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Abstract: In this paper first, we review the physical root bases of chemical reaction networks as a
Markov process in multidimensional vector space. Then we study the chemical reactions from a
microscopic point of view, to obtain the expression for the propensities for the different reactions
that can happen in the network. These chemical propensities, at a given time, depend on the system
state at that time, and do not depend on the state at an earlier time indicating that we are dealing
with Markov processes. Then the Chemical Master Equation (CME) is deduced for an arbitrary
chemical network from a probability balance and it is expressed in terms of the reaction propensities.
This CME governs the dynamics of the chemical system. Due to the difficulty to solve this equation
two methods are studied, the first one is the probability generating function method or z-transform,
which permits to obtain the evolution of the factorial moment of the system with time in an easiest
way or after some manipulation the evolution of the polynomial moments. The second method
studied is the expansion of the CME in terms of an order parameter (system volume). In this case
we study first the expansion of the CME using the propensities obtained previously and splitting
the molecular concentration into a deterministic part and a random part. An expression in terms of
multinomial coefficients is obtained for the evolution of the probability of the random part. Then we
study how to reconstruct the probability distribution from the moments using the maximum entropy
principle. Finally, the previous methods are applied to simple chemical networks and the consistency
of these methods is studied.

Keywords: maximum entropy principle; chemical master equation; chemical propensity; updating
probability distribution functions; chemical reaction networks

1. Introduction

The early studies on stochastic kinetics and the chemical master equation (CME) started in the
early sixties with the works of McQuarrie and Montroll [1,2], followed two year later by the paper
of Nicolis and Babloyantz [3]. Then, Nicolis and Prigogine [4], Nicolis and Malek-Mansour [5],
Gillespie [6,7] and Van Kampen [8] obtained the complete form of the CME and, at the same time, these
researchers developed tools for solving this equation at different degrees of approximation, for several
simple chemical network cases.

The chemical reaction networks can be considered as Birth-and-Death processes without memory,
which are Markov processes in a multidimensional space, this point of view was studied by
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Anderson [9] and Van Kampen [8]. While the roots to formulate properly the CME based on
microphysical principles were established by Gillespie [6,7].

Concerning the solution methods of the CME, due to the complexity of this equation even for
well stirred chemical reacting systems, the first attempts relied upon the use of Monte-Carlo methods
to sample on the underlying probability distribution, and this kind of method has been used by many
authors such as Salis and Kaznessis [10], Cao, Gillespie and Petzold [11]. Gillespie developed the
stochastic simulation algorithm (SSA [7]), which uses the Monte-Carlo method as a procedure for
numerically simulating well-stirred chemically reacting systems by stepping in time to successive
molecular reaction events in exact accord with the premises of the CME. An alternative method, which
does not require generating a large number of Monte-Carlo simulations, is the Finite State Projection
method (FSP) developed originally by Munsky and Khammash; this algorithm provides a direct
solution to the CME, obtaining the probability density vector at a given time directly at a desired
order of accuracy [12]. Other authors such as Smadbeck, Sotiropuos and Kaznessis, [13,14] prefer
to obtain from the CME, the equations for the moment evolution and solve the moment equations,
reconstructing at posteriori the probability density from the moments using the maximum entropy
principle (MEP). Proceeding in this way, a set of coupled differential equations for the moments is
obtained, but the inconvenience is that higher order moments appear. The presence of these higher
moments in the differential equation system leads to the necessity of higher moment’s closure. If the
reaction network system is non-linear, then in the moment equations of a given order terms with higher
order moments appear, and the size of the differential equation system for the complete hierarchy
of moments involved becomes infinite. The effect produced by these higher moment terms can be
approximated as performed by Sotiropoulos and Kaznessis [14], and Gillespie [15], expressing these
higher moments in terms of lower ones, which is known as the closure problem. In addition, Grima has
studied the closure problem using the cumulant closure technique that assumes that all the cumulants
of the probability distribution function (PDF), which are higher than a certain order, are negligibly
small [16]. Grima in his paper has studied the accuracy of the two-moment approximation (third and
higher order cumulants are zero) and of the three-moment approximation (fourth and higher order
cumulants are zero) for some specific chemical systems. Also, Grima has shown [16] that for a class
of chemical systems, the linear noise approximation (LNA) gives results for the mean concentrations
and second moments of fluctuations about the means, which match those given by the CME for all
volumes, even though the chemical system is composed of at least one second order reaction. It is
convenient to remind that the LNA originates from the system-size expansion first introduced by
Van Kampen [8], being the LNA the leading-order term in this expansion. The LNA transforms the
chemical master equation into a Fokker-Plank equation [17]. However, this last equation gives only the
time evolution of the noise PDF about the macroscopic concentrations predicted by the rate equations
(REs). The inconvenience of this approach is that does not provide any correction to the macroscopic
concentrations obtained from the REs and gives only an estimation of the fluctuations about the
macroscopic concentrations. However, as found also by Grima [18] for some chemical systems as some
simple biological reactions catalyzed by enzymes inside intracellular compartments, the time evolution
of the true concentrations is not governed by the conventional rate equations but rather by a more
general kind of rate equations known as the effective mesoscopic rate equations (EMREs). To deduce
these effective rate equations Grima [18] in is seminal paper performs first a Van Kampen system size
expansion expressing in the CME the number of molecules of each species i as: Ni

Ω = φi + Ω−1/2ηi,
being φi the macroscopic concentration of the species i-th as determined by the rate equations, ηi a
random variable that gives the fluctuations about the value obtained from the REs, and finally Ω is the
system volume. Then he expands the microscopic rate functions in the CME retaining up to second
order terms in the fluctuations. In addition, he simplifies the resulting equation for the PDF of the
fluctuations on account of the classical macroscopic rate equations. Finally, he uses the time evolution
equation for the fluctuation PDF, to derive a set of coupled differential equations for the first and
second moments of these fluctuations. Finally by averaging Ni

Ω it is obtained that the true concentration
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〈Ni
Ω 〉 = φi + Ω−1/2〈ηi〉, is related to the first moment of the fluctuations 〈ηi〉 and to the concentration φi

as determined from the rate equations, so solving for the first moment of the fluctuation it is obtained
a set of evolution equations for the true moment 〈Ni

Ω 〉, which are known as the effective mesoscopic
rate equations (EMREs).

In addition, Schnoerr, Sanguinetti, and Grima performed a comparison of different
moment-closure approximations for stochastic chemical kinetics [19]. Also, these same three
authors performed an extensive tutorial review on the approximations and inference methods
used for stochastic biochemical kinetics including among others the chemical Langevin equation,
the Fokker-Plank equation, the system size expansion, and the different classes of existing moment
closure approximations as normal, Poisson, Log-Normal, and derivative matching [20]. Other methods
as hybrid methods have been developed by Hasenauer et al. [21,22]. Finally, we cannot forget the
set of works performed by Hespanha and Singh [23,24], on the moment closure technique based on
derivative-matching, which closes the moment equations by approximating higher-order moments as
nonlinear functions of lower-order ones. Also, it is very original the approach of Ruess et al. [25] that
perform the closure of the moment equations by replacing the moments of order higher than the closure
order n by estimates calculated from a small number of stochastic simulations runs. The resulting
stochastic system is then used in an extended Kalman filter, where estimates of the moments of order
up to n, obtained from the same simulation, serve as outputs of the system.

Concerning the solution of stochastic chemical kinetics using different approximations to the
CME the CERENA toolbox (Chemical Reaction Toolbox Analyzer) developed at the Institute of
Computational Biology in Munich deserves to be mentioned [26]. This toolbox incorporates in addition
to the classical stochastic simulation algorithms as the SSA, the moment method (MM) at various
approximation orders, and the novel conditional moment equations for a hybrid description. This last
method combines a microscopic description of low copy-number species with the classical moment
description for high copy-number species, providing in this way a hybrid approach to obtain an
approximate solution of the CME.

The application of the MEP provides a method to obtain the PDF of the unknown distribution
variables when partial information such as some distribution moments and their support are
known. The methodology consists of looking for the PDF that maximizes the Shannon information
entropy [27] and, at the same time, fulfills the set of restrictions imposed by the known moments.
These PDFs reconstruction methods were initiated by Shannon and Jaynes [27–30] and then were
further elaborated by Mead and Papanicolau [31], Montroll and Shlesinger [32], Shore and Johnson [33],
Muñoz-Cobo et al. [34], among other researchers.

The goal of this paper is to present a unified perspective of the chemical reaction networks as
birth and death Markov processes in a multidimensional vector space. Beginning with the definition
of the propensities at a microscopic level in a well stirred tank, which permits the expression of the
propensities in terms of microscopic and macroscopic parameters as explained in detail in Section 2 for
bimolecular reactions. Another goal of this paper is to study, in a general way, the main methods to
obtain approximate solutions of the CME and to make a study of the consistency of these methods, by
performing cross comparisons among them. This paper has been organized as follows: Section 2.1 is
devoted to presenting some introductory concepts on chemical reaction networks in multidimensional
space, like the degree of advance of the chemical reactions, the rate of entropy production, the
reaction affinities, and some non-equilibrium thermodynamics concepts. In Section 2.2, we study
the probability distribution of the number of molecules of each chemical compound at equilibrium
conditions. In Section 2.3 we study the roots of chemical kinetics from a microscopic point of view
and we finish this section with the calculation of the propensities for arbitrary chemical reactions
with known stoichiometric coefficients in well stirred tanks. Finally, Section 2.4 is devoted to the
formulation of the CME of a reaction network and Section 2.5 to the limitations of this formulation.

Section 3 is devoted to the methods to obtain the moments of the probability distribution in
chemical reaction networks, two methods are studied in this section. The first one, which is described
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in detail in Section 3.1, is the method of the probability generating function or z-transform. It is
obtained in this section the equation obeyed by the probability generating function for the reactant and
product population of the network, while Section 3.2 is devoted to show the method of the expansion
of the master equation in one order parameter, general equations are obtained at different orders of
approximation in terms of multinomial coefficients.

In Section 4, we study the methods to reconstruct the probability distribution function (PDF) from
the moments using the maximum entropy principle. Finally, Section 5 is devoted to the application
of the previous methods to study several simple reaction networks with non-linear effects in open
and closed systems. Also, in this section we check the consistency of some of the approximations
performed, finishing this section with the closure problem and discussing how to perform the closure
in an optimal way.

2. Introductory Concepts on Chemical Reactions Networks and the Chemical Master Equation

In this section, we give a brief introduction about the main concepts on chemical reaction kinetics,
chemical reaction networks, chemical reaction propensities, to finish with the chemical master equation
and its limitations.

2.1. Some Introductory Concepts about Chemical Reactions Networks and Entropy Production

Let us consider a stirred tank of given volume Ω containing nS chemical compounds or species Xj.
Let us denote by Nj the number of molecules of the j-th chemical compound. The number of molecules
of all the chemical species will be represented as a point N belonging to a Nns multidimensional space,
being N the set of the natural numbers, so that is possible to write:

N ≡
{

Nj
} ns

j=1 ∈ Nns (1)

Let us consider now a set of nr chemical reactions and their inverses:

s(r)1 X1 + s(r)2 X2 + . . .→ l(r)1 X1 + l(r)2 X2 + . . . r = 1, 2, . . . , nr (2)

l(r)1 X1 + l(r)2 X2 + . . .→ s(r)1 X1 + s(r)2 X2 + . . . r = nr + 1, . . . 2nr (3)

That specifies, in general, a chemical reaction network. The coefficients of Equations (2) and
(3) i.e.,

{
s(r)j , l(r)j

}
for a given reaction r are known as the stoichiometric coefficients of the reaction.

In general, each reaction of an arbitrary type r that takes place inside the tank, change the state of the
system, which moves from the point N ∈ Nns to the point N′ ∈ Nns given by:

N ≡
{

Nj
} ns

j=1 ∈ Nns → N′ ≡
{

Nj + l(r)j − s(r)j

}
= N + ν(r), (4)

where in Equation (4), the vector ν(r) =
{

l(r)j − s(r)j

}ns

j=1
defines the changes in the mixture state,

which take place when one chemical reaction of the r-th type occurs inside the system volume Ω. If
the inverse reaction of r happens inside the system then the final state is N′ = N− ν(r). Now, if we
denote by ξr the number of reactions of the r-th type that take place inside the system during a given
time interval [t0, t = t0 + ∆t], and by

.
ξr the reaction rate. Then, it follows that if at time t0, the system

state was N0, then the state of the system at time t = t0 + ∆t will be given by the following expression:

N′ = N0 + ∑2nr
r=1 ξr ν(r) (5)

The total number of reactions that can take place inside a closed tank is limited by the available
population of each species of atoms, denoted by the superscript α. Then if the symbol n(α)

j denotes
the number of atoms of the α type contained in the chemical compound Xj, then the conservation
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of the number of atoms of a given element in any chemical reaction gives the following set of
conservation laws:

∑ns
j=1 l(r)j n(α)

j = ∑ns
j=1 s(r)j n(α)

j for α = 1, 2, . . . ., nατ and r = 1, 2, . . . , 2nr, (6)

being nατ the total number of different elements contained in the tank. Next, Equation (6) can be
rewritten as follows:

∑ns
j=1(l

(r)
j − s(r)j )n(α)

j = ν(r)·n(α) = 0 for α = 1, 2, . . . , nατ and r = 1, 2, . . . .2nr, (7)

where ν(r)·n(α) denotes the scalar product in Nns . Equation (7) is true for all the reactions types and all
the kinds of atoms.

