration’s domain. The aforesaid situation could significantly hinder the goal 
of computing the solution to the inverse kinematics, as it would not exist in the majority 
of the domain. Therefore, it is crucial to determine the regions where the solution to 
the inverse kinematics is circumscribed.  

In order to assess this condition, it is necessary to study the relationship of the solution 
of the elevation angle 𝛽 with the values chosen for the nick angles. The nick angles 
determine the coefficients 𝐾  and 𝐾  Eq. ( 6–18) and the squared sum of this values 
𝐾 +𝐾  must be higher than the square of the entry 𝑀 (3,3). Fig.  6-1 illustrates the 
value of this squared sum for the range of values considered for the nick angles. 

 
Fig.  6-1: K12 +K22 for the Determination of the Elevation angle 

As it can be seen, if the value of 𝑀 (3,3) is below 0.75 any combination of 𝛾 and 𝛿 can 
provide a real value for the elevation angle 𝛽 . However, as the value of 𝑀 (3,3) 
increases, the range of valid combinations decreases. For the extreme case of 
𝑀 (3,3) = 1, the A-Nick angle can only take the value of 0º. This case corresponds to 
the situation in which the Rotator’s Z axis is aligned with the inertial frame’s Z axis. If 
this orientation is visualized, it becomes absolutely obvious that in this case any slight 
rotation in the A-Nick does not allow a complete alignment between these two vertical 
axes. The value of 𝑀 (3,3) corresponds to the projection of the end effector’s vertical 
component into the vertical. Therefore, the angle between the end effector’s vertical 
component and the horizontal plane can be calculated as 𝜒 = asin(𝑀 (3,3)). This 
enables a more intuitive interpretation of the previously presented results, as it is 
possible to plot the minimum value of 𝜒 for which a given combination of Nick angles 
is physically possible. This can be visualized in Fig.  6-2.  

 
Fig.  6-2: Minimum Angle between the End Effector’s Vertical Axes and the Horizontal Plane for Making 
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a Combination of 𝛾 and 𝛿 feasible. 

Now that the relationship between the nick angles and the solution’s feasibility has 
been introduced, it is possible to calculate the ranges of nick angles that are valid for 
solving the inverse kinematics. 

For a given 𝑚 = 𝑀 (3,3), it is necessary that 𝐾 + 𝐾  presents a higher value. It can 
be seen, that for a given 𝛿 and 𝑚 there is a range of 𝛾 which will lead to a real solution 
for the elevation angle 𝛽. The lower and upper bounds of this range can be computed 
easily with the condition 𝐾 (𝛾, 𝛿) + 𝐾 (𝛾, 𝛿) > 𝑚 : 

 

𝛾 = − acos
(𝑚 − sin(𝛿))(𝑚 + sin(𝛿))

cos(𝛿)
 

𝛾 = acos
(𝑚 − sin(𝛿))(𝑚 + sin(𝛿))

cos(𝛿)
 

Eq. ( 6–19 ) 

Therefore, for a given 𝑚 and 𝛿 it is possible to determine the range of 𝛾 where the 
combination of 𝛾 and 𝛿 will lead to a non-imaginary value for 𝛽. Finally, it is necessary 
to introduce the geometrical restrictions. Under this consideration, it is possible to state 
that for a given 𝛿 and 𝑚 = 𝑀(3,3), the physically meaningful values of 𝛾 will range from 
𝛾  to 𝛾 : 

𝛾 (𝛿, 𝑚) = max − acos
(𝑚 − sin(𝛿))(𝑚 + sin(𝛿))

cos(𝛿)
, 𝛾   

𝛾 (𝛿, 𝑚) = min acos
(𝑚 − sin(𝛿))(𝑚 + sin(𝛿))

cos(𝛿)
, 𝛾  

Eq. ( 6–20 ) 

Then, for any values for 𝛿 ∈ [𝛿 , 𝛿  ] and 𝛾 ∈ [𝛾 , 𝛾  ] it is possible to compute 
two solutions for 𝛽 using Eq. ( 6–15). However, there is the possibility that 𝛽 ∉
[𝛽 , 𝛽  ] .In this case, there is no point in continuing and the procedure and it 
should be aborted. Nevertheless, this is rather unlikely since the range of values that 
the elevation angle 𝛽 can take is rather large. With all the results presented in this 
section it is now possible to determine the manifold of the constrained angles for a 
given value of the entry 𝑀(3,3). This is illustrated in Fig.  6-3, where the obtained 
manifolds have been plotted for increasing values of the angle 𝜒. These graphs clearly 
illustrate the tendendy of decreasing the solution space in the nick angles as the 
horizontal axes tend to be aligned. A more detailed observation reveals that the 
manifold tends converges to the line 𝛽 = −𝛿 as the pitch angle tends to 90º, which is 
also in good agreement with the intuitive approach.  
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Fig.  6-3: Manifold of the Constrained Joints for Different Values of χ 

6.1.4.2 Calculation of the Unconstrained Joints: 𝛼, 𝜀 

At this point, three out of the five degrees of freedom are known. The next step is to 
determine the values of the remaining angles 𝛼 and 𝜀 in order to fulfill Eq. ( 6–20 ). 
Leaving these variables as the last ones to determine is highly convenient since they 
are not constrained and can take values ranging from 0 to 360º. A closer look to the 
rotation matrix reveals that there are several possibilities for proceeding. With 𝛽, 𝛾 and 
𝛿  known it is possible to use any of the entries 𝑀(1,3)   and 𝑀(2,3)  in order to 
determine 𝜀 or any of the entries 𝑀(3,1) and 𝑀(3,2) in order to determine the value of 
𝛼. This provides 4 possibilities for determining the fourth degree of freedom of the 
robot. Afterwards, the remaining degree of freedom can be obtained using the other 
two lateral entries or the four central entries of the matrix 𝑀(1/2,1/2). This provides a 
total of six possible procedures for determining the fifth and last degree of freedom 
once the other four are known.  

There, there are is a total of 24 possibilities for executing the second and third steps 
that will lead to the values of 𝛼 and 𝜀. These paths are illustrated in Fig.  6-4 and 
summarized in Table 6-1. 
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Fig.  6-4. Diagram of Possibilities for Calculating the Azimuth and Polar Joints 

Table 6-1: Summary of Possibilities for Calculating the Azimuth and Polar Joints 

Possibility Step 2 Step 3 

1 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(1,1)  

2 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(1,2)  

3 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  

4   𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(2,1)  

5 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(2,2)  

6 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,3)  

7   𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(1,1)  

8   𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(1,2)  

9   𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  

10   𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(2,1)  

11   𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  𝜀 = 𝑓 𝛼, 𝛽, 𝛾, 𝛿, 𝑀(2,2)  
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12 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,3)  

13 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(1,1)  

14 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(1,2)  

15 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(2,1)  

16   𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(2,2)  

17   𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(3,1)  

18 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  

19 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,1)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(1,1)  

20 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(1,2)  

21   𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(2,1)  

22 𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝜀, 𝑀(2,2)  

23   𝜀 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(2,3)  𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,1)  

24 𝜀 = 𝑓(𝛽, 𝛾, 𝛿, 𝑀(2,3)) 𝛼 = 𝑓 𝛽, 𝛾, 𝛿, 𝑀(3,2)  

 

6.1.4.3 Singularity Handling 

The procedure exposed before is able to provide a valid configuration for the wide 
majority of input Euler angles. However, as it was previously introduced, in some cases 
not every combination of three entries can deliver a solution. Therefore, it is necessary 
to recognize these unfavorable scenarios in order to handle them and avoid spurious 
solutions. A very simple example of such adverse scheme is any case in which one or 
several entries presents a value of 1, for example: 

𝑀 =

𝑀 (1,1) 𝑀 (1,2) 𝑀 (1,3)

𝑀 (2,1) 𝑀 (2,2) 𝑀 (2,3)

𝑀 (3,1) 𝑀 (3,2) 𝑀 (3,3)
=

0 0 −1
0 1 0
1 0 0

 Eq. ( 6–21 ) 

In this case, if one uses the entry 𝑀 (3,1) for calculating 𝛼, it is not possible to use the 
entry 𝑀 (1,1) or 𝑀 (2,1) for calculating 𝜀 afterwards. The reason behind this is related 
to the properties of the rotation matrices: the modulus of each column must equal the 
unit. Therefore, if the condition of 𝑀 (3,1) = 1  has been applied then 𝑀 (1,1) =
𝑀 (2,1) = 0 by definition. Hence, using any of these conditions does not provide any 
new information to the system. Nevertheless, there are many remaining possibilities 
that are valid for solving the problem. For example, 𝜀 can be calculated using 𝑀 (2,2) 
(Possibility 5 in Table 6-1). Therefore, although some of the 24 possibilities can 
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become meaningless for certain configurations, several will remain valid and it will 
always be possible to find the solutions.  

Besides this problematic, there is one extra condition which requires a deviation from 
the nominal procedure. This is the case in which 𝑀 (3,3) = 1. In such cases 𝑀 (3,1) =
𝑀 (3,2) = 𝑀 (1,3) = 𝑀 (2,3) = 0  by definition, which makes all these entries 
unsuitable for determining either 𝛼 or 𝜀. In these specific cases, there is a singularity 
that reduces the degrees of freedom of the robot and the value of either 𝛼 or 𝜀 can be 
determined freely. This can be deduced from the results of 6.1.4.1, where it was 
demonstrated that for the case of 𝑀 (3,3) =1 𝛾 must be zero, this can be interpreted 
as the lsot of one degree of freedom into the system. Indeed, it can be demonstrated 
that 𝑀 (3,1) = 𝑀 (3,2) = 𝑀 (1,3) = 𝑀 (2,3) = 0  regardless of the value that we 
choose for 𝛼 or 𝜀. For example, if we consider the entry 𝑀 (3,2), with the conditions of 
𝛾 = 0, then 𝛽 = −𝛿, therefore: 

𝑀 (3,2) = cos(−𝛽)(cos (α)sin (γ = 0) + sin (𝛼)sin (𝛽)) + cos(𝛽) sin(𝛼) sin(−𝛽) = 0 Eq. ( 6–22 ) 

This equality holds regardless of the value of 𝛼. The same can be demonstrated for 
the other three lateral entries. Therefore, for the case of 𝑀 (3,3) = 1 the values of 𝛽, 𝛾 
and 𝛿 are determined as presented in section 6.1.4.1 and afterwards, either either 𝛼 
or 𝜀 can be chosen randomly and finally 𝜀 or 𝛼 are calculated using the central entries 
of the horizontal plane in 𝑀 . 

6.1.5 Solution Representation 

 

With the exposed methodology it is now possible to calculate the manifold of the 
inverse Kinematics for a given Euler angles. These manifolds are five-dimensional 
hypersurfaces, whose visualization is not intuitive. In order to plot them, the three 
spatial dimensions have been used for three of the angles (Azimuth, Elevation and 
Polar) and the colorcode represents the two Nick angles. Fig.  6-5 and Fig.  6-6 
illustrate the hypergeometries that result for the configurations that can lead to the 
coordinates 𝜑 = −30º, 𝜃 = 0º and 𝜓 = 0º. As it can be seen, the solutions presents 
several regions, all of which lead to the same attitude as it can be seen explicitly in Fig.  
6-6. This sort of graphs provides a comprehensive overview of the solution to the 
inverse kinematics and several insights can be extracted from them. For example, it 
can be seen that the solution manifold presents several unconnected regions in a 
similar way as it was identified in Lück et.al 1999 [16]. It can be seen that the manifold’s 
borders correspond to limit values of at least two of the constrained joints. The color 
gradient can of how strongly. For example, for the region of solutions located at a 
negative polar and positive azimuth, it can be seen that having extra freedom in the A-
Nick joint would not provide a significant increase in the manifolds hypervolume. 
However, if one focuses in the area with a positive polar and a negative azimuth it can 
be seen that the color gradient is much lower, which indicates that additional freedom 
around the A-Nick would be highly beneficial. This rather abstract deductions can be 
verified in a more intuitive way by comparing the point F and B from Fig.  6-6. 
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Fig.  6-5: Inverse Kinematics Solution Example (I) 
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Fig.  6-6: Inverse Kinematics Solution Example (II) 
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6.1.6 Algorithm Testing 

In order to proof the robustness of the algorithm it is necessary to test the behavior of 
its implementation. The algorithm has been programmed in a Matlab script which 
receives as input the desired Euler angles and number of points of the manifold and 
provides as output an n x 5 Array containing n points of the solution manifold.  The 
critical parameter that it is evaluated in the tests is the Time per Solution (TPS) which 
refers to the average time needed for finding a point of the manifold for a given Euler 
Angles. This variable has been statistically evaluated with the random and singularity 
tests. Although these results are strongly dependent on the machine capabilities, they 
enable the detection of problems when the TPS exceeds its average value. 
Furthermore, they provide an orientation of the time that the algorithm will require when 
it is implemented in the embedded system. This will be a crucial aspect when 
addressing aspects such as delay and latency in practical applications of the 
RACOON-Lab.  

6.1.6.1 Random Test 

The random test evaluates the TPS for random Euler angles. A total 100000 random 
Euler angles have been tested. In order to calculate the TPS of each of them, 1000 
points have been requested and the total execution time has been measured. The 
average TPS has been determined to be 356.3 μs with a standard deviation of 45.4 
μs. The experimentally obtained Probability Density Function (PDF) can be visualized 
in Fig.  6-7. 

