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Abstract 
The micro and meso-structural characteristics of materials present an inherent variability 
because of the intrinsic scatter in raw material and manufacturing processes. This problem is 
exacerbated in highly heterogeneous materials, which shows significant uncertainties in the 
macroscale material properties. Therefore, providing optimal designs and reliable structural 
analyses strongly depend on the selection of the underlying material property models. This 
paper is intended to provide insight into such a dependence by means of a stochastic inverse 
model based on an iterative optimization process depending only of one parameter, thus 
avoiding complex parametrizations. It relies on non-linear combinations of material property 
realizations with a defined spatial structure for constraining stochastic simulations to data within 
the framework of a Finite Element approach. In this way, the procedure gradually deforms 
unconditional material property realizations to approximate the reproduction of information 
including mechanical parameters (such as Young’s modulus and Poisson’s ratio fields) and 
variables (e.g., stress and strain fields). It allows dealing with non-multiGaussian structures for 
the spatial structure of the material property realizations, thus allowing to reproduce the 
coalescence and connectivity among phases and existing crack patterns that often take place in 
composite materials, being these features crucial in order to obtain more reliable safety factors 
and fatigue life predictions. The methodology has been successfully applied for the 
characterization of a complex case study, where an uncertainty assessment has been carried out 
by means of multiple equally likely realizations. 
 
 
Keywords: Inverse modelling; Finite Element Method; composite materials; heterogeneity; 
uncertainty 
 
1. Introduction. 
Heterogeneous materials have gained increasing attention in recent years because of its many 
engineering applications, for instance, in structural and biomechanics problems (e.g., Lloyd et 
al., 2015; Samavati et al., 2015). Classical examples are metal alloy systems, polymer blends, 
porous and cracked media, polycrystalline materials and disordered composite materials. 
However, highly heterogenous materials exhibit spatial and temporal variability in the micro and 
meso-structural characteristics, which are translated into large uncertainties in their macroscale 
material properties (Wu and Zhu, 2017). This is due to the intrinsic scatter in raw material, 
manufacturing processes and external factors during their lifetime.  
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Heterogeneous materials may entail domain areas with drastic strength differences, which are 
produced by microstructural heterogeneity, crystal structure heterogeneity or compositional 
heterogeneity (Khan et al., 2019; Baby et al., 2019; Mikdam et al., 2013; Ni and Chiang, 2007; 
Kouznetsova et al., 2001). In fact, there are stretchable heterogeneous composites with 
mechanical gradients with extreme soft-to-hard transitions and with local elastic moduli 
changes with up to five orders of magnitude (Wu and Zhu, 2017). For example, the biological 
tissue that connects tendons to bone presents local values of the Young’s modulus that can 
differ by as much as two orders of magnitude to match the stiff surface of bone with the soft 
tendon. Heterogeneous materials with elastic moduli varying over several orders of magnitude 
can be manufactured by tuning the local reinforcement of an entangled continuous polymer 
matrix using reinforcing elements at multiple hierarchical levels (Libanori et al., 2012). In this 
sense, highly heterogeneous materials do not follow a periodic pattern (i.e., they follow a non-
regular microstructural composition), which hampers the achievement of reliable mechanical 
results. Then the prediction of heterogeneous material properties is becoming a major problem 
in cases with complex microstructures and multiphase materials (Sharifi et al., 2014). A general 
constitutive behaviour of material properties can be found in Saabye-Ottosen and Ristinmaa 
(2005). 
 
Another consideration to take into account is the significant differences in the behaviour of 
materials between the plastic and elastic regimes. Consequently, the challenge in using 
heterogeneous materials range from material design, material property predictions, to use limit 
and lifetime predictions (Torquato, 2010). The problem is compounded by the difficulty in 
obtaining the material properties either because of the economic cost and time-consuming of 
establish them experimentally or by technical impediments. Several efforts have been carried 
out to circumvent the problem of data acquisition, which are based on two main approaches. 
The first approach considers the morphology and constitutive characteristics of the material at 
the microscale as random entities. Then, stochastic homogenisation techniques are applied to 
determine the macroscale properties of the material (Sakata et al., 2008). Nevertheless, this 
approach is hampered by the fact that gathering high-quality and sufficient data at this scale is 
not always feasible. The second approach is based on direct measurements at the macroscale 
material properties. Readers are referred to other papers for more comprehensive reviews on 
the uncertainty representation of material properties (Charmpis et al., 2007; Sriramula and 
Chryssanthopoulos 2009). 
 
There is a wide range of techniques for the measurement of material properties, such as 
extensometers, photoelasticity. For instance, the Digital Image Correlation (DIC) and Digital 
Volume Correlation (DVC) are gaining growing interest because their ability to non-destructively 
access internal strains in materials (Cooreman et al., 2008; Li et al., 2014; Mortazavi et al., 2014; 
Kashfi et al., 2017; 2018; Majzoobi et al., 2018). That is, they provide full displacement and strain 
measurements fields on the surface, including inside opaque materials when subjected to 
external loadings. These optical non-contact methods provide a great amount of experimental 
data that has bring about the proliferation of inverse methods for material characterisation (e.g., 
Li et al., 2014 Kim et al., 2015). The accuracy of these approaches has been widely treated in the 
literature (Cooreman et al., 2008). Furthermore, these techniques can be applied to both 
macroscopic and microscopic scales. The experimental information obtained with these 
approaches can be implemented in numerical models for analysis and design of heterogeneous 
materials. They require an accurate representation of the relevant physics and their interactions 
and a quantitative assessment of underlying uncertainties and their influence on design 
performance targets. Therefore, the reliability in such models depends on the choice of the 
underlying material property.  
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Several attempts for modelling the effects of the heterogeneity on the mechanical response has 
been reported in the literature (e.g., Zottis et al., 2018; Zhang et al., 2018; Albanesi et al., 2018; 
Borkowski and Kumar 2018; Albanesi et al., 2017; Chakraborty and Eisenlohr, 2017; Goodarzi et 
al., 2016; Borovinšek et al., 2016; Herrera-Solaz et al., 2015; Fu et al., 2013; Ramani et al., 2013; 
Mehrez et al., 2012; Mehrez et al., 2012a; Pottier et al., 2011). These optimization techniques 
provide a systematic means of designing materials with tailored properties for a specific 
application. This is performed by data assimilation to identify stochastic structures of uncertain 
mechanical parameters. There are many successful applications in the fields of inverse problems 
such as non-destructive testing and characterization of material properties by ultrasonic or X-
ray techniques, thermography, etc. Generally speaking, the inverse problems are concerned 
with the determination of the input and the characteristics of a mechanical system from some 
of the output from the system. Mathematically, such problems are ill-posed and have to be 
overcome through development of new computational schemes, regularization techniques, 
objective functionals, and experimental procedures. These methodologies are used to 
characterize the properties of a wide range of heterogeneous materials, including composite 
materials, porous media, colloidal dispersions, concrete mixtures, ceramics, metallic alloys and 
polymer blends (e.g., Ignacio 2014; Pitangueira and Silva, 2002). 
 
