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Abstract: Reactive oxygen species (ROS) can provoke damage to cells, where their concentrations are
regulated by antioxidants. As the hydroxyl radical (•OH) is the most oxidizing ROS, we have focused
our attention on the use of a mechanistically based time-resolved methodology, such as laser flash
photolysis, to determine the relative reactivity of alcoholic beverages towards •OH as an indicator of
their antioxidant potential. The selected drinks were of two different origins: (i) those derived from
grapes such as red wine, white wine, white vermouth, marc and brandy and (ii) spirits not derived
from grapes: triple sec, gin, whisky, and rum. Initially, we determined the quenching rate constant of
ethanol with •OH and then we explored the reactivity of the different beverages, which was higher
than expected based on their alcoholic content. This can be attributed to the presence of antioxidants
and was especially remarkable for the grape-derived drinks.
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1. Introduction

Molecular oxygen is crucial for living beings; however, there are several highly reactive,
oxygen-derived chemical entities that can provoke damage to cells. Among them, reactive oxygen
species (ROS) include superoxide radical anion (O2

•−), hydroxyl radical (•OH) and singlet oxygen
(1O2) [1]. The hydroxyl radical is by far the most potent oxidizing ROS, with a redox potential of
+2.33 V (vs normal hydrogen electrode, NHE) [2]. It is capable of reacting with a variety of molecules
through three main mechanisms: H-abstraction, addition to double bonds or aromatic rings, and
electron transfer, in all cases with high reaction rate constants (in the order of 109–1010 M−1 s−1) [3].
It has a very short lifetime (in the range of ns to µs) [4]; therefore, its steady-state concentration is
extremely low (10−15 to 10−18 M) [5]. Nevertheless, it has been claimed as the main species responsible
for the oxidative damage to biomolecules [6]. However, this hypothesis is currently under revision,
and some authors have provided evidence on some beneficial roles of ROS, acting, for instance, as
cellular signaling entities [7,8].

The concentration of ROS in cells is regulated by enzymatic and non-enzymatic antioxidant
systems. Unbalance between excessive concentration of ROS and low levels of antioxidants causes
oxidative stress, which has been related to age-related disorders, cancer, cardiovascular, inflammatory,
and neurodegenerative diseases [9–11].

Examples of non-enzymatic antioxidants include glutathione, vitamin C and α-tocopherol. More
recently, carotenoids and flavonoids, a huge and diverse group of secondary plant metabolites, have
merited attention as natural antioxidants [12–19]. In fact, flavonoids together with other polyphenols
or anthocyanins, all components of grape-based drinks, have been related to the prevention of coronary
heart disease (CHD), giving rise to the so-called “French paradox” due to the low incidence of mortality
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associated to CHD in France despite the high intake of saturated fat [20]. The antioxidant activity of
phenolic compounds contained in grapes and red wines has been confirmed based on the inhibition of
lipid peroxidation experiments [21].

The relationship between the antioxidant activity of drinks and foods and their flavonoids content
is complex, due to the great structural variety of flavonoids and their metabolites along with the diverse
mechanisms of action of the different ROS. Furthermore, the antioxidant activity results depend on the
method used, essentially chemically or biologically based [13,22,23].

Herein, we will focus our attention on •OH, not only because it is the most reactive ROS,
but also because it is a model radical that combines all the possible reaction pathways of these
reactive intermediates (hydrogen abstraction, addition to unsaturated moieties, electron transfer, etc.).
We propose an approach to determine its reactivity, with a variety of drinks with time-resolved
precision. The methodology, based on laser flash photolysis (LFP) measurements, was initially
developed by Platz et al. with aromatic hydrocarbons [24,25]. Later, we optimized the methodology to
determine the reactivity of •OH with drugs and pesticides of environmental concern, or nucleosides in
lipophilic media [4,26,27]. However, in spite of the potential of time-resolved techniques to determine
reaction rate constants for mechanistic pathways, even in complex systems, such an approach has not
been explored yet to rationalize the antioxidant activity of foods or beverages.

The selected drinks are commercially available and can be classified into two different groups
depending on their origin: (i) those derived from grapes and (ii) spirits not derived from grapes. Selected
samples for the first group were Rioja Lagunilla (red wine), Marina Alta (white wine), Martini Bianco
(white vermouth), Orujo Ruavieja (marc) and Carlos III (brandy). Selected samples for the second group
were Cointreau (triple sec), Ginebra Larios (gin), Ballantines (whisky) and Ron Negrita (rum).