Because the number of atoms of each element inside the tank is conserved, then in a closed system
we can express this fact as follows:

N(t)·n(α) = N(α)
0 for α = 1, 2, . . . , nατ , (8)

where N(t) ≡ (N1(t), N2(t), . . . , Nns(t)), is the number of molecules of each chemical compound
inside the tank at a given time t, and N(α)

0 is the total number of atoms of the element α, which are
available initially at time t = 0. If the system is open this number can change with time and the
conservation law (8) transform in:

N(t)·n(α) = N(α)
o (t) (9)

Equation (9) expresses the fact that the number of atoms of each element can change with time
in an open chemical system in which specific types of molecules can be injected or extracted along
the time.

Equations (8) and (9) define a set of nατ hyperplanes in the space Nns . The part of the space Nns ,
which is accessible starting from the initial point N0 for a closed system is in the intersection of the
hyperplanes defined by Equation (8). Notice that not all points are accessible due to the restrictions
imposed by the finite number of atoms of each element.

The degree of advance dξr of a chemical reaction r during an infinitesimal time interval dt can be
expressed in terms of the change in the number of molecules of the chemical compounds as follows [35]:

dN(r)
1

l(r)1 − s(r)1

=
dN(r)

2

l(r)2 − s(r)2

= . . . = dξr (10)

Therefore, the change dN(r)
j in the number of molecules of the chemical compound Xj, produced

by a reaction r with degree of advance dξr is obviously given, because of Equation (10), by:

dN(r)
j = ν

(r)
j dξr (11)

From the Gibbs relation, the total change in the system entropy produced by the reactions taking
place in the tank with volume Ω, when not external exchange of the chemical compounds (closed
system) occurs, is given by the expression:

TdS = dU − p dΩ−∑2nr
r=1 ∑nS

j=1 µj dN(r)
j , (12)

where µj is the chemical potential for the compound Xj, and dS = diS + deS, is the sum of the internal
and external entropy changes. Notice that the external change can be produced by external exchanges
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of chemical compounds and/or energy. Using Equation (12) in Equation (11) and defining the chemical
affinity for the r-th reaction in the form:

A(r) = −
ns

∑
j=1

ν
(r)
j µj (13)

It is obtained the rate of change of the entropy with time:

dS
dt

=
1
T

dU
dt
− p

T
dΩ
dt

+
1
T

2nr

∑
r=1

A(r)
.
ξr (14)

For non-equilibrium system thermodynamics processes, it is important to know their
thermodynamic fluxes and their generalized thermodynamic forces. To do this, we consider the
rate of change of the entropy per unit volume in an isolated system with constant volume and constant
internal energy. This production rate of entropy denoted by σ, is given because of Equation (14) by:

σ =

(
1
Ω

dS
dt

)
U,Ω

=
1
T

2nr

∑
r=1

A(r) 1
Ω

.
ξr =

1
T

2nr

∑
r=1

A(r) J(r) (15)

From Equation (15), it is obtained that thermodynamic forces are the affinities and the
thermodynamic fluxes are the reaction rates per unit volume, which are given because of Equation (15)
by:

J(r) =
1
Ω

.
ξr (16)

If the tank is well stirred, we can consider the system as homogeneous because matter flux
of chemical compounds produced by the system in-homogeneities does not exist. Because of
the thermodynamic fluxes depend, in first order approximation, linearly on the affinities i.e.,
J(r) = ∑2nr

r=1 Lr,s A(s), then it follows that at chemical equilibrium (σ = 0), i.e., for not evolution of
all the chemical reactions inside the system we must have:

A(r) = 0 f or r = 1, 2 . . . 2nr (17)

From conditions (17) and the expression for the chemical potentials given by [35–37]:

µj
(

p, T, Nj
)
= µ

(0)
j (p, T) + RTlog

(
aj
)
, (18)

where, aj is the chemical activity of the j-th component and µ
(0)
j (p, T) is the chemical potential of the

compound in a pure substance. Then, it is easily deduced because of Equation (13) the mass action law
for the direct chemical reaction:

a
l(r)1 −s(r)1
1 al(r)2 −s(r)2

2 . . . al(r)ns −s(r)ns
ns = K(r)(p, T), (19)

where K(r)(p, T) is the equilibrium constant for the reaction r, at given pressure p and temperature T,
being a1,a2, . . . , ans the activities of the chemical compounds at equilibrium conditions denoted by the
overbar. From Equations (13), (18) and (19), it is deduced that the equilibrium constant is given by
the expression:

K(r)(p, T) = exp

{
ns

∑
j=1

ν
(r)
j µ

(0)
j (T, p)/(RT)

}
(20)

It is important to realize that aj = γjxj are the chemical activities for non-ideal systems, being γj
the activity coefficients, and xj the molar fractions of the chemical compounds.
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2.2. Probability Distribution Function (PDF) at Equilibrium

In this section we study the PDF of the number of molecules of each chemical compound at
equilibrium conditions. Einstein was the first to invert the classical Boltzmann relation between
entropy and probability, obtaining the probability in terms of the system entropy [4,38]. Let us
consider a system that depends on a set of thermodynamic magnitudes as the internal energy U,
the volume Ω and the number of molecules Nj of each chemical compound Xj, in this case we can
write S = S(U, Ω, N1, N2, . . . , Nns). In addition, according to the second principle at equilibrium
conditions, the variables take the values that maximize the system entropy, and using statistical
mechanics it is possible to obtain the probability of fluctuations of the variables around the maximum
entropy state, described by S = S

(
U, Ω, N1, N2, . . . Nns

)
. If we assume that the tank volume remains

constant, then from Einstein relation, we can write:

P(U, N1, N2, . . . Nns ) = P exp

{
S(U, N1, N2, . . . Nns )

k
−

S
(
U, N1, N2, . . . Nns

)
k

}
= P exp

(
∆S
K

)
, (21)

being k the Boltzmann constant, and P the probability at equilibrium conditions. Next, we use the
Gibbs relation (12) at constant U and Ω, that yields, if the system is closed:

(TdS)U,Ω = −∑2nr
r=1 ∑nS

j=1 µj dN(r)
j = −∑nS

j=1 µj dNj, (22)

where dNj = ∑2nr
r=1 dN(r)

j is the change in the number of molecules belonging to j-th species produced
by all the reactions occurring inside the stirred tank. Expanding the entropy in Taylor series up to
second order around the maximum entropy state, it is found that:

(∆S)U,Ω =
ns

∑
i,j=1

1
2

(
∂2S

∂Ni∂Nj

)
U,Ω,N

(
Ni − Ni

)(
Nj − N j

)
(23)

Next from the Gibbs relation it is deduced that the chemical potential is given by:

µi = −T
(

∂S
∂Ni

)
U,Ω,Nj 6=i

(24)

Finally, from Equations (21), (23) and (24), it is obtained that the probability of fluctuations in the
number of chemical compounds around the equilibrium state is given by:

P = P exp

(
− 1

2kT

ns

∑
i,j=1

(
∂µi
∂Nj

)
U,Ω,N

(
Ni − Ni

)(
Nj − N j

))
(25)

2.3. Roots of Chemical Reaction Kinetics

We start studying the case of the reaction rate of two different chemical compounds, Xi and Xj,
which can react producing a chemical compound, Xk. If we have at time t, Ni and Nj molecules of
these chemical compounds inside the tank with volume Ω and temperature T, and we denote by σij

the collision cross section of both molecules, and by
→
v r =

→
v i −

→
v j their relative velocity. Then, if

the velocity of the individual particles follows a Maxwell-Boltzmann distribution, it is easy to prove
that the relative velocity of the particles follows also a Maxwell-Boltzmann distribution, which has
the form:

fB,ij(vr)d3vr =
( m

2πkT

)3/2
exp

{
−mv2

r
2kT

}
d3vr, (26)

where εCM = 1
2 mv2

r is the center of mass (CM) energy of both particles, being m =
mimj

mi+mj
the reduced

mass. To produce the reaction, we need at least a minimum threshold energy in the CM system denoted



Entropy 2019, 21, 181 8 of 37

by εCM,0 = 1
2 mv2

r,0, so that, if the CM energy of the colliding compounds is smaller than εCM,0, then the
reaction does not take place. So, if the tank is well stirred and at temperature T then we can compute
the collision Rc,ij and reaction rates Rr,ij per unit volume by means of the following expressions:

Rc,ij =
∫ ∞

0
dvr

∫ π

0
vrσcol,ij fB,ij(vr)v2

r 2π sin θdθ
Ni
Ω

Nj

Ω
(27)

where we have considered that d3vr = v2
r dvrdΩsolid = v2

r dvr2π sin θdθ. Substituting Equation (26)
into Equation (27) and performing the integrals in Equation (27), (see the Handbook of Mathematical
Functions section 7 on Error functions and Fresnel integrals [39]), yields after some calculus:

Rc,ij = σcol,ij

(
8πkT

m

)1/2 Ni
Ω

Nj

Ω
= σcol,ijvr,ij

Ni
Ω

Nj

Ω
, (28)

where, vr,ij =
(

8πkT
m

)1/2
is the average relative velocity between the molecules at temperature T.

But not all the collisions between the molecules, Xi and Xj produce reactions Xi + Xj → Xk . Because
only those collisions with energy in the center of mass system bigger than the critical energy will
yield reactions. Therefore, to obtain the reaction rate per unit volume one must consider the lower
limit of the velocity in the integral of Equation (27) to be equal to the velocity corresponding to the
critical energy. In addition, according to Gillespie [6], the reaction will take place only if the collisional
point of contact takes place inside the sensitive area of each colliding molecule, this fact introduces an
additional factor, that will be denoted by p(s)i,j . This factor will depend on the subtended solid angle of
the sensitive area for each molecule. So, the reaction rate per unit volume for bimolecular reactions
will be given by:

Rr,ij =
∫ ∞

vr,0
dvr
∫ π

0 vrσcol,ij fB,ij(vr)v2
r 2πsinθdθ

Ni
Ω

Nj

Ω
p(s)i,j

= σcol,ijvr,ij
Ni
Ω

Nj

Ω

(
1 + εCM,0

kT

)
exp

(
− εCM,0

kT

)
p(s)i,j ,

(29)

where p(s)i,j is given by the expression:

p(s)ij =
ω
(s)
i ω

(s)
j

(4π)2 , (30)

being ω
(s)
i and ω

(s)
j the solid angles which are subtended by the reaction sensitive areas of molecules i

and j respectively.
So, the reaction rate for bimolecular collisions can be expressed because of Equations (28) and (29)

as follows:
Rr,ij = Rc,ij

(
1 +

εCM,0

kT

)
exp

(
− εCM,0

kT

)
p(s)ij = Rc,ijηij, (31)

where ηij is the probability that one collision between two chemical compounds Xi and Xj yields one
reaction event, this probability is given by the expression:

ηij =
(

1 +
εCM,0

kT

)
exp

(
− εCM,0

kT

)
p(s)ij (32)

The propensity function γr(N) for this type of bimolecular reaction r is defined in such a way that
γr(N)dt gives the probability to have one reaction event of type r in the time interval between (t, t + dt)
inside the stirred tank of volume Ω assuming that the system was at time t in the state characterized by
the state vector N. On account of this definition and expression (31), we can compute the propensity
for a bimolecular reaction of different species as:

γr(N)dt = Ω Rc,ijηij = Kr
1
Ω

Ni Njdt with j 6= i and Kr = σcol,ijvr,ij

(
1 +

εCM,0

kT

)
exp

(
−

εCM,0

kT

)
p(s)ij (33)
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Therefore Krdt gives the probability to have one reaction of type r between t and t + dt per i, j
pair and per unit volume. Notice that the total number of i, j couples per unit volume is

Ni Nj
Ω .

If the chemical compounds that collide are identical then, mi = mj, and the number of different
couples that can collide inside Ω is Ni(Ni − 1)/2, then proceeding as previously it is obtained that the
collision rate per unit volume is:

Rc,ii = σcol,ii

(
8πkT

m

)1/2 Ni
2 Ω

(Ni − 1)
Ω

= σcol,ijvr,ii
Ni

2 Ω
(Ni − 1)

Ω
, (34)

where σcol,ii denotes the collision cross-section between two identical molecules, m = mi
2 is the reduced

mass and vr,ii denotes the average relative velocity between two identical particles. The rate of
collisions per unit volume with energy in the CM system bigger than the critical energy and that
produce reactions Xi + Xi → Xl is:

Rr,ii = Rc,ii

(
1 +

εCM,0

kT

)
exp

(
− εCM,0

kT

)
p(s)ii = Rc,iiηii, (35)

where the expression for ηii is given by Equation (32). The probability to have one reaction
Xi + Xi → Xl in the differential interval (t, t + dt), if the system was at the state N at time t, is given
on account of Equations (34) and (35) by:

γr(N)dt = Ω Rc,iiηii = Kr
Ni(Ni − 1)

2Ω
dt, (36)

where γr(N) denotes the propensity for this chemical reaction, and Krdt gives the probability to have
one reaction in the tank per couple of identical chemical compounds per unit volume.

