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A note on supercyclic operators in locally
convex spaces

Angela A. Albanese and David Jornet

Abstract. We treat some questions related to supercyclicity of contin-
uous linear operators when acting in locally convex spaces. We extend
results of Ansari and Bourdon and consider doubly power bounded op-
erators in this general setting. Some examples are given.
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1. Introduction and preliminaries

Let X be a separable locally convex Hausdorff space (lcHs) and let ΓX be
the family of all continuous seminorms on X. We denote by L(X) the space
of all linear and continuous operators T : X → X. We say, as in the Banach
case, that an operator T ∈ L(X), where X is a lcHs, is supercyclic if there
exists x ∈ X such that the set {λTnx : λ ∈ C, n ∈ N0} is dense in X. In this
case, any such a vector is called a supercyclic vector for T .

In a recent paper, Aleman and Suciu [2] study ergodic theorems for a
large class of operator means when the operators act in a Banach space. In
particular, they extend a previous result of Ansari and Bourdon [3] about
power bounded and supercyclic operators on Banach spaces. Motivated by
these previous works, we study supercyclic operators acting in a locally con-
vex space and extend some of the results in [3] to this general setting. Indeed,
in Section 2, we extend Theorems 2.1 and 2.2 of [3]. We have to mention that
there is a very general version of [3, Theorem 3.2] in [8], and a version of
this result for locally convex spaces can be found in [4, Proposition 1.26] (see
Theorem 2.4).

It is mentioned in [3] that “No isometry on the Banach space X can
be supercyclic”. In Section 3, we present some results in this direction when
the operators act in the more general setting of a lcHs. Let X be a lcHs
and let ΓX be the family of all continuous seminorms on X. We say that a
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subfamily Γ ⊆ ΓX defines or generates the topology of X if for every q ∈ ΓX
there exist p ∈ Γ and λ > 0 such that q ≤ λp (i.e., q(x) ≤ λp(x) for all
x ∈ X). An operator T ∈ L(X) is said to be a Γ-isometry for some Γ ⊆ ΓX
generating the lc-topology of X if p(Tx) = p(x) for all p ∈ Γ and x ∈ X. We
prove that if T ∈ L(X) is bijective, then T is a Γ-isometry (for some Γ ⊆ ΓX
generating the lc-topology of X) if and only if T is doubly power bounded (see
Definition 3.1). There is a large literature of doubly power bounded operators
in Banach spaces; we refer to [1, 11], for instance.

Finally, in Section 4 we use the results of previous sections to give ex-
amples of operators that are non-supercyclic, or even of operators which are
power bounded and supercyclic or power bounded and non-supercyclic, act-
ing in Banach and in (non-normable) Fréchet spaces. The examples should
be compared with [13, 14].

2. Supercyclic operators in locally convex spaces

The aim of this section is to extend to the setting of lcHs’ some results about
supercyclic operators due to Ansari and Bourdon [3]. Let X be a lcHs. We
say that an operator T ∈ L(X) is power bounded if the sequence (Tn)n of
powers of T is equicontinuous, i.e., for all p ∈ ΓX there exists q ∈ ΓX such
that p(Tnx) ≤ q(x) for all n ∈ N and x ∈ X.

Lemma 2.1. Let X be a lcHs with dimX ≥ 2 and let T ∈ L(X). If T is a
Γ-isometry for some Γ ⊆ ΓX generating the lc-topology of X, then T cannot
be a supercyclic operator.

Proof. Suppose that there exists y 6= 0 such that {λTny : λ ∈ C, n ∈ N0}
is dense in X. Observe that the vectors y and Ty are linearly independent
since, if this is not the case, as T is supercyclic, {λy : λ ∈ C} is dense
and closed in X, but this is not possible because dimX ≥ 2. Hence, by
Hahn-Banach theorem we can find u, v ∈ X ′ such that u(y) = 1, u(Ty) = 0
and v(y) = 0, v(Ty) = 1. We denote q = max{|u|, |v|} ∈ ΓX . Since Γ is
generating the locally convex topology of X, there exist p ∈ Γ and λ > 0
such that q ≤ λp. Now, we consider the quotient space

(
X

Ker p , p̂
)

and denote

by Qp : X → X
Ker p the canonical quotient map, and by p̂ : X

ker p → [0,+∞[

the norm p̂(Qpx) := p(x), which is well-defined because if z ∈ ker p then for

every x ∈ X, p(x + z) = p(x). Then, dim X
ker p ≥ 2. In fact, if there is µ ∈ C

such that y + ker p = µ · Ty + ker p, then y = µ · Ty + z for some z ∈ ker p,
which implies:

