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Cylinder charge composition observation

based on in-cylinder pressure measurement

Abstract

Accurate cylinder charge and composition estimation is crucial for proper combus-
tion control, however, current sensors and models show different issues for transient
estimation. The work presented in this paper combines a novel technique for trapped
mass estimation, which relies on the in-cylinder pressure resonance, with on-board
engine sensors by taking into account the sensors and the intake manifold dynamics
with a closed-loop observer.

The resonance method provides a measurement of trapped mass with one cycle
resolution. This measurement feeds a Kalman filter to improve the transient and
steady response of the intake charge and composition estimation. The observer was
validated in a four stroke heavy-duty engine, showing fast transient capabilities and
an adequate steady-state accuracy.

Key words: , resonance, sensor fusion, Kalman filter, observer, trapped mass,
internal combustion engines, trapped mass, in-cylinder pressure

1 Introduction

The estimation and control of the cylinder charge and its composition is al-
ready crucial in conventional combustion modes: the composition in SI engines
must be maintained in stoichiometric conditions in order to properly operate
the three way catalyst (TWC)[1, 2, 3], and the soot-NOx trade-off in CI engines5

is highly affected by external gas recirculation (EGR)[4, 5, 6]. In addition, an
accurate intake composition estimation in engines working with low temper-
ature combustion concepts will be necessary not only for emissions control,
but also for combustion stability [7, 8, 9]. Such accurate and fast composition
estimation is a big challenge for the current set of sensors included in com-10

mercial electronic contol units (ECUs). The usual set of sensors includes a
combination of air mass flow, pressure, and temperature sensor at the intake
and a lambda sensor at the exhaust.

Hot film anemometers, usually installed on-board to measure the air mass15

flow at the intake [10, 11, 12], show a non-linear time response[13, 14, 15]
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that varies in the range of 30-50 ms, and are subjected to severe ageing due
to the accumulation of dust on the sensing element, which causes a bias that
can reach 20% of the measured value [16, 17, 18]. In addition, they are usually
placed at the beginning of the intake line, far away from the cylinder port, thus20

limiting any cycle-to-cycle mass flow determination and being significantly af-
fected by intake system filling dynamics.

The injected fuel mass is estimated on-board through the differences in pres-
sure at the injector and the energizing time, however, common rail systems25

have cylinder-to-cylinder dispersion due to minor errors in hole diameter, un-
avoidable owing to manufacturing variation and to the accumulation of de-
posits [19, 20] and the use of multi-injection strategies in common rail sys-
tems also increases the uncertainties in the final measurement due to pressure
waves in the injection line [21, 22]. Universal exhaust oxygen sensors UEGO30

(λ sensors)[23, 24] or new on-board NOx sensors [25, 26, 27] permit a linear
resolution of the fuel to air ratio over a wide range. Both sensors are also
affected by ageing, e.g. Schilling [28] reported a 5% error at λ < 0.8 and a
8.8% at λ > 1.7, when ageing UEGO sensors during 3000 working hours.

The estimation of exhaust Gas Recirculation (EGR) is one of the most chal-35

lenging aspects. Common on-board flow rate meters cannot be used at the
extreme exhaust conditions, namely temperature and particles concentration
[29, 30], and the EGR on-board estimation is usually performed by substract-
ing the air mass flow to the overall trapped mass estimated by the speed
density method, which relies in the volumetric efficiency estimation and a40

temperature and pressure measurement at the intake manifold [31, 32].

Traditionally, the volumetric efficiency is calibrated as a function of the engine
speed n and intake manifold pressure pint with a 2D table [33]. However,
variable valve timing (VVT) strategies for intake charge control increase the45

degrees of freedom for the volumetric efficiency estimation [34, 35], and it
cannot be stored as a simple 2D table [36]. Some solutions for modelling the
volumetric efficiency can be found in [37, 38, 39] by using neural networks, or in
[40, 41] by using physical-based models for ηv in engines with VVT. Although
the time response of speed-density approaches is sufficient, variations in the50

operating conditions, such as wall heat transfer or fluid friction losses, can
lead to significant model errors in transient operation [42, 43].

