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Objective: Sensory processing is the ability to capture, elaborate, and integrate
information through the five senses and is impaired in over 90% of children with autism
spectrum disorder (ASD). The ASD population shows hyper–hypo sensitiveness to
sensory stimuli that can generate alteration in information processing, affecting cognitive
and social responses to daily life situations. Structured and semi-structured interviews
are generally used for ASD assessment, and the evaluation relies on the examiner’s
subjectivity and expertise, which can lead to misleading outcomes. Recently, there has
been a growing need for more objective, reliable, and valid diagnostic measures, such
as biomarkers, to distinguish typical from atypical functioning and to reliably track the
progression of the illness, helping to diagnose ASD. Implicit measures and ecological
valid settings have been showing high accuracy on predicting outcomes and correctly
classifying populations in categories.

Methods: Two experiments investigated whether sensory processing can discriminate
between ASD and typical development (TD) populations using electrodermal activity
(EDA) in two multimodal virtual environments (VE): forest VE and city VE. In the
first experiment, 24 children with ASD diagnosis and 30 TDs participated in both
virtual experiences, and changes in EDA have been recorded before and during the
presentation of visual, auditive, and olfactive stimuli. In the second experiment, 40
children have been added to test the model of experiment 1.

Results: The first exploratory results on EDA comparison models showed that the
integration of visual, auditive, and olfactive stimuli in the forest environment provided
higher accuracy (90.3%) on sensory dysfunction discrimination than specific stimuli.
In the second experiment, 92 subjects experienced the forest VE, and results on 72
subjects showed that stimuli integration achieved an accuracy of 83.33%. The final
confirmatory test set (n = 20) achieved 85% accuracy, simulating a real application

Frontiers in Human Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 90

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.00090
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2020.00090
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.00090&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00090/full
http://loop.frontiersin.org/people/237340/overview
http://loop.frontiersin.org/people/385892/overview
http://loop.frontiersin.org/people/850541/overview
http://loop.frontiersin.org/people/886754/overview
http://loop.frontiersin.org/people/882184/overview
http://loop.frontiersin.org/people/919222/overview
http://loop.frontiersin.org/people/850015/overview
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00090 April 1, 2020 Time: 15:45 # 2

Alcañiz Raya et al. EDA and VR Biomarkers in ASD

of the models. Further relevant result concerns the visual stimuli condition in the first
experiment, which achieved 84.6% of accuracy in recognizing ASD sensory dysfunction.

Conclusion: According to our studies’ results, implicit measures, such as EDA, and
ecological valid settings can represent valid quantitative methods, along with traditional
assessment measures, to classify ASD population, enhancing knowledge on the
development of relevant specific treatments.

Keywords: autism spectrum disorder, sensory dysfunction, virtual reality, electrodermal activity, assessment

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopment
disorder characterized by a wide range of impairments, ranging
from social to physical and cognitive functions (Baron-Cohen,
1990), affecting one in 160 children (World Health Organization
[WHO], 2019). ASD symptoms arise as early as 2 to 4 years
in age, and in some cases, the signs of ASD might start as
early as 6 months old (Lord et al., 2006; Anagnostou et al.,
2014). Specifically, ASD is associated with social and interaction
symptoms as well as stereotyped and repetitive behavior patterns
(American Psychiatric Association, 2013) that have a significant
impact on educational (Levy and Perry, 2011) and social
life (Schmidt et al., 2015). Furthermore, sensory processing
dysfunctions have been observed as a relevant aspect of ASD
symptomatology; indeed it is experienced by over 90% of ASD
children (Leekam et al., 2007; Tomchek and Dunn, 2007; Baron-
Cohen et al., 2009). Sensory processing is the ability to capture,
elaborate, and integrate information through the five senses
(touch, movement, smell, taste, vision, and hearing), allowing
adapting behavioral responses to the environment (Miller et al.,
2007). In the ASD population, such sensory processing and
integration of stimuli are experienced differently from that of
the typical development (TD) population, affecting response to
stimuli. In more details, they show hyper-sensitivities (over-
responsiveness) and hypo-sensitivities (under-responsiveness) to
a wide range of sensory stimuli. Previous studies on sensory
dysfunctions showed a hypersensitivity to visual and auditive
stimuli, such as bright lights or noisy sounds (Tomchek and
Dunn, 2007; Baron-Cohen et al., 2009; Tomchek et al., 2014);
conversely, with olfactive stimuli, they present hypo-sensitiveness
in detecting odor threshold (Dudova et al., 2011; Ashwin et al.,
2014). Sensory dysfunction consequently affects the information
processing in ASD, and it has been suggested that it may be the
cause of impairments in several psychological domains, such as
in cognitive and social responses (Tomchek and Dunn, 2007;
Baron-Cohen et al., 2009).

Current Issues in ASD Diagnosis and the
Need for Biomarkers in ASD
Traditionally, ASD diagnosis and assessment include a series
of explicit qualitative and quantitative measures characterized
by semi-structured behavioral tasks’ observations in which the
examiner rates and scores an individual’s responses to prompted
situations (e.g., the Autism Diagnostic Observation Schedule,
ADOS; Lord et al., 1999) and family structured interview (e.g., the

Autism Diagnostic Interview-Revised, ADI-R; Lord et al., 1994).
For example, the ADOS measure consists of various standardized
activities introduced by the examiner, such as a simulation of
having a snack together, that permits to observe the occurrence or
non-occurrence of behaviors related to ASD. ADOS principally
focuses on social behavior and communication analysis, and it
is characterized by five different modules that allow tailoring
of assessment to the age and communication development
of the participants. Regarding sensory processing, the utmost
test for its evaluation is Sensory Profile-2 (Dunn, 2014), a
qualitative questionnaire in which family caregivers answer to
several questions about activities at home, in school, and in
the community (see the section “Materials and Methods” for
test description).

Despite these instruments having been widely adopted in
ASD research and clinical practice, several limitations remain
(Volkmar et al., 2009), mainly regarding the absence of explicit
sensory functioning assessment, the subjective evaluation and
the examiner’s expertise, and the ecological validity of the
assessment setting.

