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Abstract 7 

Optical fiber sensors are now widely recognized as extremely reliable instruments to sense strain. Optical shape 8 
sensors consist of multiple single-core optical fibers or multicore optical fibers capable of sensing bending 9 
direction and curvature by comparing the longitudinal strain of different cores in an instrumented section and 10 
reconstructing the sensor shape. 11 
This paper describes a study on the effects of core position errors on the precision of optical shape sensors 12 
when measuring strain, bending direction and curvature, and identifies the role of measured curvature and core 13 
spacing (distance between section center and external cores), considering 7, 4, and 3-core fiber geometries, 14 
three of those most widely employed for sensing applications. The Monte Carlo technique was utilized to 15 
reproduce the measurement process. Forty-five simulations, including 3·106 trials, were carried out for each 16 
geometry with the aim of investigating the law of uncertainty propagation.  17 
The results of the analysis, applicable to both multiple single-core fibers and multicore optical sensors equipped 18 
with distributed or quasi-distributed strain-sensors, show the effects of core position uncertainty and will be 19 
useful for new sensor designs and user options by predicting the achievable performance of these devices. 20 

 21 
Keywords: Data Processing; Optical Fiber Sensor; Distributed sensing; Multicore Optical Fiber; Bending Sensor; Fiber 22 
optic shape sensing; Monte Carlo Method. 23 

1. Introduction 24 

Thanks to recent development, Optical Fiber Sensors (OFS) have been successfully employed in 25 

civil and industrial engineering [1–4] as well as in many chemical and medical [5,6] applications. 26 

Such a development is driven by the inherent advantages of OFS over conventional electrical 27 

sensors, which include immunity to electromagnetic interference (EMI), compactness and light 28 

weight, intrinsic safety, and resistance to harsh temperatures, radiation and chemicals. 29 

Optical shape sensors consist of multiple single-core optical fibers or multicore optical fibers (an 30 

optional central core and some external cores displaced from the sensor axis) that can calculate the 31 

sensor shape. Even though both bending and torsion of the sensor can be determined by using only 32 

three non-aligned cores [7–9], additional cores can be employed to achieve better accuracy. The 33 

sensor shape can thus be calculated through the numerical integration of Frenet-Serret formulas 34 

[10]. High accuracy in sensing bending direction and curvature is crucial to calculate the torsion τ(s) 35 

and curvature κ(s) functions and obtain a reliable estimation of the 3D shape of the sensor. 36 
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A number of fiber optic sensors have been developed to sense curvature and shape, including: a 37 

highly sensitive fiber optic inclinometer to sense 3D deformation based on three distributed optical 38 

fiber sensors fixed to the tube wall [11]. Wang et al. designed an inclinometer to monitor landslides, 39 

based on four optical fibers with fiber Bragg gratings (FBG) inscribed and fixed to an aluminum 40 

tube [12]. Multicore Fiber (MCF) sensors, consisting of various cores inside a single cladding, are 41 

capable of high-accuracy curvature and shape sensing and have been applied in civil, mechanical, 42 

medical, and aerospace engineering. Villatoro et al. monitored the verticality of towers, bridge piles, 43 

and buildings by using an ultrasensitive curvature sensor based on MCF [13]. A bending MCF 44 

sensor for displacement detection has been employed for tunnel health monitoring [14]. Fender et 45 

al. developed a two-axis temperature-insensitive accelerometer based on a multicore fiber curvature 46 

sensor [15]. MCF shape sensors can lead to improvements in biomedical techniques that need real-47 

time shape and position calculation of surgical instruments with extremely high accuracy, as for 48 

instance catheters [16]. Lally et al. employed MCF sensors for flexible structures monitoring, 49 

including suspension bridges and aircraft wings [17]. 50 

Although electrical strain gauges can also be used to sense curvature and 3D shape [18–20],  OFS 51 

are more compact, electrically safe and immune to electro-magnetic interferences. 52 

In previous work the authors studied the effects of strain measurement uncertainty on sensing 53 

bending direction and curvature by means of one of the most widely employed multicore fiber 54 

geometries with different core spacing for sensing applications [21]. At the present time they are 55 

continuing their research on shape sensing within the H2020-MSCA-ITN FINESSE framework 56 

[22], focusing on the influence of core position uncertainty, another crucial aspect of shape sensor 57 

accuracy, and extending the investigation to multiple single-core optical fiber sensors and different 58 

section geometries, once again highlighting the role of core spacing and the measured curvature in 59 

the phenomenon. 60 

Core position errors are due to errors in the manufacturing process. In MCF, they are in the range 61 

between a few hundred nanometers to one micrometer [23,24] and depend on the optical fiber 62 

drawing technique and the production equipment. The errors are higher and are related to the 63 

fastening technique in fiber bundles and shape sensors made with multiple single-core optical fibers, 64 

as the fibers are first manufactured and then fastened. 65 

This paper proposes an algorithm using the Monte Carlo method to simulate the real position of 66 

the cores, supposing that they are affected by random errors with a Gaussian distribution, 67 

characterized by different standard deviations (SD) [25,26]. The strain values measured in the cores, 68 

if measurement uncertainty only depends on errors in core positions, were determined through 69 

calculating the strain function, considering different distances between the sensor axis and the outer 70 

cores (core spacing), different sensed curvature and distinct sensor section geometries: 3, 4 and 7-71 

core. The distribution of longitudinal strain, curvature and bending direction angle (angle between 72 

the bending direction and the axis x) were also determined with a view to determining the 73 

contribution of core position errors to shape sensor inaccuracy. 74 

The propagation laws of core position uncertainty in calculating the longitudinal strain, curvature 75 

and bending direction were successfully identified, although this information is frequently absent 76 

from the manufacturers’ datasheets. The influence of core spacing, measured curvature and number 77 

of cores on these factors was also determined. 78 

The research findings can be applied to both multiple single-core optical fibers sensors and 79 

multicore optical fiber sensors equipped with distributed or quasi-distributed strain-sensors, or to 80 

shape-sensing arrays in general. The relationships between measurement precision and the standard 81 

deviation of core position errors, core spacing and measured curvature are given at the end of the 82 

paper and are expected to be of assistance to manufacturers in designing new shape sensors and 83 

MCFs and to users when evaluating shape sensor performance. 84 
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2. Strain function calculation 85 

