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Abstract: 

It is known that control charts based on equal tail probability limits are ARL-biased when the 
distribution of the plotted statistic is skewed. This is the case for p-Charts that serve to monitor 
processes on the basis of the binomial distribution. For the particular case of the standard three 
sigma Shewhart p-Chart, which is built on the basis of the binomial to normal distribution 
approximation, this ARL-biased condition is particularly severe and it greatly affects its 
monitoring capability. Surprisingly, in spite of this, the Standard p-Chart is still widely used 
and taught. Through a literature search it was identified that several, simple to use, improved 
alternative p-Charts had been proposed over the years; however, at first instance it wasn´t 
possible to determine which of them was the best. In order to identify the alterative that 
excelled, an ARL performance comparison was carried out in terms of their ARL bias severity 
level (ARLBSL) and their In-Control ARL (ARL0). The results indicated that even the best 
performing alternative charts would often be ARL-biased or have non-optimal ARL0. To 
improve on the existing alternatives, the “Kmod p-Chart” was developed; it offers easiness of 
use, superior ARL performance and a simple and effective method for verifying its ARL-bias 
condition.  

Keywords: Attribute control chart; ARL-bias; fraction non-conforming; p-Chart  

0 Introduction 

A widely used tool of statistical process control is the chart that serves to monitor a process by 
means of its fraction nonconforming, p, on the basis of the binomial distribution. Commonly 
known as p-Chart, its fundamental characteristics are underpinned by the parameters p and 
sample size, n. It is well known that the binomial is a discrete distribution that becomes skewed 
when p ≠ 0.5.   

In most real applications it is often a requirement for a p-Chart to be able to detect process 
deterioration and improvement. To achieve this in an optimal way, the following conditions 
must be achieved: 1) The chart must have upper and lower control limits and 2) The chart´s 
limits must provide probability tail areas that should to be as close as possible to a given 
nominal value, usually 0.00135. It is known that p-Chart´s properties are determined by the 
reciprocals of its tail areas [1] and that the reciprocal of the combined tail areas is the Average 
Run Length (ARL), which is the expected number of plotted points before a point falls outside 
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the control limits. It is also known that when the tail areas differ in value the chart becomes 
ARL-biased, an undesired condition that compromises the chart´s detection capability [2, p. 
189&195].  

Walter A Shewhart back in the first half of the twentieth century, was the first person to propose 
a control chart that used p. In this paper we called Shewhart´s chart the “Stantard p-Chart”, its 
limits are computed by means of equation (1) under the assumption that the binomial 
distribution is adequately approximated by the normal and that in turn, the chart´s limits will 
provide adequate probability tails areas. This chart, although decades old, is still widely used 
and taught, Montgomery [3, p. 228] gives a good insight into the theory and applications of this 
chart. . 

Often in real live process monitoring situations the value of p is much lower than 0.5, this gives 
rise to a major flaw in the Standard p-Chart in that for small values of p, say less than 0.2, its 
tail areas are often dissimilar and far-off from the expected nominal value [2, p. 183], even 
when large sample sizes are used. This is caused by the fact that, for p << 0.5, the normal to 
binomial approximation is far from accurate, especially on the tail sides [4].  

It is rather surprising that the Standard p-Chart, despite its well documented weaknesses, is still 
extensively used. Factors that may help to explain its enduring popularity could be its 
simplicity, its easiness of use, the fact that it is relatively easy to figure out its mathematical 
principals and most probably, unawareness of its deficiencies. Hence, if one is to propose an 
alternative chart that could become as widely accepted as the Standard p-Chart, apart from 
having a better performance, it should be just as easy to construct and use.  

Several alternative p-Charts and methods that offer control limits that provide tail areas closer 
to the nominal value have been proposed over the years. Based on the aforesaid alternative chart 
criteria, we searched and selected only those whose control limits were computed through easy-
to-use methods. Grouped according to the approach used to derive them, hereunder we mention 
those we consider fulfil the criteria appropriately:      

a) Optimum control limits approach: Under this approach are the charts that use a closed-
form equation to compute control limits that provide improved probability tails Examples of 
these charts are: 1) The chart based on a rule of thumb correction proposed by Ryan [5, p. 
348].The chart based on the Corner-Fisher expansion originally proposed by Winterbottom 
[6] and later extended by Chen [7] 3) The chart based on regression analysis proposed by 
Ryan&Schwertman [1] and 4) The chart based on the Wilson interval proposed by Park [8]. 

b) Transformation approach: Under this approach are the charts that utilize a normalizing 
transformation to obtain improved probability tails. Examples of these are: 1) the Arcsine 
Chart [2, p. 188] and 2) The Q Chart [9], [10]. 

 
 
As can be seen several simple to use alternatives to the Standard p-Chart have been proposed 
over the years. However, once the list of viable alternatives had been drawn, it became clear 
that two important questions had to be answered, these were: which of them is the better 
alternative? And, could a new viable alternative chart be developed? The search for answers to 
these questions led us to carry out the research summarised in this paper.  

In order to identify the alternative chart that excelled, a performance comparison in terms of 
their ARL performance was carried out; for this we developed a new parameter called ARL-
bias severity level (ARLBSL), this parameter along with the In-Control ARL made it possible to 
objectively compare all of the charts. Employing the knowledge gained throughout the research, 



AUTHOR VERSION                                                                  Quality and Reliability Engineering International, DOI: 10.1002/qre.2379 
	

 
a new easy-to-use “closed-form equation” type chart was developed; we called it “Kmod p-
Chart”, it offers easiness of use, excellent ARL performance for a wide range of p values and a 
simple method for verifying its ARL-bias condition. 

This paper is organized as follows: Section 1 contains firstly a short description of the Standard 
p-Chart followed by a brief analysis of the binomial distribution, then a description of the 
ARLBSL and finally a brief summary of the ARL performance for the Standard p-Chart.  In 
Section 2, firstly we present the Kmod p-Chart and its ARL performance, followed by a 
graphical description of binomial tail performances for selected alternative charts and then 
finally we present a table that allows comparing the ARL performance of several alternative p-
Charts. Section 3 contains concluding remarks.               

1 Materials y method 

1.1 The Standard p-Chart   

Let’s suppose that we have items made in a stable production process out of which independent 
samples, of size n, are inspected and that the number of nonconforming items in the i-th sample 
is given by the Bernoulli parameter p. In this case the number of nonconforming items obtained 
in each sample, denoted as ݔ௜ሺ݅ ൌ 1,2,3,… ሻ, could be modelled as a random variable that 
follows a binomial probability distribution. 