Concerning the first limitation, traditional assessments have
been designed following both ASD ICD-10 and DSM IV
guidelines that do not consider sensory dysfunction as a necessary
and distinct diagnostic criterion. Thus, ADI-R and ADOS do
not tap sensory processing and responsiveness (Leekam et al.,
2007). Second, training in administration and scoring is crucial
and highly recommended (Lord et al., 2001) since test results
and diagnosis rely on the examiner’s subjective ability to detect
ASD-related features. Examiners who not have a high level
of ASD-specific previous training and expertise might lead
to inappropriate task presentation and administration. This
could influence the rating and the scoring, contributing to
over- or under-interpretation of the outcomes and prompting a
misleading assessment (Reaven et al., 2008). Another limitation
that can cause ADOS’ unreliable outcomes and affect the
truthfulness of responses is the social desirability bias (Paulhus,
1991). Social desirability is a response bias in which individuals
attempt to answer to tasks or questions in a manner that will
be viewed as favorable by others (Edwards, 1957). First, part of
the ASD assessment consists of reporting child information by
family caregivers, who can interpret differently specific behaviors
according to their personal perspective and experience (Möricke
et al., 2016). Second, in ASD assessment, children may have
been taught to act according to specific settings (e.g., laboratory
settings) (Francis, 2005), and it might be that whether the same
situation happened in the real world, examiners would obtain
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different responses (Gillberg and Rasmussen, 1994). Finally,
although diagnostic structured interviews are considered as the
gold standard in ASD assessment (Goldstein et al., 2009), they
usually take place in the laboratory rather than in ecologically
valid settings. Ecologically valid settings are environments and
situations similar to real ones, able to elicit everyday experiences
and behaviors related to daily functioning (Franzen and Wilhelm,
1996; Chaytor et al., 2006). The more the assessment measure
is valid from an ecological point of view, the more that
the results can be generalized to the real world (Brunswik,
1955; Chaytor et al., 2006). Indeed recent studies showed that
traditional assessment results did not reflect performance in
real-life situations and vice versa (Parsons S., 2016).

According to these limitations, the existing ASD diagnosis
criteria (DSM, ICD, ADOS, and ADIR) do not consider
quantitative variations in symptom severity in each person’s
measurements and do not take into account the biological
bases of the disorder. Recently, there has been a growing
need for more reliable and valid diagnostic measures, such as
biomarkers, to distinguish typical and atypical functioning and
to reliably track the progression of the illness, thus helping to
diagnose ASD (Figure 1). In order to generate valid quantitative
models between explicit symptoms and implicit biomarkers, the
emerging field of Computational Psychiatry (CP) is seeking, first,

to mathematically model brain responses to the problems it
faces and, second, to study how the “abnormal” experiences,
emotions, and behaviors that are commonly used to describe
disorders contribute to normal function and neural processes
(Montague et al., 2012; Friston et al., 2014; Wang and Krystal,
2014; Redish and Gordon, 2016).

Implicit Processes as Pillars for ASD
Biomarkers
Currently, the EU AIMS Longitudinal European Autism Project
is one of the largest multicenter, multidisciplinary studies to
identify the stratification biomarkers for ASD and the biomarkers
that may serve as surrogate ends (Murphy and Spooren, 2012).
However, all participants are comprehensively characterized
in terms of their brain structure and function [assessed
using structural magnetic resonance imaging (sMRI), functional
MRI (fMRI), and electroencephalogram (EEG)], biochemical
biomarkers, prenatal environmental risk factors, and genomics.
Nonetheless, when experiencing social situations, it is equally
important to study the related behavioral outputs. Up to now,
most of the information contained in the behavioral inputs do
not seem to have been noticed. Studying social situations on how
people process, store, and apply data about other people and

FIGURE 1 | Biomarker models to classify neurodevelopment disorder populations. To the left and center: the three colors (red, blue, and green) represent the
possible fault using the qualitative traditional assessment methods to classify the appropriate neurodevelopment disorder well according to the DSM-V. To the right
and bottom: the three colors (red, blue, and green) represent the possibility to use biomarkers to quantify and classify neurodevelopment disorder populations with
accuracy.

Frontiers in Human Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 90

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00090 April 1, 2020 Time: 15:45 # 4

Alcañiz Raya et al. EDA and VR Biomarkers in ASD

social circumstances can provide us with objective information
about the ASD evaluation.

Recent progress in social cognitive neuroscience (SCN), a
field of study including biological processes and cognition-
based aspects (Lieberman, 2010), is confuting the majority of
social cognition models that suggest that humans can analyze
and correctly verbalize their beliefs, feelings, and behaviors
(Nosek et al., 2011), showing that our social interactions are
mostly governed by unconscious processes that happen without
conscious awareness or control (Forscher et al., 2019). To study
the unconscious processes, several implicit measures, including
brain images, behavior, and psychophysiological tracking, have
been developed as alternative research methods to explicit
measures since they are able to capture implied brain processes
(Ledoux et al., 2016).

In the ASD population, implicit measures can contribute,
along with traditional techniques, to obtain a more objective
assessment from a quantitative point of view (Alcañiz et al.,
2019). Various techniques used are based on measurements
linked to some implied system in effect. The adoption of
implicit SCN metrics as biomarker input variables for ASD
evaluation suggests a move toward a quantitative ASD diagnosis.
Some previous studies proposed the use of brain activity
(fMRI and EEG), physiological measures (heart variability—
HR), and behavioral responses (eye tracking measures—ET—
body movement recognition), with the goal of capturing the
ASD patient’s behavioral structure while being subjected to a
stimulus (Di Martino et al., 2014; Van Hecke et al., 2015;
Chita-Tegmark, 2016; Wang et al., 2016; Großekathöfer et al.,
2017). For example, brain activity studies showed that ASD
patients using fMRI present general brain hyperactivity and
alterations in the middle and the posterior insula and in the
cingulate posterior cortex (Di Martino et al., 2014). EEG studies
in ASD showed greater activity in the left hemisphere in social
situations (Van Hecke et al., 2015). In ASD, the study of
gaze activity measured by eye tracking tools was analyzed as
behavioral tests, linking the gaze patterns to the existence of
nuclear deficits. Many studies have succeeded in linking this
implicit measure with the affectation core deficits, with the
degree of social, emotional, and cognitive skill development.
Even in circumstances of social participation, predictors of
ASD were found based on ocular actions and facial processing
(Chita-Tegmark, 2016).