Fiber optic sensors with several cores capable of strain sensing can be utilized for shape 86 

calculation. The natural frame of the curve coincides with the material sensor frame, when the sensor 87 

is fastened only at one extremity and the constraints are frictionless [27]. To reconstruct the sensor 88 

shape, the deformation of several sections along the sensor length must then be determined from the 89 

strain detected in the cores. To do this, it is supposed that the errors made by approximating with a 90 

constant value the strain along the length where it is sensed (the length of the FBG for quasi-91 

distributed sensors or the spatial resolution for distributed strain sensors) are negligible. 92 

In most cases, it is possible to assume that along the entire section the temperature is constant, 93 

considered the small core spacing, so that no temperature compensation is necessary (the correctness 94 

of this hypothesis should be ascertained for optical shape sensors with large radius). Therefore, if 95 

the sensor is bent and external twisting is prevented (no local twisting forces are induced in the 96 

sensor), strain varies linearly along the whole section, under the Kirchhoff rod assumption. The 97 

strain function, ε(x,y) (see Eq. 1), which describes how strain varies along the section (strain surface) 98 

is thus a plane, as shown in Fig 1, and can be determined if the strain of at least three non-aligned 99 

cores is known.  100 

(a)                                                                      (b) 101 

Fig. 1.(a) 3D Strain distribution for a generic sensor where the strain is sensed at 3 points, by way of example; (b) 102 

Cross section. 103 

 104 

The equation of the strain distribution, ε(x,y), in a generic section, is defined when the 105 

longitudinal strain of the section is known (average strain, avg(ε)),εlong, and the two components of 106 

curvature, κx and κy, with respect to the reference axes of the section, x and y, or the magnitude of 107 

the vector curvature, |κ|, and the bending direction angle, α, which identifies the bending direction:  108 

𝜀(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦                            𝑤ℎ𝑒𝑟𝑒  𝑎 = 𝜀𝑙𝑜𝑛𝑔; 𝑏 = 𝜅𝑥; 𝑐 = 𝜅𝑦;                                       (1) 109 

where a, b, and c are the coefficients of the equation of the strain plane, equal to, respectively, the 110 

longitudinal strain, εlong, and the two components of curvature, κx and κy, since they are the partial 111 

derivatives of ε(x,y) with respect to x and y:  112 

𝜅𝑥 = 𝜕𝜀(𝑥, 𝑦) 𝜕𝑥⁄  ;  𝜅𝑦 = 𝜕𝜀(𝑥, 𝑦) 𝜕𝑦⁄                                                                                                    (2) 113 

If the strain is sensed at only 3 points (three-core sensor), the equation of the strain plane can be 114 

calculated by replacing the coordinates of the cores and the values of strain measured and obtaining 115 

a system of three linear equation. 116 

When n cores are available, the strain is detected at n points and the strain function can be 117 

calculated by minimizing the Sum of Squared Errors (SSE), as shown in the following Equations: 118 

𝑆𝑆𝐸(𝑎, 𝑏, 𝑐) = ∑ (𝜀𝑖 − 𝑎 − 𝑏𝑥𝑖 − 𝑐𝑦𝑖)
2𝑛

𝑖=1                                                                                       (3) 119 
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∇𝑆𝑆𝐸(𝑎, 𝑏, 𝑐) = 0                                                                                                                                         (4) 120 

{
 
 

 
 
𝜕𝑆𝑆𝐸(𝑎,𝑏,𝑐)

𝜕𝑎
= 0 → 𝑛𝑎 + 𝑏∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑐∑ 𝑦𝑖

𝑛
𝑖=1 = ∑ 𝜀𝑖

𝑛
𝑖=1                      

𝜕𝑆𝑆𝐸(𝑎,𝑏,𝑐)

𝜕𝑏
= 0 → 𝑎∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑏∑ 𝑥𝑖

2𝑛
𝑖=1 + 𝑐∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 = ∑ 𝑥𝑖𝜀𝑖

𝑛
𝑖=1  

𝜕𝑆𝑆𝐸(𝑎,𝑏,𝑐)

𝜕𝑐
= 0 → 𝑎∑ 𝑦𝑖

𝑛
𝑖=1 + 𝑏∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 + 𝑐 ∑ 𝑦𝑖

2𝑛
𝑖=1 = ∑ 𝑦𝑖𝜀𝑖

𝑛
𝑖=1

                                           (5) 121 

The approach explained above is valid for all the section geometries with a generic number of 122 

cores n and without any symmetry, provided that there are at least three non-aligned cores. However, 123 

for the section geometries considered in this study, the system of equations becomes diagonal:  124 

{

𝑛𝑎  +   0  +   0  = ∑ 𝜀𝑖
𝑛
𝑖=1

0 +  𝑏 ∑ 𝑥𝑖
2𝑛

𝑖=1 +  0 = ∑ 𝑥𝑖𝜀𝑖
𝑛
𝑖=1  

0 + 0 +  𝑐 ∑ 𝑦𝑖
2𝑛

𝑖=1 = ∑ 𝑦𝑖𝜀𝑖
𝑛
𝑖=1

                                                                                                (6) 125 

Once the strain function equation has been determined, the magnitude of the vector curvature, 126 

|κ|, and the bending direction angle, α, can be calculated:  127 

|𝜅| = √𝜅𝑥
2 + 𝜅𝑦

2                                                                                                                                             (7) 128 

𝛼 = tan−1(𝜅𝑥/𝜅𝑦)                                                                                                                                        (8) 129 

It should be pointed out that a central core does not have any effect on the calculation of 130 

curvature and bending direction angle (second and third equations of system), as its coordinates 131 

x and y are null, although it can be used to sense twisting [28]. 132 

3. Case study 133 

3.1. Monte Carlo analysis and simulation  134 

Widely accepted as an efficient problem solving tool, the Monte Carlo Method (MCM) is an 135 

experimental probabilistic technique designed to solve complex linear and nonlinear  statistical or 136 

scientific problems [29–32]. As present-day computers can model considerable numbers of 137 

iterations with random results, the MCM, a broad set of computational and randomized algorithms, 138 

was created to deal with unpredictable processes and obtain numerical outcomes and the respective 139 

probability, based on repeated random sampling.  140 

Despite the exactness of analytical methods, they are only suitable for simple cases, whereas 141 

identifying distribution propagation in complex problems requires approximations and simulations 142 