If p is known and if n is sufficiently large then the process could be statistically monitored by 
plotting the fraction of nonconforming	ݕ௜ ൌ ௜ݔ ݊⁄  on a Standard p-Chart with limits given by 
equation (1). This equation is derived using the Central Limit Theorem (CLT) under the 
assumption that the binomial distribution is approximately normal.  

ݏݐ݅݉݅ܮ	݈݋ݎݐ݊݋ܥ ൌ ݌	 േ ට௣ሺଵି௣ሻܭ	

௡
           (1) 

Where: 

 For upper control limit (UCL) use + 
 For lower control limit (LCL) use – 
 K ൌ Zሺଵି	஑ ଶሻ⁄  
 α = Type I error probability (or Alpha error), n= sample size and p= 

Known process fraction of nonconforming. 

Often in real practical situations the value of p is not known and consequently it must be 
estimated. In this case the maximum likelihood estimator of p must be calculated as shown in 
(2).       

̄݌ ൌ
∑ 	௫೔
೘
೔సభ

ே
               (2) 

 

Where:  ܰ ൌ ∑ ݊௜
௠
௜ୀଵ 	 

݊௜	ሺ݅ ൌ 1,2, ……݉ሻ	→ A predefined group of m randomly selected samples of size ni   

                                      In our case, ni=n i 

௜ݔ	  ൌ Count of nonconforming items in the i-th sample 

In (1) K is the ሺ1 െ ߙ 2⁄ ሻ݄ݐ quantile of the standard normal distribution	ܰሺ0,1ሻ. To obtain the 
widely used three sigma p-Chart a false alarm rate, or alpha error probability, value of α= 
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0.0027 is used. This means that when K ൌ 3 and the process is In-Control (or IC), the lower 
and upper alpha tail error probabilities should be equal to α/2 or 0.00135.  In this paper we call 
these tail values IC alpha tails. Notice that these tail values are obtained assuming the binomial 
distribution to be approximately normal, which would consequently imply that its distribution 
shape is almost symmetric or non-skewed. 

The IC alpha tails play a determinant role on a p-Chart´s monitoring capability, hence their true 
value ought to be determined if one is considering using this type of chart. The tails can be 
calculated by means of equations (3) and (4). These equations are incorporated in widely used 
computer software programs, like Excel´s binomial probability function; hence, the IC alpha 
tails can be easily computed without the need of doing the calculations by hand.   

௎ߙ ൌ  ݈݅ܽݐ	݄ܽ݌݈ܽ	ܥܫ	ݎ݁݌݌ܷ

௎ߙ ൌ ܲ൛ݔ ൒   	௣ൟ|ܮܥܷ݊

௎ߙ ൌ 1 െ ∑ 	൫௡௫൯	݌
௫ሺ1 െ ݔ			ሻ௡ି௫݌ ൌ ௡௎஼௅ܮܥܷ݊…0,1,2

଴        (3) 

 

௅ߙ ൌ  ݈݅ܽݐ	݄ܽ݌݈ܽ	ܥܫ	ݎ݁ݓ݋ܮ	

௅ߙ ൌ ܲ൛ݔ ൑  	௣ൟ|ܮܥܮ݊

௅ߙ ൌ ∑ 	൫௡௫൯	݌
௫ሺ1 െ ݔ						ሻ௡ି௫݌ ൌ ௡௅஼௅ܮܥܮ݊…0,1,2

଴          (4) 

Also: 

௢ߙ ൌ ௅ߙ ൅ ௎ߙ ൌ     (5)       ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌	ݎ݋ݎݎ݁	݄ܽ݌݈ܽ	ܥܫ	݈ܽݐ݋ܶ

In this point we also define the IC alpha tails ratio as: 

R஑ ൌ 	α୐ α୙⁄                                                 (6) 

Since the lower and the upper tail values should, in theory, be equal then the expected IC alpha 
tails ratio is Rα = 1.  

1.1.1 The Average Run Length - ARL 

When monitoring a process with a p-Chart, there will be points 	ݕ௜ that fall inside and outside 
the chart limits. The average number of 	ݕ௜ points that fall inside the chart limits before 
one	ݕ௜	falls outside them is called the Average Run Length (ARL), see [3, p. 191] & [11, p. 
277]. The ARL is commonly used to measure the performance of a control chart, and it can be 
classified in two types, namely: i) The In-Control ARL, usually identified as ARL0 and ii) The 
Out of Control ARL identified in this paper as ARL1.   

The ARL0 exists when the monitored process is working under In-Control (or IC) conditions. 
In IC conditions the	ݕ௜	points that fall outside the chart limits do so according to the false alarm 
rate at which the chart has been designed, a typical alarm rate is 1/370 = 0.0027, hence in this 
case the expected ARL0 = 1/0.0027 ≈ 370. When the average	ݕ௜ points that fall outside the limits 
do so at a higher rate than the ARL0, it is an indication that the process is out of control (or OC). 
The following situations could cause an OC state: 1) An increment in the fraction of 
nonconforming (or positive p-shift), that may be caused by process deterioration and 2) A 
decrease in the fraction of nonconforming (or negative p-shift), that may be caused by a process 
improvement. 

A chart´s capability to detect an OC state is commonly measured by means of the ARL1, that 
being the average number of 	ݕ௜	points plotted within the limits before a 	ݕ௜	point  appears 
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outside them when the process fraction of nonconforming, p, has suffered a positive or negative 
shift. In this paper we denote a p-shift as p1.  

1.2 Skewness and discreetness of the binomial distribution and its effect on the 
p-Chart 

It is well known that the shape of the binomial distribution is directly related to its parameters 
p and n and that only when p=0.5 its shape is symmetric for large or small n values. When p<0.5 
and n is small, the distribution becomes right skewed, however, when n is sufficiently large the 
skewness reduces to the point that it becomes nearly symmetric, when this happens the Central 
Limit Theorem (or CLT) could be used to successfully approximate the binomial to the normal 
distribution. A common rule of thumb often found in text books says that the approximation 
would be adequate so long as np ≥ 5 (or 10); thus one could assume that a process could be 
satisfactorily monitored by a p-Chart provided that the conditions of this rule are met.  