This paper is concerned with the uncertainty representation of highly heterogeneous materials. 
The objective is to characterise macroscopic material properties of heterogeneous materials 
from scarce macroscale experimental measurements. This is achieved by means of a stochastic 
inverse model, which allows to optimize the structure and macroscopic properties of 
heterogeneous materials. It can be applied to composite materials, but also could be applied to 
porous media, colloidal dispersions, and polymer blends. This powerful tool is embedded into a 
FE framework and presents several advantages with regard to already existing techniques as 
explained in the next section. The basic principle is to iteratively minimize a penalty function 
which expresses the discrepancy between the experimentally measured and the numerically 
computed response of the physical system under study. Therefore, the unknown set of 
parameters of the composite constituents are iteratively tuned so as to match experimental and 
computed values as closely as possible. The methodology can deal with both random 
uncertainties, on account of sample inter-variabilities, and epistemic uncertainties because of 
scarce availability of data. It has been successfully applied to a case study, while providing an 
uncertainty assessment and reduction for the optimal design of highly heterogeneous materials. 
 
 
2. Materials and methods. 
2.1. Stochastic structure and generation of material properties fields. 
The prediction of mechanical properties (elastic constants) of elastic heterogeneous materials is 
performed using a homogenization process, in which the material is idealized as being effectively 
homogenous in a Representative Volume Element (RVE) at the macroscopic level. This is despite 
the fact that these materials can be considered as heterogeneous media at the microscopic 
scale. This simplification is assumed because the high computational cost prevents the use of a 
fine mesh in numerical models to accurately represent microstructure heterogeneities. 
Furthermore, common composite material comprises three components: discontinuous or 
dispersed multiphases, the matrix as the continuous phase, and the fine interface area. Several 
composites materials with such complex microstructures are found in practice, for example, in 
biomechanics such as musculoskeletal tissue and bone, porous ceramics, porous scaffolds for 
tissue engineering, metal-composite joints in automotive and aerospace applications, and 
biomedical implants in orthopaedics (Ni et al., 2007).  
 
The material properties at the macroscale take into account the properties of all phases 
belonging to the heterogeneous material and their interaction within the RVE at the microscale. 
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In this sense, homogeneous values obtained depend on the multiphase structure. This is related 
to a combination of factors such as the size, random volume percentage of the constituent 
phases, their geometry and their spatial distribution (i.e., position and orientation), possible 
defects, and phase coalescence and connectivity inside the RVE. For instance, channels 
generated by phase connectivity may strongly affect the crack pattern characteristics. Such 
combination of factors leads to different local material properties, anisotropy (difficult to 
measure experimentally) and higher or lower heterogeneity.  
 
As a result, the heterogeneity of material properties (e.g., the elastic modulus) and its associated 
gradients takes and important role to fracture resistance and toughness. It has been 
demonstrated that gradients in the elastic modulus of a surface can affect the toughness of that 
surface. So far, several rigorous homogenization processes can be found in the literature (e.g., 
Libanori et al., 2012).  
 
The present methodology shares some similarities with the classical homogenization and mixing 
theories but goes a step further by overcoming some of their limitations and assumptions 
(Sánchez-Palencia, 1987; Oller, et al. 2005). Moreover, it also overcomes the limitations of 
analytical and statistical methods. Both methodologies assume the existence of representative 
volume elements (RVE) with homogenized material properties at the macroscopic level but have 
important differences. 
The main difference is that classical homogenization techniques are embedded into a stochastic 
inverse model in which the heterogeneity at each unsampled RVE is estimated by a local 
conditional probability distribution function (cpdf) as explained below. Therefore, the 
methodology can at a certain extent to represent the microscopic (or local) scale 
heterogeneities.  
 
In this sense the developed methodology, for the purposes of the data analysis and the 
correlation structure of the material properties, relies on an indicator conditional simulation 
technique (Gómez-Hernández and Srivastava, 1990). Using this technique, a set of material 
property realizations, named as seed fields, are generated, which provides stochastic 
simulations of a variable that honours the material property data. That is, the seed parameter 
fields are conditional to elastic modulus and Poisson’s ratio measurements, and also to 
secondary data, for instance, from expert judgement. Then, those data are defined into a series 
of indicators, which allow to estimate the conditional probability distribution function (cpdf) of 
the studied variable at any unsampled location using indicator kriging algorithms. A detailed 
explanation of these methodologies can be found in Goovaerts (1997).  
 
These cpdf and the indicator variograms allow defining the a priori stochastic structure of the 
seed parameter fields. In addition, the indicator variogram also allows to determine the spatial 
continuity of the upscaled parameter field (e.g., the elastic modulus). Furthermore, the 
methodology does not require considering for the spatial structure of the material property 
realizations the classical multi-Gaussian hypothesis, thus allowing to reproduce the coalescence 
and connectivity among phases and existing crack patterns that often take place in 
heterogeneous materials, being these features crucial in order to obtain more reliable safety 
factors and fatigue life predictions. Additionally, the methodology can vary the a priori stochastic 
structure during the iterative optimization process to constraint simulations to available data, 
to correct possible errors in the conceptual model and to integrate information not captured by 
conditioning data. 
 
