UNIVERSITAT POLITECNICA DE VALENCIA

DEPARTAMENT DE COMUNICACIONS

Integrated spectroscopic sensor fabricated in a
novel SisN, platform

Ph.D. THESIS
by
Gloria Micé Cabanes

Ph.D. Supervisors:
Dr. Pascual Muiioz Munoz
Dr. Daniel Pastor Abellan

Valencia, July 2020






UNIVERSITAT POLITECNICA DE VALENCIA

DEPARTAMENT DE COMUNICACIONS

Integrated spectroscopic sensor fabricated in a
novel SisN, platform

Gloria Mic6é Cabanes
Photonics Research Labs
ITEAM Research Institute
Universitat Politecnica de Valencia
Cami de Vera s/n, 46022 Valencia, SPAIN
glomica@iteam.upv.es

Ph.D. Supervisors:
Dr. Pascual Muioz Munoz
Dr. Daniel Pastor Abelldn

Valencia, July 2020



ii




A mi familia






“Nothing in this world should be feared, only understood.
Now is the time to understand more, so that we may fear less.”

“Nada en este mundo debe ser temido, sélo entendido.
Ahora es el momento de entender mds, para que podamos temer menos.”

Marie Curie






Agradecimientos

Han sido muchas las personas que me han acompaiiado en este recorrido y a las
que quiero agradecer su apoyo.

Los primeros en la lista son, por supuesto, mis tutores. Pascual Munoz y Daniel
Pastor, quiero daros las gracias a ambos por introducirme en el mundo de la
foténica integrada y brindarme la oportunidad de desarrollar esta tesis. Gracias
por compartir vuestros conocimientos conmigo, por vuestra paciencia, y por todo
el apoyo que me habéis demostrado durante este proceso. Me habéis ayudado a
hacer esto posible.

Quiero agradecer también a las dos personas que me iniciaron en la parte mas
préctica del trabajo el tiempo que me dedicaron. A Rocio Bafios, por ensenarme a
desenvolverme en el laboratorio; porque gran parte de lo que sé te lo debo a tiy a
todas las horas que compartimos delante de los setups. Y a Bernardo Gargallo, por
ayudarme con las primeras simulaciones y darme la base con la que he desarrollado
el trabajo de esta tesis. Dentro del equipo de VLC Photonics, no puedo olvidarme
de David Domenech y Juan Fernandez, que habéis estado siempre disponibles para
cualquier consulta, tanto en temas de laboratorio como de disefio.

Me gustaria dar las gracias a Carlos Dominguez y a todo el equipo del CNM,
por servirme de guia en todo lo referente a la fabricacién de PICs y por la confianza
y accesibilidad que me demostrastéis desde el primer momento.

Quiero agradecer a todos los miembros del antiguo GCOC y nuevo PRL con
los que me he cruzado en esta andadura, todos los momentos compartidos a lo
largo de estos afios: miles de anécdotas a la hora de la comida, opiniones diversas,
recomendaciones de series, viajes a congresos y alguna que otra cerveza... Ha sido
toda una suerte poder formar parte de este grupo y estar rodeada de tan buena
gente. Quiero hacer una mencién especial aqui a Luis, Jesis y Dani, que os habéis
convertido en mi familia del trabajo. Gracias de corazén por todas las risas dentro
y fuera de la universidad, por nuestros momentos de terapia y por vuestra amistad,
que es de las mejores cosas que me ha aportado este doctorado.

Y por ultimo, quiero dar las gracias a toda mi familia por el apoyo y carino
que me habéis mostrado tanto en esta etapa, como a lo largo de toda mi vida.
Gracias a mi padre y a mi madre por vuestra confianza, vuestro amor infinito y
vuestra fe ciega en mi. Y c¢cémo no, a mi companero de vida, Alex, que has sido
un pilar fundamental, ayudandome a sobrellevar los momentos duros y celebrando
todos mis éxitos. Gracias a todos por estar siempre a mi lado.






Abstract

This thesis is focused on the model, design and experimental demonstration of
an integrated spectroscopic sensor based on a modified Arrayed Waveguide Grat-
ing (AWG). The device has been designed and fabricated in a new silicon nitride
(SisNy) on silicon oxide (SiO2) platform developed in Spain. The work performed
for this thesis can be then divided into two main sections. In the first part, an
overview of the existing SigN4 platforms and their state of art is described, along-
side the report on the fabrication and characterization of our 300 nm guiding film
height SisN, platform. On the second part, the device named Integrated Op-
tical Spectroscopic Sensor (IOSS) is presented. The IOSS consists of an AWG
which arrayed waveguides are divided into two sub-sets engineered to replicate
the AWG channels. The waveguides of one of the sub-sets contain sensing win-
dows, defined as waveguides sections which core is in contact with the surrounding
media. Thus, the sensing is performed through evanescent field interaction with
the sample deposited. The waveguides from the second sub-set remain isolated.
Therefore, the device provides both sensing and reference spectra. The IOSS math-
ematical model, design procedure and proof of concept configured for absorption
spectroscopy are reported in this thesis.






Resumen

Esta tesis se ha centrado en el modelado, diseno y demostracién experimental
de un sensor espectroscopico integrado basado en un AWG (del inglés Arrayed
Waveguide Grating). El dispositivo ha sido disenado y fabricado en una nueva
plataforma de nitruro de silico (Si3N4) en oxido de silico (SiOz) desarrollada en
Espana. El trabajo realizado en esta tesis se puede dividir en dos secciones princi-
palmente. En la primera parte, se describe el panorama general de las plataformas
de SigN, existentes y su estado del arte, junto con la descripcién de los procesos
de fabricacién y caracterizacion de nuestra plataforma de SigN4 con 300 nm de
altura en la capa de guiado. En la segunda parte, se presenta el dispositivo bau-
tizado como Integrated Optical Spectroscopic Sensor (I0SS). El I0SS consiste en
un AWG cuyos conjunto de gufas de onda estd dividido en dos subgupos diseddos
para replicar los canales del AWG. Las guias de uno de los subgrupos contiene
ventanas de sensado, que estan definidas por secciones en las que el ntucleo de las
guias estd al descubierto y, por tanto, en contacto con el medio que las rodea. De
esta manera, el sensado se lleva a cabo mediante la interaccion del campo evanes-
cente con la muestra depositada. Las guias del segundo subconjunto permanecen
inalteradas. Por lo tanto, el dispositivo proporciona al mismo tiempo los espectros
de sensado y de referencia. El modelo matemético del IOSS, su procedimiento
de diseno y la prueba de concepto del sensor configurado para espectroscopia de
absorcion se describen en esta tesis.






Resum

La present tesi s’ha centrat en el modelatge, disseny i demostracié experimental
d’un sensor espectroscopic integrat basat en un AWG (de 'angles Arrayed Wave-
guide Grating). El dispositiu ha sigut dissenyat i fabricat en una nova plataforma
de nitrur de silici (SizNy4) en oxid de silici (SiOs) desenvolupada a Espanya. El
treball realitzat en aquesta tesi es pot dividir en dues seccions principalment. En la
primera part, es descriu el panorama general de les plataformes de SigN, existents
i el seu estat de ’art, juntament amb la descripcié dels processos de fabricacid i
caracteritzacié de la nostra plataforma de SigN4 amb 300 nm d’altura en la capa
de guiat. En la segona part, es presenta el dispositiu batejat com Integrated Opti-
cal Spectroscopic Sensor (I0SS). El IOSS consisteix en un AWG en el que el seu
el conjunt de guies d’ona esta dividit en dos subgrups dissenyats per a replicar els
canals del AWG. Les guies d’un dels subgrups conté finestres de deteccid, que estan
definides per seccions en les quals el nucli de les guies d’ona esta al descobert i en
contacte amb el mitja que li envolta. D’aquesta manera, la deteccié es duu a terme
mitjangant la interaccié del camp evanescent amb la mostra depositada. Les guies
del segon subconjunt romanen inalterades. Per tant, el dispositiu proporciona al
mateix temps els espectres de deteccié de referencia. El model matematic del
IOSS, el seu procediment de disseny i la prova de concepte del sensor configurat
per a espectroscopia d’absorci6 es descriuen en aquesta tesi.
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Chapter 1
Introduction

Although optics is a science that has been studied since ancient times, in the last
sixty years there have been key developments that have made the field evolve
significantly. The invention of the laser by Maiman in 1960 [2], the develop-
ment of semiconductors optical devices (as laser diodes and photo-detectors) by
Holonyak an Riesz in 1962 [3], or the fabrication of very cheap optical fibers with
low propagation losses by Kao and Hockham in the 1970s [4], are some of the most
relevant examples. The undergoing optics evolution required a term in which light
is treated in terms of photons, given the relevance of the interaction of light with
matter (from the point of view of the devices named above). Therefore, the term
“photonics” became known in conjunction with the invention of these devices.

Photonics is then the science and technology dealing with the generation, de-
tection and manipulation of light over the whole spectrum, from ultraviolet, over
visible through the near, mid and part of the far infrared (0.4-30 pm in wave-
length). It is considered on of the key technologies in the 21st century due to
the high impact it has had in multiple fields as telecommunications, health care
and life sciences, security, defence, lighting and illumination, optical metrology or
sensing, among others.

Within the field of photonics, the branch of integrated photonics basically arose
from the idea of using photons instead of electrons, creating integrated optical
circuits similar to those in conventional electronics. The term integrated optics
was first coined by S. Miller [5] in 1969, and since then, a lot of effort has been put
in the study and development of several integrated technologies based on different
materials combinations [6]. The implementation of multiple functionalities in a
single photonic circuit makes integrated photonics a very promising technology.
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PIC dies

Figure 1.1: Picture of an already diced 4 inch wafer of a CNM-VLC MPW run (left)
and an scheme of its cells/dies definition (right).

1.1 Integrated photonics platforms

Photonic integrated circuits (PICs) technology is becoming more and more stan-
dardized and reachable thanks to the generic manufacturing processes that have
been developed, and their access through multi-project wafer (MPW) runs [1].
MPW runs offer the opportunity to share design space on the same wafer between
several users. Thus, the total production expense is reduced by dividing the costs
of the mask and the fabrication process among the customers. The wafer de-
sign area is divided into several replicated sections (reticles number and size may
change between platforms), and then diced into the final PIC dies (Figure 1.1).

Among all the amenable materials to produce PICs, the main three employed in
generic integration platforms are Silicon on Insulator (SOI) [7], Indium Phosphide
(InP) [8] and Silicon Nitride (SiNx) [9]. Each of these materials is transparent in
a determined wavelength range, as shown in Figure 1.2, where the main photonics
applications (biophotonics, tele/datacom, and sensing) and their operating range
in wavelength are also depicted. Therefore, each application requires the use of
a specific material. As can be observed from Figure 1.2, ITI-V semiconductors
(such as InP, InAs, GaAs, GaN, AlGaAs, InGaAsP or InSb) are employed for NIR
applications, for which SOI material can be also used. The choice of using III-V
or SOI material is mainly given by the need to implement or not active elements,
as lasers, in the design. In turn, silicon nitride on silicon oxide is transparent in a
wider wavelength range (from visible to upper part of mid infrared). Technologies
employing SiO, are limited in the upper part of the spectrum to approximately
4 pm, which is due to the strong absorption that this material presents from
that point forward. For applications working in the NIR-MIR, other materials
combination are employed, as for example, germanium on silicon [10-14].

InP is the only technology allowing for monolithic integration of active de-
vices including lasers, semiconductor optical amplifiers (SOAs), photodetectors
and modulators, whith passive components [15,16]. It is considered to be a mod-
erate optical confinement technology, therefore the compactness of the devices as
well as the integration density are low. Foundries offering MPW runs in this tech-
nology are Fraunhofer HHI [17] and SmartPhotonics [18] SOI is a semiconductor
technology with high index contrast [7], resulting in small footprint circuits and
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Figure 1.2: Applications versus wavelength range, and the different material systems,
ITI-V semiconductor and Silicon photonics, commonly employed in generic
photonic integration (Reference [1], adapted with permission from OSA
Publishing).

high integration density on chip. The main advantage of this technology lies in
its compatibility with CMOS fabrication processes. On the contrary, the main
drawbacks of this high optical confinement technology are the phase errors and
propagation losses due to the interaction of the propagating mode with the side-
wall roughness. In addition, no optical sources or optical amplifiers can be imple-
mented, and the Pockels effect is poor, thus it is also not possible to implement
electro-optic efficient modulators. This, however, can be solved by integrating
III-V functionalities into the SOI platform [23], although this implies additional
fabrication steps. Some expamles of foundries offering SOI MPW runs are imec,
X-FAB, STMicroelectronics or GlobalFoundries. All these platforms are offered
by Europractice-IC broker [19].

Finally, SiNx technology is a dielectric based photonic technology which oper-
ates in a wide wavelength range, going from visible to mid infrared, with very low
loss [24]. This is a purely passive technology, therefore no optical sources, detec-
tors, amplifiers or modulators are availabe in the generic MPW processes. How-
ever, common integration of these components can be achieve thourgh hybrid or
heterogeneous approaches with separately fabricated InP or Si PICs. Foundries of-
fering SiNx MPW runs are LioniX (TriPleXT* technology) [20], LIGENTEC [21],
and for five years now, CNM-VLC foundry [22], in which we are working on.

This thesis is focused on the characterization and sensing applications on the
moderate confinement SizN,/SiOy waveguide platform developed by CNM-VLC,
amenable for applications from the VIS to the long NIR (400-3700 nm wavelength
range).