Regarding the EGR estimation in test benches, CO2 balance is the most com-
monly used technique [44, 45, 46]. Nevertheless, the transient response of this
measurement technique highly depends on the gas analyser system response55

and on the intake and exhaust manifold dynamics, leading to significant errors
when transients are considered [47]. Furthermore, several authors have pointed
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out the relevance of the probe location in high-pressure EGR loops: because of
incomplete mixing, high-pressure loops create a notable cylinder-to-cylinder
dispersion, which may lead to a bias in the determined EGR rate [48, 49, 50].60

Some authors suggest using the orifice principle to model the mass flow rate
at the EGR valve [51, 52, 53]. However, this technique requires a detailed
knowledge of the valve flow process, i.e. the instantaneous effective area and
the conditions at the inlet and outlet of the valves, which may be not available65

in on-board applications or might lead to significant errors when the sensor
measurements are not representative of the conditions at the surroundings of
the valve.

Recent developments in in-cylinder pressure sensors have lowered the cost70

of such sensor while the number of application are justifying its commercial
application. A new methodology proposes the derivation of the trapped mass
through the analysis of the resonant frequency of the in-cylinder pressure oscil-
lations. The method was recently applied to DI and HCCI engines [54, 55, 56],
and some applications, i.e. NOx and residual gas fraction estimation, have been75

already explored [57, 58].

In this scenario, it may be expected that new engines combine several of the
aforementioned sensors, thus processing a variety of information sources for
the cylinder charge estimation. In such data-rich environment, advanced tech-80

niques may be used for improving the estimation of the air charge and intake
composition. Closed-loop observers are a tool for combining information com-
ing from sensors placed at various locations to determine the charge and the
composition at the intake. The dynamics at the intake and exhaust process
can be represented by an emptying and filling model: these models analyse a85

control volume with the mass and energy conservation equations, by assuming
no wall heat transfer and perfect gas mixture composition [59, 60, 61]. This is
the case of Leroy et al. [62] where the manifold air mass flow mair is considered
as an input, the intake pressure pint is the system state, and unknown parame-
ters can be included in the state equations. Similar examples of Luenberg-like90

observers can be found in [63, 64] for air-charge estimation in SI engines, in
[65, 52, 66] for EGR estimation by using isothermal intake model dynamics
and in [51, 67, 68] by using the transport equations at the intake for the burnt
gases concentration.

95

Kalman filters (KF) are a concrete type of closed-loop observers where the
observer gains are continuously adapted to improve the convergence and ac-
curacy of the observer [69, 70]. Several examples can be found in literature
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for automotive applications: in [71], an extended Kalman filter is proposed for
air-charge estimation improvements in SI engines, in [72] the complete adia-100

batic manifold model is used in combination of a throttle model and a first
order system modelling the temperature sensor dynamics for predicting the
actual in-cylinder air flow, and in [73] an intake manifold model of a CI engine
with EGR is used to calculate all the mass flows.

105

The present work makes use of in-cylinder pressure resonance to feed a Kalman
filter with an instantanous trapped mass measurement, which combined with
several sensors, already in use in commercial vehicles, through models of the
intake manifold dynamics aims to improve the transient response of the intake
charge estimation. The paper is structured as follows: First section presents110

the experimental facilities employed, the second section is devoted to introduce
the main models and algorithms, the third section shows the results obtained,
and the last section highlights the contribution of the model and its main
capabilities.

115

2 Experimental facility

Experimental tests were carried out in a heavy-duty engine equipped with
port fuel gasoline injection and diesel direct injection. The engine can work
with conventional diesel combustion by deactivating the port fuel injection,
or using both injections for performing RCCI or PPCI dual fuel combustions.120

The main characteristics of the engine are collected in Table 1.