Using these methodologies, we define a range of variation of the studied variable 𝑧, which is 

discretized into (K+1) categories using K threshold values 𝑧𝑘. We also define 𝒖𝜶 as a datum 

location; 𝑧(𝒖𝜶)  as a hard datum, which is a precise measurement of the attribute of interest. 
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Then 𝑖(𝒖𝜶; 𝑧𝑘) are binary (hard) indicator data. Then the indicator variables are built by 
comparing measurements 𝑧(𝐮𝛂) to a set of thresholds, zk. Then the local prior probabilities are 
binary indicator data (𝑖) defined as (e.g., Goovaerts, 1997): 
 

𝑖(𝐮𝛂; zk) = {
1 𝑖𝑓 𝑧(𝐮𝛂) ≤ 𝑧𝑘

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}     k = 1, … , K                                                                                    (1) 

 
Subsequently, any new particular simulated value is attained by straightforward MonteCarlo 
drawing. Eventually, each simulated value is added in the conditioning data set so that the next 
simulated values at other locations be conditioned to it. This technique has the advantage to 
impose the bivariate (2-point) statistics on the simulated field instead of defining a simple 
covariance model.  
 
This technique uses the experimental indicator semiovariogram (𝛾𝐼) to perform a data analysis 
and determine the spatial continuity of the upscaled elastic modulus, i.e., after the 
homogenisation process of the material properties within the RVE at the macroscopic level 
where the measurements are taken: 
 
𝛾𝐼(𝒉; 𝑧𝑘)

𝜎𝐼
2 ≈

1

2𝑁(𝒉)𝒖1−𝒖2=𝒉±∆𝒉
∑[𝑖(𝒖1; 𝑧𝑘) − 𝑖(𝒖2; 𝑧𝑘)]

2

                                                            (2) 

 

where 𝑧𝑘 are the thresholds values; 𝜎𝐼
2 is the indicator variance given as 𝜎𝐼

2 = 𝐹(𝑧𝑘)[1 −
𝐹(𝑧𝑘)], and 𝐹(𝑧𝑘) is the marginal cumulative distribution function; N(h) is the number of data 
pairs within the class of distance and direction; h is the separation vector; z(u1,2) represents a 
measurement, u1,2 is the vector of spatial coordinates of the individual 1 or 2, and ∆h is a 
tolerance vector.  
 
Therefore, the a priori stochastic structure of these seed parameter fields is defined by means 
of the cpdf and the indicator variograms, thus allowing the method to adopt any Random 
Function (RF) model. Then the methodology does not require considering for the spatial 
structure of the material property realizations the classical multi-Gaussian hypothesis, thus 
allowing to reproduce the coalescence and connectivity among phases and existing crack 
patterns that often take place in heterogeneous materials, being these features crucial in order 
to obtain more reliable safety factors and fatigue life predictions. 
 
 
2.2. Stochastic inverse model. 
The presented stochastic inverse method is used for the simulation of uncertain mechanical 
parameter fields (e.g., material properties such as the elastic modulus or Poisson’s ratio) 
conditional to measurements of those parameters and also to stress and strain data. The 
formulation of the method is based on a modified version of the gradual deformation method 
for constraining stochastic simulations to data (Hu, 2000). The flowchart of the method is 
presented in Fig. 1. As a first step, a set of material property realizations, named as seed fields, 
are generated as explained above. 
In the second step, the method performs an iterative optimization procedure based on 
successive non-linear combinations of seed realizations (Z): 
 

1 1

1 2 2 3 2 1 0

m m

m mZ Z Z Z with Z Z−

+= + + =                                                  (3) 

where subscripts represent seed fields and superscripts stand for conditional fields resulting 
from a previous non-linear combination. Then, for each iteration m, the field Zm-1, from the 
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previous iteration, is combined with 2 new independent realizations Z2m and Z2m+1. The method 
entails combining at least 3 conditional realizations at a time to assure the preservation of mean, 
variance, variogram and Z data in the non-linearly combined field. Therefore, it preserves not 
only the first and second order statistics of the experimental samples and approximates their 
marginal distribution, but also preserves the stochastic structure. A transformation for 
considering the non-Gaussianity feature is required. This is carried out by means of the 
probability fields, which lead to non-linear combinations of seed conditional realizations (Capilla 
and Llopis-Albert 2009). The probability fields are made up through the local cpdf, i.e., the 
probability density function obtained at each element of the discretization using the ensemble 
values of the seed fields. 
 
The coefficients must also fulfil the constraints in Eq. (4-5) to preserve the model structure 
during the iterative optimization process, i.e., the preservation of mean, variance, variogram 
and conditional data in the combined field [Ying and Gómez-Hernández, 2000]. Therefore, all 
seed fields are generated as equally probable non-multiGaussian realizations and share the 
same stochastic structure. 
 

 


1
+

2
+

3
= 1

(
1
)2 + (

2
)2 + (

3
)2 = 1





                               (4) 

where the parameter i must also comply with: 

 


1
= 1

3
+ 2

3
cos


2
= 1

3
+ 2

3
sin(− 

6
+) with  [− ]


3
= 1

3
+ 2

3
sin(− 

6
−)








                            (5) 

Each of these spatially variable Young’s modules fields can be considered as independent 
realisations and equally probable realizations of an underlying continuous Young’s modulus 
random field. 
 
In the third step, a numerical approximation of the stress (𝜎) and strain (u) fields is obtained 
using the Finite Element Method (FEM). For that purpose, the capabilities of the commercial 
Finite Element Analysis (FEA) software ANSYS (Version 18.2, ANSYS Inc.) were used. Therefore, 
linear and non-linear behaviours of material properties can be analysed. For practical 
engineering problems the only limitations regarding the constitutive behaviour about how 
materials respond to various loadings are those imposed by ANSYS. Note that the FEM is the 
most widely used numerical method for determining the overall mechanical response of 
heterogeneous materials to given solicitations.  
 
In this way, the procedure gradually deforms the seed material property fields to approximate 
the reproduction of stress and strain fields within the framework of a finite element approach.  
 