Generalizing these previous expressions to a generic reaction r: ∑ns
j=1 s(r)j → ∑ns

i=1 l(r)j the
propensity can be expressed by the following equation:

γr

(→
N
)
= KrΩ

ns

∏
j=1

Ω−s(r)j

(
Nj

s(r)j

)
. (37)

For a bimolecular reaction of identical particles, we have that s(r)j = 2, and Equation (37) yields
Equation (36) for this case. For a bimolecular reaction of different chemical compounds Xi, and Xj

s(r)i = 1 and s(r)j = 1, and Equation (37) gives for this case Equation (33).

2.4. The Chemical Master Equation

Let us consider the set of reactions ∑ns
j s(r)j → ∑ns

j l(r)j , with nr = 1, 2, . . . , nr, with kinetic
constants denoted by Kr and their inverses ranging from r = nr+1 + 1, . . . , 2nr with kinetic constants
denoted by Knr+1 = K′1, Knr+2 = K′2, . . . K2nr = K′nr . We notice that the change vectors ν(r) of
the population of the different compounds produced by the inverse reactions are related to their
corresponding change vectors of the direct ones by the set of equations:

ν(nr+1) = −ν(1); ν(nr+2) = −ν(2); . . . ν(2nr) = −ν(nr) (38)

Next one defines a continuous time Markov process {N(t), t ≥ 0} with discrete state space
N(t) ∈ Nns . The main characteristic of these processes is that the system state depends only on the
last previously known state and not on the previous ones at earlier times. Therefore, the n-times
conditional probability for a Markov process reduces to [40]:

Pn(Nn, tn|Nn−1, tn−1; . . . ;N1, t1) = P2(Nn, tn|Nn−1, tn−1 )

∀tn ≥ tn−1 ≥ . . . ≥ t1
(39)
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The following equation, known as the Chapmann-Kolmogorov equation is true for all the Markov
processes [40], and it is easily deduced because of the definition of conditional probability:

P2(N, t|N0, t0 ) = ∑
N′

P2
(
N, t
∣∣N′, t′

)
P2
(
N′, t′|N0, t0

)
, (40)

where the summation extend over all possible states N′ at an intermediate time t′. To deduce the Master
equation one consider a time instant t′ = t− ∆t, arbitrarily close to t, and denoting by Tt(N|N′) ≥ 0
the transition probability per unit time from the state N′ to the state N at time t, then it is possible to
write down, dropping the sub index 2 in the probability:

P
(
N, t
∣∣N′, t− ∆t

)
= Tt(N

∣∣N′)∆t + o(∆t)whenN′ 6= N (41)

P(N, t|N, t− ∆t )= 1−∑N′ 6=N Tt(N
∣∣N′)∆t + o(∆t) , (42)

where o(∆t) means that there are terms that goes to zero faster than ∆t, and therefore for small ∆t can
be neglected. Because of Equations (41) and (42) in Equation (40), it is obtained:

P(N, t|N0, t0 ) = ∑
N′ 6=N

Tt(N|N′)∆t P(N′, t− ∆t|N0, t0 )

+

(
1− ∑

N′ 6=N
Tt(N|N′)∆t

)
P(N, t− ∆t|N0, t0 ) + o(∆t)

(43)

After some calculus, expanding P(N, t− ∆t|N0, t0 ) and P(N′, t− ∆t|N0, t0 ) in Taylor series and
retaining only the terms of order ∆t it is obtained:

∂tP(N, t|N0, t0 ) = ∑
N′

[
Tt(N

∣∣N′)P
(
N′, t′|N0, t0

)
− Tt(N′|N)P(N, t|N0, t0 )

]
(44)

Equation (44) is known as the Master equation, the first term of this equation gives the increase in
the probability per unit time due to the transitions from other states N′ to the state N at time t, while
the second term gives the probability diminishing rate due to the transitions from the state N to other
states N′.

Let us discuss now the usual form of the Master Equation for chemical kinetics known as the
chemical master equation (CME). This equation can be obtained directly from Equation (44), but it is
more instructive to deduce it by a probability balance method.

Let us write first a probability balance for P(N, t + ∆t|N0, t0 ) in terms of the probability at an
earlier time t, and the propensities using the propensities defined in the previous section. Because of
the propensities only depend on the system collective state N when the tank system it is well stirred
and the properties like the temperature are uniforms. Then, we can write because of the propensity
definition and the change ν(r) produced by each reaction type r on the number of molecules of each
chemical compound:

P(N, t + ∆t|N0, t0 )

=
2nr
∑

r=1

(
γr

(
N− ν(r)

)
∆t + o(∆t)

)
P
(

N− ν(r), t|N0, t0

)
+

{
1−

2nr
∑

r=1
(γr(N)∆t + o(∆t))

}
P(N, t|N0, t0 )

(45)

Passing P(N, t|N0, t0 ) to the left hand side, dividing then both sides by ∆t, and computing the
limit when ∆t→ 0 , it is obtained, on account that lim

∆t→0
o(∆t)/∆t→ 0 , the following equation for
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P(N, t), where we have omitted the N0, t0 because we consider only those states that can be attained
from the chemical system initial conditions:

∂tP(N, t) =
2nr

∑
r=1

[
γr

(
N− ν(r)

)
P
(

N− ν(r), t
)
− γr(N)P(N, t)

]
(46)

This is the Chemical Master Equation that expresses the probability evolution of P(N, t) in terms
of the propensities for each network reaction type and the probabilities P

(
N− ν(r), t

)
to be at the

states N− ν(r) that can reach the state N in one reaction. The last term of this equation gives the
probability to be removed from the state N by the different kinds of reactions.

Now we consider the following identity that holds for the inverse reactions:

ν(nr+i) = −ν(i) f or i = 1, 2, . . . , nr (47)

Because of Equation (47), the CME (46) can be written in the following form:

∂tP(N, t) =
nr
∑

r=1

[
γr

(
N− ν(r)

)
P
(

N− ν(r), t
)
− γr(N)P(N, t)

]
+

2nr
∑

r=nr+1

[
γr

(
N + ν(r−nr)

)
P
(

N + ν(r−nr), t
)
− γr(N)P(N, t)

] (48)

This is an alternative way of writing the CME because of the existing relations (47) between the
direct and the inverse reactions.

2.5. Limitations of the Chemical Master Equation

To finish this section, we will discuss deeply the limitations of the CME formalism developed
in the previous sections. As pointed out by Nicolis and Prigogine [4], the fact that the propensities
depend on system collective variables implies that important fluctuation phenomena associated to local
parameters of the system, as for instance local variations of the concentration, and correlation lengths
over which two part of the system influence mutually are not considered in the approach of the CME.
Also, Gillespie et al. [41], have discussed the conditions for validity of the CME in diffusion-limited
systems, especially when bimolecular reactions occur, the two fundamental conditions which must hold
are that the reactant molecules in the reacting system are at the same time “dilute” and “well-mixed”.
These authors have proved that the satisfaction of both conditions is necessary for the predictions of
the CME to be true in a system where bimolecular reactions take place. Notice that the requirement
for diluteness in a solution of reacting chemical compounds applies only to the reactant molecules
(solute), and not to the chemically inert solvent molecules as pointed out by Gillespie et al. [41].
However spatial effects are present in many chemical and biological systems, and therefore for these
systems do not hold the assumption of spatially uniform or well mixed distribution of chemical
reactants. In his seminal paper, Turing [42,43] demonstrated, theoretically, that a system of reacting
and diffusing chemicals compounds could spontaneously evolve to spatially heterogeneous patterns
when departing from an initially uniform state in response to very small perturbations. He considered
a very simple chemical system formed by two chemical compounds, in which one was an activator and
the other one an inhibitor. That is, one chemical compound, the activator, stimulated and enhanced the
production of the other compound, the inhibitor, which, in turn, depleted or inhibited the formation
of the activator. Turing showed that if the diffusion of the inhibitor was bigger than that of the
activator, then a diffusion-driven instability could result. This is a non-intuitive behavior, because we
are used to think that diffusion is a homogenizing process. The first experimental evidence of Turing
spatial patterns was observed in the chlorite-iodide-malonic acid (CIMA) reaction with starch [43].
More recently Maini, Painter and Chau [44], have reviewed the formation of spatial patterns in chemical
and biological systems.
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In this way spatial stochastic effects, which it is well known play important roles in many systems
are neglected in the CME approach. The situation for these cases can be amended using the Reaction
Diffusion Master Equation (RDME), in which space Ω is partitioned discretely into an arbitrary number
of voxel (Volume Elements) each one with a volume ∆Ω [44,45]. Diffusion can then occur between
different voxels, and reactions can occur within voxels on the assumption that reactants are well-mixed.

However, even in this case the description is not complete for many system because if the reactants
are dissolved in a solvent, the motion of the solvent affects to the reactants, and we can have in addition
to the normal diffusion process, the one known as turbulent diffusion produced by the small eddies
and also it is possible to have transport due to the solvent motion.

It is important to know the factors which influence the spatial correlations to understand the
limitations of the CME, consider for instance a simple example of non-equilibrium non-linear chemical
kinetics to understand the correlation origin. Nicolis, Prigogine, Van Kampen, and Van Den Broeck

among others started the study of this issue [4,8,46]. Consider the following chemical reaction A
K(+)

1→

2X, and its inverse 2X
K(−)

1→ A. For this simple system the particles are created in couples of spatial and

time correlated particles by the reaction A
K(+)

1→ 2X, while for the inverse reaction 2X
K(−)

1→ A between
particle pairs which are close enough this reaction depletes the system from pairs of X particles and
produce A molecules. Because the particles X created in the same reaction are both produced at the
same spatial point

→
r and time t, then these particles are obviously correlated. Then, due to diffusion

this correlation propagates spatially until one of the two particles suffers a reaction, if this reaction
takes place on average at a rate κ, then the characteristic correlation length, denoted by lc is given by
the expression [8,46]:

lc =
(

DF
κ

)1/2
, (49)

being DF, the diffusion coefficient of the chemical species X. Partitioning the space into equal volume
cubic cells with volume ∆Ω, and denoting the centers of this cells by their position vectors

→
r ,

and by N(X)
→
r

(t) the number of molecules of the species X contained in each sub-volume at time
t. Then it is possible to deduce the multivariate chemical master equation (MCME) obeyed by the
probability P

({
N(X)
→
r

(t)
}

, t
)

, where the symbol
{

N(X)
→
r

(t)
}

denotes all N(X)
→
r

(t) values ∀→r . The time
evolution of this multivariate probability is produced by two different mechanisms the first one are
the chemical reactions occurring inside the cells, and the second one is the diffusion of particles

between adjacent cells [8,46]. The equal time correlation function g(X)
(→

r ,
→
r
′
, t
)

at two different point
→
r 6= →

r
′

at the same time instant is defined in terms of fluctuations δρ
(X)
→
r

of the intensive variable

ρ
(X)
→
r

=
N(X)
→
r

∆Ω , evaluated at these points in the continuous limit when ∆Ω→ 0 , as follows:

g(X)
(→

r ,
→
r
′
, t
)
=

〈
δρ

(X)
→
r

δρ
(X)
→
r
′

〉
f or
→
r 6= →r

′
(50)

The equation obeyed by the correlation function at two different points can be calculated by the usual
procedure of multiplying the MCME by N(X)

→
r

(t)N(X)
→
r
′ (t), followed by summation over all

{
N(X)
→
r

(t)
}

.

The steady state solution of the equation obeyed by the equal time correlation function is given by the
following expression [8,46]:

g(X)
(→

r ,
→
r
′
, t
)
=

J(1)X

4π
∣∣∣→r −→r ′∣∣∣DF

exp

−
∣∣∣→r −→r ′∣∣∣

lc

 f or
→
r 6= →r

′
(51)
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where the characteristic correlation length lc is given by Equation (49), being κ the rate at which the X
molecules are destroyed by the inverse reaction, this rate is obviously given for this simple example by:

κ = K(−)
1 〈ρ(x)

→
r
〉2, (52)

and J(1)X is the chemical thermodynamic flux for the X chemical compound which is given by:

J(1)X = 2K(+)
1 ρ(A) − K(−)

1 〈ρ(X)
→
r
〉2 (53)

If the system is at equilibrium conditions then the flux J(1)X = 0, and there is not local creation of

correlations. Also notice that according to Equation (49), if K(−)
1 increases then the correlation length

diminishes. Therefore, correlations can be important when the chemical system is far from equilibrium
and therefore spatial effects can become important under this situation.