[26]. The Monte Carlo technique can be employed to compute the probability distribution of output 143 

data based on the assigned probability distributions of the input quantities on which the resulting 144 

variables are dependent, with the aim of determining the law of propagation [25,26]. For this 145 

purpose, before running the simulation, the input probability distribution has to be specified to 146 

generate the random sampling. 147 

When applied to the propagation of uncertainty, the MCM mimics the real probabilistic 148 

measurement process by mean of the uncertainty of random sampling and generation hundreds of 149 

thousands of measures and resulting outcomes to individuate the relationship between the variables 150 

involved. 151 
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The MCM has previously been used to simulate optical curvature sensing [21,33]; it has been 152 

utilized, for instance, to mimic curvature gauges by means of ray tracing and identify the 153 

relationship between fiber curvature and light-loss. 154 

In the present study, the MCM was employed to mimic the core position error, assuming that the 155 

errors that affect different cores and different sections are independent and uncorrelated, have only 156 

one random component and follow a standard normal distribution (the Gaussian probability 157 

distribution is the simulation input) with a certain standard deviation (SD). For each trial and in all 158 

the cores, the errors simulated were added to the correct value. 159 

In multiple single-core optical fiber shape sensors, the core position errors are acquired during 160 

manufacture and depend on the optical fiber drawing technique, the production equipment used for 161 

the multicore fibers and fiber bundles, and on the technique used to fasten the fibers to the support 162 

(generally a tube), as well as the support’s characteristics. Regrettably, manufacturers rarely provide 163 

information on any such errors. 164 

3.2. Stopping rules 165 

MCM effectiveness is a function of the number of trials in the simulation (sample size). When 166 

the number of samples increases, the simulation converges to a constant outcome and thus should 167 

be halted. Regrettably, the number of trials necessary for steady outcome cannot be theoretically 168 

calculated [34]. Nonetheless, in most cases a sample size between 105 and 106 replicates seem to be 169 

satisfactory [31,35]. Furthermore, a number of observations of 106 can commonly be envisaged to 170 

achieve a 95 % coverage probability for the output variable, so that this size is right to one or even 171 

two significant digits [26]. 172 

All the simulations in this research were performed with 3∙106 replicates, considering a dataset 173 

composed of 3 subdatasets with 106 iterations each. To verify the statistical significance of the 174 

simulations, a comparison was drawn between the results of the total dataset and the ones obtained 175 

with the three subdatasets.  176 

3.3. Sensor section geometry 177 

The sensor section geometry, particularly the position and the number of the cores, has a 178 

considerable impact on the precision of the measured longitudinal strain, bending direction and 179 

curvature. 180 

The multicore fibers available nowadays and suitable for shape sensing applications are 181 

lamentably limited, as, generally, they are the same produced for telecommunication applications. 182 

Their diameter is very small (regularly about 125 μm) and the core spacing is normally between 30 183 

and 50 μm [8,10,13–17]. Manufacturing different MCF geometries for sensing purposes would be 184 

prohibitively expensive, considering that the sensors market is limited compared to the 185 

telecommunications one. 186 

Since better accuracy can be achieved by increasing the core spacing, although less compact, 187 

optical shape sensors consisting of multiple optical fibers fastened to a support have been developed 188 

[11,12]. 189 

This study considered three of the most widely employed fiber geometries in sensing applications 190 

(see Fig. 2): a three- [10,11,13], four- [8,12,14,15,36] and seven-core section [16,23,28,37–39], 191 

with constant angular spacing and equal distance between the outer cores and the sensor axis, 192 

including 5 distinct core spacings: 30, 50, 70, 140 and 300µm. 193 



6 Floris et al./ Measurement 

Fig. 2. (a) Three-core section geometry; (b) Four-core section geometry; (c) Seven-core section geometry. 194 

3.4. Core position simulation errors 195 

The core position error distribution in fiber optic sensors was modeled by the Monte Carlo 196 

method with 15 simulations and 3·106 iterations for each geometry. Three different standard 197 

deviations (SD) were considered to characterize the 3D standard normal distributions (the Gaussian 198 

probability distributions were the simulation inputs) of the errors and five distinct core spacings 199 

(distance between the sensor axis and the external cores). 200 

By way of example, the 3D Gaussian frequency distribution of the core position for a seven-core 201 

geometry is shown in Fig. 3. 202 

   (a)                                                (b) 203 

(c) 204 

Fig. 3. (a) Real core position simulation of 7-core shape sensor (20 events; SD core position = 1.5 μm; Core spacing = 205 

30 μm); Core position 3D frequency distribution (3·106 events; SD core position = 1.5 μm; Core spacing = 30 μm) of a 7-206 

core shape sensor, considering (b) all the seven cores; (c) only the central core. 207 
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3.5. Strain calculation 208 

After generating the 3D frequency distribution of core positions, the input of the simulation, the 209 

distribution of the strain sensed by each core can be calculated, considering a certain state of 210 

deformation of the section and assuming that the uncertainty in strain sensing only depends on core 211 

position imprecision. The state of deformation can be defined by means of longitudinal strain, 212 

bending direction angle and curvature, εlong, α and |κ|. 213 

The strain sensed by a certain core in each iteration is the sum of two components: the 214 

longitudinal strain (average strain of the section) and the bending strain (see Eq. 9). The bending 215 

strain can be calculated as the shortest distance from the core to the neutral axis multiplied by the 216 

magnitude of the strain function gradient (curvature magnitude). The distance from the neutral axis 217 

is the abscissa of the point in a Cartesian coordinate system obtained by rotating the x and y axes 218 

counter clockwise through an angle α (see Fig. 1.b).  219 

𝜀𝑖
𝑗
= 𝜀𝑙𝑜𝑛𝑔 + |𝜅| [𝑥𝑖

𝑗
cos 𝛼 + 𝑦𝑖

𝑗
sin 𝛼 ]                                                                                             (9) 220 

where i represents the core considered and j the iteration. 221 

Fig. 4 shows the frequency distributions of the strain generated due to core position errors with 222 

an SD of 0.8 μm in the cores of a four-core sensor with core spacing of 30 μm when the measured 223 

curvature is 40 m-1 (2.5 cm radius of curvature). 224 

It should be noted that the strain distributions are still Gaussian and that the SD may be 225 

much higher than the strain resolution of commercial OFS, which can reach a few 226 

microstrains, in the case considered it is 32 με. 227 

 228 

Fig. 4. Strain frequency distribution (3·106 events; SD core position = 0.8μm; Core spacing = 30 μm; Measured 229 

curvature = 40.0 m-1) of a 4-core shape sensor simulated in (a) Core 1; (b) Core 2; (c) Core 3; (d) Core 4. 230 
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4. Multi-step approach for calculating longitudinal strain, curvature and bending direction 231 