Table 1
Main engine characteristics

Field Units Value

Cycle [-] 4-stroke

Cylinders [-] 6

Combustion type [-] CI-RCCI

Unitary displacement [cc] 1300

Bore [mm] 110

Compression ratio [-] 12.2:1

A low-pressure EGR loop was used to guarantee a good mixing with a bet-
ter efficiency. However, a high-pressure EGR loop was also used to ensure
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sufficient EGR when the exhaust and intake conditions do not allow the LP-125

EGR to provide the engine with the required residual gases. The in-cylinder
pressure was sensed by Kistler 6125C pressure sensors with a resolution of
5 samples/CAD. The exhaust gases where analysed with an Horiba Mexa-
ONE-D1-EGR. A complete scheme of the experimental test bench is shown
in Figure 1.130
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Fig. 1. Experimental set-up

Two type of transient tests were performed to calibrate and validate the mod-
els and the observer performance:

• Mass flow variations: The VGT was controlled to modify the intake charge
at various engine speed conditions, namely 1000, 1200, 1500 and 1800 rpm.135

At each engine speed a slow increase of the VGT running from the minimum
VGT action (limited by misfire occurrences) to the maximum VGT posi-
tion (fully closed) was used for calibration and steady validation purposes.
Afterwards, fast steps were performed ending at the same initial VGT po-
sition to analyse the dynamic response of the mass flows. The EGR valve140

was closed in order to reduce the number of uncertainties. Figure 2 shows
the evolution of the intake pressure and the engine speed during such tests.

• EGR steps: Four steps were performed at 1200 rpm to analyse the dynamic
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response of the system. The LP-EGR valve, and the HP-EGR valve, were145

sharply controlled from the minimum to its maximum value to see its effect
at the intake charge and composition. The aforementioned steps (HP-EGR
valve, LP-EGR valve) were executed at 25% and 75 % load conditions.
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Fig. 2. Calibration tests with EGR valve closed

3 Model and observer description150

The goal of the paper is to exploit the full potential of a sensor rich environ-
ment. The proposed observer makes use of several sensors: a piezo-resistive
pressure sensor and a lambda sensor at the exhaust, an air mass flow meter, a
piezo-resistive pressure sensor, and a temperature thermocouple at the intake,
and a virtual sensor of the trapped mass, derived from the in-cylinder pressure155

sensor. Figure 3 shows an scheme of the main mass flows, where the sensors
used have been marked with a filled black circle.

The total trapped mass (mcyl) has been inferred from the in-cylinder pressure
resonance, harnessing the relation between the frequency of the first resonant160

mode (fres) and the trapped mass [54, 55], which is described by:
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Fig. 3. Scheme of the sensors used and the main mass flows: Mass flows have been
represented by ṁ when are measured or expressed in kg/h, nevertheless, they can
be also used in kg per stroke (represented by m) using the engine speed for the
conversion

mcyl =
B2

1,0γpV

(fresπD)2
(1)

where γ is the heat capacities ratio, D the bore of the cylinder head, B1,0 the
bessel constant that characterizes the first resonant mode, p the in-cylinder
pressure, and V the instantaneous volume of the combustion chamber, which
can be derived from the crank angle evolution if the crank, the rod and the165

bore lengths are known. A specific transformation developed by the authors
in [56], which consists on a variation of the Fourier transform, has been used
to analyse these frequency varying harmonics.

The intake charge (mint) is commonly represented by a volumetric efficiency170

through the speed density method, following:

mint = ηv
pintVdis
RTint

(2)

where ηv is the volumetric efficiency, pint and Tint are the intake pressure and
temperature, respectively, Vdis the displaced volume, and R the constant of the
gases, which might be assumed 287 J/KgK(air) for simplicity. The volumetric
efficiency is commonly bounded between 0.8 and 0.95 and can be tabbed as a175

function of the intake pressure and the engine speed.

To harness the total trapped mass given by the resonance method in order
to update the volumetric efficiency, an estimation of the injected fuel (mfuel)
and the residual gasses trapped (mres) is required, following:180
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mcyl = mres +mfuel +mint =
mfuel +mint

1−RGF
(3)

The Residual Gas Fraction (RGF) was modelled such as suggested by Yun and
Mirsky in [74] by assuming a polytropic expansion at the exhaust valve be-
tween the exhaust valve opening (EVO) and the exhaust valve closing (EVC),
following:

RGF =
mres

mcyl

=

(
pEV C
pEV O

) 1
γ (VEV C

VEV O

)
(4)

While the fuel was estimated through a look-up table model, that estimates185

the injected fuel mass from the energizing time and the pressure ratio at the
injector. The pressure ratio in the diesel injection is characterized by the rail
pressure, as the rail pressure is much higher than the cylinder pressure, while
in the gasoline injection the intake pressure is the main variable, as the injec-
tion pressure was maintained constant at 5.5 bars.190

The intake charge, composed from fresh air (mair) and external gas recircula-
tion (mEGR), is affected by the intake manifold dynamics, which is character-
ized by the accumulation of such mass flows. The intake manifold dynamics,
is described by the mass and energy conservation equations, and can be sim-195

plified to the so named isothermal model:

ṗint =
RTint
Vm

(mair +mEGR −mint) (5)

where Vm is the intake manifold volume.