2. Results and Discussion

The hydroxyl radical was cleanly obtained from the homolytic rupture of N-hydroxypyridine-
2(1H)-thione (NPT) upon laser flash photolysis at 355 nm. As a result of this homolytic rupture,
the “invisible” hydroxyl radical is generated together with the unreactive pyrithiyl radical that has an
absorption maximum at 490 nm, and therefore provides evidence for the process (Scheme 1 top). To reveal
the hydroxyl radical, trans-stilbene (TS) was used as a trap giving rise to a detectable adduct (TS-OH•)
with a characteristic transient absorption band with maximum at ca. 390 nm (Scheme 1 middle).
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Scheme 1. Experimental generation of the hydroxyl radical, trapping with trans-stilbene and
competitive analysis in the presence of naphthalene.
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In the optimized protocol, the kinetic traces at 390 nm were plotted in the absence and with the
increasing concentration of naphthalene (Naph), of known quenching rate constant with the hydroxyl
radical (kq = 1.8 × 109 M−1 s−1) [25]. A Stern–Volmer competitive analysis (∆Ao/∆Ax versus Cx), in
which Ao and Ax represent the initial absorbance of the TS-OH• at 390 nm in the absence and at every
“x” concentration of naphthalene, provided the response of the technique, that was subsequently used
as standard (Scheme 1 bottom).

Since ethanol is the common ingredient to all the beverages, we initially ran the protocol using
ethanol to find its quenching rate constant versus the hydroxyl radical, using naphthalene as standard
(Figure 1A). We plotted the transient absorption trace at 390 nm in the absence and in the presence of
different concentrations of naphthalene and, in parallel, we recorded the same trace in the presence of
increasing concentrations of ethanol. In both cases, ∆Ao/∆Ax were plotted versus Cx and fitted to a
straight line:

(∆Ao/∆Ax)Naph = (0.97 ± 0.03) + (21.11 ± 1.33) CNaph, r2 = 0.98 (1)

(∆Ao/∆Ax)ethanol = (0.96 ± 0.08) + (1.65 ± 0.07) Cethanol, r2 = 0.99 (2)

From the slopes of the two straight lines (∆Ao/∆Ax versus Cx), we determined the quenching rate
constant of ethanol with the hydroxyl radical which was found to be 1.41 × 108 M−1 s−1 (Figure 1B),
one order of magnitude lower than that of naphthalene, but in reasonable agreement with the reported
value (8.28 × 107 M−1 s−1) [28].
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Figure 1. (A) Kinetic traces recorded at 390 nm after laser flash photolysis irradiation (λexc = 355 nm) 
of deaerated acetonitrile solutions of N-hydroxypyridine-2(1H)-thione (NPT) (0.29 mM) and trans-
stilbene (TS) (7.5 mM) with increasing concentrations of ethanol (0–2.075 M); (B) Corresponding 
Stern–Volmer plots obtained as the ratio ΔAo/ΔAx versus Cx for Naph (0–0.05 M, black squares) and 
ethanol (0–2.075 M, red circles). (The values used in the case of Naph were taken from the graph of 
Scheme 1 bottom). 
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completed up to 4 mL using acetonitrile (Figure 2). Acetonitrile was selected to perform the 
photophysical experiments because it exhibits a low reactivity towards •OH (k ca. 106 M−1 s−1) [24]. 
Although, in all cases, quenching was unambiguously noticed, it did not happen to the same extent 
for all the drinks. Observing this figure, the beverages can clearly be divided into two groups. The 
first group contained red wine, white wine, white vermouth, marc and brandy (all derived from 
grapes) which show higher reactivity than the second group of spirits (triple sec, gin, whisky and 
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Figure 1. (A) Kinetic traces recorded at 390 nm after laser flash photolysis irradiation (λexc = 355 nm) of
deaerated acetonitrile solutions of N-hydroxypyridine-2(1H)-thione (NPT) (0.29 mM) and trans-stilbene
(TS) (7.5 mM) with increasing concentrations of ethanol (0–2.075 M); (B) Corresponding Stern–Volmer
plots obtained as the ratio ∆Ao/∆Ax versus Cx for Naph (0–0.05 M, black squares) and ethanol (0–2.075 M,
red circles). (The values used in the case of Naph were taken from the graph of Scheme 1 bottom).