1 = u(y) = µ · u(Ty) + u(z) = 0,

a contradiction.
Now, we prove that there is an isometry Tp : X

ker p →
X

ker p satisfying

TpQp = QpT . Indeed, Tp is well-defined because Qp(x − y) = 0 implies
that x − y ∈ ker p and hence, p(T (x − y)) = p(x − y) = 0. Accordingly,
T (x− y) ∈ ker p and so QpT (x− y) = 0. On the other hand, for each x ∈ X,
we have, by the definition of p̂, p̂(TpQpx) = p̂(Qpx). This means that Tp is
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an isometry from X
ker p into itself. It follows that Tp extends to an isometry

T̃p on
(
X

ker p , p̂
)∼

=: X̃p into itself, where X̃p is the Banach completion of Xp.

Next, we observe that Qpy is also a supercyclic vector for T̃p. In fact,
for each n ∈ N, we have

Tnp Qpy = Tn−1
p TpQpy = Tn−1

p QpTy = Tn−2
p (TpQp)Ty

= Tn−2
p QpT

2y = . . . = QpT
ny.

Hence,

Qp
(
{λTny : λ ∈ C, n ∈ N0}

)
=
{
λTnp (Qpy) : λ ∈ C, n ∈ N0

}
.

SinceQp : X → X̃p is continuous with dense range, it follows that
{
λTnp (Qpy) :

λ ∈ C, n ∈ N0

}
is also dense in X̃p. This shows that Qpy is a supercyclic

vector for T̃p on the Banach space X̃p. This is a contradiction because T̃p is
an isometry; see [3, Theorem 2.1]. �

Theorem 2.2. Let X be a lcHs and T ∈ L(X). Suppose the following proper-
ties are satisfied.

(i) The operator T is power bounded, and
(ii) For each x ∈ X \ {0}, Tnx9 0 in X as n→∞.

Then T has no supercyclic vectors.

Proof. As in the proof of [3, Theorem 2.1], we fix a linear functional F :
`∞ → R with the following properties:

(1) For every (xn)n, (yn)n ∈ `∞, if xn ≤ yn for all n ∈ N, then F ((xn)n) ≤
F ((yn)n),

(2) For every (xn)n ∈ `∞, F ((xn)n) = F ((xn+1)n),
(3) F ((xn)n) is the limit of a subsequence of (x1+···+xn

n )n.

For each p ∈ ΓX we define

γp(x) := F
(
(p(Tnx))n

)
, x ∈ X.

Then γp is well-defined by assumption (i). Actually, γp is a seminorm on X
as it easily follows from the linearity of F combined with its property (1)
and with the fact that p is a seminorm. But, γp is not a norm in general. So,(
X, (γp)p∈Γ

)
is a locally convex space. Moreover,

(
X, (γp)p∈Γ

)
is Hausdorff

because if x 6= 0, then assumption (ii) ensures that Tnx9 0 in X as n→∞
and hence, p(Tnx) 9 0 as n→∞ for some p ∈ ΓX . So, there are (nj)j ⊂ N
which tends to infinity and δ > 0 such that

p(Tnjy) > δ > 0, j ∈ N.

Since T is power bounded, given this seminorm p there exists q ∈ ΓX such
that

p(Tn+mx) ≤ q(Tmx), x ∈ X, n,m ∈ N.
Then, fixed n ∈ N we find j ∈ N with n < nj . So,

δ < p(Tnjy) = p(Tn+(nj−n)y) ≤ q(Tny).
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Therefore, q(Tny) > δ > 0 for all n ∈ N. Now, property (3) of F shows that
γq(x) > 0.

We now observe that for every p ∈ ΓX and x ∈ X, the property (2) of
F implies that

γp(x) = F
(
(p(Tnx))n

)
= F

(
(p(Tn+1x))n

)
= F

(
(p(Tn(Tx)))n

)
= γp(Tx).

It follows that T is a Γ-isometry from
(
X, (γp)p∈ΓX

)
into itself. This fact

implies that T cannot be a supercyclic operator from X into itself. To see
this, we first note that the inclusion

i : X →
(
X, (γp)p∈ΓX

)
is continuous. Indeed, fixed p ∈ ΓX , by assumption (i) there exist q ∈ ΓX
such that p(Tnx) ≤ q(x) for all x ∈ X and n ∈ N. It follows for each x ∈ X
that

γp(x) = F
(
(p(Tnx))n

)
≤ F

(
(q(x))n

)
= F (1)q(x).