 
Fig.  6-7: Probability Density Function of the Time per Solution in the Random Test for the Analytical 

Solution of the Inverse Kinematics 

6.1.6.2 Singularity Test 

The singularity test follows the same scheme of the random test with the particularity 
that in this case Euler angles are always multiples of 15º, which provides a total of 
24 = 13824 posibilities. The goal of this is intending to trigger issues that the algorithm 
may present when approaching to singular coordinates, which are much more unlikely 
to take place if random Euler angles are considered. In the case of this test, the 
average TPS was determined to be 272.6 μs and the standard deviation 71.7 μs. The 
associated PDF to this test is displayed in Fig.  6-8. These results indicate that the 
performance in singular scenarios is slightly better than that of normal cases. 
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Fig.  6-8: Probability Density Function of the Time per Solution in the Singularity Test for the Analytical 

Solution of the Inverse Kinematics 

The reason behind this performance improvement is likely to be related to the fact that 
the singularity handling strategy presented in 6.1.4.3 does not require any additional 
computational effort. Indeed, for the cases when the Z axes are aligned, the singularity 
reduces the problem’s complexity as 𝛾 = 0º by definition and it is only necessary to 
determine two angles instead of the usual three because the system ahs only four 
degrees of freedom. In order to visualize this, the performance of the algorithm was 
studied as a function of how far it is from singularities. This proximity is assessed with 
the angle 𝜒 = asin 𝑀 (3,3)  which is the angle between the end effector’s vertical 
plane and the horizontal plane in the inertial frame. Therefore, the cases of 𝜒 = ±90º 
correspond to the scenario in which the inertial and end effector’s vertical axes are 
aligned. Fig.  6-9 illustrates the relationship between this angle and the algorithm’s 
performance and it verifies the hypothesis stated before. 

 
Fig.  6-9. Time per Solution of the Algorithm as a Function of the Angle between the End Effector's 

Vertical axis and the Horizontal plane. 

6.2 Solution in the Velocity Domain 

Due to the complexity of the analytical approach, the inverse kinematics is often solved 
in the velocity domain [4, 27]. This is often done by obtaining the Jacobian which 
relates configuration velocities to space coordinates velocities. However, the global 
manifold of solutions is not usually determined. In this section both the Jacobian and 
the manifold of solutions in the velocity domain will be obtained in order to enable a 
better assessment of the analytical solution of the point problem, which was addressed 
previously. 
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This section will present a similar outline as the former one, with problem statement, 
solution description and examples finishing with the algorithm’s testing. 

6.2.1 Problem Statement 

The inverse kinematics in the velocity domain aims to find the manifold of configuration 
velocities that provide a given coordinates’ time derivatives for the current configuration 
𝑞. Therefore, For the case of the RACOON-Lab’s Rotator this problem can be stated 
as follows: 

Given the desired Euler angles’ rates Ξ̇ =( �̇� , �̇� , �̇� ), and the current robot 
configuration 𝑞 = (𝛼, 𝛽, 𝛾, 𝛿, 𝜀)  associated to the Euler angles Ξ = (𝜑, 𝜃, 𝜓) , which 
provide the desired rotation matrix time derivative �̇� Ξ, Ξ̇ : 

Find the manifold �̇� , consistent of all configurations �̇� = �̇�, �̇�, �̇�, �̇�, 𝜀̇  that fullfill the 
following equality: 

 �̇� ∈  �̇� 𝑞, Ξ̇ ↔ �̇� (𝑞, �̇�) = �̇� Ξ, Ξ̇ ∧ |�̇� | ≤ �̇� ,  ∀ 𝑖    Eq. ( 6–23 ) 

With �̇�  being the time derivative of the rotation matrix 𝑀  from the Rotator’s end 
effector to the inertial frame and �̇� ,  denotes the maximum allowable angular 
velocity of the 𝑖  joint. 

6.2.2 Strategy Overview 

Although the problem statement in the velocity domain may lead to the conclusion that 
it is more demanding compared to the previous problem, this is not the case. The 
reason for this is the linear nature of the resulting velocity equations, contrary to their 
geometrical counterpart.  

In order to obtain the solution to the stated problem, the angular rates will be calculated 
in the End effector’s frame using the Rotation tensor. This will provide the Jacobian 
tensor of body to configuration rates. Such tensor can be easily transformed into Euler 
angles to configuration rates with the use of a rotation matrix. This will provide a linear 
system of equations, whose solution is the inverse kinematics manifold in the velocity 
domain. 

6.2.3 Problem Solution 

It is possible to obtain the values of the angular velocities in the inertial frame by 
computing the rotation tensor 𝑆 which can be obtained as the product of global rotation 
matrix and its time derivative: 

 𝑆 =

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
  = �̇� 𝑀     Eq. ( 6–24 ) 

Where 𝑝 , 𝑞  and 𝑟  are the angular velocities in the End effector’s body frame. This 
tensor was computed for the RACOON Lab’s Rotator. From this result, each non-
diagonal entry provides the expression of the angular velocities in the body frame as a 
function of the time derivative of the robot’s configuration. Since this dependency is 
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linear for a given configuration, it is suitable to express the angular velocities with the 
following compact expression: 

 
𝑝
𝑞
𝑟

= 𝐽 ̇ ̇ (𝑞) ·

⎝

⎜
⎛

�̇�
�̇�
�̇�

�̇�
𝜀̇⎠

⎟
⎞

    Eq. ( 6–25 ) 

Where 𝐽 ̇ ̇  is the 3x5 Jacobian tensor, which contains the sensitivity coefficients of the 
angular rates in the end effector’s frame with respect to each of the configuration’s 
parameters. Each of this matrix’s entries depends on the current robot’s configuration 
𝑞. The reader can find the exact expression for each of these terms for the RACOON 
Lab’s rotator in the Appendix B, Jacobian Tensor.  

Finally, it is necessary to convert the angular velocities in the body frame to the Euler 
angles’ rates. This can be done easily with the attitude conversion matrix, which leads 
to the following formulation:  

 
�̇�

�̇�
�̇�

=

1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
( )

( )

( )

( )

𝐽 ̇ ̇

⎝

⎜
⎛

�̇�
�̇�
�̇�

�̇�
𝜀̇⎠

⎟
⎞

= 𝐽 ̇ ̇

⎝

⎜
⎛

�̇�
�̇�
�̇�

�̇�
𝜀̇⎠

⎟
⎞

   Eq. ( 6–26 ) 

At this stage, there are three equations which relate the time derivative of the robot’s 
configuration to the global angular velocities of the robot. This provides once again an 
underdetermined system. Therefore, the solution manifold is an infinite set of 
combinations of the angular velocities of the actuators. Unlike the point problem, the 
analytical solution does not entail any complex derivation as no sinusoidal function 
applies to any output. Indeed, the procedure is a mere linear system of equations. 

A feasible procedure for solving linear systems of this sort can be based on 
parametrization [28].The procedure for obtaining the whole manifold of solutions 
departing from Eq. ( 6–25) can be summarized as follows: 

1. Define two suitable pairs from the five angular velocities of the actuators 
2. Use these velocities from their minimum to their maximum value in order to 

obtain the remaining three velocities combining the three equalities provided in 
Eq. ( 6–25).  

3. Repeat the previous steps for another suitable pairs until all the 10 possibilities 
have been considered. 

The third step is in order to ensure the exploration of all the solution space under 
fulfillment of the inequalities constraint ( |�̇� | ≤ �̇� ,  ∀ 𝑖 ). In this context, the 
expression, suitable refers to the condition in which the remaining Jacobian 3x3 after 
the rows have been subtracted presents a different than zero. This issue will be 
addressed with more detail in the following two sections. 



Solution of the Inverse Kinematics 
 

 

 

Page 38 
 

6.2.4 Singularity Handling 

The algorithm visits every possible combination of two configuration angles in order to 
determine points of the solution manifold. If we use 𝐽 ̇ ̇

○  to denote the 3x3 resulting 
Jacobian after removing two rows, the singularity risk can be assessed with its 
determinant i.e. det 𝐽 ̇ ̇

○ . If choosing two particular configuration angles 𝑞 and 𝑞  as 

parameters leads to det 𝐽 ̇ ̇
○ = 0 this implies that no valid points can be obtained from 

parametrizing 𝑞  and 𝑞 . Therefore, if this determinant presents a value of zero, then 
another parameters combinations must be explored for parametrization. Nevertheless, 
from a practical standpoint it is advisable to refrain from using determinants whose 
value is close to zero, as it implies that the change in Euler rates must be achieved by 
very large angular velocities, which is highly undesirable. For the implementation of 
the present project a criteria of det 𝐽 ̇ ̇

○ > 10  has been used for considering the 
configuration parameters as valid. 

6.2.5 Solution Example 

In order to illustrate the previously described process, an example of the solution for 
the analytical inverse velocity kinematics will be exposed. Let consider the 
configuration in which all the actuators are set to zero with exception of the elevation 
angle which presents a value of -45º. The Jacobian can be computed using the 
formulas of the annex as: 

 𝐽 ̇ ̇

⎝

⎜
⎛

𝛼 = 0º
𝛽 = −45º

𝛾 = 0º
𝛿 = 0º
𝜀 = 0º ⎠

⎟
⎞

=
−2 0 1 0 0

0 1 0 1 0

2 0 0 0 1

    Eq. ( 6–27 ) 

With this Jacobian it is now possible to compute the solutions which enable the robot 
to achieve an angular velocity of Ω = (𝑝 𝑞 𝑟 ).It is necessary to remove two 
columns in a way that the remaining matrix has a rank of 3. For example, if the first 
and the last columns are removed, the remaining system has rank of 2. Removing the 
fourth and the fifth column columns however leads to a matrix with a determinant 
different than zero. The columns that are removed are identified with the angular 
velocities that will be constrained and the remaining columns are associated to the 
angular velocities that will be calculated as a function of the constrained ones. In a 
general way, it is possible to express the resulting system using 𝐽 ̇ ̇

△  to denote the 3x2 
matrix removed from the original Jacobian and 𝐽 ̇ ̇

○  the remaining 3x3 system as: 

𝑝
𝑞
𝑟

− 𝐽 ̇ ̇
△ 𝑞

𝑞 = 𝐽 ̇ ̇
○

𝑞 ,

𝑞 ,

𝑞 ,

→

𝑞 ,

𝑞 ,

𝑞 ,

→

𝑞 ,

𝑞 ,

𝑞 ,

= 𝐽 ̇ ̇
○

𝑝
𝑞
𝑟

− 𝐽 ̇ ̇
△ 𝑞 ,

𝑞 ,
    Eq. ( 6–28 ) 

Where 𝑞 ,  denotes the ith parametrized angle and 𝑞 ,  denotes the jth non-
parametrized angle. In the proposed example, this procedure leads to the following 
expression: 



Solution of the Inverse Kinematics 
 

 

 

Page 39 
 

1
0
0

−
0 0
1 0
0 1

�̇�
𝜀̇

=
−2 0 1

0 1 0

2 0 0

�̇�
�̇�
�̇�

→

�̇�
�̇�
�̇�

=
√2(𝑟 − 𝜀̇)

𝑞 − �̇�
𝑝 − 𝑟 + 𝜀̇

    Eq. ( 6–29 ) 

As it can be seen, the degrees of freedom which remained free can be easily obtained 
with a linear application dependent on the desired angular velocities and the two 
degrees of freedom which were initially constrained.  Fig.  6-10 illustrates all the 
possible solutions with B-Nick and polar angles ranging from -1 to 1 deg/s for obtaining 
an angular velocity of (𝑝 𝑞 𝑟) = (1 0 0) 𝑑𝑒𝑔/𝑠 

 
Fig.  6-10: Solution Example of the Inverse Kinematics in the Velocity Domain 

Generally, one wants that the angular velocities are as small as possible. This condition 
can be very easily implemented for the constrained actuators as they are input 
manually. However, there is no control at all regarding the angular velocities which 
were set to free. Therefore, when the determinant of 𝐽 ̇ ̇

○  tends to zero the angular 
velocities of the remaining actuators will tend to infinite. This issue can cause 
significant problems even if the matrix is far from being singular. For example, angular 
velocities with an absolute value 10 or 20 times higher than the desired ones are 
already highly undesirable. Another significant shortcoming of this method is that it is 
not possible to identify and avoid locking situations. For example, if 𝛿 ≈ 30º = 𝛿  
then every �̇� > 0  is highly undesirable, but that may be impossible for some 
configurations. In spite of these inconveniences, this approach is very robust for the 
computation of instantaneous angular velocities. 

6.2.6 Algorithm Testing 

As in the analytical solution, the implementation of the algorithm in the velocity domain 
has been tested with both random and singularity tests. It is important to remark, that 
in this case the element which influence in the performance is the current configuration 
𝑞 instead of the desired values for the kinematics (in this case Euler angles’ rates). The 
reason for this is that the key points of the presented approach is the determination of 
the Jacobian tensor, which merely depends on the current configuration. Therefore, in 
this case, the random inputs where for the configuration’s angles. 
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The results of these tests are displayed in Fig.  6-11 and Fig.  6-12. In this case, the 
mean for the random test was 84.3 μs with a standard deviation of 55.5 μs, whilst the 
singularity test exhibited a mean performance of 77 μs with a standard deviation of 
27.4 μs. Both results are much faster than the analytical solution, which is logical due 
to the lower complexity of the involved functions. Furthermore, the singularity test 
provides a slightly better performance than the random one, which is in principle 
unexpected. A possible explanation could be that the singular combinations are 
discarded fast causing virtually no lost in time, whilst the remaining combinations 
present sounder determinants since the linear dependencies are concentrated in the 
unfavourable combinations that are already discarded. 