In the fourth step, at each iteration k of the method the parameter  is obtained by minimizing 
an objective function that penalizes the difference between measured and computed data. Note 

that the objective function only depends on one parameter ( ), thus avoiding a complex 
parametrization that may lead to numerical problems and high computational cost. Then the 

FEM provides, based on the optimized parameter   at each iteration of the procedure, the 
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computed stress ( ) and displacement u( ) fields. The penalty function to be minimized consist 
of the weighted sum of two terms: 
 

𝑝𝑘(𝜃) = 𝑝𝑢
𝑘(𝜃) + 𝑘 𝑝𝜎

𝑘(𝜃) = 

= ∑ [∑ 𝜔𝑢,𝑖,𝑡(𝑢𝑖,𝑡
𝑚 − 𝑢𝑖,𝑡(𝜃))2𝑚𝑢,𝑡

𝑖=1 + 𝑘 ∑ 𝜔𝜎,𝑗,𝑡(𝜎𝑗,𝑡
𝑚 − 𝜎𝑗,𝑡(𝜃))2𝑚𝜎,𝑡

𝑗=1
]

𝑁𝑡
𝑡=1                                       (6)                                                       

 
 

where 𝑝𝜎
𝑘(𝜃) and  𝑝𝑢

𝑘(𝜃) are the weighted sum of square deviations among observed and 
calculated values for stresses and displacements, respectively. They are function of the 

parameter 𝜃, for every time step t and measurement location i. The term 𝑘 is the trade-off 
coefficient between the conditioning data; k is the iteration number; Nt is the number of time 
steps with measurements; 𝑚𝑢,𝑡 and 𝑚𝜎,𝑡 are number of displacement and stress data at 

sampling time t, 𝜔𝑢,𝑗,𝑡  and 𝜔𝜎,𝑖,𝑡 stand for weight assigned to the i displacement and j stress 

measurement, at sampling time t, respectively; 𝑢𝑖,𝑡
𝑚  and 𝜎𝑗,𝑡

𝑚 are the measured displacement and 

stress at time t, while 𝑢𝑖,𝑡 and 𝜎𝑗,𝑡  refer to the computed values as a function of parameter 𝜃, at 

their corresponding sampling locations and times.  The weighting coefficients take into account 
the measurement and estimation errors and can be assigned to modulate the importance of 
different sampling locations and times, based on expert knowledge or other considerations. 
 
In the step 5 an iteration stop test is performed, which is based on a combination of three 
criteria: i) the value reached by the objective function; ii) relative decline of the objective 
function compare to its value in previous iterations; iii) and maximum number of iterations 
(kmax). When the iterations loop stops, a simulated field Z is achieved, otherwise the 
methodology proceeds to the next iteration k = k + 1, in step 2. 
 
 
3. Application to a case study. 
The inverse model is applied to the prediction of elastic properties of a theoretical 
heterogeneous material with multiphases and complex microstructures. This is exemplified with 
a case study involving a bending of a composite beam. A beam of length 4 m, and a height and 
width of 0.4 m, has been discretized using blocks of 0.1 m, so that the geometry is made up of 
640 blocks. Then the domain has been discretized using a RVE consisting of cubes 0.1 m, which 
are modelled using SOLID185 elements, as defined by ANSYS. The geometry selection tries to 
balance the computational cost with the size of the RVE to obtain a proper representation of the 
heterogeneous material. 
 
At each of these blocks, different material properties (i.e., Young’s modulus and Poisson’s ratio) 
are assigned. Several boundary conditions are applied. The beam is fixed at one of its ends in all 
DOF’s and on the free-end it is subjected to a bending moment My. This is obtained applying a 
pressure of 1 MPa at the top face of the blocks belonging to the free end. 
In order to define the stochastic structure and the spatial continuity for the generation of the 
material properties a sequential indicator simulation technique is used, as explained above. The 
seed fields are defined with the same variogram for all indicator categories, except for the 
extreme ones, which were defined with a 15% more continuity to allow the reproduction of the 
coalescence and connectivity among phases and existing crack patterns.  
 
A nugget effect of 0.02, a sill of 0.2, and ranges of 8, 4, 4 for the directions X, Y, and Z, 
respectively, were used. The Young’s modulus is defined to vary between 15 and 40 MPa divided 
into nine categories with their respective thresholds. A similar approach is used for the Poisson’s 
coefficient, which is defined to vary between 0.25 and 0.35. A variogram analysis of the indicator 

Page 7 of 22 AUTHOR SUBMITTED MANUSCRIPT - MRX-117066.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



8 
 

categories shows that a proper adjustment of the indicator semivariogram to data is achieved 
using an exponential model: 
 
𝛾𝐼(𝒉; 𝑧𝑘)

𝜎𝐼
2 = 𝑐0 + 𝑐1 · [1 − exp(−3‖𝒓(𝒉)‖)]                                                                                       (7) 

 
where c0 is the nugget, c1 is the structure sill, and r(h) is the corresponding separation vector for 
an equivalent isotropic variogram, which is achieved by orienting the correlation structure along 
the coordinates and scaling the ranges to unitary values. 
 
With this information, as a first step, an ensemble of 10100 fields -for both the elastic modulus 
(E) and Poisson’s ratio (ν)- are generated using the indicator sequential simulation code ISIM3D 
(Gómez-Hernández and Srivastava, 1990), but with being conditional to any data. These fields 
are referred as unconditional fields. One of these fields is chosen as the reference field, where 
different conditioning data are extracted. Then, as a second step, an ensemble of 10100 seed 
fields for both material properties are also generated using this technique. Note that since a 
hundred conditional simulations will be obtained, such large number of seed parameter fields 
are required. The generated seed fields are equally likely realizations, thus being plausible 
representations of reality since they display the same degree of spatial variability.  
 
Finally, all this information is implemented in an ANSYS model to obtain the mechanical 
response of the composite beam problem. Therefore, this mechanical response is computed 
with a FE approach and the a priori unknown material properties are iteratively updated in such 
a way that the computed results match the measured fields as closely as possible. 
 
The criterion to assess simulation results is based on the following performance measures, which 
compare computed values obtained using the FE approach with measurements: 

2

,

1

v

m

v i v i i

i mv

v v
m

 
 
 



= −   with v u or v= =               (8) 

The performance measure v   computed at a given iteration k (having combined a total of 2k+1 

seed fields), is defined as the square root of a weighted mean of the square departures of 

computed values ( v ) from the measured values ( v 𝑚) after iteration k; where
i  are the weights 

assigned to each type of measurement iv  ( i =1,…, vm ), which are defined to add up to the 

unity. Additionally, an assessment of the conditional and unconditional fields is carried out 

based on the average value, ,v m , and on the standard deviation, ,v a , of the performance 

measures defined in Eq. (8).  
 