1.2 Silicon Nitride Platforms: State of the art.

In microelectronics, SizN4 material is widely employed as a passivation layer and
chemical barrier in integrated circuits, as well as complementary dielectric material
to implement extra components due to its electrical, thermal and chemical features
[25]. In the field of photonics, the first fabrication of SizNy films on a SiOs buffer
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on Silicon wafers operating at 632 nm was reported by Stulius and Streifer in
1977 [26]. In the following years, several works were performed in the visible
spectrum range employing straight Si3sN, waveguides, being a seminal contribution
the device presented by Heideman E.A. [27] in 1993. It was a partially integrated
Mach-Zehnder Interferometer (MZI) employed for immunosensing assays, in which
both arms were SisN,/SiO2 waveguides, whereas the optical couplers were external
to the photonic chip. A fully integrated MZI was presented four years later [28].
The interest in this technology went further in 2005, when new developed processes
and applications were developed in the near infrared (NIR) [29,30]. From 2008
to 2011, silicon oxynitride (SiONx) waveguides [31] and SizN4 waveguides [32-34]
were reported working in this same spectrum range. Most of the applications
operating in the NIR were presented for telecom related groups, which working
range of interest in wavelength is in the C-band (1550 nm). For this reason, all the
waveguide cross-sections were engined for moderate confinement (film heights >
100 nm), although in 2011, low confinement waveguides were also published (film
heights < 100 nm) [33]. Two years later, by 2013, researchers had implemented new
configurations of SizN4 technology for VIS applications [35,36]. Meanwhile, high
confinement waveguides (film heights > 400 nm) started to become more relevant
for the long NIR (NIR+) (wavelength > 2000 nm) [37-40]. In recent years, they
have emerged new contributions in moderate confinement techniques [41-43].

In Table 1.1 have been compiled all the strip silicon nitride waveguides pub-
lished in literature. The table collates information on the operation wavelength,
layer stack, cross-section dimensions, and when available, cut-off wavelength, pro-
pagation loss and bend radius. The main factors causing optical propagation loss
are two [29]: i) the surface roughness (film roughness and waveguide sidewall
roughness), and ii) the mode confinement, which depends on the operating wave-
length, waveguide core cross-section, as well as height and material of the layers
around it. Hence, propagation losses will be lower either when the propagating
mode is highly confined or the sidewall roughness is minimum.

The strip waveguides presented in Table 1.1 can be categorized in three groups
depending on their working spectrum range and optical confinement. The charac-
teristics of each strip waveguide group are discussed bellow, focusing on the NIR
range. However, it is worth noting the relevance of other types of waveguides
reported in [44-46], as are box waveguide and double strip waveguide (Figure 2.1,
BOXWVG and DSWVG respectively), with propagation loss and bend radius as
low as 0.1 dB/cm and 70 pm.

Low confinement waveguides were reported by Lionix and UCSB. The core
cross-section were ~100 nm height by ~2800 nm width, and they presented pro-
pagation losses as low as 0.09 dB/cm at 1550 nm for 0.5 mm bend radius, being
0.001 dB/cm the lowest loss demonstrated by these groups. Such low losses are
due to the fact that the mode is mostly propagated through the cladding and the
sidewall roughness is minimized,which is achieved by the large heights of cladding
and buried oxide (BOX) layers (7.5 pm and 8 pm respectively).

When the nitride layer height is between 150 and 400 nm, waveguides are
classified as moderate confinement waveguides. Several groups have characterised
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the operation of such waveguides in the NIR. Sandia [29] and UCD [42] reported
LPCVD Si3Ny guiding film heights of ~150-200 nm, with waveguide widths ~800—
2000 nm. They achieve 0.11-1.45 dB/cm propagation loss for BOX height up to
5.0 um. 3D SiNx on top of SOI working in the NIR are reported by IME and
University Toronto [47], employing LPCVD Si3sN, guiding film heights ~300-400
nm, with waveguide widths ~800-1000 nm, resulting into propagation loss of 1.30—
2.10 dB/cm at 1550 nm for BOX heights in between 2.0 pm and 5.0 ym. On the
other hand, moderate confinement waveguides have been also reported in the VIS
range employing similar film heights. University Aachen and University Gent
reported PECVD guiding film heights ~100-220 nm, waveguide widths ~300-800
nm PECVD guiding film loss 0.51-2.25 dB/cm at 532-600 nm for BOX height
~2400 nm.

For the case of high confinement waveguides, several groups have reported
works in the NIR and NIR+ : Kippengerg (EPFL) [37], Lipson (Cornell, then
Columbia) [38,40,48] and Agarwal (MIT) in 2013 [49], followed in 2015 by Tor-
res (Chalmers) [39] and companies such as LioniX [24] and LigenTec [50].These
waveguides are characterized by core heights between ~700 and 2500 nm, and
widths going from ~700 to 4000 nm. The propagation losses reported for BOX
heights in the range of 2.0-8.0 um are 0.04-1.37 dB/cm measured at 1550 nm,
and 0.16-2.1 dB/cm at 2600-3700 nm.
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1.3 Integrated sensors

Among the different photonic integrated circuits (PIC) applications, on-chip pho-
tonic sensors have generated increasing interest in recent decades, since the early
1980s [55]. The growing popularity of optical sensors was due to their high sen-
sitivity, fast response and the possibility to perform real-time measurements [56].
These features were enhanced when optical sensors were implemented as integrated
devices, as this provides, in addition to the characteristics mentioned above, ro-
bustness, reliability, miniaturization and the possibility of mass production.

As it was explained in previous section, Silicon Nitride on Silicon Oxide tech-
nology platforms operate along a broad wavelength range, from visible to the mid-
infrared (400-3700 nm). This is an interesting spectrum range, from a light-matter
interaction perspective, since electronic transitions and molecular vibrations show
emission/absorption peaks in this range. Moreover, the chemical, mechanical and
thermal stability characteristics of Si3Ny technology [57] make it the most appro-
priate platform for bio/chemical and medical sensing purposes. In recent years,
various optical applications have been published employing SisN, PICs, as for ex-
ample, super-resolution microscopy, labelled and label-free bio-sensors, cytometry
or OCT, to name a few [58].

For these applications, diverse optical measurement techniques are employed
such fluorescence, refractometry, emission, absorption or polarimetry, as reported
n [59]. The main employed detection technique in optical (bio/chemical)-sensors
is the evanescent field sensing [59]. This technique analyses the variation of the
propagation optical properties (i.e. refractive index) due to the interaction of the
evanescent field of the device with the sample under study. The analysis may be
perform either on the real part (frequency/wavelength interrogation) or the imag-
inary part (intensity interrogation) of the refractive index. This kind of detection
and interrogation methods are employed in Surface Plasmon Resonance (SPR)
sensors [60] and sensors based on planar waveguides, where the core of the wa-
veguide is in direct contact with the sample. For the latter, diverse architectures
have been applied as: Bi-modal Waveguides (BiWG) [61], Mach-Zehnder Inter-
ferometers (MZI) [62], Ring Resonators (RR) [63], grating couplers [64], among
others. In many occasions, an optical spectrum is acquired, since induced changes
in the on-chip optical signals are reflected in the power spectral density [65]. In
photonics integrated circuits, there are two building blocks employed as spec-
trometers: the Arrayed Waveguide Gratings (AWG) [66] and Echelle Diffraction
Gratings (EDG) [67]. The EDG is mainly employed for compact device designs,
while AWG is used in a large variety of applications due to its reconfiguration
capability [68]. AWG devices have been mainly employed for optical telecom ap-
plications, operating at 1530-1565 nm wavelength range. However, since sensing
applications cover a much wider spectrum range, AWG spectrometers working
from the visible (620 nm) [69] up to long near-infrared wavelengths (5 pm) [70]
have been demonstrated. Optical spectrometers sensors are mainly applicated for
Raman [71] or absorption spectrum analysis [69,72,73]. In the case of absorption
spectroscopy applications, the sensor for glucose analysis presented in [73] employs
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a broadband source and a tunable filter to perform the spectroscopic study. On
the contrary, devices presented in [69] and [72] take advantage of the intrinsic de-
multiplexing feature of AWG to avoid the use of bulky instrumentation to realize
the analysis. As can be seen from these examples, in order to perform the spec-
troscopic analysis of the sample, an integrated spectrometer is built together with
the sensing architecture.

The Integrated Optical Spectroscopic Sensor (IOSS) presented in this thesis
combines the sensing and spectral analysis in a single device. The IOSS is based
on the Interleave-Chirp AWG (IC-AWG), reported by C. Doerr in 1998, which is
applied for coherent optical communications [74-76]. The proposed device pos-
sess two clear advantages when compared with the architectures above discussed.
Firstly, IOSS allows reference and sensing simultaneous measurements, hence, the
results are not affected by the surrounding conditions.Relative measurements be-
tween the reference and sensing channels are always taken as the final result, as
done in [73]. And secondly, sensing and spectral measurements are performed in
a single device so the complexity of the PIC is reduced.

1.4 Objectives

The general objective of this Ph.D. is to bring the features of conventional bulk
spectrometers into a compact PIC spectrometer sensor, of application on the tele-
com and visible wavelength range based on a new Silicon Nitride technology. To
accomplish this goal, the following sub-objectives are considered:

1. The support in the development of a new SizNy platform with the charac-
terization of the technology.

2. The development of the analytical model describing the operation of an
integrated spectroscopic sensor (I0SS), as well as its design procedure.

3. The design, fabrication and characterization of the IOSS proof of concept as
a validation of the model and verification of the sensing capabilities of the
device.

1.5 Thesis outline

The thesis is structured in the following chapters, in line with the defined objec-
tives:

e Chapter 2: the description of the Silicon Nitride technology employed in this
thesis is detailed. The characterization of the platform is performed employ-
ing different test structures. The implementation of fabrication variations
and extra step processes implementation is also analysed to find the best
fabrication procedure.
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e Chapter 3: the concept of the IOSS is presented, followed by its mathematical
modelling based on Fourier optics. The design procedure is derived from the
model. Finally, two reference designs working in the visible and mid infrared
wavelength ranges are reported.

e Chapter 4: the design and characterization of the IOSS proof of concept is
reported. Several AWG and IOSS configurations are fabricated to analyse
in deep the response of the device. A second design and fabrication iteration
is performed to improve the features of the device.

e Chapter 5: the thesis conclusions and open research lines are presented.



10

1.5.

Thesis outline




Chapter 2

Silicon Nitride Photonic
Integration Platform

The general objective of this chapter is to present the Silicon Nitride platform on
which all the devices of this thesis have been manufactured. The methodology and
results of the optical characterization of the technology are reported. The chapter
is structured as follows: the motivation and main characteristics of our SizgNy
platform are summarized in Section 2.1, while the fabrication process is explained
in detail in Section 2.2. The optical characterization of the technology is described
along Sections 2.4, 2.5 and 2.6, where the setup and test structures employed are
described, as well as the physical parameters established as figures of merit. The
impact on the optical properties depending on fabrication processes have been also
estudied in Section 2.7. Finally, the chapter conclusions are presented in Section
2.8.

2.1 Silicon nitride platform 300 nm film height.

The SizgN4 platforms state of the art compiled in Table 1.1 is summarized in Table
2.1 in terms of the confinement and wavelength range. Each of the platforms will
be chosen depending on its suitability for the desired application. Low confinement
waveguides are usually employed in linear applications, such as optical delay lines,
whereas high confinement waveguides aim at having the lowest non-linear effects
threshold as possible. The aim of this project was to develop a versatile platform
operating in a wide range of the spectrum, and therefore being able of covering
diverse photonic integrated applications in the field of bio-photonics, tele/datacom
and sensors.

High confinement waveguides operating in the NIR and NIR+ range, are mainly
employed for non-linear optical signal processing, as for example frequency comb
and super-continuum generation [38,77-79]. Nevertheless, there are also non-linear
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Confinement h (nm) Range Wavelength (nm) Loss (dB/cm)

Low 80-100 NIR 1550 0.02-0.09
Moderate 150-400 NIR 1270-1600 0.11-1.45
High 400-1200 NIR 1550 0.04-1.37
High 950-2500 NIR+ 2600-3700 0.16-2.10
Moderate 100-220 VIS+ 532-900 0.51-2.25

Table 2.1: Summarized comparison of silicon nitride strip waveguide platforms.

applications reported in the VIS+ range, employing moderate confinement wave-
guides [80]). From a fabrication perspective, core heights of this last configuration
(100 - 400 nm) can be obtained in a single deposition step, which reduces the risk
of nitride cracking due to stress issues (see for instance [40]).

When the application requires low propagation losses, low or high confinement
platforms are more suitable. As it was mentioned in the previous section, the
propagation loss is highly related with interaction of the propagating mode with
sidewall roughness [29]. For both low and high confinement waveguides, the mode
interaction with the sidewall is minimal, so propagation losses will in turn be
low. In terms of polarization, low confinement platforms are strongly polarization
dependent (i.e., only one polarization is guided as for instance in [34]), whereas
high confinement ones suffer of multi-modal effects-lateral and vertical—(cf. [81]).

As can be seen, low and hight confinement platforms are more appropriate for
applications working in a specific wavelength range. By contrast, moderate con-
finement platforms can host applications in a wider spectral range, for which they
are considered versatile platforms, at the expense of reduced performance. Very
recently, the key actors providing silicon nitride foundry services on open-access
scheme have reported their technologies on a review paper [82]. Considering all the
above and having in mind our objective, we developed a SigNy on SiOs platform
with SigNy guiding film height of 300 nm covering a range of the spectrum from
400 to 3700 nm. The fabrication process and characterization of the technology
around 1550 nm is reported in following sections.