The continuity of i imply that if x ∈ X is a supercyclic vector for T in X then
x is also a supercyclic vector for T in

(
X, (γp)p∈ΓX

)
; this is a contradiction

by Lemma 2.1 because T is a Γ-isometry from
(
X, (γp)p∈ΓX

)
into itself. �

We observe that the next result improves Theorem 2.2.

Theorem 2.3. Let X be a lcHs and let T ∈ L(X). If T is power bounded and
supercyclic, then Tnx→ 0 in X as n→∞ for all x ∈ X.

Proof. We first prove the following claim: if y ∈ X is a supercyclic vector for
T , then Tny → 0 in X as n → ∞. We argue by contradiction and assume
that there is y ∈ X, y 6= 0, so that {λTny : λ ∈ C, n ∈ N0} is dense in X
but, Tny 9 0 in X as n→∞.

Since Tny 9 0 as n→∞, proceeding as in the proof of Theorem 2.2, we
show that there are some seminorm q ∈ Γ and δ > 0 such that q(Tny) > δ > 0
for all n ∈ N.

Since T is power bounded and supercyclic, from Theorem 2.2 it follows
that there is v 6= 0 such that Tnv → 0 in X. Since v 6= 0, there exists
r ∈ ΓX for which r(v) 6= 0 because X is Hausdorff. On the other hand, there
is s ∈ ΓX so that max{q, r} ≤ s. Hence, s(v) 6= 0 and s(Tny) > δ for all
n ∈ N.

For simplicity, we denote the seminorm s again by q. Now, let r ∈ ΓX ,
and r ≥ q so that q(Tnx) ≤ r(x) for all n ∈ N and x ∈ X. We may assume
without loss of generality that q(v) = 1. Since y is a supercyclic vector for T ,
there exist (cj)j ⊂ C and (nj)j ⊂ N such that

r(cjT
njy − v)→ 0 as j →∞.

It follows that there is k ∈ N such that for all j ≥ k we have

q(cjT
njy − v) ≤ r(cjTnjy − v) <

1

2
.
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Therefore, for all j ≥ k we have

q(cjT
njy) = q[v − (v − cjTnjy)] ≥ q(v)− q(cjTnjy − v) > 1− 1

2
=

1

2
.

So, for all j ≥ k,

1

2
< q(cjT

njy) = |cj |q(Tnjy) ≤ |cj |r(y),

which implies that |cj | > 1
2r(y) for all j ≥ k.

Let ε = δ
3r(y) . Since r(cjT

njy − v) → 0 as j → ∞, we can find h ≥ k

such that

r(chT
nhy − v) <

ε

2
.

But Tnv → 0 in X as n→∞ and so, we can find m ∈ N with

q(Tmv) ≤ r(Tmv) <
ε

2
.

Now, we observe that,

q(chT
nh+my − Tmv) = q(Tm(chT

nhy − v))

≤ r(chT
nhy − v) <

ε

2
,

and that

q(chT
nh+my) = |ch|q(Tnh+my) > δ

1

2r(y)
.

Consequently,

δ

2r(y)
< q(chT

nh+my) ≤ q(chTnh+my − Tmv) + q(Tmv)

<
ε

2
+
ε

2
= ε =

δ

3r(y)
;

a contradiction.
We have proved that Tny → 0 in X as n → ∞ whenever y ∈ X is

a supercyclic vector for T . But, the set of all supercyclic vectors for T is
dense in X. Indeed, if y ∈ X is a supercyclic vector for T , then also cT ky
is a supercyclic vector for T for all c ∈ C \ {0} and k ∈ N, as it is easy to
see. Now, the density in X of the set of all supercyclic vectors for T and the
equicontinuity of (Tn)n imply that Tnx → 0 in X as n → ∞ for all x ∈ X.
In particular, we get a contradiction with Theorem 2.2. �

We finish this section with an extension of [3, Theorem 3.2]. An even
more general version of this result can be found in [8, Theorem 2.1]. We recall
that given T ∈ L(X), the point spectrum σp(T ) of T consists of all λ ∈ C
such that the operator λI − T is not injective, where I : X → X denotes the
identity operator. For the proof, we refer to [4, Proposition 1.26].

Theorem 2.4. Let X be a lcHs and T ∈ L(X). If T is a supercyclic operator,
then the point spectrum of the adjoint operator T ′ of T , σp(T

′), contains at
most one point.
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3. Doubly power bounded operators

In this section, we characterize the operators T ∈ L(X) which are bijective on
a locally convex space X such that there is Γ ⊆ ΓX defining the topology of
X such that T is a Γ-isometry. The following definition extends the analogous
one for Banach spaces (see, for instance, [1, 11]).