As previously shown, a p-Chart is built under the assumption that its control limits will provide 
IC alpha tails equal to 0.00135. However, the equal tail value condition is not achieved even 
when np > 10. To illustrate why this happens we present Figure 1, it shows the binomial density 
distribution for n=244 and p=0.05 and the shape of its CLT normal approximation; the n and p 
combination gives an np=12.2. Notice that the binomial probability density has discrete values 
whose distribution is slightly right skewed and that the normal approximation does not 
accurately follow its shape. Most importantly notice how the tails of the two distributions differ, 
the normal approximation lower tail runs above the binomial whilst its upper tail runs below it. 
The p-Chart´s control limits for this n and p combination, identified as nLCL and nUCL, denote 
the boundaries under the normal curve where the probability areas are approximately equal to 
0.00135. However, due to the inaccurate fit of the binomial to the normal, the locations of these 
limits provide IC alpha tails that are rather different from the expected 0.00135. This problem 
is made worse by the inherent binomial discreteness, as will be explained next.     

 
Figure 1: Example of the discrepancy between the binomial distribution and its normal approximation 
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To illustrate in more detail the effect that the binomial skewness and discreetness has on the IC 
alpha tails we present Figure 2 and Figure 3. Figure 2 shows the upper and lower tails of the 
cumulative binomial probability curve for n=244 and p=0.05. Notice that the probabilities 
values are discrete and that only in the upper tail, between 23 and 23.99, there is a discrete value 
equal to 0.00135. The lower tail value obtained with nLCL=1.99 is 0.000051, which is 26.5 
times below 0.00135. In the other hand with nUCL=22.41 the tail obtained is 0.00288, which 
is 2.13 times above 0.00135. Overall we have that the alpha tails ratio, as defined in (6), is 
Rα=0.017; which denotes a substantial difference between the lower and upper alpha tails.  

Figure 3 shows the tails of the cumulative binomial probability curve for and n=245 and p=0.05, 
this sample size is just one above to the one used in Figure 2. Notice that in this case in neither 
tail exist a probability value that would provide the expected 0.00135, only in the upper tail the 
discrete value between 23 and 23.99 comes close to it. The lower tail value obtained with 
nLCL=2.02 is 0.000337, which is 4 times below 0.00135, whilst the upper tail value obtained 
with nUCL=22.48 is 0.00303, which is 2.24 times above 0.00135. The alpha tails ratio in this 
case is Rα=0.11 which in comparison to the one obtained for n=244 is about 6.5 times bigger. 
This clearly demonstrates that just a small change in the sample size can cause a huge variation 
in the IC alpha tails.  

Figure 2 and Figure 3 served to demonstrate that the inaccurate fit of the normal to the binomial  
distribution causes the IC alpha tails to be: i) much below 0.00135 in the lower tail and ii) much 
above 0.00135 in the upper tail. The figures also helped to show that due to the binomial 
distribution discreetness, substantial variations can occur in the IC alpha tails with just a small 
change in the binomial parameter n.     

Notice that an Rα closer to one could have been obtained in both examples, if the control limits 
could have been shifted to values that provide alpha tails nearer to 0.00135.  

 
Figure 2: Upper and lower tails of the cumulative binomial probability for p=0.05 and n=244 
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Figure 3: Upper and lower tails of the cumulative binomial probability for p=0.05 and n=245 

1.2.1 The Standart p-Chart IC alpha tails oscillation 

In order to determine how the IC alpha tails behaves for different p and n combinations, we 
developed an algorithm capable of computing the tail values for any p and n combination and 
used it to conduct an analysis between p ≥ 0.01 and p ≤ 0.2. The sample size range used for the 
analysis was specific to each p and was obtained using (7); this equation is given by Duncan 
[12, p. 451] and it is commonly used to obtain a p-Chart´s sample size.  

The sample size range minimum n was obtained setting d=0.99, this value was chosen due to 
the fact that it provides the approximate minimum n required by a Standard p-Chart to have a 
LCL. For the maximum n we set d= p/3. 

ሺ݊ሻ	݁ݖ݅ݏ	݈݁݌݉ܽݏ ൌ 	9pሺ1-pሻ/݀ଶ	        (7)      

As an example of the results we present Figure 4. This figure display the IC alpha tails in 
function of n for p=0.05. As can be seen, the upper tails oscillate above 0.00135 whilst the 
lower tails oscillate below it. At low n values the tails get further apart with the lower tail getting 
closer to zero, whilst at higher n the tails get closer converging towards, but never reaching, the 
expected 0.00135 value. We found this behaviour to be similar for all other p values used in the 
study.  Notice also that even at high sample sizes, where values are substantially above the rule 
of thumb np > 10, the IC alpha tails fail to reach the expected value; this clearly demonstrates 
that this rule of thumb simply does not provide satisfactory results when applied to p-Charts.   

Ryan [2, p. 190] shows a table that includes the actual IC alpha tails values for several n and p 
combinations and uses this to conclude that the alpha tails for the three sigma Standard p-Chart, 
deviate from the expected 0.00135 value quite substantially. Our results confirms, albeit in a 
different way, Ryan´s conclusion regarding the Standard p-Chart IC alpha tails.     
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Figure 4: Example of Standard p-Chart´s typical IC alpha tails behaviour for fixed p and variable n 

1.2.2 The IC alpha tails and the In-Control Average Run Length  - ARL0  

As previously mentioned a chart´s ARL can be classified into two types, ARL0 and ARL1.  Let’s 
recall that the In-Control ARL, or ARL0, is the average number of points that fall within the 
chart limits before a point fall outside them when the process is In-Control (or IC).  In this case, 
giving that the process is IC, the points that fall outside the limits are considered to be false 
alarms.  

The ARL0 is a function of the IC alpha tails and can be calculated by means of equation (8).  

଴ܮܴܣ ൌ
ଵ

ఈ೚
                                                                    (8) 

Where:  

௢ߙ ൌ ௅ߙ ൅  ௎  =Total IC alpha error probabilityߙ

௎ߙ ൌ   ݈݅ܽݐ	݄ܽ݌݈ܽ	ݎ݁݌݌ݑ	ܥܫ

௅ߙ ൌ   ݈݅ܽݐ	݄ܽ݌݈ܽ	ݎ݁ݓ݋݈	ܥܫ	

As previously shown a three sigma Standard p-Chart should have, in theory, IC alpha tail values 
equal to 0.00135, using (8) we obtain that in this case the expected ARL0 is: 	1/ሺߙ௅ ൅ ߙ௎	ሻ= 
1/ሺ0.00135 ൅ 0.00135	ሻ = 1/ሺ0.0027	ሻ ≈ 370. This means that when the process is working 
under IC conditions, in average there would be one false alarm, or one point erroneously plotted 
outside the chart limits, every 370 samples. However, since the ARL0 is a function of the IC 
alpha tails and these oscillate, then its value will also oscillate. As an example we present Figure 
5, it shows the corresponding ARL0 for the alpha tails of Figure 4. Notice that often the ARL0 
is below 370, in those cases there will be more false alarms than expected, giving the erroneous 
impression that the process is out of control. We found this behaviour to be similar for all the 
other p included in our analysis.   
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Figure 5: Example of the oscillation of the ARL0 on the Standard p-Charts 

1.3 The p-Chart´s ARL Curve 

1.3.1 Computing the Out of Control Average Run Length – ARL1  

As mentioned before a process could be Out of Control (or OC) due to positive or negative 
shifts in the process fraction of nonconforming, p, in this paper we denote these shifts as p1. 
The ARL1, or average number of points that fall inside the chart when there has been a p-shift, 
is computed by means of equations (9) and (10). 