The isothermal model is commonly used in automotive applications where the
EGR temperature is close to the intake air temperature, which can be assumed200

in EGR configurations equipped with intercooler.

The EGR mass (ṁEGR) was inferred from the compressible flow orifice equa-
tion, such as suggested in [52], following:

205

ṁEGR = Av
pexh√
Texh

Ψ

(
pint
pexh

)
(6)
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where Av is the effective area, pexh and Texh are the pressure and temperature
at the inlet side (exhaust manifold), pint is the pressure at the outlet (inlet
manifold), and Ψ is a function of the pressure ratio defined by:

Ψ

(
pint
pexh

)
=



√
γ
(

2
γ+1

) γ+1
γ−1 if pexh < pint

(
2

γ+1

) γ
γ−1

(
pint
pexh

) 1
γ

√√√√ 2γ
γ−1

[
1−

(
pint
pexh

) γ−1
γ

]
if pexh ≥ pint

(
2

γ+1

) γ
γ−1

(7)

the exhaust pressure was measured by a pressure sensor loacted at the exhaust,
in commercial applications it is normally measured combining the intake pres-210

sure sensor with a gauge differential pressure sensor. The exhaust temperature
was obtained by assuming a polytropic evolution at the exhaust valve process,
such as suggested in [74].

Once the mass flows are known, the oxygen concentration at the exhaust215

manifold can be computed by subtracting the oxygen burnt by the fuel to the
oxygen concentration at the intake , through:

Fexh =
Fintmint − 14.6Fairmfuel

mfuel +mint

(8)

where F represents the concentration of oxygen (Fair = 21%), and 14.6 is the
stoichiometric air to fuel ratio (for diesel ≈ 14.6, for Gasoline ≈ 14.7).

220

The oxygen concentration at the exhaust can be also derived from the lambda
sensor, through:

Fexh = Fair

(
1− 1

λ

)
(9)

While the evolution of the oxygen concentration at the intake can be modelled
by considering the intake manifold dynamics, through:

Ḟint =
RTint
pintVm

[mair (Fair − Fint) +mEGR (FEGR − Fint)] (10)

where the EGR oxygen concentration (FEGR) can be approximated by the225

exhaust oxygen concentration Fexh) if exhaust manifold and EGR system dy-
namics are neglected.
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The cylinder oxygen concentration can be estimated by combining the intake
gases with the residual gases, such as:

Fcyl = Fint (1−RGF ) + FexhRGF (11)

The aforementioned equations can be combined to provide an estimation of
the intake and exhaust composition evolution, as well as an observation of230

each mass flow. At this step, three important simplifications have been taken:

• Instantaneous measurement of sensors: Pressure sensors can be considered
instantaneous as the time-response of these sensors is much lower than the
duration of a cycle. The temperature was measured by a thermocouple
which is sufficient to capture the dynamics of the intake manifold temper-235

ature, while the time response of the hot-film anemometer and the UEGO
sensors are normally bounded bellow 100 ms, which is the time of one cycle
at 1200 rpm.

In order to reduce the complexity of the model, all the aforementioned240

sensors have been considered instantaneous for a cycle-by-cycle period esti-
mation. But if a NTC sensor was used for measuring the intake temperature
or the lambda output was obtained from a smart NOx sensor, sensor dy-
namics are to be considered. A simple solution of doing so is a first order
system, which might be included as:245

xk+1
S = (aS)xkS + (1− aS)xk (12)

where x represents a given measurement, xS represents the measurement
from the sensor, and aS a constant characterizing the time response of the
sensor.