3. Methods to Obtain the Moments of the Probability Distribution in Chemical
Reaction Networks

3.1. The Method of the Probability Generating Function or Z-Transform

The method known as the probability generating function or simply generating function method,
or z-transform method consist in defining the z-transform of the function P(N, t) by means of the
following expression [47]:

G(z, t) =
∞

∑
N1=0

∞

∑
N2=0

. . .
∞

∑
Nns=0

zN1
1 zN2

2 . . . zNns
ns P(N1,N2, . . . , Nns , t) = ∑

N

ns

∏
j=1

z
Nj
j P(N, t), (54)

where z ≡ (z1, z2, . . . , zns), denotes the corresponding points in the transformed space.
From the multivariate generating function G(z, t), is easy to obtain various kinds of moments.

For instance, the k-th factorial-moment can be obtained easily from G(z, t) as follows:

〈Ni(Ni − 1) . . . (Ni − k + 1)〉 =
[

∂k

∂zk
i

G(z, t)

]
z1=...=zns=1

(55)

The second order cross-moment 〈Ni Nj〉, can also be obtained easily from G(z, t):

〈Ni Nj〉 =
[

∂2

∂zi∂zj
G(z, t)

]
z1=...=zns=1

(56)

To obtain the evolution equation for the multivariate generating function we proceeds as follows,
first we multiply the chemical master Equation (46), by zN1

1 zN2
2 . . . zNns

ns , and then we sum up for all the
N values i.e., N1 from 0 to ∞, N2 from 0 to ∞, and so on, and finally, we substitute the propensities by
their expressions given by Equation (37). This set of operations yields the following result:
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∂tG(z, t) =
nr
∑

r=1
∑
N

K(+)
r Ω

 ns
∏
j=1

Ω−s(r)j

 Nj − ν
(r)
j

s(r)j

z
Nj
j

P
(

N− ν(r), t
)

−
ns
∏
j=1

[
Ω−s(r)j

(
Nj

s(r)j

)
z

Nj
j

]
P(N, t)

}

+
nr
∑

r′=1
∑
N

K(−)
r Ω

 ns
∏
j=1

Ω−l(r
′)

j

 Nj − ν
(r′)
j

s(r
′)

j

z
Nj
j

P
(

N + ν(r′), t
)

−
ns
∏
j=1

[
Ω−l(r

′)
j

(
Nj

s(r
′)

j

)
z

Nj
j

]
P(N, t)

}
(57)

To obtain Equation (57), we have considered Equation (46), and we have defined K(+)
r which

denotes the Kr constant for the direct chemical reaction r, while K(−)
r denotes this constant for the

inverse of the direct r-th reaction. Considering that all the components of N′ = N− ν(r) are positive,
because physically only can take positive values, then it follows that the probabilities P

(
N− ν(r), t

)
must be zero when some component of N′ = N− ν(r) is negative. Because the components of the
vector N′ can take only values between 0 and ∞, then we can perform a change of variables in the
summations from N to N′. Finally, we rename again N′ as N. Notice than when performing these

operations for a given reaction r we have that z
Nj
j = z

Nj−ν
(r)
j +ν

(r)
j

j = z
N′j+ν

(r)
j

j , so finally, Equation (57)
can be rewritten in the form:

∂tG(z, t) =
nr
∑

r=1
∑
N

K(+)
r Ω

{
ns
∏
j=1

[
Ω−s(r)j

(
Nj

s(r)j

)
z

Nj+ν
(r)
j

j

]
P(N, t)

−
ns
∏
j=1

[
Ω−s(r)j

(
Nj

s(r)j

)
z

Nj
j

]
P(N, t)

}

+
nr
∑

r′=1
∑
N

K−r′ Ω

{
ns
∏
j=1

[
Ω−l(r

′)
j

(
Nj

l(r
′)

j

)
z

Nj−ν
(r)
j

j

]
P(N, t)

−
ns
∏
j=1

[
Ω−l(r

′)
j

(
Nj

l(r
′)

j

)
z

Nj
j

]
P(N, t)

}
(58)

Finally, we can recast Equation (58) in a more simplified form:

∂tG(z, t) =
nr

∑
r=1

∑
N

K(+)
r Ω

{
ns

∏
j=1

Ω−s(r)j

(
ns

∏
j=1

(
Nj

s(r)j

)
z

Nj+ν
(r)
j

j −
ns

∏
j=1

(
Nj

s(r)j

)
z

Nj
j

)
P(N, t)

}

+
nr

∑
r=1

∑
N

K(−)
r Ω

{
ns

∏
j=1

Ω−l(r)j

(
ns

∏
j=1

(
Nj

l(r)j

)
z

Nj−ν
(r)
j

j −
ns

∏
j=1

(
Nj

l(r)j

)
z

Nj
j

)
P(N, t)

}
(59)

Equation (59) can be further simplified as follows, first we consider:

∂
s(r)j

∂z
s(r)j
j

z
Nj
j = Nj

(
Nj − 1

)
. . .
(

Nj − s(r)j + 1
)

z
Nj−s(r)j
j (60)

From Equation (60) the following identity is obtained:

(
Nj

s(r)j

)
z

Nj
j =

z
s(r)j
j

s(r)j !

∂
s(r)j

∂z
s(r)j
j

zNj (61)
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The identity (60), when used in the Equation (59), yields the following result:

∂tG(z, t) =
nr
∑

r=1
K(+)

r Ω


ns
∏
j=1

Ω
−s(r)j

s(r)j !

(
ns
∏
j=1

z
l(r)j
j −

ns
∏
j=1

z
s(r)j
j

)
ns
∏
j=1

∂
s(r)j

∂z
s(r)j
j

G(z, t)


+

nr
∑

r′=1
K(−)

r Ω


ns
∏
j=1

Ω
−l(r)j

l(r)j !

(
ns
∏
j=1

z
s(r)j
j −

ns
∏
j=1

z
l(r)j
j

)
ns
∏
j=1

∂
l(r)j

∂z
l(r)j
j

G(z, t)


(62)

Finally, it is observed that the factor

(
∏ns

j=1 z
l(r)j
j −∏ns

j=1 z
s(r)j
j

)
is common to both terms in

Equation (62), so this equation can be further simplified to yield:

∂tG(z, t) =
nr
∑

r=1

[
ns
∏
j=1

z
l(r)j
j −

ns
∏
j=1

z
s(r)j
j

]K(+)
r Ω

ns
∏
j=1

Ω
−s(r)j

s(r)j !
∂

s(r)j

∂z
s(r)j
j

−K(−)
r Ω

ns
∏
j=1

Ω
−l(r)j

l(r)j !
∂

l(r)j

∂z
l(r)j
j

G(z, t)

(63)

Equation (63) is the general partial differential equation (PDE) for the generating function of the
chemical reaction networks. This equation is complex to solve in general due to its non-linear character
but can be solved exactly for some simple cases.

To see that this equation is correct let us consider the chemical reaction aA + bB
K(+)

1→ cC + dD,
which is the example used by Smadbeck and Kaznessis [13]. For this example, the equation obeyed by
the multiplicity generating function of this simple reaction because of Equation (63) is:

∂

∂t
G(zA, zB, t) = K(+)

1 Ω
1

ΩaΩb
1

a!b!

(
zc

Czd
D − za

Azb
B

) ∂a+b

∂za
A∂zb

B
G(zA, zB, t) (64)

Defining, k1 = K(+)
1 Ω 1

ΩaΩb , it yields the same result that the one obtained by Smadbeck
and Kaznessis.

3.2. The Method of the Expansion of the Chemical Master Equation in an Order Parameter

As we have discussed previously, the fluctuations in the number of molecules of a given
chemical compound Xj, are produced because of chemical reactions originate by collisions between
the individual chemical compounds that are discrete in nature. Each chemical reaction produces
one jump ν(r), in the multidimensional vector space Nns , the components of this jump ν

(r)
j are very

smalls compared with the total number of molecules Nj of each chemical species Xj. In addition,
the macroscopic characteristics are due to the total population of each chemical compound. It is
well known that for a population of Nj molecules, the fluctuations are of the order of

√
Nj, and its

effect on the macroscopic properties is of order
√

Nj/Nj ∼ N−1/2
j . The election of the parameter to

perform the expansion is usually the system volume Ω, because for large volumes the jumps are very
small compared with the system population. There are different forms to perform this expansion,
Van Kampen [8] proposed to split the dynamic of the molecular concentration in a deterministic part
denoted by φj and a fluctuating component ηj, so that we can write down:

Nj = Ωφj + Ω1/2ηj, or
Nj

Ω
= φj + Ω−1/2ηj (65)
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However, Samoilov and Arkin [48] proved that for some class of biochemical networks the mean
behavior differs significantly from the rate equation of chemical classical kinetics (CCK). For this
reason, especially for some class of biochemical networks involving bimolecular reactions, where
the propensities according to the Equations (33) and (36) depend non-linearly on the populations,
Andreychenko et al. [49] propose to perform an expansion around the true mean:

Nj

Ω
= 〈

Nj

Ω
〉+ Ω−1/2η j (66)

where from Equations (65) and (66) it is obtained that η j, is a random variable centered around zero
and that quantifies the fluctuations around the true mean value.

To perform the systematic expansion of the Chemical Master Equation, first we write the CME
(48) in the following form:

∂tP(N, t) =
nr
∑

r=1
[γr

(
N− ν(r)

)
P
(

N− ν(r), t
)
− γr(N)P(N, t)

]
+

nr
∑

i=1

[
γnr+i

(
N + ν(i)

)
P
(

N + ν(i), t
)
− γnr+i(N)P(N, t)

] (67)

Next, we express the propensities for the direct reactions as follows:

γr(N) = K(+)
r Ω

ns

∏
j=1

Ω−s(r)j

(
Nj

s(r)j

)
. f or r = 1, 2, . . . , nr (68)

and for the reverse reactions:

γnr+i(N) = K(−)
i Ω

ns

∏
j=1

Ω−l(i)j

(
Nj

l(i)j

)
. f or i = 1, 2, . . . , nr (69)

where K(+)
r = Kr, and K(−)

i = Knr+i. Therefore, the chemical master equation can be expressed because
of Equations (67)–(69) in the form:

∂tP(N, t) =
nr
∑

r=1
[K(+)

r Ω

 ns
∏
j=1

Ω−s(r)j

 Nj − ν
(r)
j

s(r)j

P
(

N− ν(r), t
)

−
ns
∏
j=1

Ω−s(r)j

(
Nj

s(r)j

)
P(N, t)

)]
+

nr
∑

r=1

K(−)
r Ω

 ns
∏
j=1

Ω−l(r)j

 Nj + ν
(r)
j

l(r)j

P
(

N + ν(r), t
)

−
ns
∏
j=1

Ω−l(r)j

(
Nj

l(r)j

)
P(N, t)

)]

(70)

Next, one defines the translation operators in the multidimensional vector space Nns , as follows:

Eν(r)
P(N, t) = P

(
N + ν(r), t

)
, and E−ν(r)

P(N, t) = P
(

N− ν(r), t
)

, (71)

where:

Eν(r) = ∏ns
j=1 Eν

(r)
j = ∏ns

j=1 El(r)j −s(r)j , and E−ν(r) = ∏ns
j=1 E−ν

(r)
j = ∏ns

j=1 E−(l
(r)
j −s(r)j ) (72)
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Using the operators defined in equations (71) and (72) in (70), the CME can be written down in the
compact form:

∂tP(N, t) =
nr
∑

r=1 [ K(+)
r Ω

(
ns
∏
j=1

Ω−s(r)j

(
E−ν

(r)
j − 1

)( Nj

s(r)j

)
P(N, t)

)]

+
nr
∑

r=1

[
K(−)

r Ω

(
ns
∏
j=1

Ω−l(r)j

(
Eν

(r)
j − 1

)( Nj

l(r)j

)
P(N, t)

)] (73)

Next, we split the stochastic variable Nj using Equation (65), in this approach the translation
operators can be expanded in Taylor series [50]:

Ej =

(
1 +

∂

∂Nj
+

1
2

∂2

∂N2
j
+ ..

)
= 1 + Ω−1/2

j
∂

∂ηj
+ Ω−1 ∂2

∂η2
j
+ .. (74)

E−1
j =

(
1− ∂

∂Nj
+

1
2

∂2

∂N2
j
+ ..