 
Fig.  6-11: Probability Density Function of the Time per Solution in the Random Test for the Solution of 

the Inverse Kinematics in the Velocity Domain 

 
Fig.  6-12: Probability Density Function of the Time per Solution in the Random Test for the Solution of 

the Inverse Kinematics in the Velocity Domain 
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7 Trajectory Planning 
 

Once the inverse kinematics for single points has been explained it is possible to 
address the trajectory problem. This means, that the main goal is the determination of 
the robot’s optimal configuration in the facility over series of attitude way-points instead 
of single ones.  

Since the chaser has only three unconstrained degrees of freedom there is a finite 
number of solutions for each configuration (Generally 2, with a shift of 180º in roll). 
Therefore, in this case the transition from one position to another is unequivocal. This 
is not the case for the Rotator. Unlike the Chaser, this element is over actuated and 
has infinite solutions for a given desired position Therefore, it is necessary to 
implement policies which indicate which is the most suitable sequence of 
configurations for a given desired trajectory.  

In this chapter, algorithms based on the analytical solution described in the section 6.1 
will be presented. In order to enable a comparison with conventional methods, the 
trajectory problem will be initially addressed using some of the approaches presented 
in the state-of-the-art chapter. 

7.1 Definitions 

Before jumping into the description of trajectory algorithms, it is necessary to enunciate 
several basic concepts, that will be used as assumptions repeatedly. These notions 
will provide the necessary background for the definition and assessment of the 
trajectory algorithms. 

7.1.1 Trajectory Problem Statement 

The statement of the trajectory problem for this system presents several particularities 
with respect to the ordinary one. Usually, what is wanted is that the robot traverses a 
series of spatial way points as fast as possible. This is meaningful when following the 
trajectory itself is the main goal of the project. In this case, however, performing a given 
trajectory is a mean for simulating experimentally on-orbit scenarios. Therefore, in the 
ideal case, it would be necessary that the robot reaches every position at a given 
timestamp. This would merely imply to make spatial temporal way points instead of 
spatial way points. However, the angular velocities of the actuators are in the order of 
1 deg/s, whilst the bodies that want to be represented can spin with angular velocities 
up to 100 deg/s. Therefore, when the body, whose trajectory wants to be recreated 
spins with angular rates higher than 1 deg/s it is not realistic to target an exact 
simulation of the motion. In such cases, what is desired is to exactly represent the 
motion with a given slowdown rate, which should be as small as possible. With all these 
considerations, it is possible to state the trajectory problem for the current application: 

Given a finite set of 𝑛 desired attitude way points: 

𝑀 (𝑡) = 𝑀 (𝑡 = 0), 𝑀 (𝑡 ), 𝑀 (𝑡 ), … , 𝑀 (𝑡 ), … , 𝑀 (𝑡 )    Eq. ( 7–1 ) 

Find a set of 𝑛 configurations: 
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𝑞(�̃�) = 𝑞(�̃� = 0), 𝑞(�̃� ), 𝑞(�̃� ), … , 𝑞(�̃� ), … , 𝑞(�̃� )    Eq. ( 7–2 ) 

Such that: 

𝑀 𝑞(𝑡 ) = 𝑀 (𝑡 ) ∧ = 𝜂 ≤ 1 ∀ 𝑘 ∈ [1, 𝑛]    Eq. ( 7–3 ) 

With a trajectory being optimal if 𝜂 = 1. The parameter 𝜂  is the system’s efficiency. 
It represents how much seconds are required to execute a given trajectory for each 
second of the actual trajectory. This parameter is dependent on both the facility’s 
capabilities and the trajectory’s suitability. 

7.1.2 Trajectory Efficiency 

In every engineering context the definition of efficiency coefficients must be able to 
represent the limitations in performance of the considered system from a practical 
standpoint. In this case, the maximum angular velocities of the facility are limited and 
increasing these speeds is out of the range of the present project. The current target 
is however to make the most with these constrains. At this point is where the 
trajectory’s efficiency comes into play.  There is an infinite set of possible trajectories 
which can fulfill the desired sequence of desired attitudes. However, some of the 
possible trajectories may take excessively long considering the limited angular velocity 
of the actuators. This can greatly impede the execution of experimental simulations. 
An optimal trajectory should avoid unnecessary motions in order to maximize the 
change in attitude per unit of control effort. In other words, the differential motions of 
the configuration should be as large as possible when compared to the achieved 
differential changes in coordinates. 

These intuitive ideas shall be presented in a mathematical way in order to enable an 
objective assessment of a given trajectory’s suitability. Let consider the process of an 
evolving trajectory where the Euler angles are constantly changing. The differential 
attitude change can be defined as: 

𝑑Ξ = (𝑑𝜙 𝑑𝜃 𝑑𝜓)  Eq. ( 7–4 ) 

This change in the attitude is achieved by a differential change in the robot’s 
configuration, which has as many dimensions as the number of degrees of freedom of 
the robot: 

𝑑𝑞 = (𝑑𝛼 𝑑𝛽 𝑑𝛾 𝑑𝛿 𝑑𝜀)  Eq. ( 7–5 ) 

Combining these two elements, it is possible to build a compact Jacobian tensor which 
represents the derivative of the Euler angles with respect to the configuration: 
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 Eq. ( 7–6 ) 
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This tensor provides a general overview of the relationship between the changes in the 
Euler angles with respect to the robot’s configuration. However, it lacks a direct 
practical interpretation from the point of view of performance. In order to assess the 
differential change in attitude achieved, the following expression is more suitable: 

𝑑𝜇 = d‖Ξ‖ = 𝑑 𝜙 + 𝜃 + 𝜓  Eq. ( 7–7 ) 

Assuming, that all the joints present the same maximum angular velocity, the element 
which limits the time of the trajectory’s execution is the one which requires a higher 
change. With this consideration, it is possible to define the differential control effort as: 

𝑑𝜅 = max{𝑑|𝑞 |} = max{𝑑|𝛼|, 𝑑|𝛽|, 𝑑|𝛾|, 𝑑|𝛿|, 𝑑|𝜀|} Eq. ( 7–8 ) 

And the efficiency for a given maneuver is defined as the ratio between these two 
terms, which can be obtained from the angular velocities since the differential time 
cancels out: 

𝜂 Ξ̇, �̇� =
𝑑μ

𝑑𝜅
=

Ξ̇

max{|�̇� |}
=

�̇� + �̇� + �̇�

max |�̇�|, �̇� , |�̇�|, �̇� , |𝜀̇|
 Eq. ( 7–9 ) 

For 𝑛 waypoints there are 𝑛 − 1 maneuvers that must be performed. The maneuver 
which requires a higher control effort is the one which limits the continuous execution 
of the trajectory. Therefore, the efficiency of a given trajectory is defined as the 
minimum efficiency across its maneuvers in time: 

𝜂 = argmin{𝜂 (𝑡)} Eq. ( 7–10 ) 

Under the assumption that the total limitations that a given facility experiences are 
given by the trajectory’s efficiency and by its maximum spinning capabilities, it is 
possible to estimate the facility’s efficiency as: 

𝜂 = 𝜂 · 𝜂  Eq. ( 7–11 ) 

Where 𝜂  is the ratio between the maximum angular velocity achievable by the 
actuators and the spinning rate of the spacecraft whose shall be simulated. This term 
accounts for the limitations introduced by the facility. These definitions for efficiency 
are very convenient due to its straightforward interpretation. With these terms it is 
possible to identify the challenges that the system undergoes in order to accurately 
represent a motion in the minimum time. For example, considering the scenario in 
which one wants to recreate 1 second of the trajectory of a body which spins with a 
rate of 10 degrees per second with actuators capable of spinning at 1 degree per 
second.  In this case, if a given trajectory is able of recreating this motion in 10 seconds, 
then 𝜂 = 1 and 𝜂 = 0.1, therefore 𝜂 = 0.1. These parameters tell that the limiting 
factor in the execution time of the motion is the actuator’s maximum spinning rate, 
which is completely meaningful from a physical perspective. 

It is important to note, that for over actuated robots the trajectory’s efficiency can be 
higher than a 100%. This can be illustrated very easily in the case of the RACOON 
Lab. For example, if the desired trajectory is a rotation around the Z axis, it is possible 
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to achieve this movement by simultaneously using the azimuth and polar angles. In 
this example, a change of 1 degree in azimuth can be achieved by a change of a half 
degree in both azimuth and polar. Whenever 𝜂 ≥ 1, it means that it is possible to 
represent the desired motion both spatially and temporally. In the opposite case, 𝜂 <
1, it will be necessary to execute the considered trajectory with a certain slowdown 
rate. In particular, each actual second of the trajectory will require 1/𝜂  seconds of the 
facility’s operation in order to be accurately represented. 

7.1.3 Attitude Error 

At some points of the present section it will be necessary to assess the error of the 
attitude for a given configuration. This requires an objective measure of the deviation 
between the actual and the desired orientation. The attitude error used in this chapter 
is defined as the second norm of the difference between the actual Euler angles and 
the desired ones: 

𝜖 = (𝜙 − 𝜙 ) + (𝜃 − 𝜃 ) + (𝜓 − 𝜓 )  Eq. ( 7–12 ) 

7.1.4 Static and Dynamic Trajectories 

The trajectory problem can be stated in two different contexts. In the static trajectory 
problem, the entire desired trajectory history is given as an input. In this situation, it is 
easier to optimize the trajectory and it is not necessary to account for aspects such as 
computational time or latency. 

Unlike the offline case, in the dynamic problem the new points of the trajectory are 
computed during the execution of the simulation. This is required for dynamic 
simulations where the interaction with the chaser or other elements is relevant. In such 
situations, it is not possible to know the trajectory beforehand. 

7.1.5 Rotation Example 

In order to provide a practical illustration for the proposed approaches, the same basic 
rotation movement will be considered with each methodology. Such trajectory shall be 
challenging from a kinematical standpoint in order to provide relevant information with 
respect to the algorithm’s robustness.  

The main challenge of the RACOON-Lab’s Rotator is achieving continuous rotations 
around an axis contained in the XY plane due to the constrains of the elevation angle. 
The rotations around the Z axis can be regarded as undemanding since the joints 
involved present no limitations. Therefore, a suitable trajectory for containing 
demanding motions is a continuous rotation around the X axis with the angle 𝜑 varying 
from 0 to 360 degrees as portrayed in Fig.  7-1. 
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Fig.  7-1: Example Trajectory Used for the Algorithm Testing 

This trajectory is a roll rotation and its rotation matrix can be written as a function of 𝜑: 

𝑀 =

1 0 0
0 cos(𝜑) − sin(𝜑)

0 sin(𝜑) cos(𝜑)
 Eq. ( 7–13 ) 

This motion entails the sequence of the most challenging configurations for the rotator 
as it was introduced in Chapter 4. Due to this, if a given algorithm can traverse this 
trajectory successfully it is reasonable to assume that it will be able to perform well 
generally. 

7.2 Conventional Algorithms 

The example trajectory was tested applying some of the algorithms available for the 
control of constrained robots presented in the second chapter. In particular, Automatic 
Supervisory Control and Weighted Least Norm were used. The performance of these 
algorithms was evaluated using the efficiency definition presented in the previous 
sections. The obtained results will enable the assessment of the performance achieved 
by the algorithms based on the analytical solution, which are described in the following 
section. 

7.2.1 Automatic Supervisory Control 

The Automatic Supervisory Control algorithm (ASC) is one of the most widespread 
methodologies for the trajectory planning of constrained robots. This algorithm was 
tested and tuned for a continuous roll rotation example described in section 7.1.5. Here, 
the results of implementing this algorithm are presented and assessed. 

7.2.1.1 Algorithm Description 

The ASC algorithm was applied using the identity Matrix as the weighting Matrix and 
the performance criterion 𝐻  as defined by Zghal et al. 1990 [29]. Therefore, the 
optimization function for the RACOON-Lab’s Rotator can be expressed as: 
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  Eq. ( 7–14 ) 

With: 

 𝐻(𝑞 ) =
( )

( )( )
  Eq. ( 7–15 ) 

 =
( ) ( )

( ) ( )
  Eq. ( 7–16 ) 

The performance derivative with respect to the robot’s configuration is therefore a row 
vector, whose length equals five.  

The philosophy behind this cost function’s formulation is the definition of two tasks that 
must be fulfilled simultaneously by the robot. The first one, involves the weighting 
matrix 𝑊 and refers to minimizing the angular velocities. The second one, contains the 
performance function and it is related to the avoidance of the joint’s limits. The constant 
𝛼  is used for assigning different priorities to each of these tasks. As the value of 𝛼  
increases, the second tasks’ importance grows. For low values of 𝛼 , the robot follows 
very efficient trajectories that easily reach joint’s limits. Conversely, as 𝛼  tends to 
infinity, the robot will try to remain as far as possible from the joints’ limits even if it 
means to perform very abrupt movements. The optimal value of 𝛼  is the lowest one 
which is still able to confine the joint’s angles within its limits. This value depends on 
the robot’s kinematics, the considered application and the cost function’s definition. In 
the present project it was determined in an iterative way, departing from zero and 
gradually increasing its value until a physically feasible trajectory is achieved. The 
intermediate results of this tuning process are displayed in the Appendix C. 

The cost function in Eq. ( 7–14 ) was optimized numerically for each value of 𝛼  by 
performing a discretization over the solution’s manifold. This was done for each point 
of the trajectory, which was itself discretized with a step of 0.1 degrees. 