 
 
4. Results and discussion. 
The developed methodology is intended to provide a stochastic characterization of a composite 
material through the analysis of multiple realizations in the framework of an inverse model. Fig. 
2 shows the effective parameters for the reference field together with its geometry shared by 
all seed fields. Fig. 2a depicts the spatial heterogeneity of the elastic modulus for the reference 
field, while Fig. 2b does the same for the Poisson’s ratio. Fig. 2c presents the displacement field, 
with a maximum value of 0.0156 m. Fig. 2d represents the von Misses stress field, which ranges 
from 0.072 to 22 MPa. Fig. 3 shows for the reference field the frequency distribution and the 
univariate statistics of the elastic modulus and Poisson’s ratio values. These values clearly show 
that non-Gaussian parameter fields were generated. Fig. 4 presents the values and spatial 
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location of conditioning data with regard to the elastic modulus (Fig. 4a), the Poisson’s ratio (Fig. 
4b) and the stress field (Fig. 4c). A total of 76 data are selected as conditioning data for each 
variable, which are uniformly distributed along the domain. 
 
Fig. 5 illustrates the frequency distribution and the univariate statistics for an ensemble 100 
fields of both unconditional and conditional fields.  It is displayed for both the elastic modulus 
and Poisson’s ratio values. For the conditional field the histogram exhibits a non-Gaussian 
distribution with a bias to higher and lower values, thus allowing to reproduce strings of extreme 
effective parameter values. This enables to take into account the coalescence and connectivity 
among phases and existing crack patterns that often take place in heterogeneous materials, 
being these features crucial in order to obtain more reliable safety factors and fatigue life 
predictions.  
 
On the one hand Fig. 6 shows, for an ensemble of a hundred unconditional realizations, both 
the ensemble mean (𝜇) and standard deviation (𝜎) fields. Fig. 6a presents that mean for the 
elastic modulus (𝜇E), while Fig. 5b depicts the standard deviation (𝜎E).  Fig. 6c and Fig. 6d do the 
same for the displacement (u) field (i.e., 𝜇u and 𝜎u). Again, Fig. 6e and 6f show the same for the 
von Mises stress (μ𝜎𝑉𝑀

, 𝜎𝜎𝑉𝑀
) field. On the other hand, Fig. 7 presents the same results for an 

ensemble of a hundred conditional realizations.  
 
Fig. 8 depicts for a given conditional realization the material property fields (i.e., elastic modulus 
and Poisson’s ratio), and its corresponding displacement and stress fields. This figure shows how 
the heterogeneity in the material properties is translated into the displacement and stress fields. 
 
In order to perform a comparison and to highlight the worth of the developed methodology the 
results of a homogeneous material property field are also provided. It uses the values for all 
blocks of the discretization of 27.5 MPa for the elastic modulus and 0.3 for the Poisson’s ratio. 
Fig. 9a illustrates for this homogeneous realization the displacement field, while Fig. 9b shows 
the stress field. 
 
Fig. 10 exhibits the field of deformations for a given realization, i.e., the field of optimal 
increments added to a certain unconditional field for obtaining a conditional simulation after 
the conditioning process consisting of k=50 iterations. In other words, is the perturbation 
induced at each element of the discretization of an unconditional parameter field during the 
iterative optimization process in order to obtain the conditional field. This number of iterations 
has been considered as adequate based on the convergence behaviour of the penalty function 
in the inverse model. 
 
Results reveal that conditional simulations of the material heterogeneity shows a good 
agreement between the estimated effective Young’s modulus and Poisson’ ratio and their 
corresponding values in the reference field. Additionally, significant differences can be 
appreciated between unconditional and conditional fields, which arise as a result of the gradual 
deformation process performed by the iterative optimization for constraining stochastic 
simulations to data. The perturbations clearly show that noteworthy changes in the parameter 
fields are induced (Fig. 10). Moreover, these differences can be observed throughout all the 
figures comparing unconditional and conditional fields. For instance, when comparing results 
with regard to those obtained with homogenous parameters fields (Fig. 9). This clearly shows 
how considering homogeneous parameter fields disregard important material properties 
features that lead to significant differences in their mechanical response. Also, when comparing 
Fig. 6a and Fig. 7a, it is clear how the ensemble average field of conditional simulations for the 
elastic modulus presents a wider range of values to come close to data.  
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Since the elastic modulus measures the degree of stiffness of a material, the inverse model leads 
to some parts of the domain become much stiffer (i.e., with high Young's modulus), while other 
parts shift to be more flexible after the deformation process. Therefore, the required loads to 
elastically deform the mechanical component and alter its shape also change. It is worthwhile 
mentioning that the degree of stiffness is highly important in designing products which can only 
be allowed to deflect by a certain amount (e.g., bridges) or, for instance, in springs. They are 
also important in transport applications, where the stiffness is required at minimum weight, and 
materials with a large specific stiffness are the most suitable.  In addition, the higher continuity 
for extreme values observed in the conditional fields reinforce the fact of the non-Gaussian 
feature (Fig. 7). 
 
In this sense, results also illustrates that although the inverse model is intended to preserve the 
mean, variance, variogram and conditional data in the combined field, it is able to partially 
modify the stochastic structure to come close to the available data, to correct possible errors in 
the conceptual model and to integrate information not captured by conditioning data. 
 
Furthermore, the inverse model tends to preserve the local cpdf’s (i.e., at each RVE of the 
domain) during the whole perturbation process of seed fields to attain conditional simulations. 
This can be observed in Fig. 10 and it is triggered by the significant perturbations carried out 
over the unconditional fields. This means that if there are zones of the domain with cpdf’s 
belonging to independent stochastic processes they will be still preserved. Hence, results show 
the connectivity of high and low values the elastic modulus, which may strongly influence the 
propagation and coalescence of the crack pattern and the effective fracture toughness. Then 
the methodology allows to determine local damages in the domain, which are characterize by a 
reduction in the effective elastic modulus. Furthermore, elastic moduli contrast between 
adjacent RVE can also significantly alter the effective toughness. The mesh independency is 
validated by the fact that the solution does not vary significantly even if the mesh is further 
refined, i.e., we have proved that the percentage difference between two successive meshes is 
negligible at the macroscale of the representative volume elements (RVE). Of course, a very fine 
mesh could lead to different results, but the computational cost would prevent the use of such 
mesh. 
 