)
= 1−Ω−1/2

j
∂

∂ηj
+ Ω−1 ∂2

∂η2
j
+ .. (75)

Therefore, assuming that ν
(r)
j > 0, the operators E

ν
(r)
j

j and E
−ν

(r)
j

j , on account that the ν
(r)
j are

integer numbers and retaining only the first three terms of the Ej expansion can be written as follows:

E
ν
(r)
j

j =

(
1 + Ω−1/2 ∂

∂ηj
+ Ω−1 ∂2

∂η2
j

)ν
(r)
j

= ∑
i, q, k

i + q + k = ν
(r)
j

(
ν
(r)
j

i, q, k

)(
Ω−1/2 ∂

∂ηj

)q(
Ω−1 ∂2

∂η2
j

)k

(76)

E
−ν

(r)
j

j =

(
1−Ω−1/2 ∂

∂ηj
+ Ω−1 ∂2

∂η2
j

)ν
(r)
j

= ∑ i, q, k

i + q + k = ν
(r)
j

(
ν
(r)
j

i, q, k

)(
−Ω−1/2 ∂

∂ηj

)q(
Ω−1 ∂2

∂η2
j

)k

, (77)

where the multinomial coefficients [51] are defined in the standard way:

(
ν
(r)
j

i, q, k

)
=

ν
(r)
j !

i! q! k!
(78)

Also, it is observed that the partial derivative with respect to t, is computed at N constant for all
its components, therefore we can write:

∂tP(N, t) = ∂tΠ(η, t) + ∑ns
j=1

∂Π(η, t)
∂ηj

dηj

dt
= ∂tΠ(η, t)−Ω1/2 ∑ns

j=1
∂Π(η, t)

∂ηj

dφj

dt
, (79)

where to compute the time derivative
dηj
dt , we have considered that at Nj = cte, and because of

Nj
Ω = φj +Ω−1/2ηj, then it is deduced that

dηj
dt = −Ω1/2 dφj

dt . Therefore, the final form for the probability
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of the fluctuations is obtained because of Equations (76), (77) and (79) in Equation (73), which yields
the following result:

∂tΠ(η, t)−Ω1/2
ns
∑

j=1

∂Π(η,t)
∂ηj

dφj
dt

=
nr
∑

r=1


K(+)

r Ω
ns
∏
j=1

Ω−s(r)j


∑

i, q, k

i + q + k = ν
(r)
j

i 6= ν
(r)
j

 ν
(r)
j

i, q, k

(−Ω−1/2 ∂
∂ηj

)q
(

Ω−1 ∂2

∂η2
j

)k
 Ωφj + Ω1/2ηj

s(r)j

Π(η, t)





+
nr
∑

r=1


K(−)

r Ω
ns
∏
j=1

Ω−l(r)j


∑

i, q, k

i + q + k = ν
(r)
j

i 6= ν
(r)
j

 ν
(r)
j

i, q, k

(Ω−1/2 ∂
∂ηj

)q
(

Ω−1 ∂2

∂η2
j

)k
 Ωφj + Ω1/2ηj

l(r)j

Π(η, t)





(80)

If ν
(r)
j < 0, then −ν

(r)
j > 0, and E

ν
(r)
j

j =
(

E−1
j

)−ν
(r)
j , therefore for this case from Equation (73) it is

deduced:

∂tΠ(η, t)−Ω1/2
ns
∑

j=1

∂Π(η,t)
∂ηj

dφj
dt

=
nr
∑

r=1


K(+)

r Ω
ns
∏
j=1

Ω−s(r)j


∑

i, q, k

i + q + k = −ν
(r)
j

i 6= −ν
(r)
j

 −ν
(r)
j

i, q, k

(Ω−1/2 ∂
∂ηj

)q
(

Ω−1 ∂2

∂η2
j

)k
 Ωφj + Ω1/2ηj

s(r)j

Π(η, t)





+
nr
∑

r=1


K(−)

r Ω
ns
∏
j=1

Ω−l(r)j


∑

i, q, k

i + q + k = −ν
(r)
j

i 6= −ν
(r)
j

 −ν
(r)
j

i, q, k

(−Ω−1/2 ∂
∂ηj

)q
(

Ω−1 ∂2

∂η2
j

)k
 Ωφj + Ω1/2ηj

l(r)j

Π(η, t)





(81)

Obviously, the expansion in Equation (80) can be performed at higher orders and in this case
higher order multinomial coefficients will appear in (80) and (81).

If we use an expansion around the true mean as in Equation (66), then the partial derivative with
respect to t, is computed at N constant for all its components, therefore we can write:

∂tP(N, t) = ∂tΠ(η, t) + ∑ns
j=1

∂Π(η, t)
∂η j

dη j

dt
= ∂tΠ(η, t)−Ω1/2 ∑ns

j=1
∂Π(η, t)

∂η j

d
dt

〈
Nj
〉

Ω
, (82)

Also, in this approach the translation operators can be expanded in Taylor series:

Ej =

(
1 +

∂

∂Nj
+

1
2

∂2

∂N2
j
+ ..

)
= 1 + Ω−1/2

j
∂

∂η j
+ Ω−1 ∂2

∂η2
j
+ . . . (83)
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Then, if ν
(r)
j > 0, it is easy to prove that the probability Π(η, t) of the fluctuations around the

mean obeys the following equation:

∂tΠ(η, t)−Ω1/2
ns
∑

j=1

∂Π(η,t)
∂ηj

d
dt
〈Nj〉

Ω

=
nr
∑

r=1


K(+)

r Ω
ns
∏
j=1

Ω−s(r)j


∑

i, q, k

i + q + k = ν
(r)
j

i 6= ν
(r)
j

 ν
(r)
j

i, q, k

(−Ω−1/2 ∂
∂η j

)q(
Ω−1 ∂2

∂η2
j

)k
 Ω

(
〈Nj〉

Ω

)
+ Ω1/2η j

s(r)j

Π(η, t)





+
nr
∑

r=1


K(−)

r Ω
ns
∏
j=1

Ω−l(r)j


∑

i, q, k

i + q + k = ν
(r)
j

i 6= ν
(r)
j

 ν
(r)
j

i, q, k

(Ω−1/2 ∂
∂η j

)q(
Ω−1 ∂2

∂η2
j

)k
 Ω

(
〈Nj〉

Ω

)
+ Ω1/2η j

l(r)j

Π(η, t)





(84)

A similar equation to (84) can be also deduced for the case ν
(r)
j < 0.

4. Methods to Obtain the Probability Distribution from the Moments

The CME has an analytical solution in a few cases. The handbook of stochastic methods by
Gardiner provides several examples of exactly solvable models of the CME [40]. More examples can be
found in references [52,53]. In the rest of cases the solution of the CME can be found by Monte-Carlo
methods, by the finite state projection method [12], or reconstructing the PDF from the moments as it
is shown below.

Reconstructing the Probability Distribution from the Moments for One Component Case

For this case, we assume for simplicity a single component, and that at some time instant t, the
moments µk k = 1, 2, . . . , NM, of the distribution are known, where NM is the number of moments.
If P(N, t), denotes the probability to have N molecules at time t, then we can write the following set of
conditions:

µk(t) = ∑N NkP(N, t), k = 1, 2, . . . , NM, (85)

In addition, we have the normalization condition for the probability, so that

µ0(t) = ∑
N

P(N, t) = 1 (86)

Then following the maximum entropy principle [29,30,49], the probability distribution function
P(N, t), which must be chosen, is the one that maximizes the Shannon information entropy and at the
same time satisfies the restrictions (85) imposed by the moments and the probability normalization
condition (86). This problem is a typical optimization problem with constraints that can be solved
using the Lagrange multipliers method by building the functional:

F(P, λ) = −∑
N

P(N, t)logP(N, t) +
NM

∑
k=0

λk

(
∑
N

NkP(N, t)− µk(t)

)
(87)
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This optimization problem leads to the following solution, known as the maximum-entropy PDF:

P(N, t) = exp(−1 + λ0 +
NM

∑
k=1

λk Nk) (88)

The Lagrange multipliers are obtained from the restriction conditions (85) and (86). Applying the
normalization condition (86), to Equation (88), it is obtained:

Z = (exp(−1 + λ0))
−1 = ∑

N
exp(

NM

∑
k=0

λk Nk) (89)

so, the probability distribution that maximizes the information entropy is given by the expression:

P(N, t) = Z−1 exp(
NM

∑
k=1

λk Nk), (90)

where the unknown Z depends on the Lagrange multipliers. There exist different algorithms to obtain
the Lagrange multipliers from the moments as explained in Andreychenko et al. and Woodbury [49,54].

The previous deduction can be generalized to the case of the moment evolution with time, in this
case the time can be considered as a parameter, and therefore we can use variational calculus as in
Caticha and Preuss [55]. Because we must maximize the entropy at each time instant then we look for
the time function P(N, t), which makes maximum the information entropy along time and at the same
time satisfy the restrictions imposed by the moments, notice that for this case the Lagrange multipliers
should depend on time, so we write the functional in the form:

F(P, λ) =
∫ tf

t0

−
∞

∑
N=0

P(N, t)logP(N, t)dt +
NM

∑
j=0

t f∫
t0

dtλj(t)

(
∑
N

N jP(N, t)− µj(t)

)
(91)

Then, we perform the variations of the PDF and the Lagrange multipliers that are now function of
the parameter i.e., P(N, t) + εδP(N, t), and λj(t) + εδλj(t), and we look for the probability distribution
that makes δF = 0. Where the first variation is computed using standard rules of variational calculus
as follows:

δF =

[
∂F(P + εδP, λ + εδλ

∂ε

]
ε=0

= 0 (92)

Performing the operation (92) in the functional (91) one arrives to the following equation:

δF(P, λ) =
∫ tf

t0
dt

∞
∑

N=0

{
−logP(N, t) + 1 +

NM
∑

j=0
λj(t)N j

}
δP(N, t)dt

+
NM
∑

j=0

t f∫
t0

dtδλj(t)
(

∑
N

N jP(N, t)− µj(t)
)
= 0

(93)

Due to the arbitrary character of the functions δP(N, t) and δλj(t), j = 0, 1, . . . , NM, one arrives to:

P(N, t) = exp(−1 + λ0(t) +
NM

∑
k=1

λk (t)Nk) (94)

where now the Lagrange multipliers are functions of t, also it is obtained the set of restrictions (85),
and (86), with the probability P(N, t), given by (94).
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We can use another moment basis, which is known as the factorial moment basis; in this case for
one component we define the following set of population functions:

g( f )
q (N) = N(N − 1) . . . (N − q + 1) (95)

Then, the factorial moments of order q denoted by {Nq} f are defined by the following set of
equations:

{Nq} f =
〈

g( f )
q (N)

〉
= 〈N(N − 1) . . . (N − q + 1)〉 (96)

If one knows the factorial moments up to a given order M, at time t, then using the MEP one can
obtain the probability distribution that maximizes the information entropy and at the same time satisfy
the restrictions imposed by the moments. In this case it is obtained the following result:

P(N, t) = exp(−1 + λ′0(t) +
M

∑
q=1

λ′q(t)g( f )
q (N)) (97)

The Lagrange multipliers λ′q are obtained solving the system of equations:

{Nq} f = ∑
N

g( f )
q (N)P(N, t), q = 1, 2, . . . , M (98)

∑
N

P(N, t) = 1 (99)

5. Results of Applications to Chemical Reactions Networks

In this section we apply the methods explained previously to some specific chemical reaction
networks. Beginning with very well-known cases and finishing with complex ones. Also, we study in
this section the consistency of the results obtained by the expansion of the CME in an order parameter,
by comparison with the results obtained using the PGF method. Finally, because of its importance
in practical applications we have included a section devoted to the different methods to solve the
closure problem.

5.1. Case of One Single Component in an Open System

One of the simplest chemical reaction networks, which contain non-linear terms, is the
following one:

A
K(+)

1→ X (100)

X + X
K(+)

2→ B (101)

where it is assumed that the reaction takes place in a well stirred tank, being the compound A supplied
continuously, so the amount of A remains constant and the chemical compound B is also removed
continuously so B is also assumed constant. In this example we denote the reaction (100) as reaction
1 and the reaction (101) as the reaction (2). For these reactions ∑ns

j s(r)j → ∑ns
j l(r)j we have that the

stochiometric coefficients and the jumps are:

r = 1, s(1)x = 0, l(1)x = 1, ν
(1)
x = 1, s(1)A = 1, l(1)A = 0, ν

(1)
A = −1 (102)

r = 2, s(2)x = 2, l(2)x = 0, ν
(2)
x = −2 (103)
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Then Equation (80) for the network formed by the direct chemical reactions (101) and (102) can be
written down as follows:

∂tΠ(ηx, t)−Ω
1
2

∂Π(ηx ,t)
∂ηx

dφx
dt

= ΩK(+)
1 Ω−1

(
ΩφA

1

)[
−Ω−

1
2

∂Π(ηx ,t)
∂ηx

+ 1
2 Ω−1 ∂2Π(ηx ,t)

∂η2
x

]
+ΩK(+)

2 Ω−2

[(
2

1, 1, 0

)(
Ω−1/2 ∂

∂ηx

)
+

(
2

1, 0, 1

)(
1
2 Ω−1 ∂2

∂η2
x

)
+

(
2

0, 1, 1

)(
Ω−1/2 ∂

∂ηx

)(
1
2 Ω−1 ∂2

∂η2
x

)
+

(
2

0, 2, 0

)(
Ω−1/2 ∂

∂ηx

)2

+

(
2

0, 0, 2

)(
1
2 Ω−1 ∂2

∂η2
x

)2
](

Ωφx + Ω1/2ηx

2

)
Π(ηx, t)

(104)

At order Ω1/2, i.e., collecting all the terms proportional to Ω1/2, and which are the biggest ones,
we have the following equation:

Ω1/2
{

dφx

dt
− K(+)

1 φA + K(+)
2 φ2

x

}
∂Π(ηx, t)

∂ηx
= 0 (105)

From Equation (105) it is deduced the macroscopic equation of chemical kinetic for the
macroscopic concentration φx for the open systems chemical network (100) and (101):

dφx

dt
= K(+)

1 φA − K(+)
2 φ2

x (106)

We observe that in Van-Kampen book [8] the coefficient of the term φ2
x is 2. The reason of this

is that K(+)
2 = 2K, because the propensities were defined in Section 2 per pair of interacting particles,

and the number of couples when the particles are identical is divided by 2, because it is given by the

combinatorial number

(
N
2

)
.