Definition 3.1. An operator T ∈ L(X) is doubly power bounded if it is
bijective and (T k)k∈Z is equicontinuous in L(X).

Observe that if a bijective operator T ∈ L(X) is doubly power bounded
then, in particular, T−1 ∈ L(X). However, in a locally convex space the open
mapping theorem does not hold in general: there is a locally convex space
X and a continuous, linear and bijective map T ∈ L(X) which is not open.
For instance, consider in c00 (the space of eventually null sequences) the
norm induced by c0 (the sup norm) and the diagonal operator Tei = i−1ei,
i = 1, 2, . . . , where (ei)i is the canonical basis. The operator T is bijective
and continuous on c00 but T−1 is not continuous since the sequence (i−1/2ei)i
tends to zero in c00 but (T−1(i−1/2ei))i = (i1/2ei)i, which is not bounded.
We point out that this example of an operator T on c00 is well-known.

Proposition 3.2. An operator T ∈ L(X) is doubly power bounded if and only
if it is bijective and there is Γ ⊆ ΓX defining the topology of X such that T
is a Γ-isometry.

Proof. Assume first that T is doubly power bounded. Given q ∈ ΓX , define

rq(x) := sup
k∈Z

q(T kx).

Clearly, taking k = 0, we have

q(x) ≤ rq(x), for all x ∈ X. (1)

On the other hand, since (T k)k∈Z is equicontinuous, given q ∈ ΓX there is
p ∈ ΓX such that q(T kx) ≤ p(x), for all x ∈ X and k ∈ Z. This implies that

rq(x) ≤ p(x), x ∈ X. (2)

In particular, rq(x) <∞ for all x ∈ X. Moreover, rq ∈ ΓX as it is easily seen
from the facts that T k is linear for all k ∈ Z and (2). We consider

Γ := {rq : q ∈ ΓX}.
By (1) and (2), Γ defines the topology of X. We observe that T is a Γ-isometry
since

rq(Tx) = sup
k∈Z

q(T kTx) = sup
k∈Z

q(T kx) = rq(x).

Now, suppose that T ∈ L(X) is a bijective Γ-isometry for a set Γ ⊆ ΓX
defining the topology of X. By assumption there exists T−1 : X → X linear.
Since p(Tx) = p(x) for all x ∈ X and p ∈ Γ, we have p(T−1x) = p(x) for all
x ∈ X and p ∈ Γ. Since Γ defines the topology of X, T−1 is continuous, and
moreover,

p(T kx) = p(x), x ∈ X, p ∈ Γ.
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Now, we take q ∈ ΓX arbitrary. There is p ∈ Γ, λ > 0 such that q ≤ λp. For
k ∈ Z and x ∈ X we get

q(T kx) ≤ λp(T kx) = λp(x).

This implies that (T k)k∈Z is equicontinuous. �

Corollary 3.3. If dimX ≥ 2 and T ∈ L(X) is doubly power bounded, then T
is not supercyclic.

Proof. This follows from Proposition 3.2 and Lemma 2.1. �

4. Examples

We present different examples of power bounded and supercyclic or non-
supercyclic operators in a Banach space or in non-normable Fréchet spaces.
First of all, we observe that every Γ-isometry, for some Γ generating the lc-
topology of X, is obviously a power bounded operator. The first example is
well known.

Example 4.1. Our first example is [4, Example 1.15], which is a positive ex-
ample in Banach spaces. Let Bw be the weighted backward shift in `2(N).
This operator is defined by Bw(e1) = 0 and Bw(en) = wnen−1 for n ≥ 2
where (en)n∈N is the canonical basis in `2(N) and w = (wn)n≥2 is a bounded
sequence of positive numbers. By [4, Theorem 1.14], Bw is supercyclic. More-
over, if the sequence w satisfies wn ≤ 1 for all n ≥ 2, it is easy to see that
Bw is also power bounded.

Example 4.2. Given an open and connected (=domain) subset U in Cd we
denote

H(U) = {f : U → C, f holomorphic in U}.
A composition operator Cϕ : H(U) → H(U) with (holomorphic) symbol ϕ :
U → U is the linear and continuous operator given by Cϕ(f)(z) := f(ϕ(z))
for z ∈ U and f ∈ H(U).

a) Let U = D be the open unit disk in C and Γ the family of seminorms
{pk : k ∈ N} where pk(f) := sup|z|≤1− 1

k
|f(z)|, for k ∈ N and f ∈ H(D).