7.2.1.2 Results 

The minimum value of 𝛼  which proved capable of delivering a trajectory without 
exceeding the joint’s limits was found to be 24 s/rad, which is remarkably high. Such 
value implies that avoiding the limits must be highly prioritized with respect to the 
primary task. As a result of this, the trajectory is valid at the expense of resorting 
eventually to high angular velocities. This sort of behavior can be visualized in Fig.  7-2, 
where high slopes for polar and azimuth can be observed. 
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Fig.  7-2: Resulting Trajectory for Automatic Supervisory Control (𝛼 = 24 s/rad) 

A detailed look into the trajectory reveals the presence of oscillations in the region 
where 𝜑 ranges from 190º to 200º. These oscillations are displayed with greater detail 
in Fig.  7-3 and Fig.  7-4. 

 
Fig.  7-3: Oscillations in the B-Nick Joint with Automatic Supervisory Control 

 
Fig.  7-4: Oscillations in the Elevation Joint with Automatic Supervisory Control 

Oscillations are a known problem in ASC [9, 10]. They are prone to take place when 
local singularities appear, which reduce the robot’s capabilities for performing the 
primary and secondary tasks simultaneously. This is often associated with a situation 
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in which actuators that are the best positioned for executing the primary task must 
refrain from moving due to proximity to its joint limit. In these cases, the trajectory has 
to be executed by joints which are instantaneously less suitable but present a sounder 
configuration. 

In order to visualize how the robot is handling such contradictions internally, the 
Jacobian of the roll motion with respect to the configuration angles is displayed across 
the trajectory in Fig.  7-5. 

 
Fig.  7-5: Sensitivity Coefficients of the Roll Motion with Respect to the Configuration Parameters 

In this figure, the notation 𝐶 = |𝜕𝑥/𝜕𝑦| is used. Hence, the values plotted correspond 
to the absolute value of the first row in Eq. ( 7–6 ). As it can be seen, during most of 
the trajectory, the roll motion is achieved through 𝛽  and 𝛿 . However, when the 
Elevation angle approaches its limit, the flip between azimuth and polar takes place. 
During this period, the roll motion is achieved by the A-Nick angle 𝛾 in detriment of the 
Elevation and B-Nick angles. This is done because the Elevation angle would require 
to dangerously approach to its limit in order to provide roll motion. These oscillations 
significantly hinder the global performance of the trajectory. Such effect can be 
observed in Fig.  7-6 where the associated efficiency graph is portrayed. As it can be 
seen, the areas with high slope (𝜑 ≈ 0º and 𝜑 ≈ 180º) present a significant decrease 
in efficiency, with values around a 20%.  

 
Fig.  7-6: Resulting Efficiency for Automatic Supervisory Control (𝛼 = 24) 

Furthermore, the oscillations generate local points in which the efficiency tends to zero. 
These points are what limit the global efficiency of the algorithm and make this 
approach unsuitable for practical applications.  
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7.2.1.3 Trajectory Filtering 

There are several methodologies for reducing the oscillations and improving the 
algorithm’s performance.  A possible approach can be based on performing a Fourier 
analysis and removing the harmonics higher than a given Cut-Off Frequency (COF). 
However, if such approach is applied it is important to bear in mind that the resulting 
trajectory is not an exact solution to the inverse kinematics anymore. In addition, it is 
possible that the filtered signal surpasses the limits although the primordial signal does 
not. Fig.  7-7 illustrates an example of filtered signal with different COFs. As it can be 
seen, the high frequency oscillations are easily removed. It can also be observed, that 
the higher the Cut-off Frequency, the less discrepancy between the actual signal and 
the filtered one. 

 
Fig.  7-7: Filtering of the Elevation Angle by Fourier Analysis 

The error introduced due to the filtering is presented in Fig.  7-8. As it can be seen, if 
the Cut-off Frequency is set higher than 0.06 𝑟𝑎𝑑  the average error is generally very 
small, although it presents some peaks in the region right after the oscillations. 

 
Fig.  7-8: Error Introduced by the filtering the ASC Trajectory for different Cut-off Frequencies 

Finally, it is possible to re-calculate the efficiency graph for all the filtered signals. This 
is illustrated in Fig.  7-9. As it can be seen, the points with zero efficiency are removed 
thanks to the filtering.  

It is possible to observe that the efficiency slightly decreases as the Cut-off Frequency 
increases. Such behavior is expected, since the high frequency harmonics introduce 
fast motions into the system. Nevertheless, this effect is rather small. 
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Fig.  7-9: Efficiency of the filtered ASC Trajectory for different Cut-off Frequencies 

Finally, it is important to remark that this filtering strategy would only be applicable for 
static trajectories, since it requires that the whole trajectory is known beforehand. 
However, there are other possibilities for dynamic filtering, which exceed the scope of 
the present project. 

7.2.2 Weighted Least Norm 

The Weighted Least Norm method was proposed by Chan et.al 1995 in order to 
address some of the problematics presented by the Automatic Supervisory Control. In 
particular, oscillations and problems with starting trajectories in positions very close to 
a joint’s limit. This algorithm was used for testing a continuous roll rotation and the 
results were evaluated with the same structure as the ASC algorithm. 

7.2.2.1 Algorithm Description 

The weighted least norm method is based on inserting the performance function’s 
derivative inside the weighting matrix. This enables the definition of following cost 
function: 
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 Eq. ( 7–17 ) 

In this case, the primary and secondary tasks are merged into a single one. The sign 
functions are used in order to preserve the different effects between negative and 
positive angular velocities. This is necessary since now the performance term depends 
on the square of the the angular velocities, which cancels negative signs out. The 
dependency on the angular velocities’ second power has also an important effect in 
the coefficient 𝛼  since it changes its units. As a rule of thumb, the results in ASC 
should be divided by the average angular velocity of the trajectory (In the current 
example 𝜋/180 rad/s) in order to deliver similar results. The performance function was 
chosen to be the same as in Automatic Supervisory Control in order to ease the 
comparison between the obtained results. 
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The tuning process for WLN followed the same structure as in ASC and its intermediate 
results are displayed in the Appendix C.2. In this case the minimal value of 𝛼  was 
found to be 25²/rad². The resulting trajectory is illustrated in Fig.  7-10.  

As it can be seen, for this trajectory example the WLN Method does not prevent 
oscillations from taking place. Furthermore, the B-Nick and Elevation joints present 
additional lower frequency oscillations in form of signal curling. 

 
Fig.  7-10: Resulting Trajectory for Weighted Least Norm (𝛼 = 25 s²/rad²) 

One interesting result of applying this algorithm is that the polar and azimuth angles 
change their flip way if the coefficient 𝛼  is additionally increased. This can be 
visualized in Fig.  7-11. 

 
Fig.  7-11: Resulting Trajectory for Weighted Least Norm (𝛼 = 50 s²/rad²) 

The efficiencies associated to these trajectories are displayed in Fig.  7-12 and Fig.  
7-13. As it can be seen, this approach presents a similar performance as ASC. One 
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possible reason behind this lack of improvement is the high level of constraints of the 
joints. Since in WLN the optimization tasks are merged 

 
Fig.  7-12:Resulting Efficiency for Weighted Least Norm (α_k=25 s²/rad²) 

 
Fig.  7-13:Resulting Efficiency for Weighted Least Norm (α_k=50 s²/rad²) 

7.2.2.2 Trajectory Filtering 

As in the previous case, it is possible to perform a filtering of the signal in order to 
smooth it and improve its performance. In this case the filtering 

 
Fig.  7-14: Filtering of the Elevation Angle by Fourier Analysis 
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Fig.  7-15: Error Introduced by the Filtering the WLN Trajectory for Different Cut-off Frequencies 

 
Fig.  7-16: Efficiency of the Filtered ASC Trajectory for different Cut-off Frequencies 

7.3 Algorithms based on the Analytical Solution 

The trajectory problem can be addressed from the analytical solution to the inverse 
kinematics too. In this case, the inverse kinematics manifold is obtained for each way 
point of the trajectory and the algorithm has to decide the most suitable solution within 
each of these manifolds. Although the physical process behind the problem remains 
identical, the analytical approach and the solution in the velocity domain present very 
different mathematical formulation. In the case of the analytical solution, what is known 
is the configuration at the 𝑖  way point 𝑞  and the inverse kinematics manifold at the 
𝑖 + 1  point 𝜎 . This enables the determination of all the possible angular velocities 
which lead to the following waypoint as: 

 �̇� ≈
∆

  Eq. ( 7–18 ) 

This can be assumed to be the manifold of �̇�, i.e. the solution of the inverse kinematics 
in the velocity domain. This can be obtained as well with the Jacobian as it was done 
in the previous section. However, the advantage of this approach is that �̇�  contains all 
the velocities based on points within the actuator’s joints. This formulation is highly 
beneficial as it enables more comprehensive understanding of the locking problematic 
and the robot’s limitations as it will be seen in the following lines. 
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7.3.1 Minimum Instantaneous Control Effort 

The minimum instantaneous control effort algorithm can be considered as the 
equivalent of Resolved Motion Rate Control for the analytical kinematics. This is the 
same as using the Automatic Supervisory Control algorithm with a null coefficient 𝛼 . 
Therefore, this algorithm seeks the solution within the next way-point’s manifold 𝑞  
which requires the minimum instantaneous angular velocities (maximum efficiency): 

 𝑞 = argmax
 ̇

𝜂 Ξ̇ , �̇�   Eq. ( 7–19 ) 

The resulting trajectory for this algorithm is displayed in Fig.  7-17 and its associated 
efficiency graph is displayed in Fig.  7-18. 

 
Fig.  7-17: Trajectory Obtained by the Minimum Instantaneous Control Effort Algorithm 

 
Fig.  7-18: Trajectory Efficiency Obtained by the Minimum Instantaneous Control Effort Algorithm 

The Results are the same for RMRC until 𝜑 = 30º. However, the MICE approach is 
able of maintaining a smooth trajectory afterwards, since the algorithm is aware of the 
full manifold of solutions. Nevertheless, if several joints are constrained, the locking 
problematic can occur too. This is what can be observed for 𝜑 =220º. In this particular 
case, it can be seen that the B-Nick angle is the first one which reaches a limit position. 
Subsequently, the elevation angle reaches its terminal position for 𝜑 = 213º. With 
every actuator positioned in a terminal position a degree of freedom is lost. Therefore, 
when the A-Nick angle reaches a terminal position at 𝜑 = 220º the system has only 
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two actuators free and is not able to follow the trajectory with the same variations as it 
was doing it anymore. In this situation, there are no more solutions to the inverse 
kinematics in its current position and an abrupt change has to be executed. In this sort 
of transitions the efficiency tends to zero. This implies that the time or the angular 
velocity that the facility would require to execute the planned maneuver tends to infinite. 
This is by no means acceptable from a practical standpoint. In order to understand the 
mechanism which yields to a locking problematic, the whole solution domain for the 
different positions of the trajectory was studied. The reader can find these solutions in 
the Annex. Fig.  7-19 illustrates the solution to the inverse kinematics for several points 
around the locking point.  

 

 

 

 
Fig.  7-19: Inverse Kinematics Manifold for Trajectory's Points around the Locking Instant 



Trajectory Planning 
 

 

 

Page 56 
 

As it can be seen, for 𝜑 = 200º there are two different solution regions. The solution 
for the trajectory chosen by the MICE algorithm is located in the area with positive polar 
and negative azimuth. At this point of the trajectory, both solution regions are 
connected, but the link is lost by 𝜑 = 210º. After this point, the region where the current 
solution is placed tends to become smaller as the trajectory progresses. This isolated 
region disappears by 𝜑 = 222º. This is what causes the locking problematic, the lack 
of possibilities to progress with nearby points with the current configuration. This 
analysis illustrates that the MICE algorithm promotes that the solution stays in the initial 
region, which is inimical in the long term. The reason behind this behavior is that the 
configuration gradient within the two solution regions is higher, so looking for nearby 
points results in staying within the same reason although it tends to disappear. 

Therefore, it is necessary to develop algorithms which promote the transition to the 
other solution region once this one is become larger in detriment to the first one. 

7.3.2 Isokinematic Centroid Tracking 

As it was seen in the previous point, the initially proposed policy presents the problem 
that a configuration may tend to end in a cornered position of the solution domain 𝜎, 
which can eventually become inaccessible. Therefore, a reasonable policy may be 
based on avoiding being in such positions. This would require that the trajectory heads 
towards the new solution region when it appears whilst the bridge between both 
regions is still standing. A possible way to implement such behavior is that the 
trajectory tracks the centroid of the solutions. In this case, when a secondary solution 
region appears the algorithm will promote the motion towards this region as its size 
grows. This arises the question of defining the centroid of a solution space based on 
angular variables. A reasonable way to do this is to perform a statistical analysis of the 
solution domain. The mean or most probable value can be assumed to be the 
equivalent of a centroid for the current context. In order to perform this analysis, the 
probability density function of the configuration for each actuator for each point of the 
trajectory was computed. The results of these calculations are displayed in the 
following figures. In these graphs, the color code indicates the probability density, the 
vertical axis indicates the configuration of the actuator, whilst the horizontal is related 
to the point of the trajectory. 