Electrodermal Activity in ASD
To date, electrodermal activity (EDA, Nikula, 1991), a marker of
sympathetic nervous system arousal, is one of the main implicit
measures examined in ASD (White et al., 2014; Fenning et al.,
2017). Specifically, it is an implicit neurophysiological process
related to electrical proprieties of the skin, based on variations
in sweating, skin conductance, heart rate, and blood flow to
muscles when individuals are facing either internal or external
stimuli (Fagius and Wallin, 1980; Benedek and Kaernbach, 2010;
Boucsein, 2012). Its analysis allows to discern, among others, the
phasic component of the signal, with rapidly changing activity,
referred to the subject’s responses to discrete stimuli (being an
indicator of sympathetic activity), and the tonic component,

with slowly changing activity, referred to the subject’s basal
conductance level (Dawson et al., 2007).

Regarding sensory dysfunction in ASD, multiple studies
have investigated its relationship with EDA, comparing baseline
arousal and EDA reactions to sensory stimuli among ASD
individuals, neurotypical development population, and other
diagnostic groups (for reviews, see Rogers and Ozonoff, 2005;
White et al., 2014; Lydon et al., 2016). The evidence from these
studies are controversial: some research found no differences in
EDA levels in response to sensory stimuli (e.g., Zahn et al., 1987;
Rogers and Ozonoff, 2005; McCormick et al., 2014), whereas
other studies were successful (van Engeland et al., 1991; Miller
et al., 2001; Rogers and Ozonoff, 2005; Schoen et al., 2009).

Overall regarding auditive stimulation, the enhanced EDA
levels in ASD individuals have been associated to both baseline
arousal and reaction to stimulus presentation (Palkovitz and
Wiesenfeld, 1980; Barry and James, 1988; Chang et al., 2012);
nevertheless, there are also instances about no differences
between ASD and typical populations (e.g., Stevens and
Gruzelier, 1984; Allen et al., 2013). Moreover, same pattern
of mixed results has been found for immediate EDA of ASD
individuals in visual stimulations: regarding reactions to facial
expressions, autistic people exhibited weakened EDA responses
compared to typical adults and children (Hirstein et al., 2001;
Hubert et al., 2009; Riby et al., 2012), whereas Ben Shalom
et al. (2006) found no differences; likewise, several studies
related increased EDA reactivity to direct eye gaze in children
with ASD (Kylliainen and Hietanen, 2006; Joseph et al., 2008;
Kylliainen et al., 2012), but, conversely, other investigations
did not (Louwerse et al., 2013). Furthermore, regarding smell
processing, the ASD children seemed to be more sensitive than
the TD children (Schoen et al., 2009); thus, they can detect odors
at shorter distances (Ashwin et al., 2014); on the other hand, they
have difficulties in detecting odor threshold (Dudova et al., 2011).

Finally, the correlation between ASD traditional assessments
and EDA measures has been studied, observing that higher levels
of ASD symptoms, measured by ADOS, are related to greater
variability in EDA (Fenning et al., 2017).

Use of Virtual Reality in ASD
To date, the above-described implicit measuring methodologies
can be divided into two groups: studying the actions of
the subject in a real scenario or conducting experiments in
laboratory settings. The main problem with actual real-life
scenarios is that it is not easy to study human responses in real
situations because the experimenter struggles to fully monitor the
stimuli involved in the encounter. Conversely, participants face
controlled conditions in laboratory settings that do not include
certain variables present in real-life situations, resulting in the
experiment’s low ecological validity.

Virtual reality (VR) emerges as a promising technology
capable of overcoming the problems mentioned above. VR offers
the opportunity to create different real situations, including
social situations that produce body interactions in which the
body, environment, and brain are closely related. VR can be
described as a virtual 3D environment that can replicate real
experiences where participants can interact as if they were in
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the real world. Different technical tools can create a sense of
presence, enabling the subjects to view their behaviors as real
(Slater, 2009). Experiencing a high sense of presence enables the
participants in the virtual environment (VE) to communicate
and behave as if they were thinking, acting, and communicating
in their real life (Alcañiz et al., 2019). Therefore, actions,
attitudes, and beliefs can be transferred from nature to virtuality
and vice versa and can occur spontaneously and unconsciously,
generating circumstances of high ecological validity and
maintaining high experimental control in stimuli presentation
and in gathering behavioral performance. Neuroscientists are
increasingly using VR to replicate natural phenomena and social
interactions, developing immersive and multimodal sensory
stimuli that provide advantages over real-life and traditional
testing methodologies on the controlled stimuli and accuracy
in data gathering (Bohil et al., 2011) and allowing also the
integration of behavioral measures.

The use of VR in ASD research has been postulated as one
of the methods with great potential in the treatment of the main
symptomatological nucleus (Wing et al., 2011; Parsons T. D.,
2016; Golestan et al., 2018). Such advantages have the theoretical
basis established by Blascovich et al. (2002), who argued
that interactive VEs would be able to change interaction and
evaluation by offering the opportunity to study human behavior
in normal, controlled, and replicable environments to produce an
individual response close to that obtained in a real context.

One of the aims that are replicated for ASD and VR users
throughout the research is to improve their ability to work in
everyday life. Research that has built VE to learn different skills
in children with ASD are not difficult to find: cognitive learning
(Kandalaft et al., 2013), interaction (Bernardini et al., 2014), and
emotional training (Bekele et al., 2014).

Nevertheless, there is a lack of research applied to the diagnosis
in the field of VR in which an objective assessment of ASD
is conducted through individualized clinical tests (behavioral
biomarkers), customizing the treatment to each patient’s profile.