ଵܮܴܣ ൌ
ଵ

ଵି	ఉ
         (9) 

ߚ ൌ ܲ൛ݔ ൑ 	௣ୀ௣భൟ|ܮܥܷ݊ െ 	ܲ൛ݔ ൑     (10)	௣ୀ௣భൟ|ܮܥܮ݊	

Where: 

ଵ݌ ൌ -݌ 								ݐ݂݄݅ݏ ∗ ଵ݌	:ܾ݁	݈݀ݑ݋ܿ	ଵ݌ ൏ 	u		or		݌ଵ ൐ 	u	

ݔ ൌ 	ݏݐ݅݊ݑ	݃݊݅݉ݎ݋݂݊݋ܿ݊݋݊	݂݋	ݎܾ݁݉ݑ݊

β ൌ 	ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌	ݎ݋ݎݎ݁	ܫܫ	݁݌ݕܶ	

 

1.3.2 The ARL curve  

In order to analyse a p-Chart´s capability to detect an OC state, one could generate p1 values 
above and below p and then compute their corresponding ARL1. By plotting the results, the 
chart´s ARL curve is obtained. Figure 6 shows an ideal ARL curve, we´ve chosen to present 
the x-axis as the percentual change ሺ݌ଵ ሻ݌ െ 1⁄  , where p is the process fraction of 
nonconforming and p1 denotes the actual p-shift. In this case p1 = δp, with δ being the relative 
shift coefficient that can take values above or below one. For example: if p=0.1 and δ=0.9 the 
resulting p1 is 0.09 and hence ሺ݌ଵ ሻ݌ െ 1⁄ = -0.1, denoting that the process fraction of 
nonconforming has suffered a 10% negative shift.  
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Figure 6: Example of unbiased ARL curve 

In Figure 6 the x-axis point ሺ݌ଵ ሻ݌ െ 1 ൌ 0⁄  indicates that there isn´t a p-shift, hence its 
corresponding ARL value is the ARL0. When ሺ݌ଵ ሻ݌ െ 1 ് 0⁄  there is a p-shift and its 
corresponding ARL is the OC-ARL (or ARL1). It can be seen that always ARL1 < ARL0 and 
that the curve is symmetric with respect to the y-axis. A p-Chart that has this type of ARL curve 
will have equal capability to detect process deterioration or improvement. 

The ARL curve shown in Figure 6 is also known as an unbiased ARL curve. Acosta-Mejia [13] 
defined a control chart as being ARL-unbiased if its ARL curve decreased as the process 
parameter moved away from the in-control value, for a p-Chart the process parameter is p.  

1.3.3 The biased ARL curve and the ARL-bias severity level  

Figure 7 shows the ARL curves for the p and n combinations used for Figures 2 and 3. Both 
curves are biased towards the negative p-shift direction, in this paper we call this type of bias 
“negative ARL-bias”, when the bias is towards the positive p-shift we call it “positive ARL-
bias”. The curves indicate that with negative ARL-bias, the ARL1 required to detect a certain 
range of negative p-shifts will be higher than the ARL0.  It is easy to deduce that p-Charts with 
these ARL characteristics would have a diminished process improvement detection capability.  

Notice how both curves in Figure 7 vary in height and width indicating a very different ARL-
bias severity despite the fact that the only difference in their binomial parameters, p and n, is 
just one sample size unit, from 244 to 245. Notice also that in both curves the ARL peak value 
(ARLM) is higher than the ARL0 and that the x-axis location of this peak is different to that of 
the ARL0.  The variations of the ARLM relative to the ARL0 can be used to quantify a p-Chart´s 
ARL-bias severity level. 

In this paper we use the following parameters to quantify the ARL-bias severity level (or 
ARLBSL):  

1) The ARL-ratio = ARLM /ARL0 
Where: 

 ARLM = ARL curve peak value  
 ARL0= In-Control ARL 
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Ideally (ARLM /ARL0) =1, otherwise the higher the ratio the greater the bias severity 
level. 

Something that must be considered is that excessively low, or high, ARL0 values 

may be undesirable for process monitoring [14, p. 80]. We considered an ARL0 to 
be acceptable if it falls within the range of 250 and 450.  

 
2) The relative ARL-bias, denoted in this paper as ARL-bias(%). 

-ܮܴܣ ሺ%ሻݏܾܽ݅ ൌ 100 ∗ ሾ	ሺ݌ெ ሻ݌ െ 1⁄ ] 

Where pM is the p-shift at which the ARLM happens. 
 

The relative ARL-bias can be seen as the percentage difference between the location 
of the ARLM and the ARL0 in the x-axis. Ideally the ARL-bias(%) should be equal 
to zero, otherwise the further apart from zero the greater the severity level. A 
negative sign before the ARL-bias(%) value indicates a negative ARL-bias.  
 

An actual value for the ARLBSL can be obtained using equation (11). Given that by multiplying 
the ideal values of the ARL-ratio and the ARL-bias(%) we obtain zero, then the ideal ARL-bias 
severity level should also be zero. An ARLBSL = 0 indicates that the ARL curve is unbiased, the 
more severe the ARL-bias the further the ARLBSL departs from zero. A negative sign denotes a 
negative ARL-bias whilst a positive denotes a positive ARL-bias.   

-ܮܴܣ ஻ௌ௅ሻܮܴܣሺ	݈݁ݒ݈݁	ݕݐ݅ݎ݁ݒ݁ݏ	ݏܾܽ݅ ൌ -ܮܴܣ ݋݅ݐܽݎ ∗ -ܮܴܣ  ሺ%ሻ      (11)ݏܾܽ݅

Figure 7 includes the ARLBSL values of each ARL curve and also their IC alpha tails ratio Rα. 
Notice how the curve with the Rα value closest to one has the lowest ARLBSL, this is an example 
of the improvement that can be gained in the ARLBSL by making the IC alpha tails closer to 1. 