 
Fig.  7-20: Probability Density Function of the Azimuth Joint through the Example Trajectory 
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Fig.  7-21: Probability Density Function of the Elevation Joint through the Example Trajectory 

 
Fig.  7-22: Probability Density Function of the A-Nick Joint through the Example Trajectory 

 
Fig.  7-23: Probability Density Function of the B-Nick Joint through the Example Trajectory 
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Fig.  7-24: Probability Density Function of the Polar Joint through the Example Trajectory 

These figures illustrate the regions in which most solutions are concentrated for each 
point of the trajectory. Therefore, they provide relevant insights involving the locking 
problematic. For example, it can be seen, that the unconstrained actuators present 
lower peaks compared to the constrained ones. High peaks of values indicate that 
many solutions are concentrated around a certain value. This is a high indicator of 
locking danger. The actuator must reach such positions soon enough in order to 
prevent locking from taking place. The presence of simultaneous solution regions can 
be observed in the presented figures too. A closer look into the azimuth and polar 
angles indicates that for some parts of the trajectory there is a single region where 
most of the solutions are concentrated. As 𝜑 approaches 180º, the region where most 
of the solutions are concentrated changes. In order to determine objectively the ideal 
point, it is necessary to compute the most probable value for a given point of the 
trajectory. For the actuators which are limited, this calculation is analogous for the 
ordinary mean: 

 𝜔 , = ∫ 𝑓 (𝜔)𝑑𝜔  Eq. ( 7–20 ) 

Where 𝑓  is the probability density function of the actuator over its configuration. For a 
robot with 𝑛  limited actuators, computing the different most probable values leads to 
the 𝑛  x 1 vector of most probable values for the limited actuators: 

 𝑞 = 𝜔 , 𝜔 , … 𝜔 ,
… 𝜔 ,   Eq. ( 7–21 ) 

Which in the case of the RACOON Lab results in: 

 𝑞 = (𝛽 𝛾 𝛿 )  Eq. ( 7–22 ) 

Unlike these limited degrees of freedom, the actuators which can range from 0 to 360º 
are cyclic. In these cases, it is necessary to introduce certain modifications to the 
generalized notion of the most probable value. In order to visualize this necessity Fig.  
7-25 illustrates the Probability Density Function of the Azimuth for several 
configurations. 
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Fig.  7-25: Probability Density Function for the Azimuth for Different Coordinates 

In this Figure, the two different solution regions can be observed very clearly. 
Furthermore, it can be seen how one of these regions decreases at expenses of the 
other one as the roll angle reduces. In order to promote the transition from one region 
to another, the target position should be between the two local maximums of the two 
solutions. Such behavior cannot be obtained with the conventional definition of the 
mean. If one uses this definition, the result will be dependent of the integration 
boundaries. For example, if the PDF is defined from 0 to 360º the result would be 
between 180º and 270º, but if the boundaries of Fig.  7-25 are used, the result would 
lay between -90 and +90º. Indeed, these two values are valid as a variable’s centroid 
since they lay within an intermediate position of the two regions. In order to determine 
these two centroids for the general case, the following procedure is followed: 

1. Find the configuration with the highest density Ω (-90º in Fig.  7-25)  

 Ω = argmax{𝑓(𝜔)} Eq. ( 7–23 ) 

2. Find the bounds 𝑟  and 𝑟  (-180º and 0º in Fig.  7-25) of the region that contains Ω: 

 r = argmin{Ω − ω} ∀ ω < Ω | 𝑓(𝜔) = 0  Eq. ( 7–24 ) 

 r = argmin{ω − Ω} ∀ ω > Ω | 𝑓(𝜔) = 0  Eq. ( 7–25 ) 

3. Use with these inputs to determine the two most probable values as: 

 
𝜔 , = ∫ 𝑓(𝜔)𝑑𝜔 + 𝜋 1 − ∫ 𝑑𝜔

𝜔 , = 2Ω − 𝜔 ,

  Eq. ( 7–26 ) 

These two parameters lead to the matrix of the 𝑛  x 2 matrix of probable values for the 
cyclic actuators: 

 𝑞 =
𝜔 ,

𝜔 ,

𝜔 ,

𝜔 ,
…

𝜔 ,

𝜔 ,
…

𝜔 ,

𝜔 ,
  Eq. ( 7–27 ) 

Which in the case of the RACOON Lab’s rotator results in: 

 𝑞
𝛼 𝜀
𝛼 𝜀   Eq. ( 7–28 ) 

The following figure illustrates the evolution of the different probable values for 
RACOON-Lab over the study trajectory. 
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Fig.  7-26: Most Probable Values for the Different Joints over the Example Trajectory 

Using these concepts, it is possible to define the minimum distance to a most probable 
value of a given configuration as: 

ζ(𝑞, 𝑞 , 𝑞 )  = ∑ 𝜔 − 𝜔 , + ∑ min
𝜔 − 𝜔 ,

𝜔 − 𝜔 ,

  Eq. ( 7–29 ) 

This definition can be used as a criterium for determining the evolution of the trajectory. 
In particular, the value the configuration which presents the minimizes the minimum 
distance to a most probable (isokinematic centroid) value over the solution space 𝜎 is 
the one chosen for the next point of the trajectory: 

 𝑞 = argmin
 

ζ(𝜎 , 𝑞 (𝜎 ), 𝑞 (𝜎 ))   Eq. ( 7–30 ) 

The output of using this algorithm for the example trajectory is displayed in Fig.  7-27 
and the associated efficiency can be visualized in Fig.  7-28.  

 
Fig.  7-27: Trajectory with the Isokinematic Centroid Tracking 



Trajectory Planning 
 

 

 

Page 61 
 

 
Fig.  7-28: Efficiency with the Isokinematic Centroid Tracking 

This solution for the trajectory provides an efficiency of a 21%, which as it can be seen 
is capable of providing a seamless rotation around the X axis. Nevertheless, at some 
positions of the trajectory, high control efforts are required for both azimuth and polar 
angles. These sporadic high control efforts are what produce punctual low efficiencies, 
which diminish the global performance. Therefore, although the motivation behind the 
algorithm is sound some minor problems remain. This issues shall be addressed in the 
next point. 

7.3.3 Relaxed Isokinematic Centroid Tracking 

At this point a seamless trajectory with an acceptable efficiency has been achieved. 
However, the question is whether it is possible to improve it and obtain smoother paths 
which enable a more optimal utilization of the facility. The Relaxed Isokinematic 
Centroid Tracking (RIKCT) algorithm intends to avoid the sporadic abrupt changes in 
configuration in order to improve the overall efficiency of the algorithm. This is done by 
limiting the maximum instantaneous control effort for tracking the most probable 
values. Therefore, this variant of the algorithm limits the selection to points that imply 
transitions with a transition that has an efficiency higher than the minimum one which 
was specified: 

 𝑞 = argmin
 

ζ(𝜎 , 𝑞 (𝜎 ), 𝑞 (𝜎 ))  ∀ 𝜂 ≥ 𝜂   Eq. ( 7–31 ) 

Such approach can avert the presence sporadic rather abrupt inputs within the 
trajectory such as the one observed in Fig.  7-27. However, implementing this approach 
implies that the isokinematic centroid is not followed as accurate as before. Therefore, 
if the maximum allowed control effort becomes too small, it is possible that the 
configuration is so far away from the most probable values that the locking problematic 
appears again. Therefore, it is required to tune this value i.e. finding the highest 
efficiency which still able to track the isokinematic centroid with an error that does not 
lead to locking configurations. 

An iterative approach is used in order to maximize the efficiency of the trajectory whilst 
avoiding this risk. The iterations depart from the efficiency achieved by the IKCT 
Algorithm and this value is increased gradually until the point when locking takes place. 
This procedure was followed for the example trajectory and a maximum efficiency of a 
50% was obtained. The reader can find the intermediate results of the tuning process 
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in the Appendix E The optimal trajectory and its efficiency are displayed in the following 
figures: 

 
Fig.  7-29: Trajectory Obtained with the Relaxed Isokinematic Centroid Tracking with a Minimum 

Efficiency of a 50% 

 
Fig.  7-30:Efficiency Obtained with the Relaxed Isokinematic Centroid Tracking with a Minimum 

Efficiency of a 50% 

The imposed limitation of the control effort becomes evident with a detailed look at Fig.  
7-30 where the efficiency of each discrete maneuver is displayed.  

It is important to note that this algorithm is particularly well suited for static simulations, 
when the whole trajectory is known beforehand. For these cases, it is possible to tune 
the value of 𝜂  accurately as it is possible to try every value until locking appears. In 
the case of dynamic experiments, the efficiency must be set beforehand and it is not 
possible to iterate. In such situations, a conservative approach is advised. Therefore, 
a reasonable value for the limitation of the maximum control effort would be an 
efficiency around a 30%. 
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7.3.4 Automatic Supervisory Control with Distance to an Isokinematic 
Centroid as Performance Criterion 

Another possibility in order to improve the performance of both ASC and the IKCT can 
be to merge these two approaches. In this direction, the distance to the most probable 
value can be used as the performance criterium, thus: 

 𝐻(𝑞) = argmin
 

ζ(𝜎 , 𝑞 (𝜎 ), 𝑞 (𝜎 ))    Eq. ( 7–32 ) 

As in the case of ASC it is necessary to tune the value of 𝛼 . In this case, the optimal 
value was found to be 0.8 with the trajectory and associated efficiency displayed in Fig.  
7-31 and Fig.  7-32 respectively. 

 
Fig.  7-31: ASC with Distance to the Minimum Distance to an Isokinematic Centroid as the Performance 

Criterium 

 
Fig.  7-32: Efficiency Obtained with ASC using the PDF as the Performance Criterium 

As it can be seen, this approach provides a higher efficiency at the beginning of the 
trajectory. Nevertheless, when the azimuth and polar angles must perform the flip, high 
angular velocities are required, greatly diminishing the global performance of the 
algorithm. In particular, a minimum efficiency is a 14%, which provides no improvement 
at all compared to the IKCT approach although it is slightly better than the result 
obtained by ASC. 
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7.4 Summary 

During the present chapter, several algorithms were introduced and tested for 
executing a roll rotation in the RACOON-Lab. In this final section, the obtained results 
are presented in a summarized way, in order to provide a general perspective of the 
performed work. 

The conventional methodologies (ASC and WLN) exhibited oscillations, that could be 
removed by filtering techniques. However, this filtering introduced an attitude error, 
which decreased as the cut-off frequency increased. Even considering the efficiency 
enhancement due to filtering, the efficiency of these algorithms was in the order of a 
10%. 

Several algorithms based on the analytical solution to the inverse kinematics were 
developed. The first approach, MICE, focused on minimizing the instantaneous control 
effort, which eventually lead to locking configurations. Such configurations could be 
averted by tracking the centroid of the isokinematic manifold. The algorithms based on 
this philosophy were IKCT and RIKCT and proved able to execute the roll rotation with 
efficiencies over 30% in the absence of oscillations. The former algorithm tracks the 
isokinematic centroid with as much control effort as necessary, whilst the later enables 
a certain relaxation of the tracking task that improves the overall trajectory’s efficiency. 
The consideration of the isokinematic centroid was introduced into conventional 
methodologies too, by using the distance to an as the performance criterium in ASC. 
The efficiency of this approach was higher than ASC but poor compared to the 
isokinematic tracking algorithms. All these results are summarized in Table 7-1. 

Table 7-1: Summary of Performance for the Inverse Kinematic Algorithms tested for a Roll Rotation 

Algorithm Efficiency, 𝜼 Oscillations Attitude Error, 𝝐𝚵 

ASC 1.6% High frequency 0º 

ASC+Filtering 9.3% No 1º-10º 

WLN 2.1% Low and High frequency 0º 

WLN+Filtering 10.2% No 1º-10º 

MICE 0% No 0º 

IKCT 19.4% No 0º 

RIKCT 50% No 0º 

ASC+IKCT 19.6% No 0º 
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8 System Evaluation 
The previous chapters have provided a solid background for understanding the 
RACOON-Lab’s kinematics. In this section this asset is used in order to evaluate the 
design of the robot and its capabilities. This assessment will focus on studying the 
sensitivity of the RACOON-Lab’s performance with respect its joints limitations and the 
singularities that can take place at certain configurations. 

8.1 System Capabilities 

After visualizing the different trajectories obtained in the previous section, it is possible 
to appreciate several common patterns. This exercise can be used in order to identify 
the system’s weaknesses from a kinematic point of view.   

With a closer look at every trajectory, it can be observed that the most problematic 
points are concentrated around 𝜑 = 180º. It is in this area where the deadlocks take 
place. Furthermore, even if locking can be avoided, it is in this region where the points 
with the lowest efficiencies are concentrated. This indicates that the most demanding 
movements take place around this area. The reason behind this is the presence of two 
different isokinematic regions as it was identified in section 7.3.1. These regions are 
connected for a reduced number of positions, and the connection is only available for 
a short period. In order to avoid ending in a deadlock, the robot must transition from 
one region to another. This transition is done by tracking the centroid of the inverse 
kinematics manifold, which often moves steeply. Therefore, the gradient of the inverse 
kinematics’ centroid with respect to the space coordinates is the limiting factor in the 
robot’s performance.  

A possible way to assess this steepness is to evaluate the slope of the most probable 
values for the joints that must perform the most abrupt transitions. These joints are the 
azimuth and polar angles.  Fig.  8-1 illustrates this slope for the case of the Azimuth 
angle. The absolute value of the slope is the same for the polar angle, therefore only 
the former angle will be considered from this point on. 