The next step is to collect all the terms of order Ω0, which after some simple algebra yields:

Ω0
{
−∂tΠ(ηx, t) + 1

2 K(+)
1 φA

∂2

∂η2
x
Π(ηx, t) + K(+)

2 φ2
x

∂2

∂η2
x
Π(ηx, t) + 2K(+)

2 φx
∂

∂ηx
(ηxΠ(ηx, t))

}
= 0

(107)

From, Equation (107) at this order Ω0 it is obtained the following equation for the probability
Π(ηx, t):

∂tΠ(ηx, t) = 2K(+)
2 φx(t)

∂

∂ηx
(ηxΠ(ηx, t)) +

(
1
2

K(+)
1 φA + K(+)

2 φ2
x

)
∂2

∂η2
x

Π(ηx, t) (108)

According to Risken’s book [56], Equation (108) is a linear Fokker-Plank partial differential
equation with time dependent coefficients through φx(t). This equation is the same one obtained by
Van Kampen [8] at the same order. The solution of Equation (108) leads to a Gaussian distribution as
shown by Van Kampen [8]. Therefore, we only need to obtain the first two moments of the distribution
to know its PDF:

〈ηx〉 =
∫

D
ηxΠ(ηx, t)dηx, 〈η2

x〉 =
∫

D
η2

xΠ(ηx, t)dηx, and σ2(ηx) = 〈η2
x〉 − 〈ηx〉2 (109)
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where D is the distribution support. Obviously, if we go to higher orders of the expansion, the equation
that governs the evolution of the probability is not Equation (108) and will contain additional terms
and higher derivatives.

The next step is to obtain the equations that govern the evolution equation for the first and second
moments, in this case from Equation (108), because of (109) it is obtained:

∂t〈ηx〉 = −2K(+)
2 φx〈ηx〉 (110)

∂t〈η2
x〉 = −4K(+)

2 φx(t)〈η2
x〉+

(
K(+)

1 φA + 2K(+)
2 φ2

x

)
(111)

Let us study now the reaction network formed by (100) and (101) by the method of the moment
generating function, in this case we assume also that the population of A is constant, and that B is
also removed continuously to maintain B also constant. For this simple case the generating function
evolution equation of this reaction network is given because of Equations (63), (102) and (103) by:

∂tG(zx, t) = (zx − 1)K(+)
1 NAG(zx, t) +

(
1− z2

x

)K(+)
2
2

Ω−1 ∂2

∂z2
x

G(zx, t) (112)

Application to Equation (112) of the operator
[

∂
∂zx

]
zx=1

yields for the first moment 〈Nx〉 the

following result:
d
dt
〈Nx〉 = K(+)

1 NA − K(+)
2 Ω−1〈Nx(Nx − 1)〉 (113)

Defining the variation δNx of the number of molecules of the chemical compound X respect to the
mean value as δNx = Nx − 〈NX〉, it is obtained:

〈δN2
x〉 = 〈N2

x〉 − 〈Nx〉2 = σ2(Nx) (114)

From (113) and (114), it is deduced that:

d
dt
〈Nx〉 = K(+)

1 NA − K(+)
2 Ω−1〈Nx〉2 + K(+)

2 Ω−1
(

σ2(Nx)− 〈Nx〉
)

(115)

Defining an average concentration of X as φx = 〈Nx〉/Ω, it is obtained after dividing Equation (115)
by the system volume Ω:

d
dt

φx = K(+)
1 φA − K(+)

2 φx
2 + K(+)

2 Ω−2
(

σ2 − 〈Nx〉
)

(116)

Only if the probability distribution follows a Poisson PDF, we have that σ2 = 〈Nx〉, and in this
case Equation (116) simplifies to:

d
dt

φx = K(+)
1 φA − K(+)

2 φx
2 only if P(Nx, t) is a Poisson PDF (117)

But in general, this is not true, so that in the equation for the mean average appear terms that
depend on the fluctuations. In addition, as we will see below, the evolution equation for any order
moment depends on higher order moments.

Application of the operator
[

∂2

∂z2
x

]
zx=1

to the equation (112) of the moment generating function

yields after some calculus:

d
dt
〈Nx(Nx − 1)〉 = 2 K(+)

1 NA〈Nx〉−K(+)
2 Ω−1〈Nx(Nx − 1)〉− 2K(+)

2 Ω−1〈Nx(Nx − 1)(Nx − 2)〉 (118)
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Equation (118) tell us that the evolution equation for the second factorial moments depends on
the first, second and third factorial moment. Let us check now the consistency of this result, to do
that let us assume that the PDF follows a Poisson distribution. Then as it is well known the factorial
moments

{
Nq

x

}
f

of a Poisson PDF verify the following conditions, see the book of Gardiner [40]:

{
Nq

x

}
f
= 〈Nx(Nx − 1) . . . (Nx − q + 1)〉 = 〈Nx〉q for q = 1, 2, . . . (119)

Then, because of (119), the right-hand side of Equation (118) yields if the PDF is a Poisson one:

d
dt

{
N2

x

}
f
= 2 K(+)

1 NA〈Nx〉 − K(+)
2 Ω−1〈Nx〉2 − 2K(+)

2 Ω−1〈Nx〉3 (120)

Then the left-hand side of Equation (118), yields:

d
dt

{
N2

x

}
f
=

d
dt
〈Nx〉2 = 2〈Nx〉

d
dt
〈Nx〉 = 2K(+)

1 NA〈Nx〉 − 2K(+)
2 Ω−1〈Nx〉3 (121)

Apparently, the right-hand side of Equation (120) contains the term −K(+)
2 Ω−1〈Nx〉2, that does

not show up in Equation (121). But dividing both Equations (120) and (121) by Ω2, and expressing
the magnitudes in terms of average macroscopic concentrations it is obtained from (120) and (121) the
following results:

d
dt

{
N2

x
}

f

Ω2 = 2 K(+)
1 φAφx − K(+)

2 Ω−1φx
2 + 2K(+)

2 φx
3 (122)

d
dt

{
N2

x
}

f

Ω2 = 2 K(+)
1 φAφx + 2K(+)

2 φx
3 (123)

So, it is deduced that the difference between both equations is the term −K(+)
2 Ω−1φx

2. It is
observed that this term is much smaller than the other two terms because is divided by the order
parameter Ω that is the system volume, that is generally large, and makes this term very small
compared with the other two terms so the apparently contradiction for poissonian systems is solved.

5.2. Examples of Two Component Chemical Reaction Networks

One simple example of two component chemical reaction networks in a closed system with
non-linear effect is the one studied by Smadbeck and Kaznessis [13] and consist in the reversible
dimerization of two monomers. In this case we have only one reaction and its inverse, i.e., the reaction
of two monomers A to form a dimer B and at the same time the decomposition of this dimer B in the
two original monomers A. Each reaction has its own constant, so we write:

A + A
K(+)

1→
←

K(−)
1

B (124)

For this case the stoichiometric coefficients and the jumps are:

sA = 2, lA = 0, sB = 0, lB = 1, νA = −2, νB = 1 (125)

The next step is to apply Equation (63) to this chemical reaction with the stoichiometric coefficients
(125), this gives the following equation for the evolution of the generating function G(zA, zB; t):

∂tG(zA, zb; t) =
[
zB − z2

A

](
K(+)

1
Ω−1

2
∂2

∂z2
A
− K(−)

1
∂

∂zB

)
G(zA, zb; t) (126)
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From Equation (126) one can deduce the equations obeyed by the factorial-moments, the q-th
factorial moment of a single component is obtained by the following expression, as can be checked
easily: {

Nq
A

}
f
=

[
∂q

∂zq
A

G(zA, zb; t)

]
zA=zB=1

= 〈NA(NA − 1) . . . (NA − q + 1)〉 (127)

Also, the bivariate factorial moments
{

Nq
ANs

B

}
f

can be obtained from the generating function

G(zA, zB; t) by the expression:

{
Nq

A Ns
B

}
f
=

[
∂q+s

∂zq
A∂zs

B
G(zA, zb; t)

]
zA=zB=1

= 〈NA(NA − 1) . . . (NA − q + 1)NB(NB − 1) . . . (NB − s + 1)〉 (128)

In general application of the operator
[

∂q+s

∂zq
A∂zs

B
G(zA, zb; t)

]
zA=zB=1

to both sides of Equation (126)

lead to the evolution equation obeyed by the factorial moment
{

Nq
ANs

B

}
f
. It is better to gain efficiency

as recommended by Smadbeck and Kadnessis [13], to apply the derivative operator successively
and systematically to generate the equations obeyed by all the factorial moments up to a given
order. This can be performed with the symbolic operational algebra and calculus tools of MATLAB or
MATHEMATICA. For instance, applying the operators ∂

∂zA
to Equation (126) it is obtained the equation:

∂t
∂

∂zA
G(zA, zb; t)

= [−2za]

(
K(+)

1
Ω−1

2
∂2

∂z2
A
− K(−)

1
∂

∂zB

)
G(zA, zb; t)

+
[
zB − z2

A
](

K(+)
1

Ω−1

2
∂3

∂z3
A
− K(−)

1
∂2

∂zB∂zA

)
G(zA, zb; t)

(129)

Setting zA = zB = 1, in Equation (129) gives the equation for the evolution of the first factorial
moment in terms of higher order factorial moments:

∂t{NA} f = −K(+)
1 Ω−1

{
N2

A

}
f
+ 2K(−)

1 {NB} f (130)

Applying again the operator ∂
∂zA

, to Equation (129) yields the equation:

∂t
∂2

∂z2
A

G(zA, zb; t)

= −2
(

K(+)
1

Ω−1

2
∂2

∂z2
A
− K(−)

1
∂

∂zB

)
G(zA, zb; t)

−4zA

(
K(+)

1
Ω−1

2
∂3

∂z3
A
− K(−)

1
∂2

∂zB∂zA

)
G(zA, zb; t)

+
[
zB − z2

A
](

K(+)
1

Ω−1

2
∂4

∂z4
A
− K(−)

1
∂3

∂zB∂z2
A

)
G(zA, zb; t)

(131)

Setting again zA = zB = 1, in Equation (131) yields the evolution equation for the second factorial
moment

{
N2

A
}

f :

∂t

{
N2

A

}
f
= 2K(−)

1 {NB} f +

(
−2K(+)

1 Ω−1
{

N2
A

}
f
+ 4K(−)

1 {NANB} f

)
− 2K(+)

1 Ω−1
{

N3
A

}
f

(132)

The idea now is to define an ordered factorial moment column vector {N1N2 . . . .Nns} f that
contains the lower order moments in the lower index components and the higher order moments in
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the higher index components. Then, for the case of two components this column vector is defined as
the transposed of the following row vector:

{NANB}f =

(
{NA} f , {NB} f ,

{
N2

A

}
f
, {NA NB} f ,

{
N2

B

}
f
,
{

N3
A

}
f

,
{

N2
A NB

}
f

,
{

NA N2
B

}
f
,
{

N3
B

}
f

, . . .
)T

, (133)

where the upper script T denotes the transpose of the row vector to transform it in a column vector.
Where in practical application we need to truncate the number of components of this vector at some
finite number NC. In general, one obtains an equation for the truncated factorial moment vector.
This equation for the evolution of the vector {N1N2 . . . .Nns} f was first deduced by Smadbeck and
Kaznessis [13], and for the case of the reaction (124), the evolution equation for the column vector of
ordered factorial moments, takes de form:

∂t{NANB}f =
[

M f

]
{NANB}f, (134)

where the matrix
[

M f

]
, which gives the evolution of the factorial moments for the dimerization

reaction and its inverse in a closed system has the components displayed in Table 1. Notice that for
the zero order factorial moments, the components are 0. The advantage of using the factorial moment
expansion is that the matrix

[
M f

]
is sparser than if one uses an evolution equation for the polynomial

moments [13,14]. Also, the bandwidth structure of the matrix for the factorial moments has fewer
bands than for the polynomial case. Due to its importance in practical and numerical calculation we
discuss in the last section the closure problem.

