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Abstract

Metamaterials are currently one of the most popular fields in microwave technology because their particular elec-
tromagnetic properties lead to a plenty of very relevant applications, both military and civilian. Additionally, the anal-
ysis and design of microwave components based on this kind of materials is one of the more challenging problems
found by the applied electromagnetism community due to the complexity introduced in the mathematical formulation
by their constitutive relationships. The most general case of metamaterial is the bi-anisotropic one, where both the
electric field and the electric induction simultaneously depend on the magnetic field and the magnetic induction. In
this paper, we present a new and powerful Finite Element Method scheme valid for the analysis of the most gen-
eral waveguides, filled with lossy bi-anisotropic linear materials. Edge elements have been used in order to prevent
the appearance of spurious solutions and the final eigensystems are very sparse, thus allowing a great memory and
computing time saving.

1. Introduction

Gyrotropic magnetised ferrites have been used in microwave engineering for years, because their non-reciprocal
behaviour make them very useful in the design of many microwave devices, like isolators, polarizators or circula-
tors. This kind of microwave passive components has been studied in classical textbooks [1, 2], as well as in many
research papers [3-5]. Materials with anisotropic permittivity and permeability have also been used in Microwave
Monolithic Integrated Circuits (MMIC) chip structures [6, 7]. General anisotropic linear materials are characterized
by the contitutive relationships

D = 804, E, (1a)
B = pop,H, (1b)

where gy and py are, respectively, the free-space permittivity and permeability and &,, fi, arbitrary complex tensors.
The analysis of waveguides filled with this kind of materials is not evident. So, numerical methods, like the Finite
Element Method (FEM), must be used. However, the application of the FEM to electromagnetic problems involving
anisotropic materials is not a straightforward task. A considerable effort has been carried out during the last years
to find a formulation of FEM valid for the most general waveguide problem. Different solutions for anisotropic
waveguides, both involving scalar [8] or vector [9-11] interpolating functions, have been developed and their behavior
has been satisfactorily tested in the last years.

More recently, a new kind of materials, electromagnetically active, have been considered for its application in mi-
crowave and infrared regions: the chiral materials, a particular case of bi-isotropic materials for which the constitutive
relationships take the form

D = ¢F - jiuH, (2a)
B= ,uﬁ + j(;cyg, (2b)

*Corresponding author
Email addresses: jbalbast@itaca.upv.es (J. V. Balbastre), lnuno@dcom.upv.es (L. Nufio)

Preprint submitted to Journal of Computational and Applied Mathematics Seprember 21, 2018



where & and y are, in general, complex scalars, ¢, is a real scalar, known as chirality admittance, and j = V-1, as it
is usual in electrical and electronic engineering.

In [12], Lindell et al. present a detailed historical survey of the theoretical study of chiral materials. In the same
reference, as well as in [13], the propagation in waveguides filled with homogeneous chiral materials (chirowaveg-
uides) is studied.

Gyrotropic chirowaveguides appear as a natural extension of chirowaveguides. In this case, the electromagnetic
field satisfies

D = &E - ji.fH, (3a)
B = jH + jCAE, (3b)
where
e —jg 0
g=|jg & 0]e&, (4a)
| 0 0 &2
mo —jk 0
a=\jx w0 fuo, (4b)
| 0 0

g and « being the parameters describing the transverse anisotropy of the materials. A study of this type of waveguides
can be found in [14, 15].
Even more complicated cases, like waveguides loaded with Faraday ferrites, for which

D = &éE - jepH + ZiE, (5a)
B =pH + jipE, (5b)

have been studied by Xu and Bosisio [16]. Bi-anisotropic materials include all the aforementioned materials as
particular cases and represent the more general form of linear media. This kind of materials has been studied for
circular cross-section guiding structures in [17, 18] whereas the completely arbitrary waveguide problem is analysed
in [19].