To our knowledge, no one has investigated whether
multimodal VR settings and EDA reactions might contribute to
predicting ASD population versus TD children. Starting from
these premises, we performed two studies (the first exploratory
and the second confirmatory) to discriminate and predict sensory
processing in the ASD population versus in a TD population
through the combined use of implicit measure (EDA) and
different sensory stimuli, involving two different VE and tasks.

To this extent, the first experiment aimed to analyze the
influence of three factors in predicting ASD: (1) the VE contents,
one VE including a relaxing environment and another one
including an arousal environment; (2) the task, one related to
the subject’s greeting responses in the relaxing environment
and others related to the subject’s imitation in the arousal
environment; and (3) the stimuli conditions (SC), including
visual (V), visual and auditive (VA), and visual, auditive, and
olfactive stimuli (VAO). Specifically, in the first environment, the
participants have been projected into a forest wherein the visual
stimulus was a girl avatar appearing, the auditive stimulus was
the sound of the rain, and the olfactive stimulus was the odor of
fresh-cut grass. In this relaxing environment, the subjects were

asked to complete tasks related to responding to the greetings
of the avatars. In the second environment, the participants
were introduced in a city street intersection in which the visual
stimulus was the presence of two avatars (a girl and a boy),
the auditive stimulus was a song that avatars danced to, and
the olfactive stimulus was the smell of butter related to avatars
that bit a muffin. In this arousal environment, the subjects were
asked to complete a task related to the imitation of the actions
of the avatars. In both environments and experiments, the EDA
responses were recorded and introduced in a supervised machine
learning classifier in order to recognize ASD.

Starting from these premises and aims, the first hypothesis
in experiment 1 was that the ASD recognition is higher in
the forest since the response to a greeting is one of the
confirmatory symptoms in the ASD. The second hypothesis was
that, by including more sensory modalities, the ASD recognition
using EDA would present a better performance. After that, we
performed a second experiment in order to develop a supervised
learning model using the outputs of the first experiment. We
increased the number of subjects used to calibrate the model and
we tested it in a set of subjects not used before, simulating a
real-world application.

MATERIALS AND METHODS

Experiment 1
Participants
The study included 52 children between the ages of 4 and
7 years. In detail, 23 TD children (age = 4.87 ± 0.92; male = 13,
female = 10) and 29 children with a previous diagnosis of
ASD (age = 5.20 ± 1.34; male = 26, female = 3) participated
in experiment 1. The ASD group sample was recruited from
the Development Neurocognitive Centre, Red Cenit, Valencia,
Spain. The ASD and the TD participants presented individual
assessment reports that included the results of their ADOS-2 test.
A sample management company recruited the TD group through
targeted mailings to families. Before participating in the study, the
family caregivers received written information about the study
and they were required to give written consent for inclusion
in the investigation. The study obtained ethical approval from
the Ethical Committee of the Polytechnic University of Valencia.
Furthermore, all procedures performed in the study involving
human participants were in accordance with the ethical standards
of the institutional and/or national research committee and with
the 1964 Helsinki Declaration and its later amendments or
comparable ethical standards.

Psychological Assessment
The following scales and tasks have been administered to the
participants and their family caregivers:

• Autism Diagnostic Interview-Revised (ADI-R): The ADI-
R (Lord et al., 1994) is a clinical semi-structured
interview used to detect ASD and answered by family
caregivers. The questions are linked to ICD-10 and
DSM-IV criteria for autism and yield separate scores
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in three domains—communication, social interaction,
and restricted, repetitive, and stereotyped behaviors. The
answers are scored on a 0–3-point scale, in which 0
indicates the absence of the behavior and 3 indicates the
clear manifestation of the determined behavior. ADI-R
presents high psychometric properties and the test–retest
reliability ranged from 0.93 to 0.97.

• Autism Diagnostic Observation Schedule (ADOS-2): The
ADOS-2 (Lord et al., 1999) includes structured and
semi-structured tasks to assess children’s development in
several areas, such as communication, use of imagination,
social interaction and play, and restrictive and repetitive
behaviors. The measure uses five modules, tailored to the
age and communication development of the participants.
Concretely, module T is for young children who are
between 12 and 30 months old and do not use phrase
language consistently, module 1, for children who are
31 months or older and who do not use phrase language
consistently, module 2 for children of any age who use
phrase language but who do not have verbal fluency,
module 3 for children with fluent language and young
adolescents (under 16), and finally module 4 for adults
and adolescents (16 years and older) with fluent language.
From the observation of these behaviors, the items are
scored between 0 (no evidence of abnormality related to
autism) and 3 (definitive evidence), and from the sum of
scores, two specific indices (social affectation and restricted
and repetitive behavior) and the ASD global total index
are obtained. The ADOS-2 presents excellent psychometric
properties: the test–retest reliability is 0.87 for the social
affectation index, 0.64 for the repetitive behavior index, and
0.88 for the total global index. In the study, the assessment
was performed using module 1, corresponding to children
from 31 months of age who do not use phrase language
consistently.

The Virtual Environments
The 3D models were developed in the Institute for Research and
Innovation in Bioengineering (i3B) at the Polytechnic University
of Valencia. The environment was developed and projected inside
a three-surface Cave Assisted Virtual Environment (CAVETM)
with dimensions of 4 m × 4 m × 3 m. It was equipped with three
ceiling ultra-short lens projectors, which can project a 100◦ image
from just 55 cm. The sound system used was the Logitech Speaker
System Z906 500W 5.1 THX Digital (Figure 2).

Two VEs were developed:

1. A virtual forest, including three controlled stimuli
conditions: visual, visual–auditive, and visual–auditive–
olfactive (Figure 3). The visual stimuli consisted of a girl’s
avatar appearing from the left side of the forest and walking
to the central virtual scene, where she stopped and waved
her hand three times to say hello to the child, and then
leaving the virtual scene, walking to the right side of the
forest (Figure 4). The auditive stimuli consisted of adding
to the virtual forest a storm and rain sound. Finally, the
olfactive stimuli consisted of an odor of fresh-cut grass.