2.2 Fabrication Process.

The fabrication process starts by growing a 2.5 pm thick SiOy buffer by thermal
oxidation of a Si wafer of 100 mm (4 inch). Following, a 300 nm layer of SigNy is
deposited by low-pressure chemical vapour deposition (LPCVD). In the next step,
the waveguide cross-section are patterned by photo-lithography employing an i-line
stepper, which minimum feature size is 500 nm. Afterwards, the definition of the
core cross-section is accomplish by reactive ion etching (RIE) of the silicon nitride
film. Two different waveguide cross-sections can be implemented by controlling the
etching depth. If the silicon nitride layer is completely etched, a strip waveguide
structure (DEWVG in Figure 2.1) is formed. If the etching is done partially, a rib
waveguide structure (SHWVG, Figure 2.1) is obtained (300 nm/150 nm). Lastly,
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Figure 2.1: Silicon Nitride photonics platform cross-sections.

a SiOy cladding of 2 pum thickness is deposited by means of Plasma Enhanced
CVD (PECVD), whereby the guides are fully defined. After the waveguide fabri-
cation steps, two additional processes allow to fabricate thermo-optic tuners, and
to create air wells by selectively etching away the cladding oxide. Metal heaters
(TOMOD, Figure 2.1) are defined by lift-off process. Firstly, a sacrificial layer
is deposited and an inverse pattern is created. Then, the metals are deposited,
by sequential evaporation, obtaining a 10 nm thick Chromium layer under 90 nm
thick Gold layer. Finally, the sacrificial layer together with the surplus material
is removed. The air wells (TRENCH, Figure 2.1) generate areas where the wave-
guide core is in direct contact with the surrounding media. TRENCH structures
are opened into the SiO4 cladding layer down to the bottom of the silicon nitride
guiding layer. They are firstly defined via photo-lithography, and then created
by RIE in two etching steps, to reduce the waveguide top damaging risk. These
structures are mainly employed for (bio)chemical sensors applications [83].

2.3 SizN, waveguide simulations.

The guiding properties of the strip (DEWVG) and rib (SHWVG) waveguides
were simulating employing a mode solver software (Synopsys Inc., OptoDesigner
Software, [84]). We firstly determined the effective refractive index for the first
order mode and the two polarizations around 1550 nm wavelength. This was done
for both waveguides cross-sections with film height and waveguide width of 300
nm and 1000 nm respectively. The results are shown in Figure 2.2-a. For the
case of the SHWVG cross-section, the TM mode does not propagates along the
waveguide.
The group refractive index, which is derived from:

dnesy(A)
d\ A=Xo

where ) is the wavelength of the propagating light, was also obtained 2.2-(b). The
propagation mode profiles for TE and TM polarizations at 1550 nm wavelength

ng = nefr(Ao) = Ao (2.1)
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Figure 2.2: Effective refractive index (a), group index (b) and confinement factor (c)
for TE and TM polarizations for strip (DEWVG) and rib (SHWVG) wave-
guides. Figures (d), (e) and (f) represent the waveguide cross-section and
the mode profile at A = 1550 nm for fundamental TE and TM modes for
both waveguides cross-sections. T'My mode in SHWVG waveguides is not
propagated at this wavelength range.

are represented in Figures 2.2-c and 2.2-d) for both DEWVG and SHWVG cross-
sections.

2.4 Measurement setup and test structures.

In order to asses on the optical performance of the platform, several type of test
structures (TS) were designed and characterized using an Optical Frequency Do-
main Reflectometry (OFDR) setup [85-88]. This setup is composed of two im-
balanced MZIs in standard single-mode fiber, connected in parallel and fed by a
scanning Tunable Laser (TL), Figure 2.3. The device under test (DUT), in our case
the SizNy chip, is placed in the upper MZI (DUT-MZI). In/out coupling can be
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Figure 2.3: Optical frequency domain reflectometry setup. Abbreviations: Device
under test (DUT), Reference (REF), polarization beam splitter (PBS).

done either through lensed fibers or microscope objectives. A Polarization Beam
Splitter (PBS) is connected to the output fiber and before the photodetectors to
acquire both interferograms. Finally, the signals are collected by a Digital Acquisi-
tion (DAQ) card. This disposition prevents the destructive interfering effects due
to polarization missalignment between both MZI arms, as described in [86,87]. The
lower MZI is employed as triggering (TRIG-MZI), since the DUT-MZI response is
resampled (offline) by points provided by TRIG-MZI interferogram. This ensures
that the DUT-MZI response is self-referenced against possible nonlinearities of the
continuous TL scan. As described in [85-87], the time response of the DUT (am-
plitude and phase) can be isolated by applying the Inverse Fast Fourier Transform
(IFFT) to the DUT-MZI interferogram. The TS employed were spiral wavegui-
des, Mach-Zenhders interferometers and single bus-coupled ring resonators. The
spiral waveguides were employed, alongside the setup in reflection mode (an addi-
tional circulator is required, Figure 2.3) to obtain the propagation loss. In turn,
the ring resonators are useful to isolate pulse recirculation in the interferograms,
and derive the group index, (ny), and Group Velocity Dispersion (GVD) from the
progressively broadened pulses [89].

2.5 Propagation Loss.

We employed two different TS to characterise propagation losses: i) spirals wave-
guides, through OFDR backscattering measurements and, ii) MZIs, via its trans-
mission spectrum [90]. Figure 2.4-a shows the spiral waveguide structure, com-
posed by two smaller spirals of 1 and 2 cm long respectively and 1 pm width
(measured at the top surface of core waveguide). This width ensures that the
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Figure 2.4: Test structures devised for the characterization of the propagation loss.
(a) Spiral waveguides devices. (b) optical frequency domain reflectometry
trace from spiral waveguide. Light blue trace represents the direct mea-
surement, while grey shaded area corresponds to the range selected for a
linear fit, which is shown in the figure as dashed red line. (c) Mach-Zehnder
Interferometer device.

fundamental mode is the only mode supported and it is fixed in all the designed
devices. The bend radius was settled to 150 pm to minimize bend losses, which
were negligible according to the full-vectorial mode solver simulations. An OFDR,
acquired measurement in reflection mode is shown in Figure 2.4-b. the highest
peaks appearing on the outermost parts of the trace represents the in (left) and
out (right) coupling of light. Propagation loss was calculated from the linear fitting
of the center part of the trace (black color). These measurements were performed
without polarization controller, therefore the propagation loss obtained should be
taken as an illustrative value, since it is the average of both polarization over
the wavelength range swept. Several samples were characterised showing good
repeatability in the results.

We employed the MZI test structure to cross-check the information obtained
from the spirals. A microscope picture of the designed MZI is shown in Figure 2.4-
c. Bend radius was settled to 50 um in this occasion to reduce the device footprint.
The path difference was designed to be only in the straight sections. The couplers
employed in the MZI layout are 2 x 2 50:50 MMI couplers. The four transmission
spectra (input-output combinations) were acquire using a broadband Amplified
Spontaneous Emission (ASE) source and an Optical Spectrum Analyser (OSA) as
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detector, as described in [90].

Propagation loss derived from both devices was in the range of 1.2-1.6 dB/cm.
As it will be discussed in Section 2.7, further fabrication steps can be applied
to improve the guiding properties, as for example SigNy thermal annealing, which
reduces de propagation loss in the optical telecom C-band [29]. Taking into account
that no such processes have been applied in this fabrication run, the propagation
loss in in agreement with similar waveguide cross-sections, cf. [32,47] and Table
1.1.

2.6 Group Index and Dispersion.

A Ring Resonator (RR) was the test structure selected to obtain group index
and dispersion parameters. Figure 2.5-a shows a picture of the fabricated device.
It is a single bus RR coupled through a 2x2 50:50 MMI coupler to a straight
waveguide. Bend radius was settled to 150 um, since the effective index versus
wavelength relation of these bends is similar to a straight waveguide (according
to full-vectorial mode solve simulations), at the same time as keeping the device
foot-print as compact as possible. The total length of the ring perimeter was
6.63 mm.

The OFDR measurements were performed with the TL scanning at a speed
of 40 nm/s along 80 nm (span), centered at 1550nm. Following the procedure
explained in Section 2.4, the time response of the device (|h(t)|2 = |hs|* + |hp|?)
was obtained, as shown in Figure 2.5-b. Each pair of peaks of the trace correspond
to multiple recirculations of TE and TM propagating modes inside the RR. It
can be seen how the peaks corresponding to TE and TM are separated in time,
due to the difference between their effective refractive indices (and, consequently,
group index difference). Group index values can be calculated knowing the time
difference between consecutive peaks and the cycle length (perimeter) of the RR.
The experiment reported group indices of 1.892 and 1.717 for TE and TM modes,
respectively.

To cross-check these results, the group index was also inferred from MZI spectra
transmission measurements for TE mode. Group index was in the range of 1.90—
1.92, which is in agreement to that obtained through OFDR measurements. The
TE and TM propagation delay difference leads to a value of, |nZ;E — nZM | = 0.168.

The broadening effect caused by the Group Velocity Dispersion (GVD) can
be already noticed in 2.5-(b). This effect is more noticeable when each peak is
isolated and responses from consecutive pulses are compared. Figure 2.5-¢ shows
the first four contributions of TE mode. These responses are transformed into the
frequency domain to calculate the group delay [86,87]. A linear fitting between
1514 and 1594 is done to obtain the dispersion parameter D (ps/(nm-m)) of each
contribution (Figure 2.5-d).

We expected the D values to be constant, however the results showed certain
variability. This suggests that the measurement setup dispersion was embedded
in the result. To decouple setup and device dispersion parameters, we compared



18

2.7. Fabrication Process Steps Variations.

@) (dB)

Ihf? (dB)

-10
-20
-30
-40
-50

€050

10 . TMT
i

e———C—

Group Delay(ps)

Figure 2.5:

800
Time (ps)

(b)

— D= -1.2055 ps/(nm°m)|

os
Il T | —orsmspsomm |
o il

— D= -1.3708 ps/(nm°m)|
D=-1.3819 ps/(nm'm)|
1 02

|— D= -1.4394 ps/(nm*m)

|~ D= -1.4271 ps/(nm*m)

D= -1.4223 ps/(nm*m)

Group Delay(ps)

| l

O e e T T Teo T T 10

Wavelength(nm) Wavelength(nm)

(d) (e)

(a) Ring resonator test structure devised for the characterization of the
group index (ng) and the group velocity dispersion (GVD), (b) Optical
Frequency Domain Reflectometry (OFDR) trace from the ring resonator,
with TE and TM pulses labelled, (c¢) TE pulses sliced and collated, ex-
hibiting broadening due to GVD, and (d,e) group delay and corresponding
dispersion.

consecutive RR contributions per pairs to isolate a single round trip along the ring.
This comparison is represented in Figure 2.5-e, where a linear fit was performed
to obtain the dispersion over the wavelength range of interest. This results into an
average dispersion of D = —1.43 ps/(nm-m) with a relative error of £1.5%. From
these values it is straightforward to obtain the dispersion offset from the set-up as
(D - L)setup = 0.0014467 ps/nm.

2.7 Fabrication Process Steps Variations.

The propagation properties of the waveguides can be improved by applying extra
steps to those already described in Section 2.2, during the fabrication process. In
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D1 2.5 299/157 yes yes 227 [ 176 -1.98 202 [ 1.94 -L.14
D2 2.5 301/155 yes no 166 | 1.71 -2.07 120 | 195 -L11
D3 2.5 301/156 no no 189 | 176 211 135 | 1.95 -0.95
D4 2.5 300/155 no yes L76 | 178 -1.98 197 | 1.95 -0.88

Table 2.2: Design of experiments and results for deeply and shallowly etched wavegui-
des. (n.a. data not available)

other to find the best fabrication recipe, different manufacturing processes steps
were investigated. This was done through several fabrications runs in which the
processes were progressively modified to finally compare the results of each one of
them. The processes/modifications that were investigated were three: i) variation
of buried oxide (BOX) layer height, ii) thermal oxidation of the SizgNy layer and iii)
Rapid Thermal Annealing (RTA) of the SiO5 cladding. The thermal oxidation of
the SizNy layer was performed after etching and prior cladding deposition, with the
aim of reducing the sidewall roughness. It should be noted that the SizNy cross-
section is slightly reduced after oxidation, since oxynitride is grown at the expense
of SigNy4. On the other hand, RTA is a densification process, which generates a
increase of the refractive index, as well as a reduction of the cladding height.

All the information about the different wafers fabricated and the processes
applied to each one of them, is collected in Table 2.2. The experiments were
performed in four different fabrication runs (A, B, C and D). These have been
developed at different times, so all the samples among them can be considered
fully independent along all the process steps, described in the previous section,
from deposition, through patterning, dicing and test.

The first column of Table 2.2 details the fabrication run (letter) and the wafer
(number) analysed. Second and third columns specify the substrate (h0) and core
waveguide heights respectively. hl and h2 refer to the DEWVG and SHWVG core
cross-section heights, respectively. Four and fifth columns specify either if the
extra processes described above (oxidation, OX, and RTA) have been applied or
not. Sixth to ninth columns report the average values of propagation loss, group
index and GVD for DEWVG waveguides obtained from TS measurements. Same
parameters are depicted for SHWVG waveguides in the last three columns. Run
A wafers present lower BOX height (h0 = 2.0pum) than the rest of the wafers
(h0 = 2.5um). In turn, runs A and C have slightly shorter SisN4 core height for
both DEWVG and SHWVG cross-sections.

2.7.1 Propagation loss discussion.

Propagation loss values detailed in Table 2.2 are graphically represented in Fig-
ure 2.6 for ease of comparison. In case of runs A and B, only strip (DEWVG) wa-
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Figure 2.6: Values of propagation loss coefficient for DEWVG and SHWVG wavegui-
des, for the different samples of Table 2.2.

veguides were studied. The discussion for each waveguide cross-section (DEWVG
and SHWVG) will de done separately. Regarding DEWVG waveguides, wafers
A1, B1 and D3 can be taken as reference samples, since no additional processes
(SisNy OX or Cladd. RTA) have been applied to them. Among these three refer-
ence samples, Al is the one presenting the largest ag., which can be attributed to
its shorter BOX height (h0).