If θ ∈ C with |θ| = 1, the composition operator Cϕ : H(D) → H(D)
with symbol ϕ(z) := θz (a rotation) clearly satisfies

pk(Cϕf) = pk(f), f ∈ H(D), k ∈ N.
Hence, Cϕ is a Γ-isometry. Moreover, it is bijective and doubly power
bounded. Since Γ generates the lc-topology of H(D), the composition
operator Cϕ with symbol given by a rotation cannot be supercyclic in
the (non-normable) Fréchet space H(D).

b) On the other hand, Bonet and Domański [6] characterized, in terms
of its symbol, when the composition operator Cϕ : H(U) → H(U) is
power bounded in a very general situation (namely, when U is a Stein
manifold), proving that the composition operator is power bounded
if and only if it is mean ergodic, i.e., the sequence of Cesàro means
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( 1
n

∑n−1
j=0 C

n
ϕ(f))n converges in H(U) for each f ∈ H(U). Using their

results, we can give an example in a very general setting: let U be
a topologically contractible bounded strongly pseudoconvex domain in
Cd with C3 boundary and ϕ : U → U a holomorphic symbol with a
fixed point (for example, when d = 1 and U = D, the open unit disk).
Then by [6, Corollary 1] the composition operator Cϕ : H(U)→ H(U)
is power bounded and, hence, it cannot be supercyclic. In fact, if Cϕ
is supercyclic, by Theorem 2.3, Cnϕ(f) = f ◦ ϕn → 0 in H(U) for each
f ∈ H(U), but this is not true for f ≡ 1. We observe that there are
holomorphic symbols ϕ such that Cϕ has dense range. For instance,
when ϕ is an automorphism. We can find similar examples in spaces of
real analytic functions; see, e.g., [7, Corollary 2.5].

The following simple example is related to Fréchet sequence spaces.

Example 4.3. We consider a Köthe sequence space λp(A) with associated
matrix A = (an(i))n,i∈N, with 1 ≤ p ≤ ∞. For the precise definition see,
for instance, at the beginning of chapter 27 of [12]; there, the notation is
an(i) = ai,n for the elements of the Köthe matrix. Given a sequence (bn)n ⊆ C
and Γ the fundamental sequence of seminorms defined in [12], it is easy to
see that the diagonal operator

Tb : λp(A)→ λp(A), Tb(x) = (bnxn)n,

is a Γ-isometry if and only if |bn| = 1 for all n ∈ N. Moreover, it is dou-
bly power bounded also. Hence, in this case, by Lemma 2.1, Tb cannot be
supercyclic.

Now, we find an operator that is power bounded and not supercyclic on
a Fréchet space; see [2, 13, 14] for different situations in Banach spaces. This
example shows that for a power bounded operator, the thesis in Theorem 2.3
is not sufficient for the operator to be supercyclic.

Example 4.4. It is known from [5, Proposition 4.3] that the integration op-
erator

Jf(z) :=

∫ z

0

f(ζ)dζ

is power bounded in H(C) or in H(D) and, moreover, Jnf tends to 0 as n
tends to infinity in the compact-open topology for every f in these spaces.
However, the integration operator J is not supercyclic in H(C) or in H(D),
since it does not have dense range in these spaces.

Our last example also shows that the thesis in Theorem 2.3 is necessary
but not sufficient for a power bounded operator to be supercyclic in the
Schwartz class S(R) of rapidly decreasing functions in one variable. We give
examples of power bounded and non supercyclic operators which have dense
range in S(R).

Example 4.5. If we consider the Schwartz class S(R) of rapidly decreasing
functions in one variable, the composition operator Cϕ : S(R) → S(R) is
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well defined and continuous if and only if the symbol ϕ ∈ C∞(R) satisfies
some conditions [10, Theorem 2.3], and Cϕ is never compact. On the other
hand, Cϕ : S(R) → S(R) is never supercyclic [9, Corollary 2.2(1)], but the
authors find examples of symbols (namely, any polynomial of even degree
greater than one without fixed points) such that Cϕ : S(R)→ S(R) is power
bounded, mean ergodic and (Cnϕ)n converges pointwise to zero in S(R) [9,
Theorem 3.11, Corollary 3.12]. The authors also show that if the symbol ϕ
is monotonically decreasing and the corresponding composition operator is
power bounded then (Cϕ)2 = I, the identity, so in this case Cϕ is surjective,
and hence it has also dense range [9, Theorem 3.8 (b)]. Moreover, besides
ϕ(x) = −x there are many monotonically decreasing symbols ψ such that
(Cψ)2 = I [9, Example 1].
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