 
Fig.  8-1: Linearization of Inverse Kinematics Centroid Motion around 𝜑=180º 

This slope is the main driver of the robot’s capabilities for performing efficient 
trajectories. A suitable way to express is as the sensitivity of the Azimuth angle’s most 
probable value with respect to the roll angle and is a function of the joints’ limitations 
Ν: 
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 𝐶 (Ν) = (𝑁) = 𝜈 , 𝜈 , 𝜈   Eq. ( 8–1 ) 

Ν denotes the vector containing the joint’s range of motion of the limited joints.  

If the ranges become wider, so does the inverse kinematics manifold. Therefore, new 
isokinematic regions arise sooner and vanish later, which provides a larger margin for 
executing the transition, enabling greater efficiencies. In order to assess this effect, 
this gradient was evaluated changing the ranges of the constrained joints. In order to 
provide more intuitive results, the ranges of the Nick joints were merged into a single 
variable representing the ± range. The results of this study are displayed in Fig.  8-2. 

 
Fig.  8-2: Inverse Kinematics Centroid Gradient in a Roll Rotation for the RACOON-Lab 

In this Figure, the Elevation angle range refers to the total range of motion of the 
elevation angle, which has a central value at 𝛽 = −90º. The Nick angles range is the 
± range. Therefore, a value of 30º corresponds to the default limits presented in Table 
5-1. As it can be seen, the slope tends to increase as both ranges are reduced. The 
inverse of this slope can be considered as a reference value for the efficiency 
necessary for executing the roll rotation averting locking configurations. This value can 
be fitted very well as a plane with the following expression: 

 = 𝑐 + 𝑐 𝜈 + 𝑐 𝜈   Eq. ( 8–2 ) 

The regression of this formulation presents an R² value of 0.985 with the following 
numerical results: 

𝑐 = −0.6033

𝑐 = 6.8474 · 10 deg  

𝑐 = 3.7065 · 10 deg
 

As it can be seen, elevation and nick angles have about the same relevance, since the 
parameter 𝜈  refers to the increase in two angles and has about twice the value of the 
elevation’s angle sensitivity. Since the maximum achievable efficiency is directly 
related to this parameter, these coefficients provide straightforward interpretation. For 
example, it can be estimated that the efficiency will be increased roughly by 10 % for 
each additional 25º of range in the Elevation angle. 
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8.2 Singularity Analysis 

The RACOON-Lab’s Rotator is equipped with five degrees of freedom which are used 
to provide seamless motion while avoiding the joint’s limits. These two tasks are usually 
distributed between all the joints. Nevertheless, at certain positions some or several of 
these degrees of freedom can be lost. This may increase the workload of the remaining 
operative degrees of freedom, which can worsen their performance and limit their 
kinematic capabilities. Therefore, identifying these scenarios has a significant 
importance in order to understand recognize potential risky configurations. In this 
section, the possible singularities that can take place in the RACOON-Lab are 
identified and analyzed. 

8.2.1 Singularity Definition 

Singularities take place when the motion of a pair of joints can produce the same effect 
in the end effector. This means, that there is a linear dependency in the Jacobian 
tensor that maps their time derivatives to the end effector’s. The practical effect of such 
scenario can be intuitively understood as having one or more joints repeated, with 
associated loss of dexterity. 

In order to assess the existence of singularities, it is necessary to study the reduced 
3x3 Jacobians. These quadratic tensors are obtained after removing two columns 𝑎,𝑏, 
from the complete 3x5 Jacobian, so that a 3x3 matrix remains. Therefore, there is a 
total of 10 combinations which are summarized in  Table 8-1. 

Table 8-1: List of Reduced Jacobians for the RACOON-Lab 

Removed Rows Remaining Rows Reduced Jacobian 

𝛼, 𝛽 𝛾, 𝛿, 𝜀 𝐽 ̇ ̇ ,
○  

𝛼, 𝛾 𝛽, 𝛿, 𝜀 𝐽 ̇ ̇ ,
○  

𝛼, 𝛿 𝛽, 𝛾, 𝜀 𝐽 ̇ ̇ ,
○  

𝛼, 𝜀 𝛽, 𝛾, 𝛿 𝐽 ̇ ̇ ,
○  

𝛽, 𝛾 𝛼, 𝛿, 𝜀 𝐽 ̇ ̇ ,
○  

𝛽, 𝛿 𝛼, 𝛾, 𝜀 𝐽 ̇ ̇ ,
○  

𝛽, 𝜀 𝛼, 𝛾, 𝛿 𝐽 ̇ ̇ ,
○  

𝛾, 𝛿 𝛼, 𝛽, 𝜀 𝐽 ̇ ̇ ,
○  

𝛾, 𝜀 𝛼, 𝛽, 𝛿 𝐽 ̇ ̇ ,
○  

𝛿, 𝜀 𝛼, 𝛽, 𝛾 𝐽 ̇ ̇ ,
○  
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In the notation used, 𝐽 ̇ ̇ ,
○  denotes the reduced Jacobian obtained after removing of 

𝑞  and 𝑞 . With these definitions, it is now possible to state the condition for existence 
of a singularity: 

 ∃ 𝑎, 𝑏 |  det 𝐽
�̇��̇�,𝑎𝑏
○ (𝑞) = 0   Eq. ( 8–3 ) 

Therefore, the argument of the minimum distance to zero of the determinant of the 
reduced Jacobian can be used to assess the risk of a singularity: 

 Γ = argmin
,

det 𝐽
�̇��̇�,𝑎𝑏
○ (𝑞)     Eq. ( 8–4 ) 

Hence,  Γ approaching to zero is a strong indicator of singularity risk. 

Due to the transformation order of the direct kinematics, only rotations around the X 
and Y axis as relevant for triggering singularities. Therefore, this parameter can be 
studied as a function of the elevation and Nick angles, thus  Γ = 𝑓(𝛽, 𝛾, 𝛿). Fig.  8-3 
illustrates this function with some examples.  

 

 
Fig.  8-3: Examples of the Argument of the Minimum Determinant for the Reduced Jacobian 

The study of this function provides several relevant hints about the robot. The areas in 
which Γ presents a value close to zero have been checked manually in order to detect 
the singularities which can take place in the robot. These unfavorable scenarios are 
summarized in the next lines. 

8.2.2 Singularity Identification 

From the reduced Jacobians which exhibited a determinant close to zero, the involved 
degrees of freedom were checked in order to identify the linear dependencies. In Total, 
three possible singularity scenarios were found. 
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8.2.2.1 Azimuth-Polar Coupling 

When the vertical axis of the end-effector and the inertial frame are aligned, the polar 
and azimuthal joints can provide the same effect as it is illustrated in Fig.  8-4. 

 

 
Fig.  8-4: Azimuth-Polar Coupling Singularity 

This singularity can take place when the elevation angle is greater than -30º or smaller 
than -150º. In such cases, it is possible that certain combinations of the nick angles 
lead to coupling of 𝛼 and 𝜀. The presence of this singularity can be observed in the 
upper region of Fig.  8-5, where an elevation angle suitable to trigger this sort of 
singularities has been chosen. 

 
Fig.  8-5: Singularity Map with the Polar-Azimuth Coupling Visible in the Upper Area 

8.2.2.2 Azimuth-A-Nick Coupling 

The Azimuth A-Nick Coupling takes place in configurations where the elevation angle 
is a multiple of 90º. In such cases, the vertical axis of the end effector is contained in 
the horizontal plane and motions of the azimuthal joint have the same effect as the 
ones provided by the A-Nick as it can be visualized in Fig.  8-6. 
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Fig.  8-6: Azimuth-A-Nick Coupling Singularity 

8.2.2.3 Elevation-B-Nick Coupling 

The Elevation B-Nick Coupling is the most common of all singularities. The reason for 
this is that it is associated to the cases in which one of the nick angles presents a value 
of zero. Since this configuration is often desired as it provides the optimal condition for 
joint limit avoidance, most of the trajectory algorithms tend to present such 
configurations. The effect of this coupling can be visualized in Fig.  8-7. 

 
Fig.  8-7: Elevation-B-Nick Coupling Singularity 

8.2.2.4 Multiple Singularity 

Multiple singularities can take place whenever there is a combination of the three 
previously introduced singularities. In concrete, the first and the second singularities 
can appear in conjunction with the third one. For example, for the default configuration 
(all angles equal zero) there is simultaneously an Azimuth-Polar coupling and a 
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Elevation-B-Nick Coupling. Since the RACOON-Lab has only a degree of redundancy 
of two, these multiple singularities can pose a serious hindrance as they 
instantaneously remove the robot’s redundancy. This implies, that instantaneously the 
robot can only fulfill one task (trajectory tracking) whilst there is no self-motion available 
for performing the joints’ limits avoidance task.  

8.2.3 Examples of Singularities Across a Trajectory 

During the execution of a trajectory, the robot may undergo several singularities. In 
order to illustrate this, the determinants of the reduced Jacobians have been studied 
for roll rotation resulting with the ASC algorithm. This result is displayed in Fig.  8-8. In 
this graph, each curve represents the absolute value one of the ten reduced Jacobian’s 
determinant. The labels indicate the remaining rows. Hence, 𝛾𝛿𝜀  for example 

corresponds to det 𝐽
�̇��̇�,𝛼𝛽
○ . 

 
Fig.  8-8: Absolute Values of the Reduced Jacobians Across a Trajectory Performed with ASC 

As it can be seen, during most of the trajectory the singularity of 𝛾 − 𝛽 coupling is 
present. This can be deduced from the fact that all the reduced Jacobians which 
contain these two terms present a determinant close to zero. The Polar-Azimuth 
singularity can be observed too by attending to the 𝛼𝛽𝜀 curve, which as it can be seen 
takes place only sporadically. The same behavior applies to the Azimuth-A Nick 
singularity, which can be tracked attending to the curve 𝛼𝛽𝛿. 

In the example of the roll rotation departing from the default configuration, the 
singularities do not pose any hindrance, besides the oscillations in the central part. 
Nevertheless, the loss of redundancy can be particularly critical for the use of 
conventional algorithms that solve the problem in the velocity domain. In these cases, 
there shall be at least one degree of freedom performing each task. However, if 
constrained degrees of freedom are involved, one of them may eventually become 
inoperative if a limit value is reached. In such cases, the remaining freedom of motion 
will be entirely used for following the trajectory without the possibility to avoid the joint’s 
terminal positions. 

In order to visualize this unfortunate chain of events a highly unfavorable scenario has 
been simulated. The case chosen is a rotation around the Y axis (pitch rotation) 
departing from the default configuration with the ASC algorithm. The result is displayed 
in Fig.  8-9. 
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Fig.  8-9: Locking of ASC for Performing a Pitch Rotation 

As it can be observed, the task of avoiding joint’s limits is mainly performed by the 
elevation angle initially, but at certain point its terminal value is reached, and only the 
B-Nick angle can continue the motion, until it ends up in a deadlock. In this case, the 
convergence cannot be achieved regardless of the value of 𝛼 , which only influences 
the point where the Elevation angle changes its slope. The same example was 
addressed with the IKCT algorithm. The resulting trajectory for the initial instants is 
displayed in Fig.  8-10. As it can be seen, in this case the deadlock can be avoided. 

 
Fig.  8-10: RMPV Performing a Pitch Rotation from the Default Configuration 

The reason for this is that the IKCT focuses on all degrees of freedom into tracking the 
manifold’s centroid. This approach incorporates the joint limitation task in a more 
holistic fashion. In this case, this enables the avoidance of deadlocks as all the degrees 
of freedom are involved in both limit avoidance and trajectory tracking. Such strategy 
is more robust in scenarios when degrees of freedom are lost. 
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9 Practical Case 
During the previous chapters, the solution of the inverse kinematics for both point and 
trajectory problems has been presented. However, the path examples which have 
been shown until this point were rather simple. Such trajectories are adequate for the 
study and validation of the inverse kinematics algorithms but hardly take place in the 
real world. In order to illustrate the applicability of the developed algorithms in a 
practical context, the motion of an actual orbiting satellite will be recreated using the 
elaborated schemes. The spacecraft used for this purpose will be MOVE-II, which was 
developed at the chair of Astronautics at the Technical University of Munich by the 
student society WARR (Wissenschftliche Arbeitsgemeinschaft für Raketentechnik und 
Raumfahrt; Scientific Workgroup for Rocketry and Spaceflight). 

During some stages of its early operation, this satellite tumbled in the absence of 
controlled actuation. The magnetic dipole moment of its solar cell wiring accelerated it 
to more than 100 deg/s. Its motion during that time strongly resembled that of 
uncooperative targets, which are the main examples that the rotator of the RACOON-
Lab intends to represent in the future. In present chapter, the data collected by MOVE-
II will be reconstructed and used for determining its attitude history. Subsequently, this 
attitude history will be used as an input trajectory for the trajectory algorithm and the 
configuration of the robot will be computed using the algorithms presented in Chapter 
7. This will enable an assessment of the capabilities of the developed methodology 
under a realistic context. 

9.1 MOVE-II Description 

MOVE-II (Munich Orbital Verification Experiment II) is the second Satellite project 
developed at the Chair of Astronautics of the Technical University of Munich. It consists 
on two twin CubeSats: MOVE A and MOVE B which were launched at late 2018 and 
early 2019 respectively. A Computer Generated Graphic (CGI) of this spacecraft model 
can be visualized in Fig.  9-1. 