According to [20], any FEM formulation should fit some properties in order to be considered valid for dealing
with the waveguide problem. First of all, and probably the most important thing, the formulation should not give
non-physical solutions (the so-called spurious modes). Some node-based FEM formulations avoiding the appearance
of spurious modes have been reported in the literature (the one presented in [8] has been successfully applied to the
analysis of both closed and open lossy dielectric waveguides). Secondly, the nodal FEM formulations hold one im-
portant drawback, since they cannot properly represent the singular fields arising in the vicinity of sharp corners [2].
On the contrary, edge-element formulations, as they do not use the value of the field at the corner as an unknown,
do not present this problem. On the other hand, a basic division may be established among FEM formulations,
by distinguishing between those based on variational principles or Ritz method and those derived via the Galerkin
method. The Ritz method has been very used in the past, and is still used even in formulations like those presented
in [4, 5, 8, 11]. However, when the formulation should be able to deal with fully arbitrary materials, it is not evident
to find a functional whose Euler’s equation matches the differential equation to be solved. So, when the variational
approach is used, only a restricted anisotropy is considered [4, 5] or the local potential method is applied to avoid this
problem [8, 11]. In the case of the formulation presented by Pan and Tan in [11], they assume that the propagation
constant for waves propagating in the —z direction is the same than that for waves propagating in the +z direction,
which is no longer true when the media involved in the analysis are not reciprocal, as it is usual for bi-anisotropic
materials. The formulation presented in [10], which is based on a mixed nodal-edge element interpolation, is free of
spurious solutions, does not present problems at the corners and is valid for the most general anisotropic materials.
However, the eigensystem obtained by the discretization of the wave equations is quadratic, whereas other formula-
tions [4, 5,9, 11] directly yield generalised eigensystems. Even so, although for solving a quadratic eigensystem it is
necessary to transform it into a generalised one by increasing the number of unknowns, the transformation proposed
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Figure I: Geometry of the general waveguide problem.

in [10] leads to a number of unknowns (the number of nodes plus twice the number of edges in the FEM mesh) lower
than in other similar formulations.

In this paper, the formulation presented in [10] is extended to the study of bi-anisotropic waveguides. In section
2, the wave equation is derived from Maxwell’s Equations in general bi-anisotropic waveguides. In section 3, a pair
of dual integral equations (for the electric and magnetic fields) is derived from the wave equation using the Galerkin
Method. Then, these fields are interpolated using first order edge elements for their transverse components, while the
axial components are interpolated using first order Lagrange elements. The discretization of the wake formulation
of the wave equation leads to a quadratic sparse eigensystem, which is reduced to a generalised one. In this new
eigensystem, the matrices are still sparse and the eigenvalue is closely related to the propagation constant of the
modes in the waveguide. Moreover, since edge elements have been used for interpolating the transverse components
of the fields, no spurious solutions appear in the eigenvalue spectrum. To show the possibilities of the proposed
method, several numerical examples are presented in section 4, comparing (whenever possible) the results obtained
by the present method with those reported by other authors. Finally, some conclusions are highlighted.

2. The wave equation in bianisotropic waveguides

In this work, we will consider the analysis of the z-invariant waveguide shown in Figure 1, formed by a lossy
inhomogeneous and bianisotropic medium enclosed by a perfect conductor (electric or magnetic). The bianisotropic
medium will be characterised by four 3 X 3 matrices (£,, .? 2 and f1,), and the fields inside it must satisfy the general
constitutive relationships:

5 = 8(5@‘,-5 + éﬁ, (6d)

g = ,u[]rlj-g + 25. (6b)

To simplify the analysis, it is convenient to write all the tensors by distinguishing between transversal and axial
components

En &z
Ey €z

” 2
s ,f:-' =

r =

; (7

& éi: s | L A _ |Mn M
Ex &z €= e '{wl MI_L’U z

where subscript ¢ refers to the two transverse components (x, v) and z to the axial one. Hence, sub-index ¢t stands for
2 x 2 sub-matrices, tz and zf stand for 2 x 1 and 1 x 2 vectors, respectively, and zz stands for scalar entries.
Within a general bi-anisotropic waveguide, the source-free Maxwell’s equations for time-harmonic fields given
by:
VxE=-jwB, VxH = jwD, (8)

can be applied.