An algorithm was designed in MATLAB® [40] to model the core position error distributions by 232 

the Monte Carlo technique and generate the consequent distribution of longitudinal strain, bending 233 

direction angle and curvature, taking into account three distinct fiber geometries. The procedure is 234 

summarized in the following steps: 235 

- Step 1. Simulation of Gaussian frequency distribution of core position errors (Section 3.3) 236 

for each section geometry, considering five different core spacings and three different SD; 237 

- Step 2. Calculation of strain distribution, by Eq. 9, based on the distributions of core 238 

position (xi
j and yi

j on every iteration), obtained in the previous step, and considering 239 

diverse section deformation states, definable through measured longitudinal strain, 240 

curvature and bending direction angle (coefficients of the strain plane equation), εlong, |κ| 241 

and α, as described in Section 2;  242 

- Step 3. Determination of longitudinal strain, bending direction angle and curvature 243 

distributions by means of the equations given in Section 2, and tests of statistical 244 

significance; 245 

- Step 4. Development of the predictive models. 246 

 247 

To clarify the process, a specific example is provided considering the inputs of the first 248 

simulation for a three-core sensor (section geometry = 3-core; core spacing = 30.00 µm; SD core 249 

position = 0.20 µm; longitudinal strain = 0.00 με; curvature = 0.10 m-1; bending direction angle = 250 

0.00 rad). 251 

First, the core position errors are simulated, according to the SD chosen (in this case 0.20 µm). 252 

The real core coordinates are calculated as sum of the exact coordinates, determined considering 253 

the geometrical features of the section, and the simulated errors, as shown in Table 1: 254 

Table 1. Example of real core coordinates calculation. 255 

  
Exact Core Coordinates  

Example of Simulated 

Errors  

Example of Real Core 

Coordinates  

 xi [μm] yi [μm] xi [μm] yi [μm] xi [μm] yi [μm] 

Core 1 30.00 25.98 -0.009 0.303 29.99 26.28 

Core 2 -15.00 -25.98 -0.145 0.276 -15.14 -25.70 

Core 3 -15.00 0.00 -0.107 -0.279 -15.11 -0.28 

 256 

Secondly, the strain detected in each core, taking into account the state of deformation of the section 257 

(in this example εlong = 0.00 με, |κ| = 0.10 m-1, and α = 0.00 rad), is calculated by using Eq. 9. By 258 

way of illustration, the strain detected in core 1 is computed below: 259 

 260 

𝜀1 = 𝜀
𝑙𝑜𝑛𝑔 + |𝜅| (𝑥1𝑐𝑜𝑠 𝛼 + 𝑦1𝑠𝑖𝑛 𝛼 ) = 0.00 + 0.10 [29.99(𝑐𝑜𝑠 0.00) + 26.28(𝑠𝑖𝑛 0.00)]  (10)                                                                                        261 

 262 

To conclude, the strain detected in the cores, calculated as indicated above, and the simulated core 263 

coordinates arising from core position errors, are substituted into Eqs. 6. Thus, the longitudinal 264 

strain, εlong, the magnitude of the vector curvature, |κ|, and the bending direction angle, α, now 265 

affected by the errors in core position, are determined by solving the system and using Eqs. 7-8. 266 

In each simulation, this procedure was repeated for each of the 3·106 iterations, divided into three 267 

group (defined as subdataset) of 106 iteration each. Then, the SDs of the resulting distribution of 268 
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longitudinal strain, bending direction angle and curvature were determined considering the 3 269 

subdatasets as well as the entire dataset, which consists of the three subdatasets (in other word all 270 

the data of the simulation), and a comparison was drawn to prove the statistical significance of the 271 

simulation, as explained in Section 5.3. 272 

5. Results and comments  273 

The outcomes of the experiments are presented this Section. 274 

5.1. Outcome frequency distribution 275 

45 simulations with 3·106 trials were carried out for each fiber geometry. 276 

The inputs of the simulations were  277 

1) Geometrical features of the section, as described in Section 3.2: 278 

a. Section geometry; 279 

b. Core spacing; 280 

c. Core position error normal frequency distribution with a certain SD. 281 

2) State of deformation of the section (coefficients of the strain plane equation), which are 282 

the shape sensor’s output measures: 283 

a. Longitudinal strain; 284 

b. Curvature; 285 

c. Bending direction angle. 286 

The outcomes of the simulations are: 287 

1) Frequency distribution of longitudinal strain; 288 

2) Frequency distribution of curvature; 289 

3) Frequency distribution of bending direction angle. 290 

 291 

Fig. 5 shows an example of the distributions generated in a three-core sensor with core spacing 292 

of 30 μm due to core position errors with an SD of 0.8 μm, when the longitudinal strain, the bending 293 

direction angle and the curvature (inputs of the simulation) are respectively, 0.0 μm, 0.0 rad and 40 294 

m-1. 295 

The resulting frequency distributions are clearly Gaussian and the mean values of the 296 

distributions coincide with the input of the simulation, showing that the model is well constructed 297 

and the number of iterations in the simulation is sufficient. 298 

The propagation law of core position errors can thus be defined by considering only the SD of 299 

the distributions obtained in the simulation. 300 
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Fig. 5. Frequency distribution of (a) longitudinal strain, (b) curvature and (c) bending direction angle of a 3-core shape 301 

sensor (3·106 events; SD core position = 0.8 μm; Core spacing = 30 μm; Measured curvature = 40.0 m-1). 302 

5.2. Simulation results 303 

As the error distribution depends on the slope of the strain plane, the measured longitudinal strain 304 

has no influence on the simulation results. In fact, when there is no bending and the strain plane is 305 

parallel to the xy plane, the SD of the resulting distribution is null and the bending direction angle 306 

is not defined. In the same way, bending direction angle does not influence the resulting 307 

distributions, since it depends on the arbitrarily defined Cartesian coordinate system, being the angle 308 

between the x axis and the bending direction. These two parameters were thus set equal to zero in 309 

the simulations. 310 

During the simulations it was found that the SD of the core position error distributions and the 311 

measured curvature have a linear influence on the phenomenon, whereas core spacing affects it 312 

nonlinearly. Three different measured curvatures and standard deviations (SD) of core position 313 

distribution along with five values of core spacings were thus considered in the study, as reported 314 

in Table 2. 315 

The results of the simulations for three-core, four-core and seven-core geometries are listed in 316 

Tables 3-5. 317 

Table 2. Inputs of the simulations. 318 

Section Geometrical Features Strain Plane Coefficients 

Section 

Geometry 

Core Spacing 

[µm] 

SD Core 

Position Distr. 