 
Fig.  9-1: Computer Generated Graphic (CGI) of  MOVE-II with Deployed Flappanels [30] 

MOVE-II is a CubeSat with a size of 10 cm x 10 cm x 10cm and a mass of 1.2 Kg [31]. 
This spacecraft’s scientific payload requires an Attitude Determination and Control 
System (ADCS) in order to study the effect of the relative orientation with respect to 
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the Sun on the solar cell’s performance. This motivated the requirement of a pointing 
accuracy of at least 10º, targeting 5º in MOVE-II’s Critical Design Review (CDR) [32]. 
Such performance is achieved through the use of magnetic coils which interact with 
the Earth’s magnetic field in order to generate a magnetic dipole [33]. One of the main 
tasks of this ADCS is to reduce the spinning rate of the spacecraft, as it would exhibit 
extremely high angular velocities otherwise. Nonetheless, during the first weeks of 
operation, due to the low budget in electronic power this actuation was not present at 
some points. This situation originated the afore stated high spinning rates. This kind of 
scenario resembles to the sort of behavior that the RACOON-Lab’s rotator shall 
recreate in the future. Indeed, an unactuated free spinning satellite constitutes a very 
good example for the applications that will be researched within the RACOON-Lab. In 
this section, the motion of MOVE-II during a period of time in which it flew unactuated 
will be represented with the RACOON-Lab. In order to do this, some of the algorithms 
described in previous sections will be used. This exercise will serve as an initial 
validation of its applicability in a practical framework. 

9.2 Attitude Data 

The satellite is equipped with gyroscopes which record the angular rates in the body 
frame of the spacecraft. This is done by the small9-axis sensor module BMX055 [34] 
that can be visualized in Fig.  9-2. 

 
Fig.  9-2: BMX055 ADCS Sensor 

Using the data collected by these instruments, it is possible to reconstruct the attitude 
history. The time frame in which the satellite’s attitude will be study corresponds to May 
13th from 10:04 to 10:14 Greenwich Mean Time (GMT). 

 
Fig.  9-3: Visualization of MOVE-II Orbiting on May 13th at 10:04 GMT 
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Unfortunately, the sensors’ measurements are discontinuous and present several 
interruptions over time. Due to this, the continuous study of the trajectory over long 
periods of time requires the use of interpolation technics, which fill the missing data.  
The interpolation of the data has been performed considering the development in 
Fourier series with the available points. The resulting function has therefore the 
following formulation: 

 𝑆(𝑡) = ∑ A  sin 2𝜋 ·  𝑖 · 𝑓 · 𝑡 + ∑ B  cos 2𝜋 ·  𝑖 · 𝑓 · 𝑡    Eq. ( 9–1 ) 

The obtained fundamental frequency 34.75 𝜇Hz and the spectral relative energy can 
be visualized in Fig.  9-4. 

 
Fig.  9-4: Spectral Relative Energy of the Harmonics Obtained by the Regression 

The resulting function of the angular rates and the measured data can be visualized in 
Fig.  9-5. As it can be seen, this sort of interpolation provides a more meaningful filling 
of the missing data compared to a linear method. 

 
Fig.  9-5: Reconstruction of MOVE-II Gyroscopic Data 

Once the values of 𝑝, 𝑞 and 𝑟 are available over time, it is possible to calculate the 
instantaneous change in attitude using the attitude transformation matrix: 
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( )

𝑝
𝑞
𝑟

    Eq. ( 9–2 ) 

Assuming an initial attitude (e.g. :𝜙 = 𝜃 = 𝜓 = 0º) it is possible to integrate with 
finite differences over time and thus obtain the attitude and attitude propagation history 
of the spacecraft. The attitude rates can be visualized in Fig.  9-6, which summarizes 
the numerical solution of the attitude equation. The reader is referred to the Appendix 
F.1 in order to find the complete figures which contain the information regarding the 
attitude history. 

 
Fig.  9-6: Move II-A Euler Angles Rates over the Study Time 

9.3 Attitude Simulation within the RACOON-Lab 

With the computed attitude history as an input, it is possible to use the presented 
algorithms for obtaining the robot’s configuration necessary to simulate the motion of 
MOVE-II. In this section both Automatic Supervisory Control and the Relaxed 
Isokinematic Centroid Tracking methods will be applied for this goal. The complete 
results of the algorithms used can be visualized in the Appendix F.2 of the present 
document. For the data display, the time of MOVE-II will be presented in the horizontal 
axis. However, it is important to remark that the time that the RACOON-Lab would 
need in order to achieve shall be higher due to its limitations in the maximum angular 
velocities. 

9.3.1 Automatic Supervisory Control 

Since the main motion experienced by the spacecraft is a yaw rotation, the roll rotation 
is unlikely to be the limiting factor during the initial moments. Therefore, it is possible 
to attempt lower values for 𝛼  than the ones obtained in Chapter 7.  Indeed, for 
simulating the first 10 seconds of MOVE-II a parameter of 𝛼 =1 is able to deliver a very 
good performance without exceeding the limits as it can be visualized in Fig.  9-7. In 
this case, the minimum efficiency is a 29.5% although it is around a 100% during most 
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of the trajectory. This can be seen by comparing Fig-F 9, which displays the angular 
velocities with Fig.  9-6.  

 
Fig.  9-7: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with ASC 

In spite of this initial good performance, once the pitch angle becomes relevant the 
algorithm is not able to confine the motion within the joints’ limits anymore as is 
displayed in Fig.  9-8. This behavior remains even with large values of the coefficient 
𝛼 . 

 
Fig.  9-8: Violation of Limits in Elevation and B-Nick with ASC and α_k=60 s/rad 

9.3.2 Relaxed Isokinematic Centroid Tracking 

The relaxed isokinematic centroid tracking was tested starting with a high value for 
𝜂  (180%). This value was able to provide very efficient trajectories as it can be 
visualized in Fig.  9-9. As it can be seen, this highly efficient trajectory is possible due 
the fact that polar and azimuth angles work simultaneously.  

 
Fig.  9-9: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and 𝜂_min=180% 
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However, as the spacecraft gains pitch angle, the azimuth and polar rotation axes are 
not aligned anymore. In such cases, highly efficient maneuvers are too slow to track 
the isokinematic centroid fast enough. This leads eventually to the robot cornered in a 
deadlock configuration.  

Due to this, if one wants to represent the whole trajectory of MOVE-II it is necessary to 
use more conservative values 𝜂 . These values produce a less efficient motion for 
the first moments as displayed in Fig.  9-10. 

 
Fig.  9-10: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and 𝜂_min=70% (I) 

The highest minimum efficiency 𝜂  that was able to successfully complete the 
trajectory was 80%. This value is significantly higher than the one obtained for a roll 
rotation in Chapter 7. The reason for that is that the roll component of MOVE-II’s 
rotation is very low comparer to its yaw rate. Nevertheless, it can be observed that the 
resulting trajectory is much more inefficient. Indeed, in this case azimuth and roll do 
not work together but partially counteract. For example, at the first instant, a yaw rate 
of roughly 150 deg/s is achieved by a rate in the polar joint of approximately 220 deg/s 
complemented with -70 deg/s in the azimuthal joint. 

This kind of inefficient movements is necessary in order to maintain the robot’s 
configuration close enough to the isokinematic centroid. This is what allows the robot 
to keep up with the trajectory once the azimuth and polar angles are not aligned 
anymore as can be observed in Fig.  9-11.  

 
Fig.  9-11: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and 𝜂_min=70% (II) 
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This graph illustrates that after roughly two minutes, the elevation angle takes values 
below -90º, which indicates a high pitch angle. In such cases, polar and azimuth cannot 
work together anymore. Therefore, attempting for efficiencies over a 100% is not 
realistic anymore. 
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10 Discussion 
The analytical approach of the inverse kinematics has proved able to provide a 
comprehensive overview of the robot’s capabilities. Solving the problem from this 
perspective enhanced the understanding of the robot’s limitations and their sensitivities 
to geometrical changes. It was possible to resort to this solution in order to study 
various aspects of the robots’ kinematics such as the valid nick angles combinations 
or the theoretically maximum performance of the robot as a function of the joints.  

The different algorithms presented in this work were tested against two different 
trajectories. The first one was a roll rotation, which can be considered as the most 
challenging motion due to the RACOON-Lab’s Rotator’s geometry. The other trajectory 
was the attitude of the satellite MOVE-II over a period of time in which tumbled in the 
absence of actuation. 

The conventional algorithms, which solved the problem in the velocity domain were 
able to solve the roll rotation, but with a limited performance (10%) and the presence 
of oscillations. Automatic Supervisory Control (ASC) proved to be able to deliver a 
performance slightly better than the Weighted Least Norm method, but their general 
behavior was very similar. The oscillations could be removed with basic signal filtering 
methods. However, this filtering did not provide any significant improvement in 
efficiency terms and a position error was introduced. This error proved to decrease 
significantly as the cut-off frequency increased. In particular, the more heavily filtered 
trajectories presented a maximum attitude error close to 10º whilst the trajectories 
filtered with highest Cut-off frequencies had maximum errors lower than 1º. Whether 
such errors are acceptable or not depends on the considered application. Regarding 
the simulation of MOVE-II, ASC provided a much better performance, particularly for 
short periods of time when the spacecraft’s motion resembled a pure yaw rotation.  

The trajectories based on the analytical solution to the inverse kinematics proved able 
to outperform in the case of a roll rotation. Efficiencies in the range of a 30%-50% were  
achievable by these methodologies. For less challenging trajectories, where the motion 
was driven by the unconstrained joints, it was possible to deliver efficiencies over a 
100%.  

Regarding the complexity of both approaches, the conventional approach could deliver 
individual solutions with a mean time of 55.5 μs whilst the analytical solutions needed 
272.5 μs in average. However, the solution in the velocity domain with other methods 
such as the Lagrange Multipliers should be much faster. This would further accentuate 
the differences in computational cost between the two families of algorithms. 
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11 Conclusions 
The proposed algorithm has displayed a robust behavior in both point and trajectory 
problems. The best performing algorithm has proved to be the Relaxed Isokinematic 
Centroid Tracking (RIKCT), which was able to execute all the proposed trajectories 
with efficiencies ranging from 30% to 150%. The foundation of this algorithm is tracking 
the centroid of the isokinematic manifold, which is the point placed the furthest away 
from the robot’s limit configurations. Therefore, this is a much more meaningful 
approach than the definition of performance functions used in conventional methods. 

The analytical approach provides a more comprehensive overview of the robot’s 
capabilities but it requires a significant initial effort for solving the mathematical 
problem. In the present case, the multibody presented five degrees of freedom, which 
is relatively low and enabled to handle of the problem’s abstractness in a nearly 
intuitive way. The systematic approach presented to tackle the mathematical problem 
can be applied to any robot as far as it has at least as many revolute joints as degrees 
of freedom.  Nevertheless, if the robot presents many more degrees of freedom it may 
become too abstract to be handled analytically. In such cases, identifying singularities 
such as the one found here for 𝜒 = ±90º may become too challenging. Thanks to such 
identification of singularities the computational effort for performing the discretization 
over the isokinematic manifold can decrease significantly. If singularities remain 
undetected, a great deal of time can be lost in looking for isokinematic configurations 
where there is none. Conversely, a detected singularity eases the complexity of the 
problem as there is one less equation to solve. These findings prove the critical 
importance of being able to grasp the system’s mathematical side, although the 
equations can be solved in a rather automatic fashion. 

Another shortcoming of the analytical approaches is their computational effort. This 
sort of algorithms relies on determining the centroid of the isokinematic manifold. In 
order ot determine this central configuration, it is necessary to perform a discretization, 
which must provide a representative sample of the hypergeometry. The necessary 
number of points for achieving an ergodic discretization may be high enough to hinder 
the algorithm’s implementation on real time applications. A possible solution might be 
to perform a coarser discretization over the trajectory, using a lower number of 
waypoints. The interpolation between these points can be done using faster 
approaches such as Automatic Supervisory Control. This aspect may be of critical 
relevance when addressing the implementation of the analytical algorithms into 
embedded systems.  

The analytical approach has proved to be a useful tool for assessing the capabilities 
of the robot’s concept. In this direction, the isokinematic centroid gradient has proved 
to be the limiting factor in the robot’s performance. Therefore, its study as a function of 
the geometrical limitations provides invaluable information for about the suitability of 
the robot’s concept. This kind of studies could be used in the future in order to assess 
the goodness of a given multibody for executing certain task. 

Finally, the study of the robot’s performance over simpler trajectories provides a 
broader overview of the improvements brought by the analytical approach. In the case 
of the MOVE-II rotation, it was observed that the performance of the conventional 
methods is much better for the cases where the robot has enough redundancy. In such 
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cases, the analytical algorithms were able to deliver an improvement, but it was of a 
lower magnitude. Therefore, the algorithms generated by the analytical approach can 
provide remarkable improvements for conditions in which the spectrum of feasible 
trajectories is excessively narrow. Such is the case of a roll rotation in the RACOON-
Lab. For these scenarios, the performance criteria used in conventional methods 
seemed to be unsuited for representing the optimality of a configuration. Conversely, 
if there is a higher availability of attainable trajectories, these functions provide an 
acceptable assessment. 
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12 Outlook 
The future work derived from the present project’s output can be divided in two main 
groups: The implementation at the actual facility and the application of the proposed 
algorithm in other robots. 