• An isothermal intake manifold: The temperature variations at the intake250

manifold have been neglected. This assumption can be taken when the re-
circulated EGR is equipped with an intercooler which lowers the EGR tem-
perature close to the intake temperature, so even in sharp VGT or EGR
steps the intake temperature does not change abruptly and it is mainly a
function of the overall engine temperature.255

Figure 4 shows a VGT and a HP-EGR step at high load and 1200 rpm:
the intake temperature has been plotted with a black line at the left y-
axis while the intake pressure or the EGR have been represented by a grey
line in the right y-axis. It can be noticed that the variations at the intake260

temperature are negligible at the VGT step and small (bellow 4 %)at the
HP-EGR step, but in both cases the variations last few seconds and can be
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captured by the thermocouple whose time response is characterized around
3 second by the manufacturer.

265
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Fig. 4. VGT and EGR steps at 1200 rpm and 75% load

• EGR oxygen concentration: As previously mentioned, the EGR concentra-
tion is approximated to the exhaust concentration (FEGR ≈ Fexh), thus,
neglecting the transport delay at the EGR line. This is specially critical
in LP-EGR conditions, where the transport delay can reach more than 1
second.270

Although that approximation does not affect the steady result, it pre-
cludes the use of the lambda sensor information for obtaining a good dy-
namic measurement of the injected fuel mass when high quantities of LP-
EGR are considered. It must be remarked that only the dynamic measure-275

ment of the injected fuel mass would be affected, as the other mass quantities
are governed by equation (5).

Observer design

A Kalman filter was designed to identify model and sensor errors by combin-280

ing the measurements and the dynamics at the intake manifold. The main
challenges of the observer are:

• A precise estimation of the EGR, taking into account that the estimation
provided by equation (6) is not accurate given the uncertainties around the
valve, as well as the effect of pulsating flow [75, 76].285

• A correction of the volumetric efficiency to deal with off-design conditions
not predicted by the 2D table.
• A continuous calibration of the air mass flow anemometer by analysing if a

bias is produced in the sensor.
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• And an adaptation of the injected fuel quantity to correct common errors290

of the injector model.

To cope with those objectives, four states have been created, namely a bias
at the volumetric efficiency, a bias at the injected fuel, a bias at the sensed
air mass flow, and the EGR mass. Furthermore, to combine sensors placed
at various locations, the manifold dynamics described by (5) and (10) and295

the relation between the intake oxygen concentration and the exhaust oxygen
concentratino given by (8) are also included, leading to the following set:

θk+1
η = θkη (13)

θk+1
f = θkf (14)

θk+1
air = θkair (15)

mk+1
EGR =mk

EGR (16)

pk+1
int = pkint +

RT kint
Vm

(
mk
air + θkair +mk

EGR −
(
ηkOL + θkη

) pkintVdis
RT kint

)
(17)

F k+1
int =F k

int +
RT kint
pkintVm

[
(mk

air + θkair)
(
Fair − F k

int

)
+mk

EGR

(
F k
exh − F k

int

)]
(18)

F k+1
exh =

F k
int

(
ηkOL + θkη

)
pkintVdis
RTkint

− 14.6Fair
(
mk
fuel,OL + θkf

)
(
mk
fuel,OL + θkf

)
+
(
ηkOL + θkη

)
pkintVdis
RTkint

(19)

In order to include different available sensor information (the virtual trapped
mass sensor, the EGR mass estimation from the orifice model, the intake
pressure sensor, and the UEGO sensor at the exhaust), four outputs have300

been included, such as:

mk
cyl =

1

1−RGF k

[(
mk
fuel,OL + θkf

)
+
(
ηkOL + θkη

) pkintVdis
RT kint

]
(20)

mk
EGR =mk

EGR (21)

pkint = pkint (22)

1/λk = 1− F k
exh

Fair
(23)

The system uses five inputs in order to run the models, namely the air mass
flow given by the anemometer, the residual gas fraction obtained from (4), the
intake temperature sensed by a thermocouple, and the volumetric efficiency
and the fuel mass estimations given by open-loop models. The engine speed305

was used to convert the mass flow measurement from the MAF sensor and the
EGR model to admitted air and EGR per stroke.
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A discrete form with one cycle step was chosen, following the state space
representation of the system:310

xk+1 = f(xk, uk) + wk (24)

yk = g(xk, uk) + vk (25)

where x are the states, modelled by f(xk, uk) (Equations (13) to (19)), y the
outputs described by g(xk, uk) (Equations (20) to (13)), u the inputs, w the as-
sociated noise to the states equation, and v the noise associated to the outputs.