[μm] 

Measured 

Longitudinal 

Strain [µε] 

Measured 

Bend. Dir. 

Angle [rad] 

Measured 

Curvature 

[1/m] 

 30.00     

Three-core 50.00 0.20   0.10 

Four-core 70.00 0.80 0.00 0.00 5.00 

Seven-core 140.00 1.50   40.00 

  300.00         

 319 

 320 
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Table 3. Results of the simulations for a three-core sensor. 321 

Simulation 

N° 

Core 

Spacing 

[µm] 

SD Core 

Position 

[μm] 

Measured 

Curvature 

[1/m] 

SD 

Longitudinal 

Strain [με] 

SD 

Curvature 

[1/m] 

SD Bend. 

Direction 

Angle [rad] 

1 30.00 0.20 0.10 0.0116 0.0005 0.0054 

2 30.00 0.20 5.00 0.5771 0.0272 0.0054 

3 30.00 0.20 40.00 4.6204 0.2177 0.0054 

4 30.00 0.80 0.10 0.0462 0.0022 0.0218 

5 30.00 0.80 5.00 2.3066 0.1087 0.0218 

6 30.00 0.80 40.00 18.4694 0.8714 0.0218 

7 30.00 1.50 0.10 0.0866 0.0041 0.0408 

8 30.00 1.50 5.00 4.3284 0.2041 0.0409 

9 30.00 1.50 40.00 34.6075 1.6336 0.0409 

10 50.00 0.20 0.10 0.0115 0.0003 0.0033 

11 50.00 0.20 5.00 0.5775 0.0163 0.0033 

12 50.00 0.20 40.00 4.6220 0.1307 0.0033 

13 50.00 0.80 0.10 0.0462 0.0013 0.0131 

14 50.00 0.80 5.00 2.3099 0.0654 0.0131 

15 50.00 0.80 40.00 18.4932 0.5224 0.0131 

16 50.00 1.50 0.10 0.0865 0.0025 0.0245 

17 50.00 1.50 5.00 4.3298 0.1225 0.0245 

18 50.00 1.50 40.00 34.6471 0.9793 0.0245 

19 70.00 0.20 0.10 0.0116 0.0002 0.0023 

20 70.00 0.20 5.00 0.5778 0.0117 0.0023 

21 70.00 0.20 40.00 4.6148 0.0933 0.0023 

22 70.00 0.80 0.10 0.0462 0.0009 0.0093 

23 70.00 0.80 5.00 2.3095 0.0466 0.0093 

24 70.00 0.80 40.00 18.4857 0.3732 0.0093 

25 70.00 1.50 0.10 0.0866 0.0017 0.0175 

26 70.00 1.50 5.00 4.3327 0.0874 0.0175 

27 70.00 1.50 40.00 34.6400 0.6996 0.0175 

28 140.00 0.20 0.10 0.0115 0.0001 0.0012 

29 140.00 0.20 5.00 0.5776 0.0058 0.0012 

30 140.00 0.20 40.00 4.6225 0.0467 0.0012 

31 140.00 0.80 0.10 0.0462 0.0005 0.0047 

32 140.00 0.80 5.00 2.3093 0.0233 0.0047 

33 140.00 0.80 40.00 18.4788 0.1867 0.0047 

34 140.00 1.50 0.10 0.0866 0.0009 0.0087 

35 140.00 1.50 5.00 4.3293 0.0437 0.0088 

36 140.00 1.50 40.00 34.6410 0.3498 0.0087 

37 300.00 0.20 0.10 0.0116 0.0001 0.0005 

38 300.00 0.20 5.00 0.5770 0.0027 0.0005 

39 300.00 0.20 40.00 4.6163 0.0218 0.0005 

40 300.00 0.80 0.10 0.0462 0.0002 0.0022 

41 300.00 0.80 5.00 2.3092 0.0109 0.0022 

42 300.00 0.80 40.00 18.4676 0.0871 0.0022 

43 300.00 1.50 0.10 0.0867 0.0004 0.0041 

44 300.00 1.50 5.00 4.3310 0.0204 0.0041 

45 300.00 1.50 40.00 34.6495 0.1633 0.0041 

 322 

 323 

 324 
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Table 4. Results of the simulations for a four-core sensor. 325 

Simulation 

N° 

Core 

Spacing 

[µm] 

SD Core 

Position 

[μm] 

Measured 

Curvature 

[1/m] 

SD 

Longitudinal 

Strain [με] 

SD 

Curvature 

[1/m] 

SD Bend. 

Direction 

Angle [rad] 