Regarding the implementation on the RACOON-Lab, it will be necessary to program 
the presented algorithms in a suitable way, which enables the dynamic execution of 
trajectories. This task demands to account for factors such as latency and 
computational time. In order to address this issue successfully it might be necessary 
to assess the trade-offs between accuracy and computational effort. In the present 
project, the resolution used in the trajectories examples has been 1 deg in Euler angles 
for the sake of accuracy. However, coarser resolutions may imply negligible errors 
while being significantly more efficient from a computational standpoint. Furthermore, 
the connection between the points obtained from the analytical solution of the inverse 
kinematics could be done using conventional algorithms such as ASC or WLN. These 
methodologies shall deliver a good performance as far as they restrain to connect 
points which are within the joint’s limits. Another key fact in the implementation at the 
actual facility is the addition of more convolute kinematic constraints. Within the scope 
of the present work, only the limitations in the joints’ limits and maximum angular 
velocity have been considered. Nevertheless, other restrains such as maximum 
combined angular velocities must be taken into account. For example, practical 
experience has shown problems when high angular velocities of both the Elevation 
angle and B-Nick have been demanded simultaneously, although its individual values 
were under its theoretical limit. Identifying and quantifying these additional constrains 
constitutes itself a necessary work for the future of the RACOON-Lab. 

The proposed methodology for determining the inverse kinematics’ manifold can be 
applied to many other robots. In general, it is theoretically possible to adapt the 
presented procedure to any robot which has at least as many revolute joints as degrees 
of freedom in space. However, the computation of the solution may face several 
challenges, that could not be foreseen in the present robot due to its relative simplicity. 
In this direction, the visualization of the manifolds may become excessively abstract 
as the robot’s degrees of freedom increase. Another challenging aspect might be the 
definition of the centroid of solutions to the inverse kinematics manifold if multiple 
unconnected isokinematic regions appear during the execution of a trajectory. 
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B Jacobian Tensor 
The Jacobian Tensor 𝐽 ̇ ̇  depends only on the current robot’s configuration 𝑞 contains 
the sensitivity coefficients that relate the configuration’s velocities �̇�  to the angular 
rates in the ende effector’s frame. The relationship between aññ these elements can 
be expressed as follows: 
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𝑞
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   Eq. (B–1) 

With: 

𝐽 ̇ ̇ (1,1) = (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  

+  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑐𝑜𝑠(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  +  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛿))  − (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  +  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)))(𝑐𝑜𝑠(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  
−  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛿)) 

𝐽 ̇ ̇ (2,1) = (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  

−  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑐𝑜𝑠(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  +  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛿))  − (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  −  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)))(𝑐𝑜𝑠(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  
−  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛿)) 

𝐽 ̇ ̇ (3,1) = (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  

+  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  −  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  
−  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  +  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  
−  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼))) − (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  
+  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  −  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  
−  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  +  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  +  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼))) 

𝐽 ̇ ̇ (1,2) = (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  

+  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛿)  
−  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝛿))  −  (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  +  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)))(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛿)  
−  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼))  −  (𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛿)  
+  𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽)  +  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛿))  
−  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛾)) 
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𝐽 ̇ ̇ (2,2) =  (cos(𝛿) (cos(𝛼) sin(𝛾) + cos(𝛾) sin(𝛼) sin(𝛽))

+ cos(𝛽) sin(𝛼) sin(𝛿))(cos(𝜀) (cos(𝛿) sin(𝛼) sin(𝛽)
+ cos(𝛽) cos(𝛾) sin(𝛼) sin(𝛿)) + cos(𝛽) sin(𝛼) sin(𝛾) sin(𝜀))
−  (cos(𝛿) (sin(𝛼) sin(𝛾) − cos(𝛼) cos(𝛾) sin(𝛽))
− cos(𝛼) cos(𝛽) sin(𝛿))(cos(𝜀) (cos(𝛼) cos(𝛿) sin(𝛽)
+ cos(𝛼) cos(𝛽) cos(𝛾) sin(𝛿)) + cos(𝛼) cos(𝛽) sin(𝛾) sin(𝜀))
−  (sin(𝛽) sin(𝛿)
− cos(𝛽) cos(𝛾) cos(𝛿))(cos(𝜀) (cos(𝛽) cos(𝛿) − cos(𝛾) sin(𝛽) sin(𝛿))
− sin(𝛽) sin(𝛾) sin(𝜀)) 

𝐽 ̇ ̇ (3,2) = (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽)  +  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛿))  

+  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝜀))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)  −  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛿))  
+  𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  + (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  
−  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽)  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛿))  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛾))  
−  (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  −  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  
−  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  +  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  
−  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)  
+  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛿))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)) 

𝐽 ̇ ̇ (1,3) = cos(𝛿) (cos(𝛾) sin(𝛼)

+ cos(𝛼) sin(𝛽) sin(𝛾)) cos(𝜀) (cos(𝛾) sin(𝛼) + cos(𝛼) sin(𝛽) sin(𝛾))

+ sin(𝜀) (sin(𝛿) (sin(𝛼) sin(𝛾) − cos(𝛼) cos(𝛾) sin(𝛽))

+ cos(𝛼) cos(𝛽) cos(𝛿))

+ cos(𝛿) (cos(𝛼) cos(𝛾)

− sin(𝛼) sin(𝛽) sin(𝛾)) cos(𝜀) (cos(𝛼) cos(𝛾) − sin(𝛼) sin(𝛽) sin(𝛾))

+ sin(𝜀) (sin(𝛿) (cos(𝛼) sin(𝛾) + cos(𝛾) sin(𝛼) sin(𝛽))

− cos(𝛽) cos(𝛿) sin(𝛼))

− cos(𝛽) cos(𝛿) sin(𝛾) (sin(𝜀) (cos(𝛿) sin(𝛽) + cos(𝛽) cos(𝛾) sin(𝛿))
− cos(𝛽) cos(𝜀) sin(𝛾)) 

𝐽 ̇ ̇ (2,3) = (𝑐𝑜𝑠(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  

−  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛿))(𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾)))  
−  (𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛿)  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝛿))(𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝜀)  
−  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝛿))  +  (𝑐𝑜𝑠(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  +  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛿))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  +  𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))) 
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𝐽 ̇ ̇ (3,3) = (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  

−  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
−  𝑠𝑖𝑛(𝛿)𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾)))  
− (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽)  +  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛿))  
+  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝜀))(𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝜀)  
+  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝛿)𝑠𝑖𝑛(𝜀))  +  (𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  −  𝑐𝑜𝑠(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)))(𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑠𝑖𝑛(𝛿)𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))) 

𝐽 ̇ ̇ (1,4) = − (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)  +  𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  

+  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)))(𝑠𝑖𝑛(𝛿)(𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾)  −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽))  
+  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿))  −  (𝑐𝑜𝑠(𝜀)(𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)  
−  𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾))  +  𝑠𝑖𝑛(𝜀)(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼)))(𝑠𝑖𝑛(𝛿)(𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾)  
+  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽))  −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛼))  −  (𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽)  
+  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛿))(𝑠𝑖𝑛(𝜀)(𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝛽)  +  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛿))  
−  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝜀)𝑠𝑖𝑛(𝛾)) 

𝐽 ̇ ̇ (2,4) = 𝑐𝑜𝑠(𝜀) 𝑐𝑜𝑠(𝛿) 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛾) +  𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)

+  𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛿)  

+  𝑐𝑜𝑠(𝜀) 𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛿) −  𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝛿)  

+  𝑐𝑜𝑠(𝜀) 𝑐𝑜𝑠(𝛿) 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛾) −  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽)

−  𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛿)  

𝐽 ̇ ̇ (3,4) = 0 

𝐽 ̇ ̇ (1,5) = 0 

𝐽 ̇ ̇ (2,5) = 0 

𝐽 ̇ ̇ (3,5) = 1 
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C ASC and WLN Tuning 
 

C.1 ASC 

 
Fig-C 1: ASC for a Roll Rotation with α_k= 2 s/rad 

 
Fig-C 2: ASC for a Roll Rotation with α_k= 4 s/rad 

 
Fig-C 3: ASC for a Roll Rotation with α_k= 12 s/rad 
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Fig-C 4: ASC for a Roll Rotation with α_k= 16 s/rad 

 
Fig-C 5: ASC for a Roll Rotation with α_k= 24 s/rad 

 
Fig-C 6: ASC for a Roll Rotation with α_k= 32 s/rad 
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Fig-C 7: ASC for a Roll Rotation with α_k= 40 s/rad 

C.2 WLN

 
Fig-C 8: WLN for a Roll Rotation with α_k= 5 s² /rad² 

 
Fig-C 9: WLN for a Roll Rotation with α_k= 10 s² /rad² 



ASC and WLN Tuning 
 

 

 

Page 93 
 

 
Fig-C 10: WLN for a Roll Rotation with α_k= 15 s² /rad² 

 

 
Fig-C 11: WLN for a Roll Rotation with α_k= 25 s² /rad² 

 
Fig-C 12: WLN for a Roll Rotation with α_k= 35 s² /rad² 
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Fig-C 13: WLN for a Roll Rotation with α_k= 50 s² /rad² 

 

 
Fig-C 14: WLN for a Roll Rotation with α_k= 100 s² /rad² 

 
Fig-C 15: WLN for a Roll Rotation with α_k= 200 s² /rad² 



ASC and WLN Tuning 
 

 

 

Page 95 
 

 
Fig-C 16: WLN for a Roll Rotation with α_k= 300 s² /rad² 

 
Fig-C 17: WLN for a Roll Rotation with α_k= 2 s/rad 
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D Inverse Kinematics Manifold for the Example 
Trajectory 

In this appendice, the inverse kinematics solution for the example trajectory tested in 
Chapter 7 is presented. A discretization has been performed in the trajectory with a 
step of 15º. The following figures illustrate the associated 5-D Manifolds to each of 
these points. 

 

 

 

 

 
Fig-D 1: Solutions from φ=15º to φ=45º 
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Fig-D 2: Solutions from φ=60º to φ=105º 
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Fig-D 3: Solutions from φ=120º to φ=175º 
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Fig-D 4:Solutions from φ=180º to φ=225º 
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Fig-D 5:Solutions from φ=240º to φ=285º 
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Fig-D 6:Solutions from φ=300º to φ=345º 
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Fig-D 7: Solution for φ=360º 
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E Tuning of the Relaxed Isokinematic Centroid Tracking 
In this Appendice the intermediate results of the tuning tuning process for the Relaxed 
Isokinematic Centroid Tracking are displayed. These results consist on both the output 
solution to the inverse kinematics for a roll rotation and the associated instantaneous 
efficiency for a given 𝜂 . The effects of this parameter’s variations are presented 
witha spacing of a 5% The maximum value which proved to provide a valid trajectory 
was found to be a 50%. 

 
Fig-E 1: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=20% 

 
Fig-E 2: Efficiency of Relaxed Isokinematic Centroid Tracking Algorithm with η_min=20% 

 
Fig-E 3: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=25% 
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Fig-E 4: Efficiency of Relaxed Isokinematic Centroid Tracking Algorithm with η_min=25% 

 
Fig-E 5: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=30% 

 
Fig-E 6: Efficiency of Isokinematic Centroid Tracking Tracking Algorithm with η_min=30% 

 
Fig-E 7: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=35% 
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Fig-E 8: Efficiency of Relaxed Isokinematic Centroid Tracking Algorithm with η_min=35% 

 
Fig-E 9: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=40% 

 
Fig-E 10: Efficiency of Relaxed Isokinematic Centroid Tracking Algorithm with η_min=40% 

 
Fig-E 11: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=45% 
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Fig-E 12: Efficiency of Relaxed Isokinematic Centroid Tracking Algorithm with η_min=45% 

 
Fig-E 13: Relaxed Isokinematic Centroid Tracking Trajectory with η_min=50% 

 
Fig-E 14: Efficiency of Relaxed Isokinematic Centroid Tracking Algorithm with η_min=50% 
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F MOVE-II Simulation 
In this appendice the main results of the MOVE-II simulation are presented. The first 
section provides the computed Euler angles and Euler angles rates obtained from the 
gyroscopic data. The Second section illustrates the trajectories output by several 
inverse kinematic algorithms. 

F.1 Attitude Data 

 

 
Fig-F 1: Roll Angle of MOVE-II over the Study Time 

 
Fig-F 2: Roll Rate of MOVE-II over the Study Time 

 
Fig-F 3: Pitch Angle of MOVE-II over the Study Time 
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Fig-F 4: Pitch Rate of MOVE-II over the Study Time 

 
Fig-F 5: Yaw Angle of MOVE-II over the Study Time 

 
Fig-F 6: Yaw Rate of MOVE-II over the Study Time 
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F.2 Results of Inverse Kinematics Algorithms 

Automatic Supervisory Control 

 
Fig-F 7: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with ASC 

and α_k=60 s/rad (I) 

 
Fig-F 8: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with ASC 

and α_k=60 s/rad (II) 

 
Fig-F 9: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

ASC and α_k=60 s/rad 
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Relaxed Isokinematic Centroid Tracking 

Values of η_min that Led to Locking 

 
Fig-F 10: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=180% 

 
Fig-F 11: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=180% 

 
Fig-F 12: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=150% 
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Fig-F 13: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=150% 

Values of η_min that provided Convergence 

 
Fig-F 14: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=27% (I) 

 
Fig-F 15: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=27% (II) 
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Fig-F 16: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=27% (I) 

 
Fig-F 17: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=27% (II) 

 
Fig-F 18: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=50% (I) 
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Fig-F 19: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=50% (II) 

 
Fig-F 20: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=50% (I) 

 
Fig-F 21: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=50% (II) 
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Fig-F 22: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=70% (I) 

 
Fig-F 23: Configuration of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with RIKCT 

and η_min=70% (I) 

 
Fig-F 24: Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=70% (I) 
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Fig-F 25: : Angular Velocities of the RACOON-Lab's Joints for Simulating MOVE-II Attitude History with 

RIKCT and η_min=70% (II) 
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