2. The other VE involved a simulated city street intersection
(Figure 5) and was divided into three experimental stimuli
conditions: visual, visual–auditive, and visual–auditive–
olfactive. First, in the V stimuli condition, a boy’s avatar
appeared from the left side of the surface CAVETM, walking
to the center of the virtual scene, where he stopped and
waved his hand three times to say hello to the child,
and then leaving the virtual scene, walking out of the
street intersection (Figure 6). Successively, a girl’s avatar
appeared in the central of the surface CAVETM, walking
to the right of the virtual scene, where she stopped and
repeated the three waves with her hand to say hello to
the child, and then leaving the virtual scene, walking to
the right side of the street intersection. This sequence was
repeated three times. In the second VA stimuli condition,
the same avatars appeared in the same order from the same
directions, but instead of waving the hand to say hello, they
danced over a piece of music for 10 s for three times. In
the VAO stimuli condition, the same avatars appeared in
the same order and from the same directions, but they bit
a buttered muffin, accompanied by the same song of the
previous condition and an artificial butter smell that was
released during the VR experience.

To avoid transfer effects over VR experiences, the
VE presentation (forest and city street intersection) was
counterbalanced across participants and a 1-week rest was left
between the two VR experiences. Despite counterbalancing
practice is also recommended for stimuli conditions of VEs, to
reduce the possibility to provoke sensory sensitiveness overload
in ASD children, the same stimuli presentation order was
maintained (V, VA, and VAO) for the entire sample in both VR
experiences. Indeed sensory sensitiveness in ASD can suddenly
emerge in different situations that require the processing capacity
of sensory integration from several channels (Bogdashina, 2016);
such concurrent sensory decoding of stimuli might yield ASD
children distress and uncomfortable states that could affect the
quality of performance and assessment in VEs.

Physiological Assessment and Data Processing
Electrodermal activity signal was recorded using an Empatica E4
wristband.1 Its reliability has been found to be comparable to
clinical devices in appropriate circumstances (McCarthy et al.,
2016). Raw signal (recorded at 4 Hz and 0.001–100 µS) was
pre-processed and analyzed using Ledalab2 (v.3.4.8) via Matlab3

(v.2016a). Pre-processing consisted of two successive phases:
(1) Butterworth low-pass signal filtering at 2.5 Hz (Valenza
and Scilingo, 2013) and (2) visual diagnosis of artifacts and
their corrections. Due to the records characteristics and the
analysis chosen, it was not considered necessary to apply signal-
smoothing techniques. The analysis was tackled through the
continuous decomposition analysis (CDA) method. It is based on
the deconvolution of the skin conductance signal by the general
response shape, prior to the data decomposition in the tonic and

1www.empatica.com
2www.ledalab.de
3www.mathworks.com
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FIGURE 2 | Experimental setting.

phasic components. As mentioned above, the tonic component
generates slow changes in the conductance signal (magnitude
of minutes), being considered the basal activity, and the phasic
component generates rapid changes in the conductance signal
(magnitude of seconds), being considered the response of the
subjects to discrete stimuli. CDA has been proven to be an
appropriate method for the analysis of short intervals between
stimuli, especially in situations that can generate a high phasic
activity (Benedek and Kaernbach, 2010). In order to reduce
inter-subject differences, all values were standardized according
to Venables and Christie (1980). This process was applied to
the subject’s whole experience record. Finally, the set of metric
extracted to characterize each stimuli condition includes the
mean of tonic (BL tonic) and phasic (BL phasic) component of
the baseline performed previously to the stimuli condition, the
mean of tonic and phasic component of the responses to the
stimuli condition, and the ratio between the tonic and the phasic
component of the responses to the stimuli condition.

The Olfactive System
For the olfactive stimulus, we used the Olorama4 TechnologyTM

wireless freshener. It features 12 scents arranged in 12 pre-
charged channels, which can be selected and triggered by means
of a UDP packet. The device encompasses a programmable fan
time system that dissipates the scent. Both the intensity of the
chosen scent (amount of time the scent valve was open) and

4www.olorama.com

FIGURE 3 | Virtual forest.

the amount of fan time were programmed. The scent valve was
opened all the time during the last stimuli condition (VAO).

Experimental Procedure
First, the family caregivers of the participants were informed
about the general objectives of the research, the physiological
measure and its device localization, and the VR system. Second,
the Empatica E4 device was shown and placed on the participant’s
non-dominant hand before the virtual session. Subsequently,
the child was accompanied in the CAVE by the researcher and
by his or her family caregiver, according to the child’s needs,
and was placed in the middle of the virtual room, standing
in front of the central surface at a distance of 1.5 m. Before

FIGURE 4 | Girl’s avatar saying hello.

FIGURE 5 | Virtual city street intersection.
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FIGURE 6 | Boy’s avatar saying hello.

each stimuli condition, 2 min of EDA baseline was recorded
in rest and relaxing state, and then the VE experiences started
(Figure 7). The total duration of the forest VE experience was
8 min and 15 s, and each stimuli condition lasted 45 s. The
total duration of the city VE was 14 min, and each stimuli
condition lasted for 2 min and 40 s. The participants were
balanced between the two VEs, leaving a 1-week rest between the
two experimental sessions.

During the three VR stimuli conditions in both virtual
experiences, the EDA signals were recorded. The researcher
monitored the child state during the entire experiment, and
care was taken to address any indisposition derived from the
use of the devices.

Experiment 2
Participants
The study added 40 children, between the ages of 4 and
7 years, to experiment 1. In detail, 23 TD children (age
4.86 ± 0.91; male = 13, female = 10) and 17 ASD children (age
5.13 ± 1.35; male = 14; female = 3) participated in experiment 2.
The ASD group sample was recruited from the Development
Neurocognitive Centre, Red Cenit, Valencia, Spain. The ASD
and the TD participants presented an individual assessment
report that included the results of their ADOS-2 test. A sample
management company recruited the TD group through targeted
mailings to families. Before participating in the study, the family
caregivers received written information about the study, and
they were required to give written consent for the inclusion in
the investigation.