1 30.00 0.20 0.10 0.0100 0.0005 0.0047 

2 30.00 0.20 5.00 0.5001 0.0236 0.0047 

3 30.00 0.20 40.00 3.9991 0.1887 0.0047 

4 30.00 0.80 0.10 0.0400 0.0019 0.0189 

5 30.00 0.80 5.00 1.9989 0.0943 0.0189 

6 30.00 0.80 40.00 16.0044 0.7541 0.0189 

7 30.00 1.50 0.10 0.0750 0.0035 0.0354 

8 30.00 1.50 5.00 3.7510 0.1768 0.0354 

9 30.00 1.50 40.00 30.0010 1.4135 0.0354 

10 50.00 0.20 0.10 0.0100 0.0003 0.0028 

11 50.00 0.20 5.00 0.5004 0.0141 0.0028 

12 50.00 0.20 40.00 4.0021 0.1132 0.0028 

13 50.00 0.80 0.10 0.0400 0.0011 0.0113 

14 50.00 0.80 5.00 1.9989 0.0566 0.0113 

15 50.00 0.80 40.00 15.9892 0.4526 0.0113 

16 50.00 1.50 0.10 0.0750 0.0021 0.0212 

17 50.00 1.50 5.00 3.7508 0.1060 0.0212 

18 50.00 1.50 40.00 30.0103 0.8483 0.0212 

19 70.00 0.20 0.10 0.0100 0.0002 0.0020 

20 70.00 0.20 5.00 0.5004 0.0101 0.0020 

21 70.00 0.20 40.00 3.9994 0.0807 0.0020 

22 70.00 0.80 0.10 0.0400 0.0008 0.0081 

23 70.00 0.80 5.00 2.0007 0.0404 0.0081 

24 70.00 0.80 40.00 15.9967 0.3235 0.0081 

25 70.00 1.50 0.10 0.0750 0.0015 0.0151 

26 70.00 1.50 5.00 3.7499 0.0757 0.0151 

27 70.00 1.50 40.00 30.0081 0.6065 0.0152 

28 140.00 0.20 0.10 0.0100 0.0001 0.0010 

29 140.00 0.20 5.00 0.5001 0.0050 0.0010 

30 140.00 0.20 40.00 3.9993 0.0404 0.0010 

31 140.00 0.80 0.10 0.0400 0.0004 0.0040 

32 140.00 0.80 5.00 1.9990 0.0202 0.0040 

33 140.00 0.80 40.00 15.9995 0.1615 0.0040 

34 140.00 1.50 0.10 0.0750 0.0008 0.0076 

35 140.00 1.50 5.00 3.7529 0.0379 0.0076 

36 140.00 1.50 40.00 29.9950 0.3031 0.0076 

37 300.00 0.20 0.10 0.0100 0.0000 0.0005 

38 300.00 0.20 5.00 0.5001 0.0024 0.0005 

39 300.00 0.20 40.00 4.0008 0.0189 0.0005 

40 300.00 0.80 0.10 0.0400 0.0002 0.0019 

41 300.00 0.80 5.00 1.9991 0.0094 0.0019 

42 300.00 0.80 40.00 15.9932 0.0754 0.0019 

43 300.00 1.50 0.10 0.0750 0.0004 0.0035 

44 300.00 1.50 5.00 3.7487 0.0177 0.0035 

45 300.00 1.50 40.00 30.0062 0.1414 0.0035 

 326 

 327 
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Table 5. Results of the simulations for a seven-core sensor. 328 

Simulation 

N° 

Core 

Spacing 

[µm] 

SD Core 

Position 

[μm] 

Measured 

Curvature 

[1/m] 

SD 

Longitudinal 

Strain [με] 

SD 

Curvature 

[1/m] 

SD Bend. 

Direction 

Angle [rad] 

1 30.00 0.20 0.10 0.0076 0.0004 0.0039 

2 30.00 0.20 5.00 0.3780 0.0192 0.0038 

3 30.00 0.20 40.00 3.0238 0.1540 0.0038 

4 30.00 0.80 0.10 0.0302 0.0015 0.0154 

5 30.00 0.80 5.00 1.5117 0.0770 0.0154 

6 30.00 0.80 40.00 12.0815 0.6158 0.0154 

7 30.00 1.50 0.10 0.0567 0.0029 0.0289 

8 30.00 1.50 5.00 2.8363 0.1442 0.0289 

9 30.00 1.50 40.00 22.6819 1.1552 0.0289 

10 50.00 0.20 0.10 0.0076 0.0002 0.0023 

11 50.00 0.20 5.00 0.3781 0.0115 0.0023 

12 50.00 0.20 40.00 3.0246 0.0924 0.0023 

13 50.00 0.80 0.10 0.0302 0.0009 0.0092 

14 50.00 0.80 5.00 1.5122 0.0462 0.0092 

15 50.00 0.80 40.00 12.0875 0.3695 0.0092 

16 50.00 1.50 0.10 0.0567 0.0017 0.0173 

17 50.00 1.50 5.00 2.8336 0.0865 0.0173 

18 50.00 1.50 40.00 22.6794 0.6927 0.0173 

19 70.00 0.20 0.10 0.0076 0.0002 0.0017 

20 70.00 0.20 5.00 0.3781 0.0082 0.0016 

21 70.00 0.20 40.00 3.0214 0.0660 0.0016 

22 70.00 0.80 0.10 0.0302 0.0007 0.0066 

23 70.00 0.80 5.00 1.5118 0.0330 0.0066 

24 70.00 0.80 40.00 12.1000 0.2642 0.0066 

25 70.00 1.50 0.10 0.0567 0.0012 0.0124 

26 70.00 1.50 5.00 2.8335 0.0619 0.0124 

27 70.00 1.50 40.00 22.6942 0.4947 0.0124 

28 140.00 0.20 0.10 0.0076 0.0001 0.0008 

29 140.00 0.20 5.00 0.3781 0.0041 0.0008 

30 140.00 0.20 40.00 3.0242 0.0330 0.0008 

31 140.00 0.80 0.10 0.0302 0.0003 0.0033 

32 140.00 0.80 5.00 1.5118 0.0165 0.0033 

33 140.00 0.80 40.00 12.0985 0.1319 0.0033 

34 140.00 1.50 0.10 0.0567 0.0006 0.0062 

35 140.00 1.50 5.00 2.8355 0.0309 0.0062 

36 140.00 1.50 40.00 22.6826 0.2476 0.0062 

37 300.00 0.20 0.10 0.0076 0.0000 0.0004 

38 300.00 0.20 5.00 0.3781 0.0019 0.0004 

39 300.00 0.20 40.00 3.0244 0.0154 0.0004 

40 300.00 0.80 0.10 0.0303 0.0002 0.0015 

41 300.00 0.80 5.00 1.5105 0.0077 0.0015 

42 300.00 0.80 40.00 12.0911 0.0616 0.0015 

43 300.00 1.50 0.10 0.0567 0.0003 0.0029 

44 300.00 1.50 5.00 2.8353 0.0144 0.0029 

45 300.00 1.50 40.00 22.6951 0.1154 0.0029 

 329 

5.3. Statistical significance test 330 

As previously explained (Section 3.2), MCM needs a stopping rule to define the number of 331 

iterations of the simulations (sample size). As the appropriate sample size necessary for steady 332 

outcome cannot be theoretically calculated [34], beforehand, it was opted for 3∙106, which in most 333 

cases seem to be satisfactory [31]. To verify the correctness of the assumption, for each simulation, 334 
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a comparison was drawn between the standard deviations of the distributions obtained from the total 335 

dataset and the 3 subdatasets with 106 trials each. 336 

The percentage error between the SDs of the subdatasets and the total dataset was determined by 337 

Eq. 10: 338 

𝐸 = [(𝑆𝐷𝑇 − 𝑆𝐷𝑆)/𝑆𝐷𝑇]100                                                                                                       (11) 339 

where E is the percentage error and the standard deviation of the total dataset and the subdataset are 340 

respectively SDT and SDS. The highest value of percentage error considering all the simulations of 341 

this study is, in absolute terms, 0.198, proving the statistical significance of the simulations. 342 