On the one hand, it can be also concluded when comparing unconditional and conditional fields 
that a significant reduction of uncertainty is achieved, as shown in Fig. 6b and Fig. 7b. The 
standard deviation values of the conditional realizations for the elastic modulus present a drastic 
reduction. The values are zero in the spatial location of data, and near to zero in their vicinity. 
This fact leads to more reliable material properties estimation, which is translated into a 
valuable knowledge on the full-field displacements and stresses. However, a lower uncertainty 
reduction is attained for the ensemble displacement and von Mises fields (Fig. 6d and Fig. 7d, 
and Fig. 6f and Fig. 7f).  
On the other hand, the ensemble average differences between the unconditional and 
conditional fields present a different behaviour. That is, the ensemble average difference for all 
blocks of the domain is 4.2 MPa for the Young’s modulus field, 0.016 for the Poisson’s ratio, 
1.46E-04 m for the displacement and 0.30 MPa for the von Mises stress. 
Then differences for the elastic modulus (Fig. 6a and Fig. 7a) are remarkable but on the contrary 
the displacement and von Mises stress fields are hardly affected by the iterative optimization 
process. This does not mean the non-existence of changes during the conditioning procedure 
for a certain conditional field, instead it is because both unconditional and conditional 
simulations share the same stochastic structure (same variography), boundary conditions, 
geometry definitions, and are modelled with the same discretization and element type. 
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The maximum values considering all RVE of the domain also differ for the unconditional and 
conditional fields. The mean of the maximum values for the displacement of all unconditional 
fields is 1.46E-02 m, while the standard deviation of these maximum values is 9.95E-04 m. For 
the conditional fields is 1.45E-02 m, while the standard deviation is 2.61E-04 m. With regard to 
the von Mises stress for the unconditional fields the mean of the maximum values is 1.6E+07 Pa, 
while the standard deviation is 7.74E+05 Pa. For the conditional fields is 1.57E+07 Pa, while the 
standard deviation is 5.62E+05 Pa. Obviously, the maximum values take place at different spatial 
locations for the different realizations. 
 
Finally, Table 1 shows the performance measurements of the first unconditional and conditional 

field for both displacements
u and von Mises stresses

VM . Likewise, this table also presents, 

for the ensemble average of unconditional and conditional fields, the values of ,u m  and ,VM m . 

These results are obtained after 50 iterations of the inverse model and using a set of a hundred 
unconditional and conditional realizations. These values show a good agreement between 
computed and measured values. Furthermore, important reductions regarding the reference 
field in percentage terms are achieved. Regarding the mesh convergence results have shown 
that very few iterations are required since the problem is relatively linear. This proves the worth 
of the presented methodology and the appropriateness of conditioning to as much information 
as possible to reduce the uncertainty in the mechanical predictions.  
 
 
Table 1. Performance measurements of the first unconditional and conditional field for both 

displacements u and von Mises stresses
VM . Likewise, for the ensemble average of the 

unconditional and conditional fields ( ,u m , ,VM m ). In parenthesis is presented the percentage 

reduction of  regarding the reference field.  

 
u [m] 

,u m [m] 
VM [MPa] 

,VM m [MPa] 

Unconditional fields 3.96E-09 5.88E-09 29.8 23.55 

Conditional fields 1.44E-09 (63.63%) 1.34E-09 (77.21%) 16.47 (44.73%) 12.38 (47.43%) 

 
 
 
Note, that because of the few available data the a priori stochastic structure presents a high 
uncertainty. Therefore, a higher performance of the stochastic inverse model should be 
expected when more data were available, or a fine discretization was used. On the contrary, 
higher differences between unconditional and conditional realizations and lower reduction of 
the penalty function would be achieved if a wider range of material properties would have been 
selected or the unconditional fields would have been generated with different stochastic 
structure. Finally, the major limitation in the developed methodology is the difficulty in the 
conceptual definition of the a priori stochastic structure of seed parameter fields, which is 
defined by means of the local conditional probability distribution function (cpdf) and the 
indicator variograms. A wrong structure definition may lead to long computational times, i.e., 
many iterations would be needed to gradually change the a priori stochastic structure during 
iterative optimization process to constrain simulations to data. This process allows to come close 
to available data, to correct possible errors in the conceptual model and to integrate information 
not captured by conditioning data. 
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5. Conclusions. 
This article presents a stochastic inverse model for accurately computing effective material 
properties of heterogeneous materials with both intermingled and randomly dispersed 
multiphases. In this way the fully automated numerical tool optimizes the structure and 
macroscopic properties of heterogeneous materials by identifying a selected set of unknown 
material parameters. This is carried out by means of on non-linear combinations of material 
property realizations with a defined spatial structure for constraining stochastic simulations to 
data within the framework of a Finite Element approach.  
The methodology can be applied for the characterization and to the optimal design of 
heterogeneous materials, for instance, to better determine its degree of stiffness. The unknown 
material parameters in the finite element model are iteratively tuned so as to match the 
experimentally measured and the numerically computed variables as closely as possible. In this 
way, the inverse model allows characterising macroscopic material properties of highly 
heterogeneous materials from limited macroscale experimental measurements. Then it allows 
determining, in an accurate way, key structural parameters such as the effective modulus of 
elasticity and the Poisson’s ratio and the corresponding mechanical response. Therefore, it can 
help designers to properly analyse the effect of heterogeneity on fracture-damage behaviour 
and fatigue lifetime. As a result, it can reduce designing times and financial costs. In addition, 
the inverse material characterization does not require full-field measurement data on the whole 
domain and, thus leading to a computational efficient algorithm. Furthermore, the iterative 
optimization process presents important advantages and depends only of one parameter, thus 
avoiding a complex parametrization, numerical problems and high computational cost. In 
addition, because of using a FE approach, problems with complex geometries and boundary 
conditions can be efficiently analysed. 
The methodology has been successfully applied to a case study and includes an uncertainty 
assessment by means of Monte Carlo simulations, and the results have been obtained in a non-
multiGaussian framework. 
 
 
 
 
References 
 
-Albanesi, A., F. Bre, V. Fachinotti, C. Gebhardt (2018). Simultaneous ply-order, ply-number and 
ply-drop optimization of laminate wind turbine blades using the inverse finite element method. 
Composite Structures 184, 894-903.  
-Albanesi, A., V. Fachinotti, I. Peralta, B. Storti, C. Gebhardt (2017). Application of the inverse 
finite element method to design wind turbine blades. Composite Structures 161, 160-172. 
-Borkowski, L., R.S. Kumar (2018). Inverse method for estimation of composite kink-band 
toughness from open-hole compression strength data. Composite Structures 186, 183-192. 
-Baby, A., Nayak, S., Heckadka, S., Purohit, S., Bhagat, K., Thomas, L. (2019). Mechanical and 
morphological characterization of carbonized egg-shell fillers/Borassus fibre reinforced 
polyester hybrid composites. Materials Research Express 6(10), 105342. DOI: 10.1088/2053-
1591/ab3bb7. 
-Borovinšek, M., M. Vesenjak, Z. Ren (2016). Estimating the base material properties of sintered 
metallic hollow spheres by inverse engineering procedure. Mechanics of Materials 100, 22-30. 
-Capilla, J.E., C. Llopis-Albert (2009). Stochastic inverse modeling of non multiGaussian 
transmissivity fields conditional to flow, mass transport and secondary data. 1 Theory. Journal 
of Hydrolology 371, 66–74.  
-Chakraborty, A., P. Eisenlohr (2017). Evaluation of an inverse methodology for estimating 
constitutive parameters in face-centered cubic materials from single crystal indentations. 
European Journal of Mechanics - A/Solids 66, 114-124. 

