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Abstract: Alkali-activated cements are widely studied as alternative and sustainable binder in soil 

stabilization. In this research work, a mold was designed and constructed, which allowed small 

cubic specimens to be made (40x40x40 mm3). With the newly designed mold, cubic samples of soil 

stabilized with Portland cement (OPC) and alternative AAC (based on spent fluid catalytic 

cracking catalyst FCC) were prepared from which compressive strength was obtained. Cylindrical 

specimens were also prepared using the same binders as in the previous case to obtain their 

compressive strength. The results obtained in both cases were compared. Greater resistances for 

cubic samples were achieved. The cubic specimens were selected for being better in terms of 

standard deviation of compressive strength for AAC stabilized soil. The obtained compressive 

strength and standard deviation results were compared between the soil specimens stabilized with 

different stabilizers cured at 7, 14, 28 and 90 days. The method allows small-sized cubic specimens 

to be prepared. It improves ergonomics. It also facilitates a large number of specimens being 

obtained with a small amount of sample. Soil stabilized with AAC yielded higher compressive 

strength after 90 days compared to that with OPC. 

Keywords: Sustainable construction materials, Waste reuse, Alkali-activated cement, Soil 

stabilization. 

 

mailto:juacoma2@upv.es


 

 

1. Introduction 

Large-sized and heavy cubic or cylindrical specimens are normally used to study stabilized 

soils for their use on road surfaces UNE 12390-1 [1] and in compressed earth blocks (CEB), where 

even the same block is used, as in UNE 41410 [2]. In some standards, smaller sized cylindrical 

specimens are used; e.g. ASTM STP 479 [3]. In this study, the Harvard miniature mold was used (see 

Fig. 1), but cylindrical samples have some problems as cubic ones do, such as possible buckling 

when some compression is exercised. They do not usually have the same base (Ø 3.8 cm) and height 

(7.6 cm) dimensions, and thus presents certain slenderness, and possibly defects on the upper face 

that do not guarantee total flatness. When utilizing soil stabilization with alkali-activated cement 

(AAC), we may come across very plastic optimum dry density, which causes specimens to deform 

while unmolding at the end of compaction, an effect that is more pronounced in cylindrical 

specimens (see Fig. 2) 

 

 

  

Figure 1. Mold used for cylindrical specimens. Figure 2. Cylindrical specimen deformed 

when unmolding by sample plasticity. 

 

A mold was designed and constructed for a sample size of 40x40x40 mm3 because it is a size 

that is suitable for the load cell of the compressive strength test (Fig. 3) usually employed for OPC 

mortar testing (UNE-EN 196- 1 [4]). 



 

 

  

Figure 3. A cubic specimen in a compressive strength test. 

 

Apart from solving the raised problems, the use of specimens with these characteristics helps 

many specimens to be obtained with small material samples because it is possible to use many 

specimens for some studies. Indeed we have even accounted for more than 700 in some studies. This 

specimen type allows numerous variables to be studied, and a little raw material to be used to 

manufacture specimens, which also cuts economic and environmental costs by reducing the 

generated material and waste. Besides, ergonomics in handling is improved by reduced weight. 

Different soil stabilizer types exist. The most commonly used one is Portland cement (OPC) [5]. 

As an alternative to it, several solutions are used, including blends of lime-pozzolana [5]. Can be 

found plenty of documents about using stabilizers for soils with OPC, lime, or with both, along with 

the methodology followed to prepare large-sized specimens in Standards NLT -310/90 [6] and UNE 

EN 13286, parts 50, 51, 52 and 53 [7]. Finding bibliography on the stabilization of soils with AAC is 

less common [8-13], where sodium silicate is frequently used as an activator. What is even less 

common is using AAC, whose activator is obtained from waste [14-17], where sodium silicate can be 

synthesized from mixtures of rice husk ash and sodium hydroxide and can, thus, considerably 

reduce CO2 emissions [18,19]. 

To fulfill the research objectives, a mold for the cubic specimens was designed specifically and 

made with a central filling gap that allows layers of the material to be placed and their subsequent 

compaction. 