The KF of the state vector is defined by:315

x̂k|k−1 = f(x̂k−1, uk) (26)

ek = yk − g(x̂k|k−1, uk) (27)

x̂k = x̂k|k−1 +Kkek (28)

The KF is characterized for minimizing the expected estimation error by solv-
ing an iterative Riccati matrix equation and updating the value of the Kalman
gain (K). Following:

320

Pk|k−1 = (FkPk−1F
T
k +Qk) (29)

Kk =Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
(30)

Pk = (I −KkHk)Pk|k−1 (31)

where w and v are modelled as a Gaussian distribution with zero mean and
covariance matrices Qk and Rk, respectively, which are constant and diagonal.
Fk and Hk are the linear state matrices representing Equations (24) and (25).
As these equations are non-linear an extended Kalman filter (EKF) was used
by linearising them, such as:325

Fk,ij =
δfi
δxj
|x=x̂k (32)

Hk,ij =
δgi
δxj
|x=x̂k (33)
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The noise of each equation was maintained constant with the exception of
the admitted EGR at the intake, which was set to 0 when the EGR valve
is fully closed, i.e. EGR mass flow is certainly zero when the EGR valve is
closed. A low noise is associated with the trapped mass given by the reso-
nance method (10 mg/str), a higher value associated to the air mass flow330

given by the anemometer to cope with ageing effect (100 mg/str) and an even
higher value to the EGR model because of the uncertainties at the model (1000
mg/str), i.e. effective flow area, EGR inlet temperature, etc. In this way the
Kalman filter is capable of correcting the bias in the air mass flow anemometer
when the EGR valve is closed, while harnesses the information provided by335

resonance to estimate the EGR in the rest of the conditions. The rest of the
values are selected for a robust and fast operation of the filter by avoiding
instabilities and permitting fast changes at the parameters. Table 2 collects
all the noise values used in the Kalman filter.

Table 2
Noise suggested for the Kalman filter: the last column gives dimensonless value of
the noise by using the maximum value obtained in an experimental test

Variable Type Equation Value [unit] Dimensionless [%]

θη State (13) 0.01 [-] 1.1

θfuel State (14) 5 [mg/str] 10

θair State (15) 100 [mg/str] 3.5

mEGR State (16) 100 [mg/str] 8

pint State (17) 100 [mbar] 0.1

Fint State (18) 1 [%] 4.7

Fexh State (19) 1 [%] 7.1

mcyl Output (20) 10 [mg/str] 0.3

mEGR Output (21) 120 (or 0) [mg/str] 10

pint Output (22) 10 [mbar] 0.01

1/λ Output (23) 1 [−] 10

340

Figure 5 shows the output the Kalman filter, namely volumetric efficiency,
trapped mass, air, and EGR, when three combination of noises (Noise A,
Noise B, and Noise C) are used in the HP-EGR step performed at 1200 rpm
and 25% load. The measurement of the trapped mass provided by resonance,345

the value of the hot-film anemometer and the output of the EGR model have
been also represented by a dashed line. Noise A is the output of the Kalman
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filter when the values collected in Table 2 are used, Noise B show the ef-
fect of increasing the noise of the trapped mass measurement above the EGR
measurement noise, while Noise C show the effect of increasing the noise to350

Equation (15) and thus, facilitating the correction of the air mass flow.
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Fig. 5. Output of the Kalman filter (volumetric efficiency, trapped mass, air, and
EGR) at the HP-EGR step at 1200 rpm and 25% load

Note that the model of the EGR (calibrated from the Horiba) is probably
giving a bad measurement, as the volumetric efficiency needs to be lowered
bellow 0.8 to be consistent with the air mass flow and the EGR model. This is355

explained by incomplete mixing in HP-EGR loops at the gas analyser probe
location and cylinder-to-cylinder dispersion, such as reported by [48, 49, 50].
In order to guarantee the robustness of the Kalman filter when bias in the
EGR model are produced, the values used in Nose A were used for the rest of
the tests.360
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4 Results and discussion