 
Figure 7: Example of biased ARL curves  
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1.4  ARLBSL performance of the Standard p-Chart  

In order to ascertain the ARL-bias severity behaviour of ARL curves produced by different 
combinations of  p and n, we made an algorithm capable of computing the following 
parameters: i) The ARL-ratio, ii) The ARL-bias(%) and iii) The ARLBSL. This algorithm was 
used to undertake an extensive Standard p-Chart´s ARL-bias severity study, that included 
fractions of nonconforming between p ≥ 0.01 and p ≤ 0.2 and sample sizes ranges specific for 
each p that were determined following the same criteria used in section 1.2.1. 

Typical examples of the results obtained for the ARL-ratio and the ARL-bias(%) are presented 
in Figures 8, and 9. For reasons of conciseness we present results only for p=0.05. As can be 
seen the ARL-ratio oscillates in a logarithmically decreasing manner, approaching the desired 
value of one at very high n values. In the other hand, the ARL-bias(%) also oscillates but in an 
logarithmically increasing manner approaching the desired value of zero at very high sample 
sizes.  

 

Figure 8: Example of the ARL-ratio in function of sample size and fixed p 
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Figure 9: Example of the relative ARL-bias in function of sample size and fixed p 

After an in-depth analysis of the overall ARL-ratio and ARL-bias(%) results, and also after 
careful consideration, we reached the conclusion that ARL-ratios below 1.1 combined with 
ARL-bias(%) within ±2 would produce control charts with an ARL-bias that could be 
considered to have negligible effect on the chart´s p-shift detection capability. In this paper we 
call these charts “quasi ARL-unbiased”. In terms of the ARLBSL, we considered a p-Chart to be 
“quasi ARL-unbiased” if it falls within the range: -2 < ARLBSL < 2. 

Figure 10 depicts typical Standard p-Chart´s ARLBSL behaviour for fixed p and variable sample 
size. As can be seen, the ARLBSL increases negatively as n reduces in size and only at the 
extreme higher end a handful of n values achieve the ARLBSL > -2 criterion; very similar 
ARLBSL behaviour was found for all other p used in our study. Figure 10, and also Figure 11; 
help to demonstrate that for p << 0.2, the vast majority of Standard p-Charts will have negative 
ARL-bias with severity levels that reach dramatic levels for small sample sizes. 

The ARLBSL results obtained in the study demonstrate that when the process fraction of 
nonconforming is less than 0.2, a Standard p-Chart will be ARL-biased unless extremely high 
sample sizes are used, something that in real situations is not practical or simply unrealisable. 
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Figure 10:  p-Chart´s typical ARLBSL behaviour for fixed p and variable sample size 

Figure 11 shows an example of the relation beetween the IC alpha tails and the ARLBSL for 
Standard p-Charts. The figure contains the Rα values and their corresponding ARLBSL for 
p=0.05 between a sample size range of 174 and 684. What this figure demostrates is that the 
lower the difference between the IC alpha tails, the closer the ARLBSL will be to zero. This led 
us to conclude that to obtain quasi ARL-unbiased p-Charts the Rα must be as close to one as 
possible.   

In the following section we present a method that we have called “Kmod” through which quasi 
ARL-unbiased p-Charts can be obtained.   

 
Figure 11: Example of the effect of Rα on the ARLBSL 
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2 Results 
 

2.1 The “Kmod” method for obtaining quasi ARL-unbiased p-Charts 

2.1.1 An adaptive K factor for obtaining improved control limits   

In the previous sections we explained the reasons why the control limits provided by (1) gave 
IC alpha tails that are far from the expected 0.00135 value, and also showed that the alpha tails 
ratio, Rα, has a direct influence on the p-Chart´s ARL-bias severity. In order to obtain control 
limits that would provide improved IC alpha tails values, we modified the parameter K in 
equation (1) and after extensive analysis found that very good results were obtained with control 
limits computed using equation (12). Charts constructed with this equation are to be known as 
“Kmod p-Charts”. In (12) the factor ݀݋݉ܭ௎஼௅/௅஼௅ is an adaptive variable whose value will 
depend on the binomial parameters n and p. 

Figure 12 shows an example of IC alpha tails obtained with (12) for p=0.05. The sample size 
range is the same as the one used for Figure 4 so that a comparison can be done. As can be seen 
the Kmod limits provide IC alpha tails that oscillate around the 0.00135 value.    

ݏݐ݅݉݅ܮ	݈݋ݎݐ݊݋ܥ	݀݋݉ܭ ൌ ݌	 േ	݀݋݉ܭ௎஼௅/௅஼௅ට
௣ሺଵି௣ሻ

௡
	            (12)                         

Where:      

For upper control limit (UCL) use:  →  ݀݋݉ܭ௎஼௅ ൌ 3 ൅ ଵ

ඥ௡௣ሺଵି௣ሻ
   

For lower control limit (LCL) use: →  ݀݋݉ܭ௅஼௅ ൌ 3 െ ଵ.଺

ඥ௡௣ሺଵି௣ሻ
   

 

 
Figure 12: Example of Kmod p-Chart´s typical IC alpha tails behaviour for fixed p and variable n  
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To illustrate how the control limits computed with (12) provide improved IC alpha tails values 
we use the examples shown in Figures 2 and 3. For n=244, multiplying n by the Kmod limits 
we obtain nLCL=3.59 and nUCL=23.41, observe that their corresponding discrete alpha tails 
values are the ones closest to 0.00135 obtaining an Rα= 1.21. For n=245 we obtain an 
nLCL=3.62 and nUCL=23.48, their corresponding alpha values are also the ones closest to 
0.00135 providing an Rα= 1.1. The Rα values show that the disparity between the IC alpha tails 
has been greatly reduced and that since R஑ ൌ 	α୐ α୙⁄   the αL is slightly higher than αU in both 
cases. Figure 13 shows the ARL curves obtanied with the Kmod limits including their 
corresponding ARL-bias parameters, both curves are quasi ARL-unbiased with a very low 
ARLBSL and acceptable ARL0. Comparing these curves with the ones of Figure 7 it is obvious 
that a dramatic improvemement has been obtained.  