Next, we explored the reactivity of the different drinks against the hydroxyl radical following this
protocol and compared their reactivity to the one of pure ethanol. Thus, to test the overall reactivity of
the beverages against the hydroxyl radical, increasing volumes of every beverage (from 0 to 0.5 mL) were
added to a 2.4 mL acetonitrile solution of NPT + TS and the total volume was completed up to 4 mL using
acetonitrile (Figure 2). Acetonitrile was selected to perform the photophysical experiments because it
exhibits a low reactivity towards •OH (k ca. 106 M−1 s−1) [24]. Although, in all cases, quenching was
unambiguously noticed, it did not happen to the same extent for all the drinks. Observing this figure,
the beverages can clearly be divided into two groups. The first group contained red wine, white wine,
white vermouth, marc and brandy (all derived from grapes) which show higher reactivity than the
second group of spirits (triple sec, gin, whisky and rum—all from origins different from grapes). Next,
we plotted ∆Ao/∆Ax versus Vx, (Figure 3) and in all cases, the obtained values fitted to a straight line
(not shown). Not surprisingly, red wine exhibited the highest reactivity. From the ratio between the
slope of the corresponding fittings and that of ethanol, we found the relative quenching rate constants
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for the beverages against •OH (Table 1). According to the determined values, the relative quenching
rate constants for beverages of grape origin were higher than 1, while those from a different origin had
a relative quenching constant lower than 1. On the contrary, the group of grape-derived beverages had
lower ethanol content than the group of spirits, although the correlation between ethanol content and
quenching values is not straightforward in every case. In fact, even in the case of the second group of
spirits, the reactivity with •OH was higher than expected based on the alcoholic content, probably due
to the presence of constituents extracted from the woody barrels.
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Figure 2. Kinetic traces recorded at 390 nm after laser flash photolysis irradiation (λexc = 355 nm)
of deaerated acetonitrile solutions of NPT (0.29 mM) and TS (7.5 mM) with increasing volumes of
beverages (0–0.5 mL): red wine (A), white wine (B), white vermouth (C), marc (D), brandy (E), triple
sec (F), gin (G), whisky (H), and rum (I).
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Table 1. Quenching rate constants for the beverages against the hydroxyl radical (•OH) relative to ethanol.

Beverage Relative kOH· Relative Ethanol Content

Ethanol 1 1
Red wine a 2.89 0.13

White wine b 1.42 0.12
White vermouth c 2.17 0.15

Marc d 1.47 0.30
Brandy e 2.61 0.36

Triple sec f 0.58 0.40
Gin g 0.86 0.38

Whisky h 0.97 0.40
Rum i 0.75 0.37

a red wine: Rioja Lagunilla; b white wine: Marina Alta; c white vermouth: Martini Bianco; d marc: Orujo Ruavieja; e

brandy: Carlos III; f triple sec: Cointreau; g gin: Ginebra Larios; h whisky: Ballantines; I rum: Ron Negrita.

Moreover, we intended to test the antioxidant capability of fresh grapes to investigate whether
non-alcoholic derived juices had even higher quenching rate constants. For this purpose, we
squeezed red and white grapes and tested the fresh juice following the optimized protocol (Figure 4).
The obtained values (0.65 and 0.56, respectively, relative to ethanol) indicated that the reactivity of
grape juices (red and white) with •OH is basically independent from the color of grapes and lower
than that of white and red wines. This is not unexpected, as it is known that some highly active
antioxidants are generated during the fermentation process.
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Figure 4. Kinetic traces recorded at 390 nm after laser flash photolysis irradiation (λexc = 355 nm) of
deaerated acetonitrile solutions of NPT (0.29 mM) and TS (7.5 mM) with increasing volumes of freshly
squeezed juice (0–0.5 mL): commercial red grapes of Monastrell variety (A), commercial white grapes
of Rosseti variety (B). (C) Corresponding Stern–Volmer plots.

These results obtained from grapes indicate that there is a significant contribution from ingredients
different from ethanol to the overall quenching. Among them, natural sugars, and phenolic
derivatives such as flavonoids, acids, esters or terpenes could be responsible for this activity [29].
After fermentation, the group of beverages of grape origin still contained, in part, these additional
components that also exhibit high reactivity against the hydroxyl radical. In addition, other alcohols
are secondary derivatives from the fermentation of natural sugars, such as glycerin, propanol, sorbitol,
or flavonoids. The distillation of grapes, as in the case of brandy, results in a lower content of the
volatile species that is partially balanced with the higher amount of ethanol [30–34]. In the other spirits,
the lower quenching rate constants can safely be attributed to the absence of this variety of minor
components with antioxidant activity.