Figure 7 shows the results of the first tests, where the VGT was controlled
to ensure variations in the trapped mass at various engine speed conditions,
such as shown previously in Figure 2. The top plot shows the output of RGF
model, Eq. (4), the medium plot shows the result of the volumetric efficiency
by using the anemometer, through:

ηv =
mintpintVdis
RTint

=
mairpintVdis

RTint
(34)

and finally the bottom plot shows the trapped mass obtained from the reso-
nance method and is compared with the result given by models and sensors,
such as:

mcyl =
mint +mfuel

1−RGF
=
mair

(
1 + 1

14.6λ

)
1−RGF

(35)
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Fig. 6. Results of the calibration tests: RGF (top plot), volumetric efficiency
(medium plot), and mass from resonance (bottom plot)

It must be noticed that the values of volumetric efficiency are only valid when
slow variations of VGT are performed but when performing fast steps, differ-
ent values are obtained. Furthermore, the output of the resonance method is365

consistent with the air mass flow anemometer, i.e. the mean absolute error is
19.05 mg and the mean relative error 0.55 %, which is, indeed, a validation of
the resonance methodology in steady conditions.
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Regarding the applicability of the Kalman filter for the transient estimation,370

Figure 7 shows the trapped mass obtained from the in-cylinder pressure res-
onance, the air mass flow sensed by the hot-film anemometer, and the intake
mass obtained from the volumetric efficiency adaptation of the Kalman fil-
ter. It must be remembered that trapped mass considers the residual gasses
and the injected fuel mass, while intake mass not, such as described in Eq. (35).375
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Fig. 7. Kalman filter and sensor ouputs for the transient VGT steps shown in at
1200 rpm

In this case, the volumetric efficiency was corrected up to a 3%, while the
bias at the air mass flow sensor reached a maximum of 40 mg/str (over 2080
mg/str) at the beginning of the test. Note that the Kalman filter is able to
take into account the intake flow transient evolution, which is captured by the380

measurement of the trapped mass from resonance, and is consistent with the
hot-film anemometer output ant the intake manifold dynamics.

Regarding the EGR estimation, Figure 8 shows the results of the LP and
the HP EGR steps. The top plot compares the EGR mass flow obtained at385

the Kalman filter, with the measurement obtained from the gas analyser by
CO2 balance, and with the output of the model described in Eq. (6). The
steady values of effective flow area of the model have been fitted with the
steady result of the gas analyser. The bottom plot compares the trapped mass
obtained at the Kalman filter, with the measurement directly calculated from390

sensors, such as:

mcyl =
mEGR +mair

(
1 + 1

14.6λ

)
1−RGF

(36)
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Fig. 8. EGR and trapped mass at the LP and HP EGR steps at 1200 rpm and 25%
load

The offset and the erratic transient measurement at the gas analyser is caused
by the different transport delay at the analysed lines (intake and exhaust).
Regarding steady results, the differences obtained between the Kalman filter
and the gas analyser when using LP-EGR loop are very small, but when using395

HP-EGR, a 33.3% of differences are found. Similar values were obtained for
the steps performed at 75% load, i.e. small errors at LP-EGR loop but 170 mg
of differences over 500 mg (34%) at the HP-EGR loop. As commented before,
this is consistent with other researches on the topic.

400

The volumetric efficiency bias required for obtaining such results is shown in
the top plot of Figure 9, while in the bottom plot the resulting oxygen concen-
tration (at the intake and at the exhaust) is represented. The Kalman filter
modifies the volumetric efficiency within a normal range (± 0.05) for being
consistent with sensor and models, while the output of the oxygen concentra-405

tion can be used for control and diagnosis purposes.