Table 1. Components of the matrix
[

M f

]
, which determines the factorial moments evolution of the

dimerization reaction network.

{NA}f {NB}f {N2
A}f {NANB}f {N2

B}f {N3
A}f {N2

ANB}f

∂t{1} f 0 0 0 0 0 0 0
∂t{NA} f 0 2K(−)

1 −K(+)
1 Ω−1 0 0 0 0

∂t{NB} f 0 −K(−)
1 0.5 K(+)

1 Ω−1 0 0 0 0
∂t
{

N2
A
}

f 0 2K(−)
1 −K(+)

1 Ω−1 4K(−)
1

0 −2K(+)
1 Ω−1 0

∂t{NA NB} f 0 0 0 −K(−)
1 2K(−)

1 0.5 K(+)
1 Ω−1 −K(+)

1 Ω−1

∂t
{

N2
B
}

f 0 0 0 0 −2K(−)
1

0 K(+)
1 Ω−1

5.3. The Michaelis-Menten Chemical Reaction Network

In this section we study the Michaelis-Menten chemical network, that has been previously studied
by several authors [13,57,58] and which is more complex than the previous examples. In this reaction
network we have three reactions, in the first one a substrate (S) reacts with an enzyme (E), to form a
complex denoted as (E:S). In the second one, this complex degrades back to its original components
through the inverse reaction. In the third reaction the complex (E:S) is transformed in a product (P)
plus the enzyme (E), so we can write:

S + E
K(+)

1→
←

K(−)
1

E : S (135)

E : S
K(+)

2→ E + P (136)
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This network has apparently four components and three reactions (reaction 1 plus its reverse
reaction and reaction 2). For this network the stoichiometric and the jumps coefficients are:

reaction 1 : s(1)E = 1, l(1)E = 0, ν
(1)
E = −1

s(1)E:S = 0, l(1)E:S = 1, ν
(1)
E:S = +1

s(1)S = 1, l(1)S = 0, ν
(1)
S = −1

(137)

reaction 2 : S(2)
E:S = 0, l(2)E:S = 0, ν

(2)
E:S = −1

s(2)E = 0, l(2)E = 1, ν
(2)
E = +1

s(2)P = 0, l(2)P = 1, ν
(2)
P = +1

(138)

The next step is to apply Equation (63) to this chemical reaction network with the stoichiometric
coefficients (137), and (138), this calculation gives that the generating function G

(
zS, zE, zE:S, zp; t

)
,

obeys the equation:

∂tG
(
zS, zE, zE:S, zp; t

)
= [zE:S − zEzS]

(
K(+)

1 Ω−1 ∂2

∂zE∂zS
− K(−)

1
∂

∂zE:S

)
G
(
zS, zE, zE:S, zp; t

)
+[zEzP − zE:S]K

(+)
2

∂
∂zE:S

G
(
zS, zE, zE:S, zp; t

) (139)

From Equation (139) it is possible to obtain the equations obeyed by the factorial moments,
{NE} f ,

{
N2

E
}

f , {NENS} f . . . . applying the operators ∂
∂zE

, ∂2

∂z2
E

, ∂2

∂zE∂zS
, . . . . to Equation (139), and then

setting zE = zS = zE:S = zP = 1, proceeding in this way, we have obtained the following results for
the evolution equations of the factorial moments:

∂t{NE} f = ∂t〈NE〉 = −K(+)
1 Ω−1〈NENS〉+ K(−)

1 〈NE:S〉+ K(+)
2 〈NE:S〉 (140)

∂t

{
N2

E

}
f
= ∂t〈NE(NE − 1)〉 = −2K(+)

1 Ω−1〈NE(NE − 1)NS〉+ (2K(−)
1 + 2K(+)

2 )〈NE:SNE〉 (141)

∂t{NE NS} f = −K(+)
1 Ω−1〈NE NS〉+ K(−)

1 〈NE:S〉 − K(+)
1 Ω−1〈NE(NE − 1)NS〉+

(
2K(−)

1 + K(+)
2

)
〈NE:S NS〉

−K(+)
1 Ω−1〈NE NS(NS − 1)〉

(142)

Next, because of the following relations that express the conservation in the total molecule number
of substrate and enzyme in their different forms, we can write:

NS + NE:S + NP = NST , and NE + NE:S = NET (143)

Then, we substitute in Equations (140), (141) and (142), NE:S by NET −NE, and after a little algebra
the following results are obtained:

∂t{NE} f =
(

K(−)
1 + K(+)

2

)
NET −

(
K(−)

1 + K(+)
2

)
{NE} f − K(+)

1 Ω−1{NENS} f (144)

∂t

{
N2

E

}
f
=
(

2K(−)
1 + 2K(+)

2

)
(NET − 1){NE} f −

(
2K(−)

1 + 2K(+)
2

) {
N2

E

}
f
− 2K(+)

1 Ω−1
{

N2
E NS

}
f

(145)

∂t{NENS} f = K(−)
1 NET − 2K(−)

1 {NE} f +
(

K(−)
1 + K(+)

2

)
NET{NS} f −

(
K(+)

1 Ω−1 + K(−)
1 +

K(+)
2

)
{NENS} f − K(−)

1
{

N2
E
}

f − K(+)
1 Ω−1

({
N2

ENS
}

f +
{

NEN2
S
}

f

) (146)

where we recall that
{

N2
ENS

}
f = 〈NE(NE − 1)NS〉, and

{
NEN2

S
}

f = 〈NENS(NS − 1)〉. Also, we have
obtained the evolution equations for the factorial moments {NSf} and

{
N2

S f

}
not displayed here

for simplicity. Therefore, the matrix
[

M f

]
, that gives the evolution of the factorial moments for the

Michaelis-Menten reaction network has the components displayed at Table 2.
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Table 2. Components of the matrix
[

M f

]
, which determines the factorial moments evolution of the Michaelis-Menten reaction network.

{1}f {NS}f {NE}f {N2
S}f {NSNE}f {N2

E}f {N3
S}f {N2

SNE}f {N2
ENS}f

∂t{1} f 0 0 0 0 0 0 0 0 0
∂t{NS} f K(−)

1 NET
0 −K(−)

1
0 −K(+)

1 Ω−1 0 0 0 0

∂t{NE} f

(
K(−)

1 + K(+)
2

)
NET 0 −K(−)

1 − K(+)
2

0 −K(+)
1 Ω−1 0 0 0 0

∂t
{

N2
S
}

f 0 2K(−)
1 NET

0 0 −2K(−)
1

0 0 −2K(+)
1 Ω−1 0

∂t{NS NE} f K(−)
1 NET (K(−)

1 + K(+)
2 ) NET −2K(−)

1
0 K(+)

1 Ω−1 + K(−)
1 + K(+)

2 −K(−)
1

0 −K(+)
1 Ω−1 −K(+)

1 Ω−1

∂t
{

N2
E
}

f 0 0 2(NET − 1)
(

K(−)
1 + K(+)

2

)
0 0 −2

(
K(−)

1 + K(+)
2

)
0 0 −2K(+)

1 Ω−1
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We must remark that all the terms of the matrix
[

M f

]
, which determine the moments evolution

for the Michaelis-Menten network are exactly the same that the ones obtained by Smadbeck and
Kaznessis [12] except the coefficient of {NE} f in the evolution equation for ∂t{NSNE} f , which is(

NET − 2
)
K(−)

1 in reference [13], and −2K(−)
1 in this paper.

5.4. The Closure Problem

In this section we discuss the closure problem that consist in approximating the high order
moments, which appear in the equations for the moment evolution up to a given order M, in terms
of lower order moments, this problem has been studied by different author as Ruess et allied [25],
Gillespie [15], Grima [16], and many others using different approaches and by by Smalbeck in his PhD
thesis [59], using the zero information closure, because this last method is based on the maximum
entropy principle will be the first one to be explained. In addition, Ruess et al. have performed a
systematic comparison of different closure methods [25], so this paper it is a good starting point for
studying this subject.

5.4.1. The Zero-Information Closure

In this subsection we use one component system to simplify the explanation. The closure problem
consists in finding a function F to express the higher order moments µi>M in term of lower ones, so it
is possible to write:

µi>M = Fi(µ1, µ2, . . . , µM), (147)

where if one uses the polynomial moments, which are defined by the expression:

µi(t) = ∑∞
N=0 NiP(N, t), (148)

and, if we know all the polynomial moments µi(t) of order i ≤ M at a given time t, then we can build
a functional with the information entropy, and the known moments up to order M as restrictions as
was done in Section 4. In this case we can obtain an approximate PDF that maximizes the information
entropy with the M restrictions imposed by the known moments at time t. If we denote this PDF based
in the known M polynomial moments with the subscript S, then we may write:

PS(N, t) = exp(−1 + ∑M
k=0 λk(t)Nk) (149)

The Lagrange multipliers λk(t), are obtained solving the following set of equations for the
previously known moments µi(t):

µi(t) = ∑∞
N=0 Niexp(−1 + ∑M

k=0 λk(t)Nk), i = 0, 1, 2, . . . , M (150)

Once we obtain the Lagrange multipliers, we know an approximate expression for the PDF, which
is obtained from the first M-th moments, and that we denote PS(N, t) and which is a function of
µ1, µ2, . . . , µM. Then, the higher order moments can be expressed in term of lower order ones by means
of the expression:

µ
(S)
i>M = ∑∞

N=0 NiPS(N, t) = Fi(µ1, µ2, . . . , µM), (151)

The estimation of the higher moments in this way is denoted by the superscript S, that means that
the MEP has been used, this closure scheme is known as the zero-information (ZI) closure, and has
been recently used by Vlysidis and Kaznessis, using factorial moments for the Slogi chemical reaction
network [60]. It does not matter to use one polynomial basis or the factorial moment basis because
both polynomial and factorial basis are related by a transformation matrix.
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5.4.2. Different closure methods

In this section we discuss some additional closure methods that have been used in chemical
reaction networks. We perform this discussion for a multivariate chemical system with ns different
chemical species, as we have seen in previous sections. Fist we define the so called ordinary or normal
moments of order k for the population of the different chemical species as follows:

µi1,i2,...,ik =
〈

Ni1 Ni2 . . . Nik
〉
, (152)

where we have adopted the convention that the indexes are ordered from the smaller ones to the larger
ones, i1 ≤ i2 ≤ . . . ≤ ik, and that any index can be repeated, for instance µ1,1,2 =

〈
N2

1 N2
〉
. The second

type of moments that will be used are the central moments, these moments are defined as:

µ
(c)
i1,i2,...,ik

= 〈
(

Ni1 − 〈Ni1〉
)(

Ni2 − 〈Ni2〉
)

. . .
(

Nik − 〈Nik 〉
)
〉 (153)

and the convention index adopted is the same one that for the ordinary moments, which some authors
denote as raw moments. The third type of moments introduced are the cumulants [25,40], which are
defined as follows:

κi1,i2,..,ik
= ∂k

si1,si2,...,sik
Gκ(s1,s2,...,sns )|s1=s2 ....=sns=0 , (154)

where Gκ(s1,s2,...,sns) is the cumulant generating function, which is defined by the following
expression [19,40]:

Gκ(s1,s2,...,sns) = log〈exp
(
∑ns

i=0 si Ni

)
〉 (155)

For instance, to show how Equation (154) works, one can use this expression to obtain the
expressions for some low order cumulants in terms of ordinary or normal moments:

κ1 = ∂1
s1

Gκ(s1,s2,...,sns )|s1=s2 ....=sns=0 = 〈N1〉, κ2 = ∂1
s2

Gκ(s1,s2,...,sns )|s1=s2 ....=sns=0 = 〈N2〉, (156)

κ1,1 = ∂2
s1,s1

Gκ(s1,s2,...,sns )|s1=s2 ....=sns=0 = 〈N2
1 〉 − 〈N1〉2, (157)

κ1,2 = ∂2
s1,s2

Gκ(s1,s2,...,sns )|s1=s2 ....=sns=0 = 〈N1N2〉 − 〈N1〉〈N2〉 (158)

From the previous equations, it is easily deduced that we can express normal or raw moments
in terms of cumulants for instance it is immediately deduced from Equations (156) and (158) that:
〈N1N2〉 = κ1,2 + κ1κ2.

With these previous definitions it is easy to stablish several of the most popular closure schemes
found in the literature for chemical reaction networks. The first one is the central moment neglect
(CMN) moment closure approximation (MCA), which will be denoted by CMN-MCA. If this closure
scheme is performed at order M, then all the central moments of order larger than M, are neglected.
Thus, we can write:

µ
(c)
i1,i2,....,ik

= 0, f or k > M (159)

The second closure scheme, which it is perhaps the most popular one is the “cumulant-neglect
MCA”. In this closure scheme if the selected order is M, then all cumulant moments of order larger
than M are neglected. Thus, the following expression can be written:

κi1,i2,...,ik = 0 f or k > M (160)

For instance, in the cumulant neglect closure of order 2, all cumulants of order larger than two are
set to zero, this immediately leads to the result that it is possible to find expressions for the third and
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higher order normal moments in terms of first and second order ones [19,40], for instance one finds for
a two component system that:

µ1,2,2 = µ1µ2,2 + 2µ1,2µ2 − 2µ1µ2
2 (161)

µ1,1,2 = µ2µ1,1 + 2µ1,2µ1 − 2µ2µ2
12 (162)

and similar equations are obtained for the rest of third order moments. The next step to closure
the problem is to substitute the thirds order moments in the moment evolution equations, by their
expression in terms of lower order moments and in this way, we close the hierarchy of moment
equations. The “cumulant-neglect MCA” has been used previously in the field of biochemical kinetics
by different authors as Gomez-Uribe and Verghese [61], and also by Schnoerr et al. [19].