 

 

Figure 13: Example of quasi ARL-unbiased Kmod p-Charts 

2.1.2 Kmod p-Chart ARLBSL and ARL0 performance   

In order to determine the Kmod p-Chart´s ARLBSL and ARL0 performance for different 
combinations of p and n, we carried out an extensive study computing all the relevant 
parameters for fractions of nonconforming between 0.005 ≤ p ≤ 0.20, and for sample sizes 
ranges determined as follows:  

1. The minimum sample size was found using equation (13). This equation was obtained 
by means of regression analysis and it computes, for a given p, the approximate 
minimum sample size above which a Kmod p-Chart will have a lower control limit (or 
LCL). 

min݀݋݉ܭ ݊ ൌ ܽ ൅ ܾ ∗ ሻ݌௘ሺ݃݋݈ ൅ ܿ ∗ ሻݍ௘ሺ݃݋݈ ൅ ݀ ∗ ሻ݌௘ሺ݃݋݈ ∗  ሻ   (13)ݍ௘ሺ݃݋݈

Where: p= process fraction of nonconforming; q= 1-p 

 For 0.15 < p ≤ 0.20: use a minimum sample size of 25  
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 For 0.017≤ p ≤ 0.15:  a= -1630; b= - 417; c = 1593; d= 3646 
 For 0.005≤ p ≤ 0.016: a= -15282; b= - 2636; c= 353387; d=155947  

 
2. The maximum sample size was determined using (7) with d= p/3. 

Typical examples of the results are presented in Figures 14, 15 and 16. Figure 14 shows the 
ARLBSL obtained  for p=0.05, comparing this figure with Figure 10 one can truly appreciate 
just how much better the ARLBSL of the Kmod p-Charts are in comparison of  the Standard p-
Charts. Notice that 91% of the sample sizes fall within the ARLBSL criterion for “quasi ARL-
unbiased” and that the sample sizes that exceed this criterion are concentrated mainly in the 
mid-lower end. Notice also that the minimum n above which the Kmod p-Chart has LCLs is 
97; this is significantly lower than the 174 obtained for a Standard p-Chart. This serves to 
demonstrate the other advantage that the Kmod has over the Standard, which is to provide LCLs 
with lower sample sizes.  

 
Figure 14: Example of typical Kmod p-Chart´s ARLBSL behaviour for fixed p and variable n 

Figure 15 shows typical ARLBSL vs. Rα behaviour, we include this figure to illustrate a very 
simple method that could be used to verify if a Kmod p-Chart has achieved the quasi ARL-
unbiased criteria. After extensive results analysis we found that when the IC alpha tails ratio, 
obtained with the Kmod limits, falls between 0.7 < Rα < 2.2 the criteria -2 < ARLBSL < 2 is very 
likely to have been achieved. This Rα criterion applies for all p and n combinations used in this 
study. However the following considerations must be taken into account when using this 
method: 

a) Between 0.7 < Rα < 1 a low proportion of sample sizes would exceed the criteria -2 < 
ARLBSL, reaching maximum levels around ARLBSL ≈ -3. However, we consider that 
even at these levels the ARL curves would have acceptable ARL-bias(%) and ARL-
ratios.  

b) When Rα is close to around 0.7 or 2.2, care must be exercised because at those extremes 
some p and n combinations could:  i) Provide an ARLBSL value that excessively exceeds 
the ARLBSL criteria even if the Rα is within the limits 0.7 or 2.2 ii) Provide an acceptable 
ARLBSL value even if the Rα is outside the limits 0.7 or 2.2. We would recommend that 



AUTHOR VERSION                                                                  Quality and Reliability Engineering International, DOI: 10.1002/qre.2379 
	

 
in these cases the actual ARLBSL be computed or alternatively the method of changing 
the sample size, described below, be applied to obtain better Rα.     

 
Figure 15: Example of typical behaviour of ARLBSL vs. Rα in Kmod p-Charts  

Figure 16 shows typical ARL0 vs. Rα behaviour, we include this figure to show the Kmod p-
Chart´s ARL0 performance. Notice that 93% of the samples sizes used for p=0.05 are within 
250 < ARL0 < 450, which is an ARL0 range we considered to be acceptable for process 
monitoring. However, the figure also demonstrates that for some p and n combinations, the 
ARL0 maybe too low or too high even if the Kmod p-Chart is quasi ARL-unbiased, for this 
reason we strongly recommend to always compute the ARL0. If the ARL0 is not satisfactory 
then we would recommend applying the “varying sample size method”, as described below, 
until a satisfactory value is obtained. 
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Figure 16: Example of typical behaviour of ARL0 vs. Rα in Kmod p-Charts 

Table 1 contains a summary of the results obtained in the study carried out to establish the 
Kmod p-Chart ARLBSL and ARL0 performance. As can be seen excellent results are obtained 
between 0.005 ≤ p ≤ 0.10, a p range commonly found in modern production processes. The 
performance gradually reduces for p > 0.10, for this reason we would not recommend using the 
Kmod p-Chart above p=0.20.  

When an n and p combination does not provide adequate Kmod p-Charts, then the method of 
“modifying the sample size” can be applied. This method is explained in the next section.         
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Table 1: Summary of Kmod p-Charts ARLBSL and ARL0 performance 

2.1.3 Obtaining quasi ARL-unbiased Kmod p-Charts by modifying the sample size 

 

 
Figure 17: Example of how to obtain Kmod p-Charts by modifying the sample size 

Figure 17 shows an example of how quasi ARL-unbiased Kmod p-Charts can be obtained by 
varying the sample size. Let’s suppose we wish to use a Kmod p-Chart to monitor a process 
where p=0.05 and that we would like to use an n=150. The first step would be to calculated the 
IC alpha tails, with these in hand it would be revealed that Rα = 2.82, which exceeds the 0.7 < 
Rα < 2.2 criteria for quasi ARL-unbiased, and that the ARL0 is 182; which is a far too low 
ARL0. These two results should be sufficient to determine that satisfactory process monitoring 
cannot be achieved with this p and n combination.   

To illustrate the method of varying the sample size we refer to Figure 14, in it one could locate 
the n=150 and identify that it’s corresponding ARLBSL ≈ 4.2. Now notice that the ARLBSL for 
several n between 150 and 174 fall within the ± 2 criteria, we searched within that range for an 
n closest to 150 that would provide optimum Rα and ARL0 values and found that n=161 gave 
the best results. This is the sample size used for the second ARL curve plotted in Figure 17, 
notice that the Rα= 1.98, which is within the 0.7 < Rα < 2.2 criteria and that the ARL0 is 271. 
As can be seen with n=161 a “quasi ARL-unbiased” Kmod p-Chart with an acceptable ARL0 
has been obtained. So, to summarize; if a p and n combination provides Rα  and/or ARL0 that 
are likely to produced inadequate Kmod p-Charts then simply vary the sample size until 
satisfactory values are obtained.   