By comparing A1-A2, B1-B2 and D3-D2 wafers, it is clear that the Si3Ny oxi-
dation results into a reduction of the propagation loss, which is in good agreement
with previous works published about this technology [29]. The influence of oxida-
tion in the propagation loss is comparatively presented in Fig. 2.7. Both show the
OFDR measurement of spiral waveguide test structures for a wafer not subject to
oxidation (c) and other where oxidation was applied after etching the waveguides
(d). Two effects can be clearly appreciated. The trace in (c¢) shows intensity peaks
along the spiral (i.e., most relevant between z = 0.5 and z = 2.5 cm). The ex-
amination with a scanning electron microscope (SEM), revealed the waveguides
had severe damage on the top edges and sidewalls 2.7-(a,b), likely due to high
energy centers caused by resist concentration points during etching. These peaks
are removed with the oxidation, confirmed by SEM imaging of the sample, for
which the OFDR measurement is shown in Fig. 2.7-(d). Furthermore, the propa-
gation loss difference between (b) and (c), obtained by comparing the fitted lines,
is approximately 1 dB lower for the oxidized wafer.

Runs B and D show similar results. However, since the fabrication process
steps were progressively applied in run D wafers, clearer conclusions can be drawn
from them. The results from direct RTA process application can be observed by
D3 and D4 wafers comparison. When only the RTA process is applied, ag. slightly
decreases. However, when RTA is applied after oxidation (OX) process (D2-D1
comparison), the propagation loss is worsened, which may be due to the residual
hydrogen that is diffused from the cladding PECVD SiO; to the SizNy layer.
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Figure 2.7: SEM pictures of a waveguide section without (a) and with (b) oxidation
of the SizgNy layer after etching; OFDR measurement for spiral waveguides
no subject (c¢) and subject (d) to oxidation process.

The lowest propagation loss for strip waveguides is achieved by wafer C1. This
sample can be contrast with B2 and D1 runs, since all of them have gone through
the same fabrications processes. They only differ in the SisN4 guiding layer height
(h1), being shorter in the case of C1 (hl = 281nm vs nominal A1 = 300nm). In
the case of C1, the mode is less confined (more light is guided through SiOs) and,
therefore, the interaction of light with sidewall roughness is less. Hence, propa-
gation losses are decreased in this case, as it was explained in Section 1.2 for low
confinement waveguides. Regarding shallowly etched (SHWVG) waveguides, we
only own information for C and D runs. D wafers comparison, taking as reference
D3, lead to same conclusions than for DEWVG: oxidation process improves the
propagation loss, whereas RTA yields increased propagation loss when applied af-
ter oxidation. C1 shows lower propagation losses than D1, but this can be again
attributed to the reduced SigNy height.
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Figure 2.8: Impact on process steps on the linear propagation characteristics. TE po-
larization mode group index (a) and GVD (b) for the different processing
steps implemented.

2.7.2 Propagation constant and derivatives discussion

In this case, the comparison of the fabrication processes was performed separately
for runs A-B and D since they were fabricated in different periods of time and
only DEWVG waveguides were analyzed for A and B runs. Beside, runs A and B
were subjected to a more detailed study, characterising RR test structures placed
in the different cells in which a wafer is sliced (see Figure 1.1). The impact on
the group index and dispersion depending on the fabrication process is shown in
Figures 2.8, for A and B runs, and 2.9, for D runs. In turn, the results for all the
runs are provided in Table 2.2.

Figure 2.8 shows TE polarization mode group index and dispersion results from
several RR evaluated for each A and B fabrication runs. When comparing wafers
A1 (reference) and A2 (wafer with OX process applied), represented by orange
triangles and blue diamonds respectively, a decrease of the group index can be
observed. This can be attributed to a reduction of both waveguide dimensions
and index contrast reduction, since the oxidation process generates an oxyinitride
interlayer between SigsN, guiding layer and SiO cladding. This in turn results in
a less confined mode and therefore reduced effective index, which is one of the two
terms (additive) in the group index expression (eq. 2.1).

The same applies to rounds B1 and B2 (red squares and green circles, respec-
tively). However B2 has also gone through RTA process and the difference of
group index between both B runs (nf 1 an = 0.04) is higher than for A runs
(n;‘l - ngm = 0.02). It is difficult to determine if this difference is due to RTA
process, since it can be also attributed to the variations in the heights of substrate
(BOX) and Si3Ny layers between A and B runs. Comparison between fabrication
runs D will bring more information about this process.

The influence on the waveguide dispersion, measured from RR devices with the
OFDR technique as previously shown in Section 2.6, is presented in Figure 2.8-b.
The impact of SizN4 oxidation can be clearly observed, by comparing the traces
corresponding to Al and A2 (orange triangles and blue diamons, respectively).
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A change in the dimensions of the waveguide can be directly correlated with a
change in the waveguide dispersion, as seen in the graph. Similar conclusion can
be applied for B runs.
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Figure 2.9: (a) Group index, (b) Group Velocity Dispersion and (c) Differential Group
Delay, DGD = GV DT2 — GV DT  measured for shallowed (red diamond)
and deeply (blue square) etched waveguides for TE polarization.

From the results of A and B runs, we concluded that the correct procedure was
to compare dies and structures that were placed at the same spot of the wafer.
During the fabrication of the wafer, the growth of the different material layers is
not completely homogeneus (10 nm, in height from external to central regions),
and hence, the propagation characteristics may vary (slightly) between dies in the
same wafer. Therefore, comparison between D runs was performed characterizing
the central die of each wafer.

Group index results from run D are shown in Figure 2.9-a, for both strip
(DEWVG) and rib (SHWVG) waveguides. From D3 and D2 comparison, one can
note how oxidation of the nitride layer results in a reduction of the group index
for the DEWVG waveguide, which is coherent with the results obtained for A and
B runs. Contrasting D3 and D4 runs, the RTA of the cladding results into an
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increase of the group index. On the contrary, both oxidation and RTA have slight
impact on the SHWVG waveguide group index.

The corresponding GVD values are represented in Figure 2.9-b with error
intervals. The error bars of the different processed wafers are clearly overlapped,
which prevent as to draw clear conclusions, since this uncertainty might be also
dragged to the post-processing. Nevertheless, the average results obtained for n
and GVD are in agreement with the simulated values (Section 2.3).

For these runs, information from both TE and TM polarization modes was
obtained. Figure 2.9-c¢ shows the propagation delay difference between both po-
larization, which is related to the birefringence of the waveguides. Figure 2.9-d,
represents the Differential Group Delay (DGD) between TE and TM modes.

2.8 Conclusions

In this chapter, a review of the present state of the art of silicon nitride photonic
integration platforms has been presented, as well as the main features of each one
of them. Our progress in developing a moderate confinement platform in the op-
tical telecom C-band has been also detailed. The manufacturing process of the
platform has been reported, which includes fewer manufacturing steps than the
rest of the nitride platforms. This offers a more accesible platform for everyone,
having optimal parameters for the propagation of light. Fabrication design of ex-
periments, with subsequent full-field measurements of test spiral waveguide and
ring resonator test structures, allowed to correlate the process step variations to
different optical waveguide features, such as the propagation loss and group ve-
locity dispersion, which are of high interest in current developments of linear and
non-linear integrated photonics applications. The review has been complemented
with modeling and experimental results for a versatile 300 m SizN4 guiding film
height platform, with canonical waveguide width of 1um. The choice of advanced
full-field characterization techniques and suitable test structures, allowed to ob-
tain the propagation loss for strip waveguides (DEWVG) between 1.4 - 1.6 dB/cm,
group index around 1.85, and dispersion between -1.4 ps/nm m and -2.07 ps/nm
m, while for rib waveguides (SHWVG) the propagation losses are 1.2 dB/cm, 1.95
for group index and -1.11 ps/nm m for dispersion.

The results obtained through this chapter have been reported in the following
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no. 2088, 2017.

e G. Mico, L. A. Bru, D. Pastor, J. D. Doménech, A. M. Sanchez, C. Dominguez
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2.8.

Conclusions




Chapter 3

Integrated Optical Spectroscopic
Sensor

In this chapter, the concept and description of a new spectroscopic sensor archi-
tecture is reported. The device in named Integrated Optical Spectroscopic Sensor
(I0SS) and is based on a modified configuration of an Arrayed Waveguide Grating
(AWG). The I0OSS combines evanescent field sensing and spectrometric analysis
in a single device, and can be employed for absorption spectroscopy applications.
The chapter is structured as follows: the concept and main characteristics of our
device are explained in Section 3.1, while its operation and the mathematical for-
mulation is delailed in Section 3.2. The design procedure followed to generate the
layout is described is Section 3.3. For completeness, in Section 3.4 two reference
designs are shown as example of design process in two wavelength ranges of appli-
cation: visible range (Section 3.4.1) and infrared range (Section3.4.2). To finish,
the conclusions of the chapter are stated in Section 4.3.

3.1 IOSS device concept

An integrated AWG consist of two slab couplers acting as Free Propagation Re-
gions (FPR) interconnected by a plurality of waveguides, commonly called arrayed
waveguides, AW (Figure 3.1-a). There is a constant incremental length between
consecutive AW, AL, which induces a phase shift depending on the light wave-
length propagated. Light is coupled through the central input waveguide and
propagated afterwards along the first FPR. The diffracted light is then coupled
into the multiple arrayed waveguides. When light reaches the second FPR, the
contributions of all the AW are added together. At this point, light propagating
at different wavelengths focuses at distinct positions (focal points) along plane X3
(Figure 3.1-a), and each of these optical signals is known as a AWG channel. The
process of dividing the input beam into its multiple wavelengths is called demulti-



28 3.1. I0SS device concept

plexation, which in the case of an AWG is achieved due to the accumulated phase
difference generated in the arrayed waveguides, in combination with the second
FPR.

The Integrated Optical Sensing Spectrometer (IOSS) is based on a Interleaved
Detuned-AWG (ID-AWG), as explained below. IOSS operation is represented
schematically in Figure 3.1-b. As can be seen, the IOSS is composed of the same
elements as a conventional AWG: input/output waveguides, two slab couplers
employed as Free Propagation Regions (FPRs), and an array of optical waveguides
connecting both FPRs. However, IOSS arrayed waveguides are divided into M
subsets, known as sub-arrays. Each sub-array has a defined incremental length,
AL, between consecutive waveguides. Thus, the original Free Spectral Region
(FSR) of the device is reduced by a factor M, as will be explained in detail in
the following section. In other words, the creation of sub-arrays will generate M
number of replicates of the AWG channels. In the example presented in Figure
3.1-b, M was set to 2 to simplify the explanation. Sub-arrays are represented
by dashed and solid lines, and they are interleaved as in [74-76]. The channels
generated by the sub-arrays are set apart (detuned) by design along plane Xs,
which is controlled by the length increment between consecutive waveguides, AL
[91]. Hence, the output plane is divided into two halves, each one independently
collecting the optical signals coming from each sub-array.

One of the sub-arrays is employed as reference of the input signal (reference
sub-array), while the other is employed for sensing (sensing sub-array). Arms of
the sensing sub-array are provided with sensing windows (Figure 3.1-c) defined by
selective area etching, as explained in Section 2.2. In these windows, the sample
under study interacts with the evanescent optical field in the waveguides. Hence,
when the sample is placed on top of the device, only the sensing channels are
altered, while reference channels remain unperturbed. The relative change between
reference and sensing signals can be correlated with the presence and concentration
of the sample under study through two different interrogation methods: i) Intensity
interrogation, by tracking changes in the signal due to sample absorption, and
ii) Wavelength/frequency interrogation, by monitoring the wavelength/frequency
shift of the corresponding channels due to phase changes induced by the sample.
This wavelength/frequency shift is translated into a spatial displacement of the
channels in plane Xs.

Depending on the transduction method employed, the configuration of the
IOSS sensing sub-array will change. In case of intensity interrogation, all the sens-
ing windows are designed to have exactly the same length. Thus, the attenuation
due to sample absorption will be similar in all the sensing waveguides. More-
over, since all windows have the same length, there is no phase change induced
by the sample. For wavelength/frequency interrogation, the length of the sensing
windows is set to have a constant incremental length between consecutive sens-
ing waveguides (Figure 3.1-¢) to encourage the phase shift due to light-sample
interaction. These concepts are further explained in next section.

Since sample information is contained in each of the sensing channels, the
response of the sample is recorded at different wavelengths (spectroscopic analysis).
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Figure 3.1: (a) Arrayed Waveguide Grating (AWG) operation scheme. (b) Integrated
optics sensing spectrometer (I0SS) operation scheme. (c¢) IOSS layout for
wavelength/frequency interrogation. Windows are opened (exposed wave-
guides) in one of the sub-arrays to interact with the sample (sensing sub-
array), while the other sub-array remains covered (reference sub-array).
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Hence, both reference and sample spectra can be acquired in a single measurement.

3.2 Device operation description.

The idea and description of the operation of an AWG was presented for first time
in 1996 [91]. Since then, many analytical models have been proposed to simulate
such devices [92]. The formulation described in this section follows the model and
nomenclature employed in [68, 76].

At first stage, only one input waveguide is considered for simplicity. The chosen
input waveguide is placed at the centre of plane X, (Figure 3.1-b), connected at
the entrance of the first Free Propagation Region, FFPR;. The field at this input
waveguide can be defined by a power normalized Gaussian function described

by [68]:
fo(zo) = bi(z0) = i‘/ge_:’of, (3.1)

where zy is the spatial coordinate at the input plane and w; represents the
mode field radius of light at the input waveguide. When light reaches the FPR;,
it is diffracted. The light power distribution at the output plane of FPRy, Xi,
can be obtained from the Fourier transform of the input light field, employing the
paraxial approximation [93]:

1 [ 2TWE (o (FL))?