Page 12 of 22AUTHOR SUBMITTED MANUSCRIPT - MRX-117066.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



13 
 

-Charmpis, D. C., G. I. Schueller, M. F. Pellissetti (2007). The need for linking micromechanics of 
materials with stochastic finite elements: A challenge for materials science. Computational 
Materials Science 41(1), 27–37. 
-Cooreman, S., D. Lecompte, H. Sol, J. Vantomme, D. Debruyne (2008). Identification of 
Mechanical Material Behavior Through Inverse Modeling and DIC. Experimental Mechanics 48, 
421–433. 
-Fu, Y.Z., Z.R. Lu, J.K. Liu (2013). Damage identification in plates using finite element model 
updating in time domain. Journal of Sound and Vibration 332, 7018–7032. 
-Gómez-Hernández, J.J., R.M. Srivastava, (1990). ISIM3D: an ANSI-C three dimensional multiple 
indicator conditional simulation program. Computer Geoscience 16(4), 395–440. 
-Goodarzi, A., M. Fotouhi, H.M. Shodja (2016). Inverse scattering problem of reconstruction of 
an embedded micro-/nano-size scatterer within couple stress theory with micro inertia. 
Mechanics of Materials 103, 123-134. 
-Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, 
NY, NY, 483 pp. 
-Herrera-Solaz, V., J. Segurado, J. LLorca (2015). On the robustness of an inverse optimization 
approach based on the Levenberg–Marquardt method for the mechanical behavior of 
polycrystals. European Journal of Mechanics - A/Solids 53, 220-228. 
-Hu, L.Y. (2000). Gradual deformation and iterative calibration of gaussian-related stochastic 
models. Mathametical Geology 32 (1), 87–108. 
-Ignacio, I. (2014). Different ways to consider heterogeneity in quasi-fragile materials using a 
version of lattice model. Procedia Materials Science 3, 499 – 504. 
-Khan, M., Srivastava, S., Gupta, M.K. (2019). Hybrid wood particulates composites: mechanical 
and thermal properties. Materials Research Express 6(10), 105323. DOI: 10.1088/2053-
1591/ab3835. 
-Kashfi, M., Majzoobi, G.H., Bonora, N., Iannitti, G., Ruggiero, A., Khademi, E. (2018). A New 
Overall Nonlinear Damage Model for Fiber Metal Laminates Based on Continuum Damage 
Mechanics. Engineering Fracture Mechanics. 206, 21-33. DOI: 
10.1016/j.engfracmech.2018.11.043. 
-Kashfi, M., Majzoobi, G.H., Bonora, N., Iannitti, G., Ruggiero, A., Khademi, E. (2017). A study on 
fiber metal laminates by using a new damage model for composite layer. International Journal 
of Mechanical Sciences 131–132, 75-80. DOI: 10.1016/j.ijmecsci.2017.06.045. 
- Kim, H., Kim, D., Ahn, K. (2015). Inverse Characterization Method for Mechanical Properties of 
Strain/Strain-Rate/Temperature/Temperature-History Dependent Steel Sheets and Its 
Application for Hot Press Forming. Metals and Materials International 21(5), 874-890. 
-Kouznetsova, V., W. A. M. Brekelmans, F. P. T. Baaijens (2001). An approach to micro-macro 
modeling of heterogeneous materials. Computational Mechanics 27, 37-48. 
-Li, G., F. Xu, G. Sun, Q. Li (2014). Identification of mechanical properties of the weld line by 
combining 3D digital image correlation with inverse modelling procedure. International Journal 
of Advanced Manufacturing Technology 74, 893–905. 
-Libanori, R., Erb, R.M., Reiser, A., Ferrand, H.L., Süess, M.J., Spolenak, R., Studart, A.R. (2012). 
Stretchable heterogeneous composites with extreme mechanical gradients. Nature 
Communications 3, 1265. 
-Lloyd, A. A., Z. X. Wang, E. Donnelly (2015). Multiscale Contribution of Bone Tissue Material 
Property Heterogeneity to Trabecular Bone Mechanical Behavior. Journal of Biomechanical 
Engineering 137(1), 010801. 
-Majzoobi, G.H., Kashfi, M., Bonora, N., Iannitti, G., Ruggiero, A., Khademi, E. (2018). Damage 
characterization of aluminum 2024 thin sheet for different stress triaxialities. Archives of Civil 
and Mechanical Engineering 18(3), 702-712. DOI: 10.1016/j.acme.2017.11.003. 
-Mehrez, L., A. Doostan, D. Moens, D. Vandepitte (2012). Stochastic identification of composite 
material properties from limited experimental databases, Part II: Uncertainty modelling. 
Mechanical Systems and Signal Processing 27, 484–498. 

Page 13 of 22 AUTHOR SUBMITTED MANUSCRIPT - MRX-117066.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