2.2 Comparison of alternative p-Charts ARLBSL and ARL0 performance  

One of the main objectives of our research was to identify the most suitable alternative p-Chart 
out of the ones mentioned in the introduction section. To that list of alternative charts we added 
the Kmod p-Chart. The performance comparison was made on basis of their ARLBSL and ARL0. 
Hence, these parameters were computed for each alternative chart for nonconforming fractions 
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between 0.005 ≤ p ≤ 0.10 and for sample size ranges specific for each p, with minimum and 
maximum sample sizes determined as follows: 

 Minimum n: Obtained with d=0.99p in equation (7).   

Since it is a comparative study we concluded that the minimum sample 
size had to guaranteed the existence of a LCL for all the alternative 
charts, d=0.99p in equation (7) ensures this condition and provides an 
adequate lower sample size.  

 Maximum n: Obtained with d= p/2 in equation (7). 

Based on the fact that it is with lower sample sizes that the charts 
performed the worst, we concluded that the upper sample size should not 
be too high to allow a fare comparison between them. We estimated that 
d= p/2 in (7) provides a sufficiently high sample size. 

For reason of conciseness, we include only the results for the charts that performed best. Prior 
to presenting the results we show typical IC alpha tail behaviour for each of them. 

2.2.1 The Regression-Based p-Chart  

Ryan and Schwertmann [1] utilised regression methods to develop equation (14) whereby 
improved, three sigma, IC alpha tails could be obtained.  

-݌	ܤܴ ݏݐ݅݉݅ܮ	݈݋ݎݐ݊݋ܥ	ݐݎ݄ܽܥ ൌ ଵ

௡
ሾܽ ൅ ܾሺ݊݌ሻ ൅ ܿඥ݊݌ሿ           (14)     

Where:        

 For upper control limit → a=0.6195; b=1.00523; c=2.983 
 For lower control limit → a=2.9529; b=1.01956; c=3.2729 
 Chart´s Mid line → p= process fraction of nonconforming 

 
Figure 18: Example of RB p-Chart´s typical IC alpha tails behaviour for fixed p and variable n 

Figure 18 shows an example of typical IC alpha tails obtained by means of (14). Comparing 
these tails with the ones of Figure 4 one can see that the upper alpha tail now oscillates around 



AUTHOR VERSION                                                                  Quality and Reliability Engineering International, DOI: 10.1002/qre.2379 
	

 
0.00135 whilst the lower tail oscillates mainly above it. Notice that in many instances both tails 
would have values above 0.00135 and that at lower sample sizes the lower tail peak values 
surpass those of the Standard chart. Let’s recall that  ܮܴܣ଴ ൌ 1 ሺ⁄ ௅ߙ ൅ ௅ߙ ௎ሻ, hence if  theߙ ൅
 ௎ value is excessively above 0.0027 then the result would be an ARL0 much below theߙ
nominal 370.   

2.2.2 The Corner-Fisher expansion p-Chart 

Winterbottom [6] made use of the Corner-Fisher expansion to develop equation (13) by which 
control limits that provide improved IC alpha tails could be obtained.    

-݌	ܨܥ ݏݐ݅݉݅ܮ	݈݋ݎݐ݊݋ܥ	ݐݎ݄ܽܥ ൌ ݌	 േ ට௣ሺଵି௣ሻܭ	

௡
൅	ସ

ሺଵିଶ௣ሻ

ଷ௡
         

   (13)     

Where:        

 For upper control limit → + 
 For lower control limit → ‒ 
 For 3 sigma limits → K=3 
 Chart´s Mid line → p= process fraction of nonconforming   

 
Figure 19: Example of CF p-Chart´s typical IC alpha tails behaviour for fixed p and variable n 

Figure 19 shows an example of typical IC alpha tails obtained by means of (13). Comparing 
these tails with the ones of Figure 4 one can see that now both tails oscillate around 0.00135. 
Notice that in many instances both tails would have values far below 0.00135. Thus, since 
଴ܮܴܣ ൌ 1 ሺ⁄ ௅ߙ ൅ ௅ߙ  ௎ሻ, then aߙ ൅  ௎ value excessively below 0.0027 will result in an ARL0ߙ
significantly higher than the nominal 370.   

2.2.3 The Arcsine transformation equivalent p-Chart                         

A strategy often used to make non-nomal data resemble normal data is to use a transformation. 
For binomial data a transformation that makes it approach normality is the Arcsine. The control 
limits for this chart are computed by means of equation (15), [2, p. 188&189] 
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ݏݐ݅݉݅ܮ	݈݋ݎݐ݊݋ܥ	ݐݎ݄ܽܥ	݁݊݅ݏܿݎܣ ൌ ܵ݅݊ିଵ൫ඥ݌	൯ േ
ଷ

ଶ√௡
        (15) 

Where:     

 For upper control limit → + 
 For lower control limit → ‒ 
 Chart´s Mid line = ܵ݅݊ିଵ൫ඥ݌	൯ 

 ݕ ൌ ܵ݅݊ିଵට
௫

௡
  → Variable plotted on the Arcsine Chart 

 x= number of nonconforming; n = sample size; p= process fraction of 
nonconforming. 

A method for determining the Arcsine chart´s performance is to find its equivalent conventional 
p-Chart´s limits, which can be done through equation (16), and then used these to obtain the IC 
alpha tails as we´ve done for the conventional p-Chart, [13, p. 512].       

Arcsine equivalent conventional p-Chart limits = ܵ݅݊ଶ ቂܵ݅݊ିଵ൫ඥ݌	൯ േ
ଷ

ଶ√௡
	ቃ     (16) 

 

 
Figure 20: Example of Arcsine p-Chart´s typical IC alpha tails behaviour for fixed p and variable n 

Figure 20 shows an example of typical IC alpha tails obtained by means of (15). Comparing 
these tails with those of Figure 4 one can see that it is the lower tail that now fluctuates above 
0.00135 and that at low sample sizes this tail has upper peak values that surpass those of the 
Standard chart. On the other hand the upper tail now fluctuates just below 0.00135. In general 
the alternative charts based on transformations performed poorly in terms of the ARLBSL. The 
Arcsine results are included only for comparison completeness.   