An exponential dependence of the fields with the z co-ordinate may be assumed, because the geometry of waveg-
uides is invariant with this variable:

£ = Eyxy)e™, D = D(x.y)e ™, ©)
B = By(x,y)e ™, H = Hy(x,y)e ™,

where v = @ + jB is the complex propagation constant, & being the attenuation constant and S the phase constant.
Due to the waveguide axial symmetry, the nabla operator can be split into transverse and axial components:

s
V=V, +— 1
+6¢z (10)

where V, is the part of the nabla operator acting on the transversal coordinates (e.g., V, = ; X+ ;—? in rectangular
coordinates).
s ~ = " -
Applying the nabla operator to any field of the form A = Ap(x, y)e™* leads to:

VX A = —ye ™2 x Ag(x,y) + €7V, X Ag(x, ), (11)
Re-ordering equation (11) and introducing the operator V_ = V, — ¥ yields
VXA =V_xAy(x,y)e . (12)
Hence, equations (8) can be re-written as:
V_xEy=—jwBy,  V_xHy= jwDy, (13)
or, introducing the constitutive relationships (6)

V_ x E = - jw(uoftHo + ZEy), (142)
V_x Hy = jw(eé, Ey + EHy). (14b)
Solving for Hyin equation (14a) and introducing it into equation (14b) leads, after some elementary manipulations,

to the form: A A
(V- X —jwé)i; (V- x +jwl)Ey = w*cy?é,Ey, (15)

where ¢p = 1/ +/ggfiy is the speed of light in vacuum.
In a similar way, solving for Ey in equation (14b) and introducing it into equation (14a) leads to:

(V- x +jwd)d; (V- x - jwé)Hy = o’ c5*fuHo. (16)

Equations (15) and (16) are the most general form of the wave equation in linear media and their solution, subject to
the appropriate boundary conditions on electric (Cg) or magnetic (Cyy) walls

HXE{)
n><1-70

le, =0. (172)

e, =0 (170)

provides the propagation modes in the waveguide.

3. Finite Element solution

To solve the waveguide problem by using the FEM, it is necessary to derive an integral equation equivalent to the
vector wave equation, which some authors have obtained by using the local potential method [8, 11]. Nevertheless,
the weighted residuals method will be applied here for obtaining the integral equations equivalent to (15) and (16).
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Considering equation (15), it is first multiplied by a weighting function Fo satisfying the same boundary conditions
than the unknown £, and then integrated on the wave cross-section S':

f f Fo- (Vo x —jod)i; (V- x +jwd)EydS = w’cy? f f Fy - &.Eods, (18)
s s
To reduce the order of the differential operator applied to Ej in (18) the vector identity

V- (A x Fo) = Fo - (V- x Ag) = A - (V- x Fo) + 2 (Ay X Fy) (19)

is considered, where the auxiliary vector
Ao =7 (V- x +jwd)Ey (20)

has been defined in order to simplify the notation. Integrating (19) on the the wave cross-section S leads to

ffv_-{ﬁnxﬁn)ds =ffﬁn-(v_x,¥n)ds —ffﬁn‘(v_xﬁn)ds +ffyz-{,4*ﬂ><ﬁn)ds. 1)
N N N N

Applying a corollary of the divergence theorem to the left hand side of equation (21) leads to:

f f V_ - (Ay X Fo)dS = 95 (Fy x Ap) - AdL — f f v3 - (Ag X Fo)dS, (22)
5 C 5

C being the waveguide boundary and 7 the unit vector normal to the waveguide wall pointing outwards.
Assuming that C = Cg U Cy, the boundary conditions defined by equations (17) will force the line integral to
vanish as far as

95 (Fox Ag)-hadL = @ (A x Ag) - FodL — O (7 x Fy) - ApdL, (23)
Cy Ce

where the integral along C vanishes because Fy must satisfy the boundary condition (17a) while, according to (14a),
An = —prnﬁn, and therefore the integral along Cj; also reduces to zero because ﬁn must satisfy (17b) on the
magnetic wall.