Bi(z1) = a]‘-{bi(ﬂﬁo)}‘u:% =\ 52 ¢ (o))", (3.2)

In this equation, x; is the spatial coordinate at the F'PR; output plane (Figure

3.1-a), u is the spatial frequency Fourier coordinate and « is the equivalent to the
wavelength focal length product in Fourier optics propagation [68] defined as:

CLf

== 3.3

= (3.3)

being c the speed of light in vacuum, L¢ the focal length of the FPRs, n, the

effective refractive index of the slab coupler propagating mode and v the frequency

of light.

The mathematical description of an ID-AWG differs from the one of a con-
ventional AWG when the terms of the multiple sub-arrays need to be introduced,
which appear when light reaches the AWs. Each sub-array is characterized by a
different incremental length, AL, being k an integer number defining each sub-
array (k = [0, M — 1]). Thus, the field at this plane is calculated as:

M—-1
fl(xl) = 14/ 27'("[1}3 Z
k=0

> B;(x1) Ji:w d(x1 — Mrdy — kdy) | *bg(z1),

rT=—00

1 (-

(3.4)
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Figure 3.2: Graphical example of IOSS sub-arrays central frequency definition (with
M = 2) based on a conventional AWG.

where wy represents the light mode field radius at the AWs, M is the number
of sub-arrays, N is the total number of AW, r is the number of the AW, and d,,
the separation between AWs at planes X; and X, (Fig. 3.1-a). Symbol * denotes
the convolution operation, and by(x1) defines the field at each AW.

The terms in this equation can be regrouped and analysed separately to better
understand their meaning. The expression {/27w?2B;(z1) Z:_ioo 0(xy — Mrdy, —

kd,,) stands for the amplitude of the field coupled at each AW, where the term
0(x1 — Mrd,, — kd,,) determines the position of the waveguides of each sub-array.

Ndy
the limited number of arrayed waveguides.
The length of the different AWSs of each sub-array is calculated as:

Likewise, the term [] ( X1 ) represents the truncation of the B; function due to

N N
Lo =ler + ALy (r + 2]\/[) + s+ Al (r + 2M> , (3.5)

where [, j is the length of the shortest waveguide of each sub-array, and ALy
is the incremental length for each sub-array, as it was already mentioned, which
is defined as [91]:

my C

Ne 1/(’)“'

ALy =

(3.6)

The variable my is an integer number which represents the order of the sub-
array (known as grating order). These diffraction orders are generated due to
the discretization of the field imposed by the AW (...m —1, m , m+ 1,...).
vk (A\E) is the sub-array central frequency (wavelength), and n. is the effective
refractive index of the propagating mode at the AWs. In a conventional AWG, the
central frequency (also called design frequency/wavelength) is understood as the
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Figure 3.3: I0SS sensing windows configuration for a) Intensity interrogation and b)
Wavelength /frequency interrogation.

light frequency which propagates from the centre of plane Xy and focuses at the
centre of X3 plane (Figure 3.2). In the case of I0SS, each sub-array has its own
central frequency, which position is designed to be shifted from the centre of plane
X3, as shown in Figure 3.2. The design frequency of each sub-array is obtained
as:

. 2 (3.7)

v =+ (k— M_1> Avrsk
where vy and Avpgg are the central frequency and Free Spectral Range in
frequency of the conventional AWG on which the design is based.

The last two terms of Eq. (3.5) represent the waveguide section dedicated to
detection purposes. As it was already mentioned in previous section, the config-
uration of the sensing windows depends on the interrogation method employed.
Thus, the length will be kept constant if the analysis is based on intensity inter-
rogation, while AW length will be incremental if the wavelength interrogation is
performed (Figure 3.3).

Thus, the phase introduce by each AW can be calculated as:

bpi(v) = o 3Bl ALk (r+537 ) o= (ls+A1 (r+537 ) ) (3.8)

Since the extra waveguide sections are incorporated in both reference and sens-
ing sub-arrays, the propagation constant gy distinguishes propagation properties
of both sets of arrayed waveguides (cover and exposed waveguides). Thus,

if K — sensing sub-array:  SBp = 2mNsensV’/cC

if k — reference sub-array: Sy = 8 = 2mn.v/c (3.9)

where the variable ngq,s represents the effective refractive index of the exposed
waveguides when a sample is deposited on top of the chip. The propagation
constant of the sensing sub-array will vary depending on the sample.

The phase difference between adjacent AW of the same sub-array is then given
by:
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Ay (v) = e I8k =IBK AL (3.10)

From this equation, it is clear that no phase change (and hence, no wavelength /
frequency shift) is induced by the sample when the sensing sub-array is configured
for intensity interrogation, since Aly = 0.

To obtain the expression of the field at plane X5 it is enough to introduce the
phase term (Eq. 3.8) in Eq. 3.4. After some mathematical simplification, the field
at AWs output can be expressed as:

fa(xa,v) = {/2mw2-

M—1
> {H <Nx§ )Bi<x2>¢<x2,u>6w,k<x2>efﬂ“k<A*‘f)ejﬁkAlS(fﬂ by (22),
k=0 w
(3.11)
where each term is defined as:
+oo
Swi(z2) = > d(wy — Mrdy, — kdy), (3.12)
r=—o00
D(22,0) = @i (v) Yy (v)e I PALHIRAL) 3E5 (3.13)
where,
Y(v) = e P llor+alidin), (3.14)
and
on(v) = o 3B (L +AL (r+247 ) (3.15)

Finally, the field distribution at plane X3 is obtained from the spatial Fourier
transform of Eq. (3.11):

f3(ws,v) = F{fo(x2,v)}

M-1
. [sinc (Ndw@> x b;(z3) * D(x3,v) * Ay i (x3) - 6j(ﬁAL’“+ﬁkNS)(%)} (3.16)
1o
k=0

= \/2mw2B,(x3)

=23
U=

where each term is obtained as:

By(x3) = F {by(x2)}

x 2
= (e ) (3.17)

[ 2 _(=3)?
u:%: 471'7'(1)1_26 (i), (318)

bi(wz) = F{Bi(w2)}
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sine (va,22) = #{T] (12 )} (3.19)
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Then, Eq. (3.16) can be rewritten as:

w2 1
falas,v) = QWEng($3)M~
M-1
|:wk(V)@k(V)ej(BALk+5kAls)(1’&)
k=0
%) —iomr o « (nCALk + nsensAlS)
Z eI for <x3 — Tde + . N, 522

T=—00

in which the function fjs stands for:

far(z3) = bi(x3) * sinc (Ndw%> . (3.23)

The complete IOSS operation is described in Eq. (3.22). From the terms within
function fj;, one can see that the focusing position of the field at the output of
the second FPR (plane X3, Figure 3.1-b), is determined by the number of sub-
arrays M, the length increment between AW, AL, and Al, as well as the effective
refractive index of the sensing waveguides, ngens-

The second term of function fy; in Eq. (3.22), defines the Spatial Free Spectral
Range (SFPR), which expresses the replication of the set of frequencies composing
the input beam along plane Xj:

@
Md,~
Variables conforming third term define the Frequency-Spatial Dispersion Pa-

rameter (FSDP) expressed as -y, which describes the offset and focusing of each
frequency of light at different positions along plane x3:

Azspsp = (3.24)

Md,c
@ (neALg 4 ngensAly)

= (3.25)
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In the final stage, the field at the output waveguides is calculated as the overlap
integral between the diffracted light at plane X3, Eq. (3.22), and the fundamental
mode of the output waveguides b,(x3):

“+o0
tO,q(V) = / fa(zs, v)bo(z3 — qd,)O0xs, (3.26)

being ¢ the output waveguide number and d, the output waveguides spacing
(Figure 3.1-b).

Arbitraty Input Waveguide.

So far, a single centred input waveguide has been taken into account, however
the formulation can be easily rewritten to consider any input waveguide position.
Thus, the expression of the field at plane Xy can be rewritten as:

[ 2 (e

biyp(.’bo) = rwize wi = bi((E(] — pdi), (327)

where p represents the position of the input waveguide, and d; the input wave-

guides spacing. Taking this into account, the expression of the field at the output
plane X3 can be expressed as:

4 9 wgB 1
fa(z3,v) = L (I3)M'

M-1
I
k=0

= —j2nr £ d — a «@ (ncALk + nsensAls) 3.98
Ze MfM<333+Pz Tde+ N v)|. (3.28)

r=—00
The field at the output waveguides is then given by

+oo
o) = [ Fuloa,bolas — ado)ss, (3.29)

— 00

3.3 Design procedure

The very first step on the design procedure is to select the operating wavelength
range of our device or application, as well as the suited fabrication platform for it.
These concepts will determine the Physical Parameters of the design, which are
the fundamental waveguiding parameters:

e Design central frequency (vy),



36 3.3. Design procedure

e FPR and arrayed waveguides refractive indexes (ns and n., respectively) and

e Waveguides width (WW,) and modal field radius (w,) of the propagating
mode. The subscript  will be replaced by ¢ and w to refer to input/output
waveguides and arrayed waveguides, respectively.

Following, the basic design parameters (known as High Level Parameters) are
settled taken into account the application requirements. These are:

e Number of channels (N,),

e Frequency channel spacing (Av,,), which defines de difference in frequency
between adjacent channels,

e Channel bandwidth (Avy,, ), which delimits the range of frequencies trans-
mitted by each channel, and

e Loss non uniformity (L,), which determines the amplitude signal ratio be-
tween the central and most external output waveguide.

The IOSS design steps have been compiled into the flow chart shown in Figure
3.4. This is an iterative process, since when the final step is reached, the result may
not be the one expected or further improvements can be applied. The diagram
arrows indicate the points in the process that can be retaken to apply changes in
the design. These steps/parameters have considerable weight in the final response
of the device. This section is structured according to the design flow.

3.3.1 Readout Scheme: Output Waveguides Distances

IOSS read-out scheme presents two possible configurations depending on the in-
terrogation method employed. As discussed already, when frequency/wavelength
interrogation is performed, a frequency/wavelength shift is translated into a focal
point displacement along X3 plane. In consequence, several output waveguides
are necessary to track the focal point trajectory. On the contrary, during intensity
interrogation, only the amplitude of the channels is affected, so a single output wa-
veguide is needed. For all that, the most limiting factor in the design of the IOSS
is given by the position of the output waveguides for the wavelength interrogation
configuration.

In order to monitor the displacement of the focal point, the read-out system
is composed by a set of three output waveguides for each sensing channel. In
Figure 3.5, it is shown a diagram of the position of the different IOSS focal points
(channels) for reference and sensing sub-arrays, as well as the output waveguides.
It must be emphasized that this design example works with two sub-arrays (M
= 2), but the results presented bellow can be easily extrapolated to larger M
numbers. The gap between output waveguides dedicated to the same channel,
da, needs to be short enough to capture the frequency shift. Likewise, external
waveguides from adjacent channels must be far enough apart (dg) to meet the
application target crosstalk.
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0. Material and wavelength selection.

1. Output waveguides placement: dy, dp
2. FSR definition: N, (No) & Avyp, — Avpgg
3. Grating order calculation: Avggp & vo— m’

4. Sub-arrays definition: v§ — mg — AL

vy — my — AL,

5. Arrayed waveguides gap: L, — d,,

6. Free Propagation Regions length: m', 4vy,, , d,, — L

7. Cross-talk characterization: y; = x¢( Ay, , Avep , da, dp)

Figure 3.4: I0SS design flow. Step (0) Technology platform and wavelength range to
work with depending on application. Step (1) Number of channels deter-
mination and corresponding output waveguides placement. Step (2) Free
spectral range (FSR) in frequency definition based on N, and Av.,. Step
(3) Calculation of the grating order of the AWG in which the I0SS is
based. Step (4) Sub-arrays definition: central wavelength and incremental
length calculation. Step (5) AW spacing determination from the parameter
L,. Step (6) Free propagation regions (FPR) length calculation. Step (7)
Crosstalk characterization from the device response.

Consequently, d 4 distance is fixed at the point where the output power of the
signal from the centred waveguide decays —3 dB. This is a reference value, but
other criteria may apply. The field at a input/output waveguide was defined in
Eq. 3.1. Applying the selected power decay ratio in this equation, the distance
dy is given by:

da = \/ —w;. (3.30)

Regarding distance dp, the power decay is defined respect to the adjacent
channel central signal. On this ocassion, a —10 dB power decay is settled. By
applying again this criterion to Eq.3.1, the result is:

dp = /1000720, (3.31)

Both equations are dependent with the mode field radius, w;, which depends on
the propagating frequency, cross-section of the waveguide selected and its materials
(technology platform). It must kept in mind at all times the limitations imposed by
the foundry due to fabrication (minimum distances between waveguides, minimum
widths, bend radius, etc.), as this can severely restrict our design options.

The total distance between adjacent channels is then calculated as (Figure 3.5):



38 3.3. Design procedure

Avise
AVch(Nv - 1) Avch(Nv — 1)
Avep,
—
v Vi vi vy i v vy v X,
-— | - | | | : | | |
N sertl T TTE ™ TTEETT 111
/ M ;
ﬁ da ds 'Axcp Axep
Axcp 1
\ Y J \ Y )
Sensing - subarray Reference - subarray

Figure 3.5: Diagram of IOSS FSR response, channels and output ports location at
output plane 3.

Az, = 2dy + dp. (332)

3.3.2 Readout Scheme: Optical Frequencies

The second step of the flow chart (Figure 3.4) is the definition of the Free Spec-
tral Range (FSR) of the device. For that, the number of channels, V,, and the
channel bandwidth, Av.,, must have been previously defined according to the
frequencies/wavelengths of interest to study the sample.