Psychological Assessment
Experiment 2 utilized the same scales and tests of experiment 1.

Physiological Assessment and Data Processing
The EDA signals were recorded using Empatica E4 wristband,
as in experiment 1,5 and the physiological data processing
and analyses were performed using the method described in
the “Physiological Assessment and Data Processing” section
of experiment 1.

The Olfactive System
The system used was the same as that implemented in experiment
1: the Olorama TechnologyTM6 wireless freshener.

5www.empatica.com
6www.olorama.com

FIGURE 7 | Experiment 1 procedure.
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Experimental Procedure
In experiment 2, the participants only experienced the forest VE
as follows: first, as in experiment 1, the family caregivers of the
participants were informed about the general objectives of the
research, the physiological measure and its device localization,
and about the VR system. Second, the Empatica E4 device was
shown and placed on the participants’ arm of the non-dominant
hand before the virtual session. Consequently, the child was
accompanied in the CAVE by the researcher and by his or her
family caregiver according to the child’s needs. The participant
was placed in the middle of the virtual room, standing in front of
the central surface at 1.5 m. Firstly, 2 min of EDA baseline was
recorded in resting and relaxing state. Next, the three stimuli VR
experience conditions were presented, recording a 2-min EDA
baseline before each one.

Statistical Analysis
In experiment 1 (n = 54), three participants were excluded from
the analysis for lack of EDA data due to bad recording: two
from the forest VE and one from the city VE. Consequently,
the sample size included 52 children for forest VE analysis and
51 in the city VE. In this preliminary stage, we developed four
models for each environment (forest VE and city VE) in order
to explore the importance of the scenario and each stimuli
condition (SC). The first model included all the SC, the second
only the visual stimuli, the third only the VA stimuli, and the
fourth only the visual, auditive, and olfactive SC. Moreover, we
developed two extra models to analyze if they can achieve a
performance better than chance. To this extent, we computed
a permutation-based test, i.e., we developed two models with
city/forest VE input data (all stimuli) with a random output class
assignment. The development of the models (parameter tuning
and feature selection) used cross-validation with all the samples
of the experiment. To compare model performance, we used the
output of the classification algorithm without bipolarization, i.e.,
the probability between 0 and 1 that the model as their true class
classified a subject. Due to the Gaussianity of the data (p > 0.05
from the Shapiro–Wilk test with null hypothesis of having a
Gaussian sample), we performed a statistical model comparison
using the probabilities of the models by applying a one-way
ANOVA with Tukey–Kramer correction.

In experiment 2 (n = 92): in order to calibrate and test the
final model, we used the case of the forest VE and all the SC,
increasing the participants to boost the final model and test it.
We split the dataset into a training set (n = 72) and a test set
(n = 20). The test set was sliced randomly using the new subjects,
but keeping a balanced 50% of each class. The development of
the model (parameter tuning and feature selection) used cross-
validation with the training set and afterward was applied in the
test set that has not been previously used.

To develop the models, we used support vector machine
(SVM)-based pattern recognition (Schölkopf et al., 2000) with
a leave-one-subject-out (LOSO) cross-validation procedure. For
the LOSO scheme, the training set was normalized by subtracting
the median value and dividing by the median absolute deviation
over each dimension. In each iteration, the validation set TA
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consisted of one specific subject and he/she was normalized
using the median and deviation of the training set. In particular,
we used an optimized C-SVM using a sigmoid kernel function,
changing the parameters of cost and gamma using a vector
with 15 parameters logarithmically spaced between 0.1 and
1,000. Moreover, we performed a feature selection strategy to
explore the relative importance of each feature. A support vector
machine recursive feature elimination (SVM-RFE) procedure,
in a wrapper approach, was included (RFE was performed on
the training set of each fold and we computed the median rank
for each feature over all folds). We specifically chose a recently
developed, non-linear SVM-RFE, which includes a correlation
bias reduction strategy in the feature elimination procedure (Yan
and Zhang, 2015). The model was optimized to achieve best
Cohen’s kappa. The algorithms were implemented using Matlab©
R2016a and LIBSVM toolbox (Chang and Lin, 2011).

RESULTS

Experiment 1: Model Comparisons
Table 1 shows the performance of the eight models performed,
considering both VEs and SC. It includes the accuracy of
each model, the confusion matrix, and the features included
derived to the automatic feature selection procedure. In addition,
Figure 8 shows a comparison of the performance of each model,
considering the probability that the model as their true class
classified a subject and the significant differences between models
were derived from one-way ANOVA using a Tukey–Kramer
correction. We included in the ANOVA 2 permutated models

to test if the accuracy is significantly better than chance, where
the accuracy is 67.30% for the forest VE and 68.62% for the
city VE. The result of the one-way ANOVA shows that there are
differences between models (p < 0.0001).

The highest accuracy (90.3%, kappa = 0.80) was achieved
by experiment 1 including all SC and it presented higher
performance than the rest of the models (forest—VA p = 0.000,
forest—VAO p = 0.000, city—all p = 0.000, city—V p = 0.000,
city—VA p = 0.000, city—VAO p = 0.002), except with the
forest—V SC where no statistical significance was found. The
model included four features of the V SC (baseline tonic, baseline
phasic, phasic, and ratio), one feature of the VA SC (ratio), and
two features of VAO SC (baseline tonic and tonic). The second
highest accuracy (84.6%, kappa = 0.69) was achieved by the
forest including V SC, and it presented a higher performance
than the rest of the models with lower accuracy (forest—VA
p = 0.000, forest—VAO p = 0.008, city—all p = 0.001, city—V
p = 0.000, city—VA p = 0.000, city—VAO p = 0.029). The model
only included two features (baseline tonic and baseline phasic).
Both models have a strongly balanced confusion matrix. These
two models presented a performance statistically different than
chance (forest—all p = 0.000 and forest—V p < 0.0001).