Hence, introducing (22) into (21), the following expression is obtained:

ff Fo- (V- x Ap)dS = ffﬁﬁ,-(v_ x Fo)dS —szyﬁ-(ﬁuxﬁu)ds. (24)
5 5 5

Using the auxiliary vector A’U, the left hand side of equation (18) can be re-written as:

f f Fo- (V- x —jwd (V- x +jwl)EydS = f f Fo - (V- x Ap)dS — jw f FoAydS (25)
5 A 5

Introducing now equation (24) into (25) yields

f f Fo - (V_ x —jwdi= (V- x +jwl)EdS = f f Ao - (V_ % Fy)dS -2 f f y2 - (Ag X Fo)dS —jw f FoéAodS
5 N N N

(a)

(26)
where (a) can be re-arranged as:

ffﬁ},-(v_ +2y8) x FydS = ffﬁu-(m x Fy)dS, (27)
5 5
being V, =V, + yZ.

Introducing now equation (27) into equation (26) leads to:

f f Fy- (Vo X —jwd)i; (Vo x +jwl)EdS = f f (V. % Fy — jwFyé) - AydS (28)
s
5



Finally, introducing equation (28) into equation (18) and taking into account equation (20), the following weak
formulation of equation (15) can be obtained:

ff (Vs X Fo = jwFod)i; (V- x Ey + jwlEp)dS = wc; f Fy - 8,EodS (29)

Following a similar procedure with equation (16) leads to the corresponding weak formulation
f f (Vi x Go + jwGod)&; (V- x Hy — jwéHy)dS = w’cy? f Gofi,HodS, (30)
s s

Gg being the test functions, which satisfy the same boundary conditions as ﬁg.

By using the differential operators V_ and V. very compact expressions for these integral equations can be de-
rived and, because of the dual form of equations (29)- (30), only the finite element scheme for the electric field,
corresponding to equation (29), will be presented.

A fixed (i.e., without adaptive refinement) 3-simplex mesh is defined on the solution domain S and, following the
procedure described in [21], the transverse components of Eg and Fy (Eo, and Fo,) are interpolated at the mesh edges
using Whitney 1-forms W' whilst Whitney 0-forms W are used to interpolate the corresponding axial components
Ey. and F). at the mesh nodes, leading to:

S ) S T VA

where the dots over the unknown and the weighting functions stand for their corresponding values at edges or nodes.
In (31) the elements of matrix N are the Whitney 0-forms used to interpolate Ey, and Fy,:

N,
EDNACR) (32)
e=1

¢ (x,y) being the first order Lagrange interpolating function for the i-th mesh node within the e-th triangle and N, the
number of mesh elements.
The Whitney 1-forms used to interpolate Eg, and ﬁg; at the mesh edges are vector functions of the form:

N,
Ni(x,y) = L; wa:'—(-xs WV (X, y) = i (x, )V (x, 9)] = Uik + Vi, (33)
e=1

where L; is the length of the i-th edge in the mesh and the subscripts - and + stand for its origin and end nodes,
respectively. Elements of vectors U and V of sub-matrix P, in (31) are then defined by (33).
After the Whitney form interpolation, the differential operations involved in (29) give

V_xEy= _}'Q QTH ] V. x Fy= ”Q" QT” ] (34)

where
Qu=[-v U], Q.=[Ve-U)]. Qu=[N, -NJ, (35)
the subindices x and y in the interpolating functions standing for differentiation with respect to the corresponding
variable.
After some algebraic manipulations, the following equation is obtained

SR A

FT] [Cu Cf ]lEi] =0, (36)



where

Ayp=- ff Qan Qf,dS, (37a)
N

B, = ﬂ[Qﬁ(Vf: - V?;)Q;T: + jﬁ)Pu(ann + C’EVE; + & vy + (E:VE:)Q,};]dS, (370)
s

B = H[Q;;V::Qg + ijn(Vn{r: - Vr:.(::)Pz—_]dS, (37¢)
5

B = [ [ 1-0unil + joPtemy + v 0has, (37d)
5

Cy = ff[Qf:V::QE‘:' + jwQi(Vyly + Vel — V?;E:?; - Viff:}Pf; + wzprr{fn":fgﬁ + &Vl — Cﬁsﬁ}PE;]dS, (37e)
5