14 
 

-Mehrez, L., D. Moens, D. Vandepitte (2012). Stochastic identification of composite material 
properties from limited experimental databases, Part I: Experimental database construction. 
Mechanical Systems and Signal Processing 27, 471–483. 
-Mikdam, A., A. Makradi, Y. Koutsawa, S. Belouettar (2013). Microstructure effect on the 
mechanical properties of heterogeneous composite materials. Composites: Part B 44, 714–721. 
-Mortazavi, F., E. Ghossein, M. Lévesque, I. Villemure (2014). High resolution measurement of 
internal full-field displacements and strains using global spectral digital volume correlation. 
Optics and Lasers in Engineering 55, 44–52. 
-Ni, Y., M. Y.M. Chiang (2007). Prediction of elastic properties of heterogeneous materials with 
complex microstructures. Journal of the Mechanics and Physics of Solids 55, 517–532. 
-Pitangueira, R.L., R. R. Silva (2002). Numerical Characterization of Concrete Heterogeneity. 
Materials Research 5, 309-314. 
-Oller, S., Miquel, J., Zalamea, F. (2005). Composite material behavior using a homogenization 
double scale method. Journal of Engineering Mechanics, 131(1), 65-79. 
-Pottier, T., F. Toussaint, P. Vacher (2011). Contribution of heterogeneous strain field 
measurements and boundary conditions modelling in inverse identification of material 
parameters. European Journal of Mechanics - A/Solids 30(3), 373-382. 
-Rahmani, B., F. Mortazavi, I. Villemure, M. Levesque (2013). A new approach to inverse 
identification of mechanical properties of composite materials: Regularized model updating. 
Composite Structures 105, 116–125. 
-Saabye-Ottosen, N., Ristinmaa, M. (2005). The Mechanics of Constitutive Modeling. Elsevier 
Ltd, 700 pages. ISBN 978-0-08-044606-6. DOI: 10.1016/B978-0-08-044606-6.X5000-0 
-Sakata, S., F. Ashida, M. Zako (2008). Kriging-based approximate stochastic homogenization 
analysis for composite materials. Computer Methods in Applied Mechanics and Engineering 197 
(21–24), 1953–1964. 
-Samavati, N., D. M. Mc Grath, M. A.S. Jewett, T. van der Kwast, C. Ménard, K. K. Brock (2015). 
Effect of Material Property Heterogeneity on Biomechanical Modeling of Prostate under 
Deformation. Physics in Medicine & Biology, 60(1), 195–209.  
-Sánchez-Palencia, E. (1987). Homogenization techniques for composite media. Springer-Verlag, 
Berlin, Germany. -Sharifi, H., D. Larouche (2014). Numerical Study of Variation of Mechanical 
Properties of a Binary Aluminum Alloy with Respect to Its Grain Shapes. Materials 7, 3065-3083. 
-Sriramula, S., M. K. Chryssanthopoulos (2009). Quantification of uncertainty modelling in 
stochastic analysis of FRP composites. Composites Part A: Applied Science and Manufacturing 
40(11), 1673–1684. 
-Torquato, S. (2010). Optimal Design of Heterogeneous Materials. Annual Review of Materials 
Research 40:101-129. 
-Ying, Z., J.J. Gómez-Hernández (2000). An improved deformation algorithm for automatic 
history matching. Report 13, Stanford Center for Reservoir Forecasting (SCRF) Annual Report, 
Stanford, CA. 
-Wu, X., Y. Zhu (2017). Heterogeneous materials: a new class of materials with unprecedented 
mechanical properties. Materials Research Letters 5:8, 527-532. 
-Zhang, Z., C. Zhan, K. Shankar, E.V. Morozov, H. Kumar, T. Ray (2017). Sensitivity analysis of 
inverse algorithms for damage detection in composites. Composite Structures 176, 844-859. 
-Zottis, J., Theis, C.A., da Silva, A (2018). Evaluation of experimentally observed asymmetric 
distributions of hardness, strain and residual stress in cold drawn bars by FEM-simulation. 
Journal of Materials Research and Technology. DOI: 10.1016/j.jmrt.2018.01.004. 
 
 
 
 
 
 

Page 14 of 22AUTHOR SUBMITTED MANUSCRIPT - MRX-117066.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Fig. 1. Flowchart of the methodology. 
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Step 1: Generation of equally probable non-multiGaussian seed fields with a defined 

stochastic structure, Zi (i=0,…,m), conditional to parameter measurements - i.e., elastic 

modulus (E) and Poisson’s ratio (ν) - and secondary data. 

Step 2: For each iteration k built a non-linear combination of seed fields: 

Zk(θ) = Zk (Zk-1, Z2k, Z2k+1), with   ϵ [-𝜋, 𝜋] 

Step 3: Obtain a numerical approximation of the stress 𝜎( ) and strain u( ) fields 

using the Finite Element Method (FEM) within the interval [-𝜋, 𝜋] 

Step 4: Build and minimize a penalty function made up by the weighted sum of square 

deviations of 𝜎 and u, and corresponding measurements,  

𝑝𝑘(𝜃) = 𝑝𝜎
𝑘(𝜃) + 𝑘  𝑝𝑢

𝑘(𝜃). Obtain the optimum parameter ϑ𝑜𝑝𝑡 . 
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Fig. 1. Flowchart of the methodology.
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Fig. 2. Effective material property parameters for the reference field.
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Fig. 3. Frequency distribution and the univariate statistics for the material property

parameters (elastic modulus and Poisson’s ratio values) of the reference field.
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Fig. 4. Spatial location of conditioning data with regard to the elastic modulus (a),

the Poisson’s ratio (b) and the stress field (c).
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Fig. 5. Frequency distribution and the univariate statistics for an ensemble of a

hundred fields of both unconditional (a: elastic modulus and b: Poisson’s ratio) and

conditional fields (c: elastic modulus and d: Poisson’s ratio).
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Fig. 6. Ensemble mean (µ) and standard deviation (σ) fields for a hundred un-

conditional realizations: (a) ensemble mean of the elastic modulus field (µE), (b)

ensemble standard deviation of the elastic modulus field (σE), (c) ensemble mean

of the displacement field (µu), (d) ensemble standard deviation of the displacement

field (σu), (e) ensemble mean of the von Mises stress field (µσV M ), (f) ensemble

standard deviation of the von Mises stress field (σσV M ).
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Fig. 7. Ensemble mean (µ) and standard deviation (σ) fields for a hundred condi-

tional realizations: (a) ensemble mean of the elastic modulus field (µE), (b) ensem-

ble standard deviation of the elastic modulus field (σE), (c) ensemble mean of the

displacement field (µu), (d) ensemble standard deviation of the displacement field

(σu), (e) ensemble mean of the von Mises stress field (µσV M ), (f) ensemble standard

deviation of the von Mises stress field (σσV M ).
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Fig. 8. Material property fields for a given conditional realization: elastic modulus

(a), Poisson’s ratio (b); and its corresponding displacement (c) and stress fields (d).
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Fig. 9. Displacement (a) and stress (b) fields for and homogeneous material prop-

erties realization.
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1

Fig. 10. Deformation field for a given realization, i.e., the field of optimal increments

added to a certain unconditional parameter field at each element of the discretization

for obtaining a conditional simulation.
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