Following the scheme of Figure 3.5, the FSR of the device can be calculated as
function of the number of sub-arrays (M) selected, which determine the number
of channel replications:

AVFSR Z MAZ/C}LNV. (333)

In the example shown in Figure 3.5, M has been set to 2 for simplification
(sensing and reference sub-arrays).

Next step in the design is the grating order calculation. The relation between
the grating order and the Free Spectral Range is given by [68,91]:

’ Vo
Avrpsr

m (3.34)

However, this expression does not take into account the waveguide dispersion.
Hence, the modified grating order (m) is employed, in which the effective index
and the group index are considered:

m= {”mJ = V L J . (3.35)

Ng AVFSR

This expression is employed to obtain the grating order of the AWG in which
the IOSS is based, as well as the grating orders of the sub-arrays:
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s Ne VS
m’=|— and 3.36
\‘ng AVFSRJ ( )
Ne V)
mr=|2¢ , 3.37
{ng AVFSRJ ( )

where the superscripts s and r stand for sensing and reference sub-arrays re-
spectively.

In turn, the optical central frequencies for the sub-arrays are calculated by
combining Eq. 3.7 and Eq. 3.33:

AvenN,

v = 1o — =2, (3.38)
AvenN,

Ve = vy + VTh (3.39)

Finally, the corresponding incremental length for each sub-array can be de-
termined by directly replacing the obtained grating order and central frequencies
values in Eq. 3.6.

3.3.3 Focusing and Periodicity: Arm spacing and FPR length

In the next two design steps, the distance between arrayed waveguides (d,,) and
the FPR length (Ly) of the IOSS are set. For that, the high level parameters L,
and Avy, are linked with the parameters obtained in previous steps.

In a conventional AWG, both d,, and L; are calculated based on the selected
central frequency vy. In the case of IOSS, although two different central frequencies
have been defined, both are related to vy. In this way, the values of d,, and Ly
can be later obtained to define a common FPR to both sub-rays.

The expressions employed in the calculus of d,, and L follow the same formu-
lation than for a conventional AWG, which can be reviewed in [68,91]. Because of
this, only the most relevant equations are reproduced in this section.

The diffracted light reaching IOSS ouput plane (X3) has a non-uniform power
distribution due to B,(z3) in Equation 3.22, which maximum is at the centre of the
plane and decays towards the sides. The power relation between the central and
most external output waveguides is defined by the loss non-uniformity parameter
(Ly). The value of L, is settled by the designer taking into account a trade-off: L,
lower values will provide a flat response between I0SS channels, but will produce
high secondary lobes at the output signal.

The distance between AW (d,,) in planes X; and X5 is related to L, through
the following formula [68]:

20

4, = e v Ny, (qgtaige)) 7 (3.40)

Vo
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In turn, the channel bandwidth (Avy,,) will determine the length of the FPR.
Avpy, is defined at the Full Width at Half Maximum (FWHM) of the output
waveguide passband, and it is predefined by the designer. In Eq. (49) from [68]
the relation between these two parameters is presented, from which the value of
Ly can be derived:

d'lU 2 S
AV = 2yw;y/21n (103/20) = Q#wm [21n (103/20), (3.41)

where ng is the refractive index of the FPRs.

The device layout uses a regular Rowland mounting for the FPRs, which is
defined by the Ly and d, calculated above, employing the parameters of the
AWG in which the design is based. This is a compromise approximation, since
the TIOSS two sub-arrays may not be perfectly focused. To optimize the focusing
features of each sub-array independently, other mounting configurations could be
investigated [94].

Once the parameters of the FPR are set, the number of arrayed waveguides
(N) is calculated. For that, the designer has previously established the Array
Acceptance Factor (AAF), which determines the power percentage of the diffracted
signal that is captured by the AW. The calculation is done iteratively, increasing
the number of guides by two and calculating the power integral in each iteration
until the target AAF is reached.

Following all the steps described above, the IOSS spectral response is achieved.
However, the due to some fabrication limitations, as the lithografic resolution, the
experimental result may not fulfill completely the input design parameters. In this
case, the design must be iterated, and this is highlighted for steps 1, 2 and/or 5
in the design flow of Figure 3.4.

3.4 Reference Designs

In this section, two IOSS reference designs are presented conceived as self-reference
absorption spectrometers. Both devices are then configured for intensity interro-
gation, what in terms of design implies that: i) only one output waveguide per
channel is necessary, and ii) all the sensing windows have the same length. The
devices have been designed for particular applications at the visible (VIS) and
near-infrared (NIR) wavelength ranges, respectively. The application of the first
design is in the field of the food quality control, to determine the concentration of
a particular dye in aqueous solution. The second device is applied in the quality
control of alcoholic beverages.

Regarding design, both devices have been configured with two sub-arrays in
the most compact configuration, which mathematically is expressed as Avpggr =
2Av., N,. This implies that the channels of the two sub-arrays are periodically in-
terleaved, with a spectral separation of Av,j, between sensing and reference channel
sets (as shown in Figure 3.5).

The steps for simulating the device responses are explained below. Firstly,
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for each waveguide cross-section employed in the design (straight, bend, slab and
sensing waveguides), the effective refractive index and the propagation mode field
of propagating light is calculated. This is done using a mode solver software, in
which the data of the technology used are loaded. Naturally, both devices are
based on the silicon nitride on silica (SigNy/ SiO2) technology [89]. Secondly,
all the parameters of the device are settled and calculated following the design
flow described in Section 3.3. Next, the layout of the IOSS is built employing
OptoDesigner tool from Synopsys [84]. All the design parameters together with
the length of each AW are then exported to simulate the response of the device in
Matlab, following the formulation presented in Section 3.2.

3.4.1 Visible Wavelength Range Device

The I0SS device described in this section is designed for determining the con-
centration of the Sunset Yellow (SY) coloring dye (additive E-110), employed
commonly in the food industry [95], as well as in drugs and cosmetics. Below
certain concentration levels, these dies are not harmful to the human being. The
absorption spectra of SY dye is well known for different concentrations [96] in the
VIS range, presenting prominent peaks between 470 and 520 nm wavelengths.

Based on this data, the IOSS central wavelength is set to Ay = 495 nm. The
height of the substrate buried oxide (BOX) and cladding layers are 2um and
1.5 pm, respectively. The SigNy waveguide core is designed with a cross-section
of 400 nm width and 100 nm height, and the bend radius employed is 35 pm.
These specifications ensure single-mode and single polarization (TE) waveguides
behaviour in the targeted spectral range. The simulated effective refractive index
for strip and slab waveguides are n, (A= 495 nm) = 1.6582 and nys (A = 495
nm) = 1.9976, respectively. The calculated group index for A = 495 nm is n, =
2.1114. The channel wavelength spacing is fixed to AA;, = 2 nm, which results in
a Avpsgr = 19.57 THz and, therefore, a diffraction order m = 24. To minimize the
cross-talk, the AW spacing and the channel bandwidth are settled to d,, = 1.2 um
and Avy, = 0.2Av.,. From these values, the FPR length is deduced to be Ly =
95.91 pm.

In order to sample the decay of the SY absorption peak (Figure 2 from [96]),
we decided to analyse the following four wavelengths: A; &~ 476 nm, Ay ~ 488
nm, A3 ~ 502 nm and A4 = 515 nm. Although the channel wavelength spacing
was set to 2 nm, these target wavelengths can still be analysed due to the spectral
periodicity of AWG (I0SS) devices, by studying adjacent diffraction orders.

The absorption values as function of the SY concentration employed in this
simulation were taken from Figure 2 of reference [96]. Knowing the absorption
levels on the target sample and the percentage of evanescent field in contact with
it (18%), the length of the sensing windows was set to 200 pm.

In Figure 3.6, the spectral response of the eight channels (4 channels x 2
replications) are represented for lower (a) and higher (b) SY concentrations. The
spectral responses have been plot separately (1-4 and 5-8) so that the duplication
of channels (1-5, 2-6, 3-7 and 4-8) can be easily examined. In these simulations,
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a flat spectral broadbandsignal is defined as input source, for illustration purposes.
Nonetheless, the characterization of this design must be done employing narrow
band light sources centered around the wavelengths of interest to avoid the overlap
between adjacent channels.
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Figure 3.6: 10SS spectral response for channels 1-8 for sunset yellow (SY) concen-
trations (a) C' = 0.2 mM and (b) C = 11.0 mM. Channels are colored in
pairs, with same color for those having spectrally aligned responses. The
dark dashed vertical lines correspond to the targeted wavelengths 476, 487,
502 and 515 nm.

By contrasting Figures 3.6-a and 3.6-b, the variation in intensity due to the
absorption of the sample can be clearly observed. Likewise, the contributions of
the reference and sensing sub-rays are evidenced. From each output, contributions
from both reference and sensing sub-arrays are acquire. For example, looking at
3.6-b, channel 2 and channel 6 show, for A\ =488 nm, the contributions from
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Figure 3.7: (a) Reference and sensing channel spectra for the targeted wavelengths
476, 487, 502 and 515 nm, with reference channels (solid lines) and sensing
channels (dashed lines) for different SY concentrations. The values are
interpolated using smoothed (spline) lines. (b) Relative power change with

respect of the starting concentration (C' = 0.2 mM) for the four targeted
wavelengths.

the reference and sensing sub-arrays, respectively. However, for A =476 nm, the
contribution of the sensing sub-array is shown in channel 4 and reference in channel
8. The exchange of the sensing and reference contributions is due to the sub-arrays
interleaving. It should be noted that the analysed wavelengths fall within different
FSR of the device response. Therefore, one can strictly refer output signals as
reference/sensing channels when a single FSR of the response is analysed. This is
only relevant in the power ratio calculation Ps/P,, for which the proper readout
signal needs to be assigned to each. Another point to highlight from Figure 3.6 is
that sensing and reference channels are not exactly equally spaced in wavelength,
which is due to the average L; parameter employed, as described in Section 3.3.3.

The simulations were performed for SY concentrations ranging from 0.2 to 11.0
mM in aqueous solution. The resulted spectral response of the analysed wave-
lengths is shown in Figure 3.7. In Figure 3.7-a the power of the sensing (dashed
lines) and reference (continuous lines) channels is plotted for the target wave-
lengths. As it can be observed, power of reference channels do not vary with
concentration, as it was expected, since reference AW are not in contact with the
sample. On the contrary, the sensing channels perfectly reflect the variation in
power as a function of sample absorption. For SY die case, the higher the concen-
tration of the sample, the higher the absorption and, therefore, the lower the signal
power is detected. The intensity profile acquired is in agreement with the absorp-
tion spectra of Figure 2 from reference [96], as it was expected. The evolution
of the sensing and reference power ratio for the four target wavelengths is shown
in Figure 3.7-b, taking the power ratio for C' = 0.2 mM as reference. From this
graph, a similar relative power variation with respect concentration is observed
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Figure 3.8: 0SS spectral response for channels 1-8 for ethanol concentrations (a) C' =
20 wt %. Channels are colored in pairs, with same color for those having
spectrally aligned responses. The dark dashed vertical lines correspond to
the targeted wavelengths 1435, 1443, 1451 and 1459 nm.

for the wavelength studied. This indicates that, based on a previous calibration
of the sensor, the concentration of the sample can be stablish.

3.4.2 Near Infrared Device

The IOSS device has been also applied as an absorbance sensor in the NIR wave-
length range. In this example, the device employed for measuring ethanol concen-
tration in solution. A direct application for this device can be in the food quality
control area, specifically in the determination of alcohol in spirituous liquors [97].

The data employed to simulate the response of the device is taken from [98],
where several samples of ethanol and water solutions are analysed at different
ethanol concentrations. From this data, we decided to perform the intensity anal-
ysis as function of the concentration at wavelengths around 1450 nm, where the
ethanol-water mixture presents an absorption peak. Hence, the central wavelength
of our device was settled to Ay = 1450 nm. The design process was the same as
discussed previously. For NIR application, the BOX layer height was set to 3 pum,
while keeping 1.5 pm height for the cladding layer. For single-mode configuration,
the core waveguide cross-section were set to 800 nmx 300 nm (W x H), and a bend
radius R =75 um was employed. The values of the refractive indexes simulated in
this model were: n. (A= 1450 nm) = 1.5702, n, (A= 1450 nm) = 1.9314, and n, (A
= 1450 nm) = 1.6757. The four target wavelengths chosen for the ethanol concen-
tration analysis were (approximately) 1435, 1443, 1451 and 1459 nm. We settled
AM.p, = 1.6 nm, which results in Avpggr = 1.824 THz and, therefore, a diffraction
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Figure 3.9: (a) Reference and sensing channel spectra for the targeted wavelengths
1435, 1443, 1451 and 1459 nm, with reference channels (solid lines) and
sensing channels (dashed lines) for different ethanol concentrations [0-100
wt %]. The values are interpolated using smoothed lines. (b) Relative
power change with respect of the starting concentration (C' = 10 wt %) for
the four targeted wavelengths.

order m=92. Lastly, the d,, = 3 pm determines a FPR length of 158.47um.

The spectral response (in terms of IOSS operation) is very similar to that
the one already shown for VIS IOSS design (Figure 3.7). For this reason, only
the spectral response for low ethanol concentration (C' = 20wt%, given in mass
fraction) is shown in Figure 3.8 as verification. Then, the absorption spectrum
is derived following the same procedure as in the previous example. In Figure
3.9-a, the power measured at the four target wavelengths is plotted for ethanol
concentrations ranging from 0 wt% to 100 wt% in ethanol-water solutions. Dashed
and continuous lines represent the measurements from the sensing and reference
channels, respectively. As expected, the signal power of reference channels signal
remains unchanged, while the sensing channels power is reduced as the ethanol
mass fraction percentage increases. As done for the data from previous example,
in Figure 3.9-b is represented the relative power variation with the concentration,
referenced to the lower concentration (C = 10 wt %).