5.4. Curve Fitting Models   343 

The relation between the SD of the frequency distribution of longitudinal strain, bending 344 

direction angle and curvature (dependent variables) and SD of the frequency distribution of core 345 

position errors, measured curvature and core spacing (independent variables) were identified with 346 

two variable curves using the Curve Fitting MATLAB® [40] Toolbox™. A sequence of three 347 

models (one for each dependent variable) were calibrated for each section geometry, fitting the 348 

results of the simulations, to identify the propagation law of core position uncertainty, determine 349 

the mathematical relationship between the considered variables and make the research outcomes 350 

more fruitful and user-friendly. The coefficient equations were estimated by a nonlinear regression 351 

analysis, based on the errors, including the Coefficient of Determination (R2), Root-Mean-Square 352 

Error (RMSE) and Sum of Squared Errors (SSE): 353 

 354 

𝑅2 = 1 −
∑ (𝑡𝑖−𝑂𝑖)

2
𝑖

∑ (𝑂𝑖)
2

𝑖
                                                                     (12)                  355 

   356 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑡𝑖 − 𝑂𝑖)

2
𝑖                                                                     (13) 357 

 358 

𝑆𝑆𝐸 = ∑ (𝑡𝑖 − 𝑂𝑖)
2

𝑖                                                                     (14) 359 

 360 

where ti is the target value, Oi is the predicted value, and n is the number of data. 361 

 362 

The first parameters identified were those that influence the standard deviation of the frequency 363 

distribution of longitudinal strain, bending direction and curvature. The curvature frequency 364 

distribution was found to be influenced by all three parameters, while core spacing did not influence 365 

the longitudinal strain distribution SD, nor did bending direction angle frequency distribution 366 

depend on the measured curvature. 367 

The model equations were thus defined a priori and their performance, based on the errors, 368 

investigated a posteriori. In all cases, it was found that one coefficient was sufficient to efficiently 369 

fit the data. 370 

The function that represents the dependence between longitudinal strain distribution SD and core 371 

position SD and measured curvature (see Eq. 15) was fitted with the coefficient k1. Fig. 6 shows the 372 

surface fitting for the three-core section, by way of example. 373 

Likewise, the function that defines the bending direction angle SD in terms of core position SD 374 

and core spacing (see. Eq. 17) was determined using the coefficient k3, as shown in Fig. 7. 375 

 376 
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 377 

Fig. 6. Longitudinal strain SD curve-fitting for a three-core sensor. 378 

 379 

Fig. 7. Bending direction angle SD curve-fitting for a three-core sensor. 380 

 381 

In the case of the curvature distribution SD, a four-variable curve was required to fit the data 382 

(Eq. 16) with the coefficient k2. Hence, three distinct curves (see Eq. 18-20), with one coefficient 383 

and three variables each, were calibrated at constant values of measured curvature, 0.1, 5.0 and 40.0 384 

m-1. The value of k2 was then determined by a linear regression analysis considering the coefficients 385 

of the three aforementioned curves. Fig. 8 shows, the surface fitting and linear regression of the 386 

three-core section geometry. 387 

𝑆𝐷𝜀𝑙𝑜𝑛𝑔 = 𝒌𝟏 (𝑆𝐷𝑐𝑝 × |𝜅|)                                                                                                                    (15) 388 

𝑆𝐷|𝜅| = 𝒌𝟐 (𝑆𝐷𝑐𝑝 × |𝜅|/𝑟)                                                                                                                    (16) 389 

𝑆𝐷𝛼 = 𝒌𝟑 (𝑆𝐷𝑐𝑝/𝑟)                                                                                                                                 (17) 390 
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𝑆𝐷|𝜅|(|𝜅| = 0.1) = 𝒌′𝟐 (𝑆𝐷𝑐𝑝/𝑟)                                                                                                         (18) 391 

𝑆𝐷|𝜅|(|𝜅| = 5.0) = 𝒌′′𝟐 (𝑆𝐷𝑐𝑝/𝑟)                                                                                                        (19) 392 

𝑆𝐷|𝜅| (|𝜅| = 40.0) = 𝒌′′′𝟐 (𝑆𝐷𝑐𝑝/𝑟)                                                                                                   (20) 393 

where SDcp, SDεlong, SD|κ| and SDα are respectively the standard deviation of normal frequency 394 

distribution of core position errors in µm, longitudinal strain in µε, curvature in m-1 and bending 395 

direction angle in rad, r is the core spacing in µm (distance between the sensor axis and the outer 396 

cores), |κ| is the measured curvature in m-1  and k1, k2, k3, k’2, k’’2 and k’’’2 are the curves coefficients. 397 

 398 

 399 

                         (a)                                                                    (b) 400 

             (c)                                                                        (d) 401 

Fig. 8. Curvature SD curve-fitting for a three-core sensor with measured curvature of (a) 0.1 m-1; (b) 5.0 m-1; (c) 40.0 402 

m-1; (d) Relationship between the curve coefficients and measured curvature. 403 

 404 

 405 
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The curves coefficients for the different section geometries and the results of nonlinear 406 

regression analysis that measures the goodness of fit are listed in the Table 6: 407 

Table 6. Results of the curve fitting analysis for the three different section geometries in the following order: first 3-core, 408 

second 4-core and third 7-core.  409 

Function  

Equation 
f(x,y) Coefficient  

Coef. 

Value  

Coefficient of 

Determination 

(R2) 

Root-Mean-

Square Error 

(RMSE)  

 Sum of 

Squared 

Errors 

(SSE) 