C. = fj;[Q::"’;fQ; + JjwQp(Vali: + V;:C;:)Pf; = P(&nve — ‘fr:V:rJQ;

(371)
+ wzpn(fn"ng:: + & Vauliy + EVile: + Vel — C%s,:)P;]dS,
Cy= ff[Q::V::Q;?; + jwQuy (vl + V;;_C;;]P:f: — JwP (v + é’;:V::)QE
s (37g)
+ wsz(f;;V;;é';; +Evuly + Eaviela + EVirly — C(Q)s:x)P:.:]dS»
C..= ff[Q::Van: + jwQu(Vuli: + V::_(::)P:; — JwP(&vy + f::V;:)Qf,
s (37h)

+ fU?P::(f:rVné’:: + &Vl + Evilo: + Evado: — CE,S::)Pz;]dS,

v standing for ;.

According to the weighted residuals method, as far as equation (36) must be valid for any test function F, o in the
solutions space it shall also be valid for any of the basis functions used in the interpolation. Therefore, equation (36)
reduces to the following quadratic eigensystem:

> [Ax O][E By B.||E| |Ci CLl[E]
2o ofg]+ s lE]+e &lE]-o

It is worth to point out that the quadratic eigensystem (38) is completely free of spurious solutions and the matrices
involved are highly sparse, thus allowing a great memory and time saving.

The transformation of (38) into a generalised sparse eigensystem can be achieved now by introducing 4 = 1/y
and E, = E,/A, thus duplicating the number of transversal unknowns. The resulting equation has the form

AME = NE, (39)
where .
Cn CI.: 0 _BM _B.': _AH - E.'

M=|C, C. 0|, N=|-B, 0 0 E=|E.]|. (40)
0 0 I I 0 0 E,

The boundary condition set by equation (17a) is applied to equation (39) by removing rows and columns corre-
sponding to the simplex nodes and edges laying on perfect electric conducting surfaces, leading to:

AMPEO = NYEO, 41)

The dimension of M" null-space is given by the number of free nodes (i.e., those non lying on the domain bound-
ary) in the simplex mesh and therefore there will be as many eigenvalues A = 0 as elements has the vector E?, which
correspond to

E} = 0,E) = ~(A))\, Iyl = . 42)

These non-valid solutions are perfectly defined and located, an they must not be confused with any kind of spurious
modes. The generalized eigenproblem defined by (41) has been solved using the freely-available software library
SLEPc [22] with the default settings.
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Figure 2: Normalised phase constant for the first five modes in a circular homogeneous chirowaveguide of radius R.

4. Numerical results

In this section, several waveguides have been analysed to show the validity and versatility of the proposed FEM
formulation. Whenever possible, the computed results have been compared with previously published results. In other
cases, very general examples have been solved, and their results are presented in order to be used as a reference in
future works.

The first example considered is a circular chirowaveguide of radius R filled with a non-magnetic (4 = yo) material
characterised by &, = 1.1419g; and & = -¢ = jupl., with a chirality admittance £. = 1 mS. Figure 2 shows the
propagation constants for the first EH,,,, and HE,,, modes nomalized with respect to the free space wave-number k.
The results are compared with those published by Svedin in [13], showing a very good agreement. Only the phase
constant S is plotted in Figure 2 because in this case @ = 0. The analysis has been carried out in terms of electric field,
yielding a final eigensystem with 450 unknowns.

Next, the normalized propagation constant for the first mode of a rectangular waveguide filled with a non-magnetic
chiral material with £ = &; has been computed for different values of the chirality admittance. Figure 3 shows the
waveguide dimensions (in terms of the free-space wavelength Ay) along with the normalized phase constant 8 (a = 0
for this mode). The results were obtained using the magnetic field formulation yielding a final eigensystem with
520 unknowns. The computed results are also compared in Figure 3 with the values obtained by Xu and Bosisio in
reference [16], showing a high similarity between them.