These results show a more subtle concentration-dependent change in power
compare to the previous example (Figure 3.7-a). This suggests that the sens-
ing area can be further optimized to improve the IOSS operation, which can de
done either incrementing the sensing path length, or modifying the waveguide
cross-section to achieve higher interaction of the evanescent field with the sample.
Regarding this concept, a simulation with different sensing path lengths (L;oss =
400-3000 pm) was performed, analysing the performance of the device in the four
target wavelengths employed for ethanol concentration analysis. Since the results
were similar for the four of them, only the outcome for A = 1435 nm is shown in
Figure 3.10 to avoid repetition. As it can be appreciated, output power from sens-
ing channels (Pseps) is nearly zero for low concentrations, and large L;ogs worsen
the result. The suited L;ogs for the waveguide cross-section defined above would
be 900 pm, since is the one presenting the larger slope (which means higher sensor
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Figure 3.10: I0OSS output power at the sensing channel A = 1435 nm for sensing path
lengths from 400 pm to 3000 pm. The arrow shows the incremental trend
of the sensing path.

sensitivity), while Pseys is still measurable for low concentrations.

3.5 Conclusions

As conclusions, a brief summary of the chapter contents and the achieved goals
follows. The general objective of this chapter is to introduce a novel spectroscopic
sensor architecture based on a modified AWG (DI-AWG). The concept, mathemat-
ical model and design procedure of the sensor have been described. The reported
model details the operation of the device in its two possible configurations (inten-
sity and wavelength/frequency interrogation). From the mathematical model, the
design procedure is derived. Once the high level parameters are specified, all the
necessary parameters to draw the device layout are obtained. Both formulation
and design modelling follow a similar procedure as a conventional AWG, with the
particularity of the sub-array definition and the sensing windows configuration.
Including both reference and sensing signals in a single device results into a more
direct measurement of the sample to be analysed. Besides, the device footprint is
reduced when compared to parallel architectures with demultiplexing and sensing
in a single device. In addition, two IOSS design examples are provided working at
VIS and NIR wavelength ranges to show the versatility of the design and, thus,
of the device. The use of this proposed device to different applications is possible
by selecting a proper combination of integrated technology, detectors and light
sources.

The results obtained through this chapter have been reported in the following
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dispositivo”, ES Patent OEPM P201,631,544.
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Chapter 4
I0OSS proof-of-concept

In this chapter, the proof of concept of the IOSS operating in the C-band wave-
length range is presented. Several configurations of the device were designed and
fabricated to progressively analyse the IOSS operation, as well as its ability to
sense. The chapter is structured as follows: firstly, the IOSS proof-of-concept con-
figured for intensity interrogation is reported in Section 4.1. In section 4.1.1, vari-
ous IOSS and AWG design devices are described for their comparison and analysis,
and their simulated responses are reported as well. Following, the characterization
of the devices is presented is Section 4.1.2, where firstly the experimental setup
employed for the characterization is described. Next, the experimental results ob-
tained for each of the devices are shown and discussed. In Section 4.1.3, the IOSS
sensing features are evaluated by depositing different samples on top of the chip
and analysing the sensor response. Finally, in Section 4.2, further IOSS configu-
rations designed to improve the operation of the sensor are reported. The chapter
conclusions are given in Section 4.3.

4.1 Proof of concept

In this section, the IOSS experimental validation is presented. The device has been
designed for the SigNy technology reported in Chapter 2, and fabricated through
a Multi-Project Wafer (MPW) run. For the MPW run, the Buried Oxide (BOX)
lower cladding is 2.5 um height, the SigNy layer is 300 nm (for DEWVG cross-
section) and the upper cladding layer (SiOz) is 2.0 pum height. The SizN, oxidation
and cladding Rapid Thermal Aniling (RTA) process steps have been applied to all
the wafers of this run. The size of the manufacturing chip is 11 x 5.5 um?.

4.1.1 Design and simulation

The IOSS design is developed following the design procedure presented in Section
3.3. The center wavelength has been set to A\g = 1550 nm to take advantage
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Figure 4.1: Chip layout containing the designs of conventional AWG and IOSS de-
vices without sensing windows (1 and 6), implementing sensing windows
(2 and 3) and implementing sensing windows together with transitions
cladding/trench cross-sections (4 and 5). Red sections identify the straight
waveguides test structures.

of all the characterization of the technology performed at this wavelength range.
As in previous examples, the IOSS design consists of two sub-arrays (M = 2)
employed for reference and sensing measurements respectively. To analyze the
IOSS operation piecewise, three different designs within the same chip are made,
departing from a base simplified case, and incorparting progressively the different
ingredients to build the actual I0SS, as described below.

Figure 4.1 shows the chip layout with six structures: three AWGs and three
TIOSS devices. These designs are devised to compare each I0SS device with its
corresponding AWG, having common design parameters, to discern the the effect
of the sub-arrays definition. Thus, devices 1 and 6 correspond to a conventional
AWG and an I0OSS, respectively, including an extra length in the middle part
corresponding with the sensing length. However, no sensing windows (trenched
areas) are created in these sections. On the contrary, devices 2 and 3 contain
also the sensing windows, in all the arrayed waveguides in the case of the AWG,
and only in one of the sub-arrays, in IOSS case. Finally, a configuration has
been introduced originally aimed at minimizing the losses and phase errors in the
interface between covered and trenched waveguide cross-sections. Hence, devices 4
and 5 include transitions in such junctions. The structures selected by red dashed
squares in Figure 4.1 are straight waveguides of 1 ym width employed as reference
in the measurements. The source spectrum after traversing the straight waveguides
is used to normalize the response of every device in the chip, since an ASE source
is employed with non-flat spectral response. This also allows for compensating the
in/out coupling losses to/from the chip.

The nominal waveguide width employed in the design is W = 1um, with a bend
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. W, Waw d ) A)\C) A)\b ) AAFSR - Lf AL
Device ‘0 a “ Nin  Nou ! v N m
(pm)  (pm)  (pm) ' (om) (nm)  (um) (pm) (nm)
AWG 2 1 3 4 4 1.6 0.4 12.8 45 99 151.017 97.34
10SS 2 1 3 4 8 1.6 0.4 12.8 89 99/98 299.014 98.32/98.76

Table 4.1: AWG and IOSS devices main design parameters. Abbreviations: W, stands
for input/output slab waveguides width, W, for arrayed waveguides width,
d for the distance between input/output waveguides, N, for the number of
input waveguides, Noq: for the number of output waveguides, A\, for the
channel spacing, Ay, for the channel bandwidth, AArsgr for wavelength
Free Spectral Range, N for the total number of arrayed waveguides (AWs),
m for grating order, Ly for focal length, AL for incremental length between
consecutive AWs. Note that for IOSS device two values for m and AL are
given, one for each sub-array.

radius of R = 75 pm. The sensing windows are 400 ym long (I;) and of 14 um
width. The sensing length is constrained due to the limited chip surface, therefore
it is not optimized for sensing a target analyte. The width of the waveguides
within the sensing windows for designs 2 and 3 is kept to Wi, =1 pm. On the
other hand, in devices 4 and 5, both covered and sensing waveguides were designed
to maintain similar propagation properties, so the width of the sensing waveguides
is set to Wy, =1.3 pum. The design parameters for the AWG and 10SS devices are
summarized in Table 4.1. The footprint of the devices is 1190 x 2630 um? for the
AWGs and 1315 x 2650 um? for I0SS.

The simulated responses for the devices pairs 1 — 6, and 2 — 3 are represented
in Figure 4.2. In these simulations, the propagation losses of the technology are
not included, therefore, the insertion losses shown in the graphs correspond to
the diffraction losses of the device. IOSS presents larger insertion losses than the
AWG, because now we have unfolded one focal point into two, by means of the
two subarrays. In turn, the sensing waveguides are simulated on air, thus no losses
due to sample absorption are considered. Because of this, there are no variations
in the response of trenched and not-trenched devices. It is an expected result since
it proves that sensing windows refractive index change (i.e., phase changes) do not
affect the response of the device, because all the sensing windows have the same
length. Hence, by applying the corresponding absorption/losses coefficient, only
a change in power will be noticed. Therefore, the reponses from devices 4 and
5 (AWG and IOSS containing transitions sections between covered and trenched
waveguides) have been omitted due to redundancy, as only the refractive index of
the sensing guides varies respect to previous designs and, as explained, this does
not affect the device response.
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Figure 4.2: Simulated response of AWG without (a) and with (b) trenched waveguide
sections, and I0SS device without (c) and with (d) trenched waveguide
sections.

4.1.2 Characterization

Experimental setup

An sketch of the complete setup employed for the characterization of the chips is
shown in Figure 4.3. The setup is mounted on top of an anti-vibration table, over
three stations, each comprising different positioners with a variety of travel ranges
and control mechanisms (manual, piezo-electric). The bare chip is hold using a
vacuum chuck on top of a copper mount. The temperature of the sample has been
kept to 25°C during the experiments using a thermoelectric cooler (TEC). A vision
system (camera and monitor) is used as aid to help in the manual alignment steps
of the measurements. We used microscope objectives on a setup that allows light
to undergo polarization filtering coming from/to fibers, as described in Figure 4.3-
b. For visual alignment, a red laser is employed. Once the alignment is achieved,
an ASE broad band source is used. The output signal of the device is acquired by
an OSA YOKOGAWA AQ6370C, with 10 pm resolution.

Experimental results

The obtained results are shown in Figures 4.4 and 4.5. All the spectral traces
shown in the graphs are normalized to the average response of the straight wave-
guides, as mentioned before. All the analysis was performed for TE polarization,
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Figure 4.3: (a) Complete experimental setup sketch. (b) Input/output coupling
stages.

so polarization filters are placed at both input and output of the chip. The light
is coupled into the devices through one of the input centered waveguides (IN2)
and the response from each output waveguide is acquired. In the first experi-
ment, devices 1 and 6 are compared. As can be observed from Figure 4.4-a, the
response of the AWG differs from the simulations previously shown. The AWG
channels show high side lobes which are typically attributed to a combination of
slab coupler phase non-linearity [99], phase errors [100,101] and polarization rota-
tion [102]. These were not compensated in design, since we wanted to introduce
the minimum number of refinements, so as to have a basic proof-of-concept, with
the less uncertainties incorporated. However, for IOSS, the experimental response
(Figure 4.4-b), is quite similar to the simulated response (Figure 4.2-b). The un-
even power distribution among channels, as compared to the simulations, can be
attributed to the same effects discussed for the AWG. The FSR obtained from
measurements is Alpsr = 12.84 nm for AWG and Alpgr = 12.53 nm for IOSS.
In turn, the resulted wavelength channel spacing is Al;, = 1.56 nm for AWG
device and A\, = 1.58 nm for IOSS. All these values are in close agreement with
the target design parameters given in Table 4.1.
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Figure 4.5: Measurements of the AWG (a) and IOSS (b) devices with sensing windows.

Figure 4.5 shows the response for devices 1 and 2 (AWG and IOSS incorporating
sensing windows). The AApgsr and A).p, are the same than in the previous designs
for both AWG and 10SS. Nonetheless, the AWG response exhibits larger side lobes
and thus insertion loss, than the preceeding design. Besides the aforementioned
deleterious effects, that can be partially corrected by design, one should consider
the transisitions to the trenched areas can introduce extra loss and unwanted
reflections. The latter could be subject of design optimization as well.

Albeit all the above, a first evidence for the proof-of-concept is revelaed in
this traces: an intensity variation is observed in IOSS (device #3) between refer-
ence and sensing channels. As explained in Section 3.4.1, from a single output,
sensing and reference sub-array contributions are measured. For example, looking
at OUTO response (blue continous line, Figure 4.5-b), the spectral pass-bands at
1547 nm and 1560 nm present higer power than those at 1541 nm and 1553 nm.
This constitutes a clear identification of sensing and reference bands, since larger
losses are expected in the sensing AWs due to: i) higher propagation losses, since
the propagating mode is more confined and thus, there is more interaction with
side-walls, and ii) the aforementioned non-optimal transitions between cladded
and trenched waveguides.
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Figure 4.6: Spectral response measured from IN2/OUTO0 input/output waveguides pair
for the different samples analysed. The numbers specify the analysed spec-
tral contributions from reference (1,3,5,7) and sensing (2,4,6,8) sub-arrays.

Finally, the spectral responses from AWG and I0SS (devices #4 and #5), a
first attempt of optimization for the transitions in the cladded/trenched wavegui-
des interfaces, showed barely defined channels. One possible reason may be that
the sensing waveguides (whose width is W, =1.3 pm) have multi-mode behaviour,
as opposed to what the simulations reported. Hence, if the transition is imperfect
from a modal perspective, higher order modes can be excited, and they can create
spurious spectral features in the end-to-end power transfer function.

4.1.3 Sensing measurements

In order to test the sensing attributes of the device, the spectrum of different
samples is measured employing IOSS device #3. The substances used are distilled
water and glycerin, which were selected due to their high absorption coefficient
around 1550 nm wavelength [103,104]. The measurements were performed em-
ploying the same experimental setup than presented in section 4.1.2. Once the
device is characterised with no sample on it (sensing waveguides surrounded by
air), a drop of the corresponding sample is deposited on top of the chip.