In this article, the results of soils stabilized with AAC and those stabilized with OPC were 

compared to determine a simple protocol to prepare small-sized cubic specimens as a step prior to 

preparing the larger specimens normally used in current standards. The dispersion of the results 



 

 

was studied by calculating the standard deviation for each employed stabilizer, and for the two 

studied specimen types: cubic and cylindrical. 

2. Experimental Section 

2.1. Mold design and compaction procedures 

Mold height must exceed 40 mm to be able to contain the soil volume before being compacted, 

with a cubic steel cube of 39x39x39 mm (dice) whose weight was 464 g. As shown in Figure 4, a 

removable cubic mold of 100x80x100 mm was designed with four screws on its front and two on its 

lower part, and with a central filling gap (40x40 mm base and 100 mm high) that allows layers of the 

material to be placed and serves as a guide for the cube. The mold base was made of a 10 mm-thick 

steel sheet. The steel employed for mold construction was ST.37-2 according to EN 10025 and was 

supplied by ThyssenKrupp Materials Iberica.  

 

Figure 4. Mold design of variable height. 

 

When performing the AAC cylindrical specimens according to ASTM STP 479 [3], humidity 

was above optimum in these specimens. This behavior may be attributed to the difference of 

rheology of material compared to soil or OPC stabilized soil. An error due to deformation occurred 

when unmolding, and sometimes the specimen buckles in the simple compressive strength test. The 

upper face of specimens does not offer the desired flatness and is inclined due to deformation (see 

Fig. 2). For this reason, a decision was made to design a mold for the specimens measuring 40x40x40 

mm3 following a procedure to manufacture similar specimens to cylindrical specimens, and with the 



 

 

same dimensions on all sides to solve flatness and slenderness problems. This size of 40x40x40 mm3  

are usually used for mortars specimens. The choice of this specimen size makes it easier to obtain 

compression strength values with the equipment available in the laboratory. 

 

Standard UNE 103 501 [20] (which corresponds to ASTM D 1557 [21]) was used as the basis for 

all the experiences. The aims here were to specify the method to determine the dry and wet density 

ratio in soil for compaction energy of 2632 J/cm3, and to define the maximum dry density and its 

corresponding or optimal humidity, which can be obtained in the laboratory. The 1.5 Kg weight 

rammer strike was used in cylindrical and cubic specimens’ preparation. 

 

The cylindrical specimens were made in five layers of filling. By following Equation 1, it was 

possible to apply an approximate energy of 2632 J/cm3 by dropping a 1.5-kilogram mass from 20 cm 

in height and with 15 blows as indicates ASTM C 1557. 

 

 

Equation 1. Compaction of cylindrical specimens. 

The cube specimens were made in three layers of filling, as seen in Table 1, following a similar 

procedure to that used in the modified proctor (ASTM C 1557). With Equation 2, which allows the 

energy applied while preparing cubic specimens to be calculated, a 1.5-kilogram mass was dropped 

from 20 cm in height and with 19 blows. 

 

 

Equation 2. Compaction of cube specimens. 

To cure samples, a temperature of 22ºC and 50% relative humidity [23] were chosen for all 

curing times (7, 14, 28 and 90 days) 



 

 

Step 1- 

Step 2- 

Step 3- 

 

Step 4- 

Introduce a layer of mixture soil with the stabilizer 

Introduce the dice in the mold  

Apply 15 blows with the 1.5-kilogram weight, moving the rammer strike at 

different parts of dice surface   

Turn 180 degrees the mold and remove the dice by gravity 

 

 
Repeat steps 1 to 4 to complete the three layers of soil mixture 

Step 5- 

Step 6- 

Step 7- 

Loosen the mold’s screws by completely removing the two lower screws 

Remove the lower plate 

Press the dice to remove the specimen from the bottom of the mold 

 

Table 1. Cubic mold, the specimens manufacturing diagram. 