f(x,y) = k1 x y SD εlong k1 0.57690 1.000000 0.004288 0.000147 

f(x,y) = k2' x / y SD |κ| (κ = 0.1) k2' 0.08165 1.000000 0.000000 0.000000 

f(x,y) = k2'' x / y SD |κ| (κ = 5.0) k2'' 4.08200 1.000000 0.000037 0.000000 

f(x,y) = k2''' x / y SD |κ| (κ = 40.0) k2''' 32.66000 1.000000 0.000253 0.000000 

f(x,y) = k2 x k2' k2'' k2''' k2 0.81650 1.000000 0.000351 0.000000 

f(x,y) = k3 x / y SD α k3 0.81670 1.000000 0.000004 0.000000 

f(x,y) = k1 x y SD εlong k1 0.50000 1.000000 0.001380 0.000015 

f(x,y) = k2' x / y SD |κ| (κ = 0.1) k2' 0.07071 1.000000 0.000000 0.000000 

f(x,y) = k2'' x / y SD |κ| (κ = 5.0) k2'' 3.53600 1.000000 0.000021 0.000000 

f(x,y) = k2''' x / y SD |κ| (κ = 40.0) k2''' 28.28000 1.000000 0.000207 0.000000 

f(x,y) = k2 x k2' k2'' k2''' k2 0.70700 1.000000 0.000702 0.000000 

f(x,y) = k3 x / y SD α k3 0.70720 1.000000 0.000003 0.000000 

f(x,y) = k1 x y SD εlong k1 0.37790 1.000000 0.004876 0.000190 

f(x,y) = k2' x / y SD |κ| (κ = 0.1) k2' 0.05774 1.000000 0.000000 0.000000 

f(x,y) = k2'' x / y SD |κ| (κ = 5.0) k2'' 2.88600 1.000000 0.000026 0.000000 

f(x,y) = k2''' x / y SD |κ| (κ = 40.0) k2''' 23.10000 1.000000 0.000142 0.000000 

f(x,y) = k2 x k2' k2'' k2''' k2 0.57750 1.000000 0.001052 0.000002 

f(x,y) = k3 x / y SD α k3 0.57740 1.000000 0.000005 0.000000 

 410 

It should be noted that Eqs. 16 and 17 can be applied not only to multicore sensors and Optical 411 

Fiber Bundle sensors, in which the typical values of core position SD and core spacing are included 412 

in the range examined, but also to multiple single-core optical fiber sensors with a higher standard 413 

deviation of core position error distribution and core spacing, such as optical inclinometers. In fact, 414 

in this last case, the section geometries generally are the same as the one analyzed in this research 415 

[11,12]. Besides, the typical values of core position SD and core spacing are a few millimeters or 416 

tenths of millimeter and some tens of millimeters, which means that the ratio between these two 417 

parameters, which is what enters in the equations, is still inside the range studied (it can easily be 418 

verified converting the millimeters into micrometers and substituting the terms into the equations 419 

of the predictive models). 420 

Furthermore, since the model coefficients represent the intensity of error propagation (no error 421 

propagation when the coefficients are null), there is an interesting improvement in the uncertainty 422 

propagation associated with more cores than those in the three-core section, which has the minimum 423 

number required for shape sensing. Table 7 shows the percentage reduction in the coefficients of 424 

the four-core and seven-core sections compared to the three-core geometry. As mentioned in 425 

Section 2, the presence of the central core only affects the accuracy of the longitudinal strain 426 

calculation (coefficient k1), while the seven-core section behaves like a six-core in the other cases. 427 
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A good example of application of the predictive models may be the development of optical 428 

curvature sensor (optical multicore fiber or optical multi-fiber) for bending of wing aircraft 429 

monitoring. As all the engineering applications, it is known the measuring range, taking into 430 

consideration what the minimum detectable curvature and the maximum acceptable curvature to 431 

avoid damages are, and the required accuracy. Hence, considering the geometrical features of fibers 432 

available in the market, it is possible to calculate the uncertainty arising from core position errors, 433 

check what of the available fibers fit the requirements and if the errors are acceptable, taking into 434 

account that core position errors are not the unique source of errors, which has to be considered 435 

[21]. 436 

Table 7. Comparison in terms of the percentage reduction of the model coefficients between the three-core section and the 437 

four-core and seven-core sections.  438 

Coefficient  
Four-core 

geometry  

Seven-core 

geometry  

k1 13.3299 34.4947 

k2' 13.3987 29.2835 

k2'' 13.3758 29.2994 

k2''' 13.4109 29.2713 

k2 13.4109 29.2713 

k3 13.4076 29.3008 

 439 

Fig. 9 shows the reduced error propagation, in terms of coefficient percentage, with different 440 

numbers of cores. 441 

Fig. 9. Variation of propagation errors with number of cores. 442 

6. Conclusions 443 

Innovative shape sensing technology based on strain sensing and used for a number of aerospace, 444 

medical, civil, and mechanical engineering applications requires the high-precision calculation of 445 

curvature and bending direction. 446 

This research focused on the influence of core position uncertainty, a crucial aspect for shape 447 

sensors accuracy, considering both multiple single-core fibers and multicore optical sensors 448 
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equipped with distributed or quasi-distributed strain-sensors with three of the most widely employed 449 

sensing fiber geometries: the 7-core, 4-core and 3-core. The Monte Carlo technique was proposed 450 

to reproduce measurement process with 3·106 iterations considering different core spacings and 451 

measured curvatures to identify their role in the calculation of longitudinal strain, bending direction 452 

and curvature and determine the propagation law of core position uncertainty. A statistical test was 453 

performed to verify the significance of the experiment results and a sequence of models were 454 

calibrated for each section geometry to define the relationship between the variables considered and 455 

make the research outcomes more fruitful and user-friendly. The results obtained were compared 456 

with the three section geometries studied. 457 

The above discussion leads to following conclusions: 458 

- Strain plane calculation through Sum of Squared Errors minimization is a valid approach to 459 

deal with different shape sensors section geometries, even when there are section asymmetries. 460 

- The MCM is a potent technique for modeling the propagation of core position errors in 461 

computing longitudinal strain, bending and direction curvature. 462 

- The core position SD has a linear influence on the frequency distribution of longitudinal strain, 463 

bending direction angle and curvature (Section 5.4). 464 

- The SDs of the bending direction angle and curvature distributions strongly depend on core 465 

spacing through an inverse relationship, whereas there is no relationship between longitudinal strain 466 

SD and core spacing (Section 5.4). 467 

- The measured curvature has no influence on bending direction angle, but linearly influences 468 

the curvature and longitudinal strain SD, so that in these cases the sensor accuracy is related not 469 

only to aspects of product design, but also to the application (Section 5.4). 470 

- Increasing the number of cores remarkably improves the power-function relationship (Table 7 471 

and Fig. 8). 472 

The study shows the important role of core position errors and underlines the fact that 473 

manufacturers do not normally provide information on this aspect. The outcomes successfully 474 

identify the propagation laws of core position uncertainty and show the considerable influence of 475 

number of cores, core spacing and measured curvature on shape sensor accuracy. The resulting 476 

predictive models can support user choices and help manufacturers to identify the parameters that 477 

need to be changed to achieve better performance. For example, improving the manufacturing 478 

process for higher precision in core positioning, larger core spacing, including more cores, or the 479 

performance achievable through different sensor designs. 480 

This study, a continuation of the authors’ previous work [21], identifies diverse shape sensor 481 

error sources. Future research efforts will involve experimental tests to lay the foundations for the 482 

design of new types of shape sensor. 483 
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