The antioxidant activity of red wine has been mainly attributed to resveratrol [34–36]. Its chemical
structure related to that of trans-stilbene is susceptible to reacting with the hydroxyl radical. In fact,
upon addition to resveratrol, a new signal centered at 390–420 nm has been described [37]. When
we tested resveratrol as a quencher of the hydroxyl radical under our protocol, we observed an
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increase in absorbance at 390 nm, which is due to the competence between TS and resveratrol for the
•OH, resulting, in the second case, in an adduct that has a higher molar absorption coefficient at that
wavelength (Supplementary Materials). Therefore, the reactivity of red wine against •OH would be
even higher than the experimentally determined one if the effect of resveratrol contained in it could be
taken into account.

3. Materials and Methods

3.1. Chemicals and Other Reagents

Naphthalene, t-stilbene (TS), N-hydroxypyridine-2(1H)-thione (NPT) and resveratrol were
obtained from Aldrich. Water was milliQ® (Merck, Darmstadt, Germany), ethanol and acetonitrile were
HPLC grade. The drinks were of commercial origin. Red and white grapes were from Monastrell and
Rosetti varieties, respectively. They were bought in a food store in Valencia (Spain) in September 2017.

3.2. Photophysical Instrumentation

Time-resolved kinetic analyses were performed using a laser flash photolysis (LFP) system
equipped with a Nd:YAG SL404G-10 Spectron Laser (Lotis Tii, Minsk, Belarus) at the excitation
wavelength of 355 nm. The single pulses were of ca. 10 ns duration, and the energy was lower
than 30 mJ per pulse. The detecting light source was a pulsed Lo255 Oriel Xenon lamp (Newport,
Irvine, CA, USA). In addition to the laser, the system included a 77,200 Oriel monochromator, a
photomultiplier (Oriel, model 70705PMT) system and a TDS-640A Tektronix oscilloscope (Bertashire,
UK). A customized Luzchem Research LFP-111 system was employed to collect and transfer the output
signal from the oscilloscope to a personal computer to process the data. A quartz cell of 1 cm optical
path length was employed for all kinetic measurements, which were run at room temperature in
degassed mixtures of acetonitrile-milliQ® water.

3.3. Kinetic Experiments

The kinetic experiments were performed in a set of quartz cuvettes as follows: to 1.2 mL of
NPT (from a 0.48 mM stock solution) and 1.2 mL of TS (from a 12.5 mM stock solution) in deaerated
acetonitrile, increasing volumes of naphthalene (from a 206 mM stock solution), resveratrol (from a
16 mM stock solution), ethanol, beverages or freshly squeezed grape juice were added, and the final
volume was adjusted to 4 mL. The final concentrations of NPT and TS in the cuvettes were 2.9 ×
10−4 M and 7.5 × 10−3 M, respectively. The corresponding Stern–Volmer plots were obtained from the
signal due to the adduct between TS and •OH (λmax = 390 nm) (Ao/Ax) versus the final concentration
or the final volume of the liquid added (Vx).

4. Conclusions

The antioxidant properties of beverages and drinks are highly valuable, because they may help to
decrease the oxidative stress, thereby preventing or delaying the appearance of a number of diseases.
One of the most aggressive reactive oxygen species is the hydroxyl radical, because it reacts with
biomolecules (and in general with organic compounds) extremely fast. In the present work, we have
followed a mechanistically based time-resolved methodology to determine the relative reactivity of
several alcoholic beverages towards the hydroxyl radical as an indicator of their antioxidant potential.
In general, it has been shown that all the beverages exhibit a higher than expected reactivity towards
the hydroxyl radical based on their alcoholic content, which can be attributed to the presence of
minor amounts of components with antioxidant properties. This is especially remarkable for the
grape-derived drinks, with a partial loss of the active components associated with steam distillation.
In fact, grape juice reacts with the hydroxyl radical at significant rates, albeit lower than those measured
for wines and spirits. The obtained results point to the suitability of the time-resolved methodology
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employed in the present work to investigate the antioxidant activity of a wide variety of foods,
beverages and agriculture products.

Supplementary Materials: The following are available online. Figure S1: (A) Kinetic traces recorded at 390 nm
after laser flash photolysis irradiation (λexc = 355 nm) of deaerated acetonitrile solutions of NPT (0.29 mM) and TS
(7.5 mM) upon increasing concentrations of resveratrol, (B) Reaction between the hydroxyl radical and resveratrol.
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