2.2. Materials 

The Spanish company PAVASAL, S.A. supplied the soil used to prepare the samples. This soil 

is that normally used to produce road surfaces. Thermogravimetry (35 to 1000 ° C) of a soil sample 

was carried out to determine its nature. Figure 5 shows the TG and DTG soil curves. Here we 

observe loss of mass in the curve starting at 700ºC, which indicates the presence of dolomite (two 

mass loss steps overlapped in the range 700-950ºC). 



 

 

 

Figure. 5 Thermogravimetric curves (TG and DTG) for used soil. 

For the thermogravimetric analysis, a Mettler Toledo TGA 850 module was used, along with an 

alumina crucible with a 30mg soil sample, at a heating rate of 20°C/min in an air atmosphere (gas 

flow 75 mL/min). 

 

Figure. 6 XRD of soil. Q: Quartz (SiO2) (pdfcard 331161; C:Calcite (CaCO3) pdfcard 050586; 

D:Dolomite (CaMg(CO3)2), pdfcard 360426; M: Muscovite Mica (KMgAlSi4O10(OH)2) pdfcard 210993 

 

XRD analysis were performed in a Brucker AXS D8 Advance device, from 10 to 70 2θ (2s 

accumulation time in a 0.02 angle step). The diffractogram of the soil sample (figure 6) shows that 

the majority mineralogical compound is dolomite, with small proportions of calcite. Traces of quartz 



 

 

and phyllosilicates as muscovite mica are also detected. We can consider that it is mostly a dolomitic 

soil. 

The water used to prepare samples came from the drinking water distribution network of the 

Universitat Politècnica de València (UPV), Spain. 

 

The employed Portland cement (OPC) was gray cement type CEM I-52R, whose chemical 

composition is provided in Table 2. It was supplied by the company Lafarge Asland (Spain). The 

classification of this cement corresponds to that referred to in Standard UNE-EN 197-1 [22]. 

 

The spent catalyst from the catalytic cracking process (FCC), whose chemical composition is 

provided in Table 2, was petrochemical industry waste. The company OMYA Clariana S.A. 

(Tarragona, Spain) supplied it. 

% 

Mat. 
SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O P2O5 TiO2 LOI* 

OPC 20.4 4.5 4.7 64.5 1.2 1.6 1.0 0.09 - - 2.0 

FCC 47.76 49.26 0.6 0.11 0.17 0.02 0.02 0.1 0.01 1.22 0.5 

Table 2. Chemical compositions of OPC and FCC. * Loss on ignition determined at 950ºC. 

 

To prepare the alkaline/activating solutions in order to produce alkali-activated binders, 

sodium hydroxide pellets were used. They were supplied by the company Panreac S.A. with a 

purity of 98%. The utilized waterglass (sodium silicate), composed of 28% SiO2, 8% Na2O and 64% 

H2O, was supplied by Merck. 

The 25-kilogram soil sample to be used was taken and homogenized by quartering. Then the fraction 

to be passed through the 4-mm opening sieve and dried in an oven at 60ºC was selected. 

 

2.3. Method 



 

 

We used a Harvard miniature mold to make the specimens, to obtain the optimum dry density 

and to know its compressive strength with no other stabilizers. A modified proctor test was run with 

soil without a stabilizer (Fig. 7) according to Standard UNE 103 501 [20]. Secondly (Fig. 8), a 

modified proctor was made to stabilize soil with OPC because it is the most widely used stabilizer. 

Finally (Fig. 9), a modified proctor was performed to stabilize soil with AAC by taking FCC as the 

precursor and a sodium silicate-NaOH solution as the activator [18]. 

                    

       Figure 7. Soil-modified proctor curve              Figure 8. Soil OPC-modified proctor curve 

 

 
                                                            Figure 9. Soil AAC-modified proctor curve 

 

From the optimum dry density obtained by the modified proctor, soil mixtures were prepared 

with these stabilizers to compare their compressive strengths. 