2.2.4 A summary of the ARLBSL and ARL0 performance comparison results 

Table 2 summarises the results obtained in our ARLBSL and ARL0 comparative study of the 
Kmod, CF, RB and Arcsine p-Charts. To aid interpret the results, lets concentrate in the values 
for p=0.01, as can be seen in the sample size range 909 ≤ n ≤ 3564 the proportion of charts that 
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would be “quasi ARL-unbiased” is 82% for the Kmod, 88% for the RB,75% for the CF and 
11% for the Arcsine. Thus, based solely on the ARLBSL it would appear that the RB chart 
provides better results than the other three. However, closer inspection of the ARL0 
performance reveals that only 45% of those “quasi ARL-unbiased” RB charts would have an 
ARL0 between 250 < ARL0 < 450, in contrast to the 87% for the Kmod. Taking into account 
the ARLBSL and the ARL0 performances it is clear that the Kmod is superior to all the others.      

Even more useful comparative information can be extracted from the ARL0 quartiles. For 
example, for p = 0.01, the quartiles for the RB method show that up to 50% of the charts that 
meet the “quasi ARL-unbiased” criteria would have ARL0 values below 242 and that up to 25% 
of them would be below 222. The reason for these low ARL0 was explained in the analysis of 
the IC alpha tails obtained with the RB method, see Figure 18.  

Analysing the results for all p values and taking into account the ARLBSL and the ARL0 
performances; it can be easily deduced that the Kmod method provides “quasi ARL-unbiased” 
charts with adequate ARL0 more often than any of the other three. To this fact it must be added 
that the Kmod offers a simple and effective way of verifying if a chart has achieved the quasi 
ARL-unbiased criteria and that in case it hadn´t, it also offers the method of varying the sample 
size. 

At this point we should mention that Morais [15] [16] proposed a method based on binomial 
quantile limits and randomized probabilities, which could be used to obtain ARL-unbiased p-
Charts (charts with ARLBSL= 0). Although this method doesn´t fall within this paper´s research 
criteria of p-Charts whose limits are computed thorough closed-form equations and data 
transformation methods, nevertheless we believe it´s worth mentioning it. 

  

Table 2: Summary of ARLBSL and ARL0 performance results for various alternative p-Charts 

 

3 Conclusions 

The main objective of the research project summarised in this paper was to find, in accordance 
to the criteria set out in the introduction section, the most idoneous alternative to the Standard 
p-Chart. To this end we firstly we identified suitable existing alternatives and then developed: 
i) The Average Run Length bias severity level (ARLBSL) ii) An ARLBSL criteria for establishing 
a p-Chart´s “quasi ARL-unbiased” condition, and iii) The Kmod p-Chart.   

ARLBSL performance results for the Standard p-Chart were extremely poor. Thus, it is our 
opinion that this chart should be avoided if monitoring process deterioration and improvement 
is required. Out of the existing alternative charts listed in the introduction, it was found that the 
one based on the Corner-Fisher expansion performed best in terms of both ARLBSL and ARL0; 
however, even this chart falls short of the “quasi ARL-unbiased” criteria, especially at low 
sample sizes. Hence, if this chart is used without any previous ARL analysis; unwittingly, one 
could be monitoring a process with an ARL-biased Chart. 

The new “Kmod p-Chart” performed best in terms of ARLBSL and ARL0 compared to all other 
listed alternative charts. However, in certain instances, especially when low sample sizes are 
used, this chart could be moderately ARL-biased. In order to verify its ARL-bias condition, a 
very simple method based on its IC alpha tail ratio was developed; this method enables a 
practitioner to establish a chart´s monitoring suitability without the need of a full ARL analysis. 
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In addition, for cases where the Kmod p-Chart is ARL-biased, a method for correcting this 
condition, based on varying the sample size, was also developed.     
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Table 3: Summary of Kmod p-Charts ARLBSL and ARL0 performance 

p 

Sample Size 
range % of n within 

-2 < ARLBSL < 2

Kmod p-Chart ARL0 performance for all 
n within sample size range 

n-min n-max Min 

Average

ARL0

Max 
% of n within 

250 < ARL0 < 450 

0.20 25 324 69% 88 289 468 78% 

0.18 25 369 75% 112 297 417 83% 

0.15 26 459 81% 65 300 544 82% 

0.12 39 594 87% 120 310 488 88% 

0.10 47 729 90% 112 315 614 90% 

0.08 58 931 91% 102 317 554 88% 

0.05 97 1539 91% 125 323 652 93% 

0.02 257 3969 91% 128 327 575 92% 

0.01 523 8019 90% 160 328 551 93% 

0.005 1054 16119 90% 162 329 982 95% 
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Table 4: Summary of ARLBSL and ARL0 performance results for various alternative p-Charts 

 

P 

Chart 

 

p 

n range 

min 

max 

% of charts 
within 

-2< ARLBSL< 2 

ARL0 performance of charts that  

fall within:  -2 < ARLBSL < 2 

ARL0 quartiles (%)  % of n within 

250 < ARL0 < 450 
0 25 50 75 100 

Kmod 
 

0.005 

 

1827 

7164 

80% 198 285 308 356 452 91% 

RB 88% 121 218 237 280 354 43% 

CF 75% 270 350 379 432 592 81% 

Arcsine 11% 277 331 360 374 409 100% 

Kmod 
 

0.01 

 

909 

3564 

82% 173 286 306 353 463 87% 

RB 88% 123 222 242 286 363 45% 

CF 75% 276 344 384 432 605 80% 

Arcsine 11% 284 332 358 377 416 100% 

Kmod 
 

0.02 

 

450 

1764 

84% 180 272 311 352 484 87% 

RB 87% 128 232 254 299 381 55% 

CF 75% 251 343 393 429 581 82% 

Arcsine 11% 277 327 349 371 412 100% 

Kmod 
 

0.03 

 

297 

1164 

85% 186 269 319 350 506 87% 

RB 87%  133 243 265 314 384 64% 

CF 76% 262 336 382 433 608 82% 

Arcsine 12% 271 322 349 371 411 100% 

Kmod 
 

0.04 

 

220 

864 

83% 195 272 315 346 480 93% 

RB 85% 139 255 278 331 404 79% 

CF 75% 266 344 381 444 601 80% 

Arcsine 14% 285 331 345 368 417 100% 

Kmod 
 

0.05 

 

174 

684 

84% 175 274 309 356 482 90% 

RB 84% 145 267 290 345 425 81% 

CF 76% 270 352 378 445 630 76% 

Arcsine 16% 276 336 355 367 425 100% 

Kmod 
 

0.10 

 

83 

324 

82% 181 269 315 352 531 88% 

RB 76% 219 344 379 456 555 81% 

CF 74% 259 348 381 457 623 71% 

Arcsine 20% 261 334 346 372 428 100% 

 

 