Two different experimental methodologies have been implemented. In the first
experiment, the IOSS is characterised measuring the transmission signal from a
single input (IN2) to all the output waveguides for each of the cases in this consecu-
tive order: i) no sample over the chip, ii) distilled water (DH2O) and iii) glycerine.
To do so, the position of the output objective had to be changed to collect light
consecutively from different output waveguides. When returning to the same out-
put, for measurements of different samples, the optical coupling uncertainty is
also included in the measurements. This makes a direct one to one comparison
not possible, because the change due to different absorption coefficients is lower
than the optical coupling uncertainty. This is shown in Figure 4.6. This in turn
can be solved in a design for which there is sufficient length of trenched wavegui-
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des. However, as previously metioned, the present designs are not analyte-specific,
and the sensing length was reduced so as to fit several layouts in the MPW fab
run given chip area. To mitigate this variability in measurement, we opted for a
second experimental approach.

As described serveral times along the preceeding text, each output has spectral
contributions from sensing and reference waveguides. Therefore, the absorption
of the sample can be estimated by comparing (post-processing) the reference and
sensing spectral contributions from a single output. Despite this approach prevents
us from obtaining the spectroscopic information of the sample’s absorption, which
is one of the key features of the proposed device, it allowed us to demonstrate
indirectly the pursued working principle.

Thus, the spectra from one input to one output shown in Figure 4.6 are then
processed. As explained, the values obtained in this graph show the average nor-
malized power measured from the reference (Reference) and sensing contributions
(peak values of the pass-bands) for the different cases analysed: no sample on top
of the chip (Air), Glycerine and distilled water (DH20) samples. From the traces
in Fig. 4.6, we obtained the ”"Reference” value as the average of peak values of
pass-bands 1, 3, 5 and 7. in two steps. In a first step, we averaged all the peak
values for each pass-band, that is, all corresponding to peak '1’; then peak '3’ and
so on. The four resulting values were averaged in a second step. For the 'Sensing’
cases, the peaks 2, 4, 6 and 8 are averaged as in the previous second step. The
results are shown in Fig. 4.7.

From Reference — Air values comparison (Figure 4.7), a decrease in power is
observed. This is due to the fact that there is great variation in the propagation
of light between the two waveguides cross-sections. In the case of the opened wa-
veguide, the propagating mode is more confined than in the reference waveguides,
so the propagation loss is greater, as there is a greater interaction between the
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. Wie Waw  dy : Aden AXpw  AMpsr Ly AL
Device (pm)  (pm)  (pm) Nin - Nout (nm)  (nm) (nm) m (pm) (nm)
AWG 2 1/0.8 3 2 2 3.0 0.75 12.0 22 99 75.508 97.34
10SS 2 1/0.8 3 2 4 3.0 0.75 12.0 44 105/105 149.507 98.08/ 98.56

Table 4.2: AWG and IOSS devices main design parameters. Abbreviations: W, stands
for input/output slab waveguides width, Wy, for arrayed waveguides width
(1550 nm/1450 nm design), d., for the distance between input/output wa-
veguides, N;, for the number of input waveguides, Ny, for the number
of output waveguides, A\, for the channel spacing, Ay, for the channel
bandwidth, AArsr for wavelength Free Spectral Range, N for the total num-
ber of arrayed waveguides (AWs), m for grating order, Ly for focal length,
AL for incremental length between consecutive AWs. Note that for IOSS
device two values for m and AL are given, one for each sub-array.

propagating mode and the irregularities of the waveguide side walls. On the other
hand, the transitions between both cross sections are also abrupt, so they will
favour the increase of total losses.

In the case of Reference — Glycerine or Reference — DH5O results, there is
still a variation in the propagation of the mode, but it is no as significant as for
Reference-Air, since the refractive indexes contrast is lower in both cases. For this
same reason, transition losses are also lower. Nevertheless, the obtained power
values for Air, Glycerin and DH5O follow the expected trend taking into account
the bulk absorption reported in the literature measured at 1550 nm wavelength:
Qair = 0, Qgiyeerin = 11.27 ecm ™! [104], and aupater = 12.10 cm™! [103]. Hence, we
believe that absorption is the loss coefficient that has more weight in the calculation
of total losses.

The aim of this sensor, however, is not to obtain the absolute absorption value
of the sample under analysis, but to perform relative measurements to study the
concentration of certain analyte contained in the sample. Absolute measurements
require a complete characterization of the technology, however, relative measure-
ments to track the evolution of the sample concentration can be performed simply
by applying the correct sensing length.

4.2 Refined 10SS designs

From the previous I0SS design, we were able to observe a power variation for
water and DH5O samples. However we observed that the optical coupling uncer-
tainty was larger than the loss change introduced by the analytes. This would
also preclude us from measuring a solution of analytes in water, with reduced con-
centrations. Therefore, the new designs in this section incorporate longer sensing
areas. By lengthening [, the device foot-print increased considerably, thus fur-
ther IOSS modifications were required in order to fit the device to the PIC size
(11 x 5.5 um?). The revised design parameters are provided in Table 4.2.

The main change with respect to the previous design is the reduction of the
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Device Nr. Name (1?121) Trenched S(z'lsmgwj: 1:dow paliia/:’:leters

(mm) (pum) (pm)
1 AWG-NT@1550 1550 X 0.0 0.0 1.0
2 10SS-T@1550 1550 v 5.0 14.0 1.0
3 I0SS-NT@1550 1550 X 0.0 0.0 1.0
4 10SS-T@1450 1450 4 1.8 14.0 0.8
5 10SS-NT@1450 1450 X 0.0 0.0 0.8
6 AWG-T@1550 1550 v 5.0 14.0 1.0
7 AWG-NT@1450 1450 X 0.0 0.0 0.8
8 AWG-T@1450 1450 v 1.8 14.0 0.8
9 10SS-T@1550-wwg0.8 1550 4 3.5 14.0 0.8

Table 4.3: AWG and I0SS designs descriptions included in the last fabricated run.
Abbreviations: [s and Wy, stand for the sensing window length and width,
respectively, and Wy, is the sensing waveguide width.

number of output waveguides by half, which in turn reduces the total number of
AWs (N). On the other hand, the channel spacing (A\.) is set to 3.0 nm to keep
a similar FSR than in the first AWG and IOSS versions. These changes helped to
reduce the size of the devices and fit several device configurations into the MPW
chip area. Note than this area restriction is inherent to the use of MPW fab run.
If a dedicated run is employed, the constrain in layout area is comparatively very
low.

In this design iteration, the layouts have been distributed in two PICs, shown
in Figures 4.8 and 4.9. The description of the designed devices can be found
in Table 4.3. As can be observed, there are four devices operating at 1550 nm
(AWG and I0SS with and without sensing windows) and the same four operating
at 1450 nm. The latter were included because the absorption of glycerin and
distilled water is higher around 1450 nm, therefore the analysis has been focused
on that range. Still, devices centered at 1550 nm are kept as reference designs,
since all the technology has been characterized at this wavelength, and as a link
to the previous iteration results described in the preceeding section. The nominal
waveguide width employed in the designs is W = 1um for devices operating at 1550
nm and W = 0.8um for devices operating at 1450 nm, maintaining a bend radius
of R =75 um in all cases. An extra IOSS device operating at 1550 is designed, in
order to reduce the ls by decreasing the width of the trenched waveguide (W)
from 1.0 pm to 0.8 pm.

The absorption loss coefficient for the different waveguides cross-sections and
samples was obtained through simulations, employing OptoDesigner mode solver
software (Figure 4.10). The simulated values provide directly I'asgmple, since the
interaction of the sample with the evanescent field is already taken into account.
The data on the extinction coefficient of the samples were taken from [103,104].
Propagation losses, together with transitions losses, are estimated to be between
2 — 3 dB/cm, following the preliminary results obtained from previous fabricated
run. Alongside the IOSS, MZIs with trenched sections are within the PICs to
provide complementary measurements as cross-checks these values. The sensing
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length has been set for the most extreme case, i.e. for the sample with the highest
absorption (distilled water). For these designs, [, is defined as the required length
to observe a power decay of -6 dB since, for higher than estimated loss values, the
signal could be lost completely. The resulting length for each case is specified in
Table 4.3. When the design of the sensor is fully optimised, this criterion will vary
and the length that gives the greatest sensitivity to the device will be sought.
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Figure 4.8: Chip layout containing the designs of AWG and IOSS devices centered at
1550 nm without sensing windows (1 and 3), IOSS operating at 1550 nm
containing sensing windows (2) and IOSS operating at 1450 nm with (4) and
without (5) sensing windows. The MZI placed at the left part of the chip
was design to characterize the propagation losses of the trenched waveguides
with W, = 1.0.
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Figure 4.9: Chip layout containing the designs of an AWG operating at 1550 nm con-
taining sensing windows (6), AWGs operating at 1450 nm with (8) and
without (7) sensing windows and an IOSS operating at 1550 nm containing
sensing windows which waveguides are 0.8 um width (9). The straight wa-
veguides set and the MZI placed at the lower center part of the chip were
design to characterize the propagation losses of the trenched waveguides
with Wy, = 0.8.
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Figure 4.10: Contour plot of the amplitude of the Ex field component of the TEg mode
of a 1um wide strip waveguide employed for evanescent sensing.

The simulated response for AWG and IOSS with sensing windows operating
at 1450 nm and 1550 nm (devices 2, 4, 6 and 8) are shown in Figure 4.11. As
already explained in previous section, no losses are included in the simulations,
therefore, the present insertion losses correspond to diffraction losses of the devices.
At the time of writing this thesis manuscript, the described designs are being
manufactured.

_ l j
” “‘MMHMIH‘H‘ ol : wnr“Mmmuwwummhmm ' w\\\,nlﬂm}mxm \h\mulJmIn'.m‘un\hhnlmmﬂw

\VHM““m

-0 M i A A -0 Ml I il A
1430 1440 1450 1460 1470 1480 1530 1540 1550 1560 1570 1580
Wavelength (nm) Wavelength (nm)
(a) (b)
0 —0uT0 0 —OuTo|
—0ouT1 —OouT1
~-10 f ouT2 ~-10F | ouT2
g i \ --ouT3 g il --ouTs
§-20 T g-20f | |11/}
2 il I 2 AR
< 1% s I <] TS
& 30 ‘ (RIRE ‘ ‘ &30 Nl 'l
40 WU L] \ 40 1 18 ) HiE | I
1430 1440 1450 1460 1470 1480 1530 1540 1550 1560 1570 1580
Wavelength (nm) Wavelength (nm)
(c) (d)

Figure 4.11: Spectral response of (a) AWG with trenched waveguide sections operating
at 1450 nm, (b) AWG with trenched waveguide sections operating at 1550
nm, (c) Trenched IOSS operating at 1450 nm, and (d) Trenched I0SS
operating at 1550 nm simulated response.
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4.3 Conclusions

In this chapter we have presented the experimental proof-of-concept for the IOSS
device. Several IOSS designs were performed, and some fabricated, allowing to
indentifying serveral aspects and means for improvement. They spectral features
expected, have been matched, such as de channel spacing, FSR and focal point
unfolding, as compared with a regular AWG. In terms of sensing capability, the
variation in power of the device response has been observed due to interaction with
different samples. However, several practical shortcomings in the first design iter-
ation were identified, and considered in the designs of the second iteration, whose
fabrication is on-going at the time of writing. Thus, and despite the experimental
validation of this second set is pending, the results from the first designs exhibit
sufficient evidence of the intended concept and sensing operation.
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4.3.

Conclusions




Chapter 5

Summary, conclusions and open
research lines

5.1 Conclusions

The conclusions drawn from the work elaborated for this Ph.D. are the following:

e Our progress in the development of a moderate confinement silicon nitride
platform has been reported in Chapter 2. The characterization of this plat-
form presents propagation properties compatible with the similar existing
platforms, despite being developed with fewer process steps. The imple-
mentation of extra processes, as the SisNy oxidation previous cladding de-
position, has shown significant improvement regarding propagation losses
and dispersion, revealing that there is still room for improvement for this
platform. The results obtained from the characterization of this technology
demonstrate that this is perfectly useful platform for the development of di-
verse devices and applications. In addition, this platform is easily accessible
through the MPW runs.

e In Chapter 3 the IOSS device concept is presented. The device is based on an
AWG where different subsets of arrayed waveguides are defined, and sensing
windows (uncovered waveguide sections) are implemented in one (or more)
of the subsets. It is, therefore, a compact device capable of performing both
spectroscopic and sensing analysis of a sample. The mathematical model to
describe IOSS operation and design procedure have been described for its two
possible configurations: intensity and frequency/wavelength interrogation.
Fur thermore, two reference designs operating at visible and near-infrared
wavelength ranges are provided, showing the versatility of the sensor.

e The TIOSS experimental proof of concept is reported in Chapter 4. The
designed and fabricated device is configured for intensity interrogation. Dif-
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5.2

ferent configurations of IOSS and AWG are fabricated in the same chip for
later comparison. The characterization of the first iteration of the IOSS has
yielded good results in terms of channel spacing, FSR and channels dupli-
cation. Also from these results, design features to be improved have been
observed to mitigate phase errors. The sensing capability could not be fully
developed in this first iteration due to space constraints, an issue that has
been resolved in the second design. Even so, we have been able to observe a
variation in power due to the absorption of different samples. The results ob-
tained from this first proof of concept give us high expectations of achieving
the objectives set with the second design.

Future work

After the work developed in this thesis, there are some open research lines that
may be continued:

Further design optimization of IOSS sensor for intensity interrogation.

Design and fabrication of IOSS sensor for frequency/wavelength interroga-
tion configuration.

Implementation of a microfluidic system for continuous solution measure-
ments.

Study the possible functionalization of the sensor to bring specificity to the
analysis.

Implementation of larger number of sub-arrays for sample multiplexed anal-
ysis.

5.3 List of publications
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e P. Munoz, G. Mic6, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J.
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no. 2088, 2017.
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