5 Conclusions

A Kalman filter has been designed for integrating a new methodology of
trapped mass estimation, which analyses the in-cylinder pressure resonance,410

with on-board sensors, namely lambda, air mass flow anemometer, and intake
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Fig. 9. Bias at the volumetric efficiency and O2 concentrations at the LP and HP
EGR steps at 1200 rpm and 25% load

pressure and temperature sensors. The observer uses several models and sen-
sors for independently consider each mass flow, ending up with an estimation
of the trapped mass and the oxygen concentration at the intake and exhaust
manifold.415

Because of the additional measurement of the trapped mass, the Kalman filter
is capable of correcting the air mass flow measurement given by the anemome-
ter, which might suffer from bias when changing the operating conditions,
when the EGR valve is closed. When the EGR valve is controlled to provide420

the combustion chamber with sufficient residual gases, the resonance method
gives a valuable measurement for a precise estimation of the EGR, which is
hard to measure, even in test benches, specially when HP-EGR loops are con-
sidered. Furthermore, the resonance method gives a direct measurement of the
trapped mass at the cylinder, which is profited by the observer for considering425

the intake manifold dynamics.

A heavy-duty four stroke engine has been used for validation of the observer:
steps in the VGT and in the EGR have been performed. Regarding the steady
accuracy of the observer output, the estimated EGR mass is similar to that430

measured with a gas analyser, when only the LP-EGR loop is used and a good
mixing and cylinder-to-cylinder distribution are achieved. When the HP-EGR
loop is activated, the observer is capable of detecting an error on the EGR
sensing procedure. The observer, which integrates the information from the
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different sensors and models, has been proved to be robust and provide a fast435

transient response in the steps tested.
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2002.

[64] E. Hendricks, T. Vesterholm, and S. C. Sorenson. Nonlinear, closed loop,640

si engine control observers. SAE Technical Papers, 1992.
[65] C. Liu. Simultaneous unknown state and input estimation with applica-

tion to virtual air charge and egr sensors for automotive engines. In ASME
2010 Dynamic Systems and Control Conference, DSCC2010, volume 1,
pages 727–734, 2010.645

[66] I. Kolmanovsky, J. Sun, M. Druzhinina, and M. van Nieuwstadt. Charge
control for direct injection spark ignition engines with egr. In Proceedings
of the American Control Conference, volume 1, pages 34–38, 2000.

[67] J. Chauvin, G. Corde, N. Petit, and P. Rouchon. Motion planning for
experimental airpath control of a diesel homogeneous charge-compression650

ignition engine. Control Engineering Practice, 16(9):1081–1091, 2008.
[68] F. Castillo, E. Witrant, V. Talon, and L. Dugard. Simultaneous air frac-

tion and low-pressure EGR mass flow rate estimation for diesel engines. In
IFAC Proceedings Volumes (IFAC-PapersOnline), pages 731–736, 2013.

[69] Rudolph Emil Kalman. A new approach to linear filtering and prediction655

24



problems. Journal of basic Engineering, 82(1):35–45, 1960.
[70] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches. John Willey & Sons, 2006.
[71] Osvaldo Barbarisi, G Alessandro, and G Luigi. An extended Kalman

observer for the in-cylinder air mass flow estimation. In Proceedings of660

MECA02 International Workshop on Diagnostics in Automotive Engines
and Vehicles, Oct., Fisciano SA, pages 1–14, 2002.

[72] A. Dutka, H. Javaherian, and M. J. Grimble. State-dependent Kalman
filters for robust engine control. In Proceedings of the American Control
Conference, volume 2006, pages 1185–1190, 2006.665

[73] T. Polóni, B. Rohál-Ilkiv, and T. Arne Johansen. Mass flow estimation
with model bias correction for a turbocharged diesel engine. Control
Engineering Practice, 23(1):22–31, 2014.

[74] H. J. Yun and W. Mirsky. Schlieren-streak measurements of instanta-
neous exhaust gas velocities from a spark-ignition engine. SAE Technical670

Papers, 1974.
[75] R. Kiwan, A. G. Stefanopoulou, J. Martz, G. Surnilla, I. Ali, and

D. Joseph Styles. Effects of differential pressure measurement char-
acteristics on low pressure-egr estimation error in si-engines. IFAC-
PapersOnLine, 49(11):722–729, 2016.675

[76] R. Kiwan, A. Stefanopoulou, J. Martz, G. Surnilla, I. Ali, and D. Styles.
Effects of differential pressure sensor gauge-lines and measurement accu-
racy on low pressure egr estimation error in si engines. SAE Technical
Papers, 2017.

25