The rest of the models presented accuracy between 68 and 76%
and did not present statistically significant differences in terms
of performance between them and the permutated models. The
model, including the VA stimuli condition of the forest, showed
an accuracy of 71.15% (kappa = 0.41) and included the three
features (phasic baseline, phasic, and ratio). The model, including
VAO SC of the forest, achieved a balanced accuracy of 75.00%
(kappa = 0.49), including only the tonic responses in the baseline.

FIGURE 8 | Comparison of performance model. Bars represent the means of the probability (between 0 and 1) that a subject was classified by the model as their
true class; vertical lines represent the standard deviation of the means; asterisk indicates significant differences with p < 0.05.
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Regarding the city VE, the model included all stimuli conditions,
achieved 70.5% (kappa = 0.39) using one feature of VA SC
(phasic) and four features of VAO SC (baseline tonic, tonic,
and phasic and ratio). The models, including the V and the VA
SC, achieved 68.63% (kappa = 0.32) and 72.55% (kappa = 0.41)
of accuracy respectively, but with a very bad balance in terms
of false positives. The model, including the VAO SC, achieved
a balanced 76.47% (kappa = 0.52) of accuracy including four
features (baseline phasic, tonic, phasic, and ratio).

Experiment 2: Development of the Final
Model
Table 2 shows the performance of the final model derived from
the forest VE after the increment of the subjects. The validation
set (n = 72) shows a balanced accuracy of 83.33% (kappa = 0.668).
The test set (n = 20) achieved 85% of accuracy (kappa = 0.700),
recognizing 80% of subjects with sensory dysfunction. The model
included one feature of the V SC (phasic), three features of the
VA SC (baseline tonic, baseline phasic, and phasic), and one
feature of the VAO SC (baseline tonic). In addition, Figure 9
shows the ROC curve of the performance of the final model,
achieving an area under a curve (AUC) of 0.897 in the validation
and 0.870 in the test.

DISCUSSION

The main aim of this study was to discriminate and predict
sensory processing, recognizing ASD population versus TD
population through the combined use of implicit measure (EDA)
and different sensory stimuli in VR. Specifically, two experiments
have been run, testing two different VEs, presenting three sensory
stimuli conditions each—visual, visual and auditive, and visual,
auditive, and olfactive stimuli—and examining EDA changes
before and during the presentation of the virtual and the sensory
stimuli. The focus has been on sensory processing because there
are evidences that it is relatively impaired in the ASD population
(Leekam et al., 2007; Tomchek and Dunn, 2007; Baron-Cohen
et al., 2009).

The results can be discussed on four levels: (1) the influence
of scenarios and stimuli conditions, (2) the role of EDA and the
features used, (3) the performance of ASD recognition, and (4)
the limitations and further studies.

The Influence of Scenarios and Stimuli
Conditions
Regarding scenarios, the model developed using the forest VE
presented a higher accuracy (forest VE—all, 90.3%) than the
model developed using the city VE (city VE—all, 70.59%). Since
we used the same set of subjects, the results are not influenced
by the individuals’ bias. Therefore, a model comparison validated
the hypothesis that ASD recognition was higher in the forest
VE (forest VE—all vs. city VE—all, p = 0.000). Moreover, the
permutated test shows that forest—all and forest—V are the
models that statistically offer a performance better than chance.
This outcome could be due to task characteristics since the
response to a greeting is one of the confirmatory symptoms in TA
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FIGURE 9 | ROC curve of the final model.

ASD. In addition, several previous studies showed the influence
of nature scenes in reducing arousal (Liszio et al., 2018; White
et al., 2018). Therefore, the forest VE can be assumed as a
more relaxed environment than the city VE. Since EDA is
highly affected by the arousal (Picard et al., 2016), the results
suggested that a natural and relaxed environment as a forest
VE could be a better scenario to detect changes in the ASD
population due to sensory processing dysfunctions. In addition
to the increase of arousal derived from city VE, the avatars
imitation task provoked a physical activity in the subject that
could affect arousal, decreasing the recognition performance of
models, due to an arousal saturating effect; hence, the results
supported the use of a low-arousal natural environment and
non-physical activities to increase the performance recognition
of models using EDA.

Regarding stimuli conditions, the model developed in the
forest VE with all the stimuli conditions achieved 5.78% of
accuracy more than the forest with only visual stimulation, but it
did not show statistical differences. Both models presented higher
accuracy and performance than the rest of the models, including
the permutated one. However, the model developed in the city
VE used only one feature of V SC, three features of VA SC, and
four features of VAO SC. Therefore, even though the exploratory
analysis performed in forest VE suggested that VA and VAO did
not play an important role in the ASD recognition in comparison
with V, the feature selection for the final model showed high
reliance on the multimodal sensory condition since four out of
five of the features selected were from VA and VAO stimuli.

The hypothesis that increasing sensory modalities would have
contributed to better ASD recognition through EDA is partially
confirmed by the final model.

The Role of EDA and the Features Used
To our knowledge, we proposed the first supervised ML model
using EDA for ASD population [see Hyde et al. (2019) for a review
of ASD models recognition]. Our results were in accordance
with previous research that showed that ASD is associated with
the autonomic nervous system and can be measured using EDA
(Miller et al., 2001; Rogers and Ozonoff, 2005; Schoen et al.,
2009; Bujnakova et al., 2016). However, other researches did not
find differences in EDA levels in response to sensory stimuli
in the ASD population (e.g., Zahn et al., 1987; Rogers and
Ozonoff, 2005; McCormick et al., 2014). The level of recognition
of the presented models represents a new step in the use of the
autonomic nervous system as a biomarker for ASD recognition.
In addition, the CDA analysis showed a valid signal processing
method to extract valuable features from EDA. The phasic
responses of the subjects in the two SCs (V and VA) are included
in the feature selection of the final model and in many of
the exploratory model comparison. A baseline is also a very
important part of the stimuli since the baseline responses of
VA (tonic and phasic) and VAO (phasic) SCs were included
in the final model. Moreover, the baseline responses were also
included in forest VE—all and forest VE—V models of forest
VE. In this regard, it should be noted that variations in the
phasic and tonic components, related to changes in emotional
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arousal, have been reported by studies carried out in different
experimental paradigms (Kreibig, 2010). The relevant role of the
baseline was in accordance with previous research that suggested
that the participants are likely to be hyper- or hypo-responders
independent of any effects of stimuli (Braithwaite et al., 2013).
Moreover, the role of baselines could be especially important in
research on sensory processing disorders as in ASD.