 

The mixture was made with the compacted soil with no stabilizer, the soil stabilized with 10% 

OPC, and the soil stabilized with AAC by adding 10% of FCC activated with the sodium silicate 

solution. The alkali solution consisted of 60.8% of Na2SiO3, 26% of H2O and 13.22% of NaOH, was 

prepared 30 minutes before and was used in an ambient temperature. The alkali solution/FCC ratio 

was 1.73 by mass. 



 

 

 

To make the mixture with no stabilizer, we placed 1000g of soil in the mixer for 1 minute before 

adding water (97g) and finally mixing for another 2-minute period. The water/solid ratio content 

was 0.097. 

  

To make the mixture with OPC, we placed 1000g of soil in the mixer for 1 minute before adding 

OPC (100g) and mixing for another 1-minute period, and finally adding water (110g) and mixing for 

2 minutes. The water/solid content was 0.1. 

 

To make the mixture with AAC, we placed 1000g of soil inside the mixer for 1 minute before 

adding the precursor (FCC, 100g) and mixing for another 1-minute period, and finally adding the 

activating solution (sodium silicate+NaOH+water, 107 g) and mixing for 2 minutes. The 

solution/solid ratio was 0.097 and the water/total solids ratio was 0.064. 

  

To avoid the mixture from drying when making specimens, which can take a considerable time, 

all the mixture was placed inside a bag with an airtight seal. Then the amount of soil mixture, which 

corresponded to each layer to make up specimens, was placed inside smaller sealed bags. To prepare 

specimens, the process described in the “Experimental process” section was followed. 

3. Results and Discussion 

We compared the cylindrical and cubic specimens. As Figure 10 shows, the standard deviation 

was more pronounced in the AAC cylindrical specimens because its consistency was more plastic. 

Therefore, as shown in Figure 2, some cylindrical specimens hardly met the perpendicularity values 

of the different standards. However, the compressive strength data were fulfilled in both the 

cylindrical and cubic specimens, with minimum values for using the soil for both road surfaces and 

CEB. 



 

 

 

Figure 10. Cubic and cylindrical specimens: soil without stabilizer, soil stabilized with OPC and soil stabilized 

with AAC at 7days. 

We also compared the cubic specimens with no stabilizer and those with the different stabilizer 

types. Figure 11 shows how the compressive strength of the soil with no stabilizer was 

approximately 3MPa. When stabilizing with OPC, a better compressive strength was observed at 

earlier curing times. Approximately 24MPa was achieved with the soil stabilized with OPC. When 

stabilizing with AAC, the increase in compressive strength became more progressive, with lower 

compressive strength compared to OPC at earlier curing times, but with better compressive strength 

at 90 days compared to OPC, with compressive strength coming close to 30MPa. This means that the 

development of the alkali-activated binding matrix is slower but much more effective than that for 

OPC. 

 

Figure 11. Compressive strength at 7, 14, 28 and 90 days. Cubic specimens of soil with different 

stabilizations. 



 

 

4. Conclusions 

With a simple system, the method allows small-sized cubic specimens to be prepared to 

mitigate the problem of high standard deviation in the specimens stabilized with AAC, and the 

shape factors by the buckling and flatness of load faces. It improves ergonomics in handling by 

reducing weight. It also facilitates a large number of specimens being obtained with a small amount 

of sample, and allows many variables to be studied using only a little raw material to produce them, 

which cuts economic and environmental costs due to the reduction in the generated material and 

waste. 

Thanks to its mechanical behavior, and compared to the soil without stabilizers, with both 

stabilization by OPC and AAC, it proves effective and notably increases compressive strength. In the 

soil stabilization with AAC, the compressive strength progressively grows, with better values than 

that for OPC stabilized systems at 90 days.  A different trend is observed between the soil stabilized 

with OPC and the soil stabilized with AAC. When we stabilize with OPC, there are no differences 

between 28 and 90 days of curing time. This fact is due to the fact that a total hydration of the OPC 

has practically occurred. In the case of stabilization with AAC, the chemical system is different and 

the chemical reactions are slower so that between 28 and 90 days of curing there is an increase in 

compression strength. 
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