There are many more closure methods as the Poisson MCA, the log-normal MCA and so on, also
there are several software packages as MOCA, StochDynTools, MomentClosure, which contain several
methods to close the moments evolution equations [19,61].

5.5. Study of the Consistency of the Development of the CME in an Order Parameter

In this section we are going to check if the results obtained using the expansion of the CME
in an order parameter are consistent with the results obtained using the probability generating
function method.

We start with the chemical reaction network formed in an open system by reactions (100) and
(101). Instead to expand the Chemical Master Equation in an order parameter, we departure from
Equation (112), which gives the evolution equation for the generating function and applying to this
equation the operators

[
∂

∂zx

]
zx=1

, and
[

∂2

∂z2
x

]
zx=1

. It is obtained after some calculus that the first and

second polynomial moments obey the equations:

d
dt
〈Nx〉 = K(+)

1 NA + K(+)
2 Ω−1〈Nx〉 − K+

2 Ω−1〈N2
x〉 (163)

d2

dt2 〈N
2
x〉 = K(+)

1 NA +
[
2K(+)

1 NA − 2K(+)
2 Ω−1

]
〈Nx〉+ 4K(+)

2 Ω−1〈N2
x〉 − 2K(+)

2 Ω−1〈N3
x〉 (164)

The next step is to substitute Nx = Ωφx + Ω1/2ηx, as performed by Van-Kampen in Equations
(163) and (164) or Nx = 〈Nx〉+ Ω1/2ηx as performed by Andreychenko et al. [30].

Performing first the substitution Nx = Ωφx + Ω1/2ηx in (163) and collecting all the terms of order
Ω0, yields the following macroscopic kinetic equation:

d
dt

φx = K(+)
1 φA − K(+)

2 φ2
x (165)

Collecting now the terms of order Ω1/2, gives the result:

∂t〈ηx〉 = −2K(+)
2 〈ηx〉 (166)

Equations (165) and (166) are the same ones that the ones obtained from Van Kampen expansion
of the Master Equation. If we perform now the substitution Nx = Ωφx + Ω1/2ηx, in (164) and we use
the following identities:

〈N2
x〉 = 〈

(
Ωφx + Ω1/2ηx

)2
〉 = (Ωφx)

2 + 2Ω3/2φx〈ηx〉+ Ω〈η2
x〉 (167)

〈N3
x〉 = 〈

(
Ωφx + Ω1/2ηx

)3
〉 = (Ωφx)

3 + 3 Ω5/2(φx)
2〈ηx〉+ 3 Ω2φx〈η2

x〉+ Ω3/2〈η3
x〉 (168)
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Because of Equations (167) and (168), the following result is obtained from Equation (164),
collecting the terms of order Ω:

∂t〈η2
x〉 = −6K+

2 φx(t)
〈

η2
x

〉
+
(

K(+)
1 φA + 4K(+)

2 φ2
x

)
(169)

The terms in this case are the same ones that in Van Kampen approach but now some of the
coefficients are different as it is deduced comparing Equations (169) and (111).

Let us use now, the alternative recently proposed by Andrechenko et al. [49], in this case they
propose to use Nx = Ωφx + Ω1/2ηx with φx = 〈Nx〉

Ω . The great advantage of this formulation is that
〈ηx〉 = 0, as was mentioned previously in Section 5.1. Because of this property we can write:

〈N2
x〉 = 〈Nx〉2 + Ω〈ηx

2〉 =
(
Ωφx

)2
+ Ω〈ηx

2〉 (170)

〈N3
x〉 =

(
Ωφx

)3
+ 3Ω2φx 〈ηx

2〉+ Ω3/2〈ηx
3〉 (171)

Performing first the substitution Nx = Ωφx + Ω1/2ηx in (163) and collecting all the terms of order
Ω0, yields the following macroscopic kinetic equation:

d
dt

φx = K(+)
1 φA − K(+)

2 φx
2 (172)

Collecting the terms of order Ω1/2 gives:

∂t〈ηx〉 = 0 (173)

In this case, because of (170) and (171), the following result, is obtained from equation (164)
collecting the terms of order Ω:

∂t〈ηx
2〉 = −4φx(t)〈ηx

2〉+
(

K(+)
1 φA + 2K(+)

2 φx
2
)

(174)

We observe that the macroscopic Equations (165) and (172) are the same ones that the ones
obtained by Van-Kampen method of expansion of the master equation. Also, Equation (166) for the
first moment of the fluctuations when we use Nx = Ωφx + Ω1/2ηx, is also the same. But for the second
moment evolution equation of the fluctuations, Equation (174), the terms are the same in Andreychenko
approach Nx = 〈Nx〉 + Ω1/2ηx, but some coefficients are different if Nx = Ωφx + Ω1/2ηx, as it is
observed in Equation (169) for the second moment of the fluctuations.

6. Discussion and Conclusions

The application of methods based on the theory of stochastic processes has become very popular
in chemistry and biological systems, especially since the development of the Chemical Master
Equation (CME), and the Monte-Carlo methods to solve properly the CME by sampling over the
probability distributions [4,6–8]. In addition, the introduction of the finite state projection method
(FSP) by Munsky and Khammash, which provides a direct solution of the CME at a desired degree
of approximation without generating Monte-Carlo simulations, has supplied an alternative way
to Monte-Carlo methods [12]. Since the pioneering works of Van Kampen [8] and Nicolis and
Prigogine [4], the developed methods and the range of applications of the CME have experienced a
noteworthy increase. This is especially true for the methods based on Monte-Carlo as the Sampling
Stochastic Approach (SSA) of Gillespie, which performs a sampling over the underlying probability
distributions. It is necessary to mention the methods based on the Chemical Fokker-Planck (CFP)
equation, which can be obtained performing a Kramers-Moyal expansion in the Chemical Master
equation and truncating this expansion to second order, in this way one obtains the CFP Equation.
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However as pointed out by Gardiner (p. 267, [40]) this is only an approximation whose asymptotic
expansion is identical to order Ω−1 with that of the CME.

More recently people as Smadbeck, Kaznessis, Sotiropoulos, Vlysidis and others [13,14,59] have
tried to solve the moment equations and to reconstruct the PDF from the moments applying the
maximum entropy principle. The problem of this approach is that the moment order must be truncated
at some value, so one needs a method to compute and truncate in a consistent way the hierarchy of
moments. Because if not the number of differential equations to solve becomes too large, and many
moments are necessary to obtain a good approximation to the probability distribution. There have
been many attempts in the past to find a consistent methodology to truncate the moment hierarchy;
some of these methods as the “cumulant-neglect MCA” are reviewed in this paper [20,40,62]. At this
point the zero-information truncation or ZI truncation provides a methodology to obtain in a consistent
way the truncated moments in terms of lower ones; this method gives similar results than the SSA
method with the improvements to this method performed by Gibson and Bruck [63].

In this review we have tried to present a unified vision of the chemical reaction networks and the
existing methods to compute the probability distribution of the different chemical compounds that
enter in the network. We have started by the root basis of chemical kinetics from a microscopic point
of view to compute properly the reaction rates of the different chemical reactions that are necessary to
obtain the chemical propensities that enter the chemical master equation as a fundamental cornerstone.
We have centered the analysis in the bimolecular reactions computing from a microscopic basis the
reaction rates, that are necessary to obtain the chemical propensities.

The next step has been to obtain the chemical master equation (CME), traditionally this equation
is deduced from the Chapman-Kolmogorov equation, and we have used this way to obtain the
master equation. In addition, we have considered very illustrative to deduce the chemical master
equation from a probability balance that capture better the physical roots of the problem. Then we
have discussed the limitations of the CME, first we have reviewed the two fundamental conditions,
which must hold to be valid the application of the CME in diffusion-limited systems, especially when
bimolecular reactions occurs. These conditions were studied by Gillespie et al. [41], and are that the
reactant molecules in the reacting system are at the same time “dilute” and “well-mixed”. In addition,
it is important to know the factors which influence the spatial correlations to understand the limitations
of the CME; this influence is studied through the two point correlation function in Section 2.5, it is
found that correlations can be important when the chemical system is far from equilibrium and in
addition the correlation length is large.

Then, we present two alternative methods that are used to obtain the probability distribution of
the chemical species of the reaction network, one is the expansion of the chemical master equation
in an order parameter that is the system volume and the other method is the probability generating
function method. To see if both methods are equivalent we have performed a consistency analysis
of both methods in Section 5.5, and we have found that although the results of both methods for
the macroscopic evolution equations and for the first moment of the fluctuations are similar, some
differences can exists in the coefficients of the second moment equation depending on the way that is
performed the splitting of the random variables.

Then, we have deduced the expansion of the chemical master equation in the order parameter

using a multinomial expansion of the jump operators, E
ν
(r)
j

j . The equation obtained gives the same
results than Van-Kampen expansion method of the Master Equation for some simple reaction network
studied in Sections 5.1 and 5.2.

Because we can compute the moments of the distribution of the chemical species then it is
important to reconstruct the PDF from these moments. The method to obtain the unknown PDF
from the moments is based on the application of the maximum information entropy principle (MEP).
The main drawback of this methods is that requires to solve a set of non-linear equations to obtain the
values of the Lagrange multipliers that are present in the exponent of the PDF expression. Three types
of basis can be used to reconstruct the PDF, the polynomial basis, the factorial moment basis and
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the cumulant basis. The factorial moments evolution equations can be obtained directly from the
generating function evolution equation as was shown in Sections 5.1–5.3. Performing some algebra is
possible to obtain the polynomial moments from the factorial moments. The polynomial moments
and the factorial moments as shown by Smadbeck and Kaznessis [13] are both related by a similarity
transform matrix. Other important basis, is the cumulant basis, the interest of this basis is that the
cumulants have cluster properties, in the sense that for independent random variables all the cumulant
vanish, notice that the factorial moments do not enjoy this property [40]. Also, it is possible to express
the polynomial moments in terms of cumulants. So, we can pass from one basis to the other.

The expansion of the master equation in an order parameter and the multiplicity generating
function method are applied to several simple univariate and multivariate chemical reaction networks.
First the multinomial expansion formula derived in Section 3, is applied to a non-linear simple reaction
network and the resulting equation for the evolution of the macroscopic variable and the moments of
the fluctuation are compared with Van-Kampen results [8]. It is found that the results are the same.
Then this same case is studied by the probability generating function method (PGFM), by application
of this method, see also Section 5.1, we obtained the equations obeyed by the factorial moments, at this
point a study of the self-consistency of the PGFM is performed in the equations obeyed by the factorial
moments when the system is Poissonian and the method is self-consistent as explained at the end of
Section 5.1. The next step was to check if the two previous methods, the PGFM and the expansion
in an order parameter of the CME, were cross-consistent i.e., give the same results. This study was
performed in Section 5.5. Instead to perform a systematic expansion in an order parameter we obtain
first the equations for the evolution of the factorial moments, of first order, second order and so on.
And at posteriori, we perform the substitution Nx = Ωφx + Ω1/2ηx, as performed by Van-Kampen
in Equations (163) and (164) or Nx = ΩNx + Ω1/2ηx as performed by Andreychenko et al [49]. Then
we collect the terms of the same order in the expansion, and the result yields the correct macroscopic
equation, the same equation for the evolution of the first moment of the fluctuations, but for the second
moment 〈η2

x〉, the equation have the same terms than in Van-Kampen results for this same case [8], but
two of the terms has a different coefficient in the approach Nx = Ωφx +Ω1/2ηx. However, the equation
for the second moment was the same in Andreychenko et al. approach [49]. This cross checking shows
that both methods are not completely equivalents, and that further research is necessary.

Then in Section 5.2, we apply the PGFM to a two-component chemical reaction network studied
by Smadbeck, and Kaznessis [12], that consisted in the reversible dimerization of two monomers.
Also, in Section 5.3 we have applied the PGFM method to the Michaelis-Menten reaction network.
We used the factorial moment basis for both cases, and the results were the same ones that the ones
obtained by these authors, except one small difference in one term for the Michaelis-Menten network.
Finally, in Section 5.4 we have reviewed the closure problem studying some classical closure methods
as the “cumulant neglect MCA” and the recent advances in the ZI closure method, as a systematic and
consistent approach to perform the closure of the moment hierarchy at the desired truncation order.
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