The Performance of ASD Recognition
Regarding the final model on ASD recognition, the validation
set using 72 subjects achieved 83.33% of accuracy (kappa: 0.668,
AUC: 0.897), including 86.11% of true positives. Moreover,
we tested the model in a set of 20 subjects (10 ASD and 10
controls) recruited in a second phase, and the model achieved
85% accuracy (kappa: 0.700, AUC: 0.870). The results presented
perform a new step in ASD recognition since, to our knowledge,
we presented the first ASD-supervised ML recognition model
using EDA and multimodal VR. Moreover, the methodology
presented some advantages in contrast to previous research. Li
et al. (2017) presented an analysis using kinematics recognizing
ASD in adults achieving 86.7% accuracy (n = 30). Liu et al.
(2016) developed a model using eye tracking to recognize
ASD children based on face processing, achieving 88.51% of
accuracy (n = 58). Nakai et al. (2017) presented an ASD model
recognition in children using voice analysis, achieving 76% of
accuracy (n = 30 ASD, n = 51 TD). All of them validated their
models using cross-validation procedures and used ecological
biomarkers to recognize ASD. Contrarily, the presented model
achieved the same (or more) level of accuracy, but using a
broader sample size and, moreover, applying the model to a new
test set that was not used before, simulating a real application.
It supposes a new step forward in order to develop scalable
clinical applications of ASD recognition models. On the other
hand, previous research by Chen et al. (2015) showed a very
large study (n = 252) with a very high accuracy (91%) using
fMRI. In contrast to this approach, we proposed an ecological
environment and instrumentation using VR and EDA wristband
sensor. This ecological approach is particularly important in the
field of ASD and can offer cheaper and quicker clinical diagnostic
models in the future.

Limitations and Future Studies
Although this study did a step forward in the field of ASD sensory
processing assessment, it presented some limitations regarding
sample characteristics, specific ASD symptoms and their related
measures, and VEs.

First, the participants were from 4 to 7 years old and selected
ASD children received, according to their symptomatology
and age, a previous ASD diagnosis through the module 1 of
the ADOS-2 questionnaire that is addressed to infants older
than 31 months of age but who do not use phrase language
consistently. Nonetheless, it has been decided to test only
participants who pertained to this class and characteristics to
control and ensure results, but these narrow criteria limit the
generalization of findings.

Second, the present study mostly focused on ASD sensory
processing although it is not a core ASD symptom for

diagnostic manuals, such as DSM-5 and ICD-10. Furthermore,
regarding VEs, at the first time, children might experience
them as astonishing and impressive (Novelty effect, Clark, 1983;
Gravetter and Forzano, 2018); for this reason, in the first
part of each study, there might be a common effect on EDA
metrics, especially in forest-V and city-V conditions. However,
this artificial activation arousal, that is due to the sense of
being physically present in a VE despite the certainty of not
being physically there, decreases as the familiarity with the
virtual world and device increases. Third, the sample size was
restricted and not matched on socio-demographics, limiting
the generalization of the model outcomes. In accordance with
limitations, future works are needed in order to develop an
objective method for the assessment of sensory processing
in the ASD population. Future studies must, first, include a
broader sample size with further control and matching on
sociodemographics. Socioeconomic status is recommended in
order to avoid misleading model outcomes based on other
metrics far from ASD presence or absence (Delobel-Ayoub
et al., 2015). Second, ASD individuals should be diagnosed
by the five modules of ADOS-2 questionnaire to test whether
the results presented here may be generally replicated in
all age range and linguistic ability clusters. Moreover, in
conjunction with sensory measures, the inclusion of core
symptom analyses in VR is suggested, for example, repetitive
and stereotypical behaviors, and communication and social
abilities. Biomarkers that could be relevant for this purpose
are eye tracking, body movement analysis, and EEG (Loth
et al., 2016); indeed eye tracking glasses and RGBD cameras
for body movement analysis might be included in future
studies on current VR experiences in order to enhance
model strength and accuracy. Furthermore, to discern impaired
sensory processing, the present study involved three VR
conditions (visual, auditive, and olfactive) and it could be
interesting to add a fourth condition about haptic processing
since it enhances immersion in the VE, providing a more
ecological and realistic experience (Slater and Wilbur, 1997).
Finally, some adjustments of the virtual content might bring
more sense of presence to the participants, such as the
introduction, in both VA and VAO stimuli conditions, of
auditive stimulation consistent with the avatar that is waving the
hand to say hello.

CONCLUSION

Sensory processing is a relevant ability in information processing,
allowing adapting behavioral responses to the environment
(Miller et al., 2007). ASD show hyper-sensitiveness (over-
responsiveness) to VA stimuli and hypo-sensitiveness (under-
responsiveness) to olfactive stimuli (Tomchek and Dunn, 2007;
Baron-Cohen et al., 2009; Dudova et al., 2011; Ashwin et al.,
2014; Tomchek et al., 2014). The hyper–hypo sensitiveness
to sensory stimuli can generate an alteration in information
processing, affecting cognitive and social responses in daily
life situations. Traditional ASD assessment, based on semi-
structured behavioral task observations on laboratory settings
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and structured interviews, does not take into account the
dysfunctional sensory processing in real life. According to
the results, current studies have shown that it is possible
to obtain biomarkers for ASD classification using a CP
paradigm based on implicit brain processes, measured through
psychophysiological signals and the subjects’ behavior, while
exposed to complex social conditions using VR interfaces. The
ASD classification using biomarkers, along with traditional
assessment, could enhance knowledge on the development of
relevant specific treatments.
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