The third example presented in this paper is devoted to show how the formulation works with general bianisotropic
materials. To do so, a circular waveguide of radius R has been analysed, with 1066 unknowns in the final eigensystem
using the E-field formulation. The material filling the waveguide has the following constitutive parameters

1.099  —;0.043 0
& =1/0.043  1.099 0

0 0 1.142
07 —-j03 0

a=1j03 07 o,
0 0 I

and ‘? = —_E’ = jl.poft, . with a chirality admittance . = 1 mS. The normalized phase constants for the first two HE,,,
modes are plotted in Figure 4 (as in the two previous examples, @ = 0), along with the values presented by Shen
in [14], the results being very similar.

The last waveguide analyzed is a very general one: the trapezoidal microstrip line of Figure 5. In this structure,
the material 1 has the same constitutive parameters as the chirowaveguide of the first example, material 2 has the
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Figure 5: Normalized propagation constant for the first two modes of a bi-anisotropic inhomogeneous microstrip waveguide with trapezoidal
cross-section.

same properties as the general bianisotropic circular waveguide of the third example, and material 3 is an anisotropic
(& = £ = 0), non-magnetic dielectric with:

11.86 — j0.8 0 0
0 20.83 — j3.16 0 .
0 0 11.86 — j0.8

This problem has been solved using the E-field formulation, and the final eigensystem involved 700 unknowns,
The propagation constant (both @ and ) for the first two modes of this structure is also shown in 5. This waveguide
has not been previously analysed, and the results are presented here to be used as a reference for future works. Figure
6 shows the transversal electric field for the first two modes of the trapezoidal waveguide.

e
=
I

Y
T o
S
T
[N
wimy e

T

Figure 6: Transversal electric field for the first (left) and second (right) modes in the bi-anisotropic trapezoidal waveguide shown in Figure 5.

5. Conclusions

A very powerful FEM formulation based on a Galerkin approach, which is valid for the analysis of most general
linear waveguides, has been presented. To prevent the appearance of non-physical solutions, the proposed method
uses mixed interpolating functions for the field and the test functions. This strategy yields a spurious free, generalised
eigensystem where the eigenvalues are closely related to the propagation constant of the waveguide modes. Several
examples have been presented, showing a very good agreement with previously published results. Moreover, a very

10



general example is presented in order to be used as reference for future works. Finally, the proposed method has
shown to be very efficient, since it leads to a very sparse eigensystem, thus allowing a great reduction in memory
requirements and CPU time.

6. References

(11
(21
(31

4

(51

(6

[7

(81
(91
[10]
[11]

[12]
[13]

[14]
[15]

[16]
(171
[18]
[19]
[20]
[21]

[22]

Elliott, Robert Stratman, An introduction to guided waves and microwave circuits, Prentice-Hall, 1993.

Collin, Robert E, Field theory of guided waves, IEEE Press, 1990.

Dillon, M. B., Gibson, Andrew A. P. and Webb, Jon P., Cut-off and phase constants of partially filled axially magnetized, gyromagnetic
waveguides using finite elements, IEEE Transactions on Microwave Theory and Techniques, 41 (5) (1993), 803-808.

Anderson, B. C. and Cendes, Z. J., Solution of ferrite loaded waveguide using vector Finite Elements, IEEE Transactions on Magnetics, 41
(3) (1995), 1578-1581.

Zhou, Lezhu and Davis, Lionel E., Finite-Element method with edge elements for waveguides loaded with ferrite magnetized in arbitrary
direction, IEEE Transactions on Microwave Theory and Techniques, 44 (6) (1996) 809-815.

Chen, Yinchao and Beker, Benjamin, Application of MoL to shielded microstrip lines with bi-anisotropic biaxial substrates and cover layers,
IEEE Transactions on Magnetics, 30 (5) (1994) 3212-3215.

Polycarpou, Anastasis C., Lyons, Michael R. and Balanis, Constantine A., Finite Element analysis of MMIC waveguide structures with
anisotropic substrates, IEEE Transactions on Microwave Theory and Techniques, 44 (10) (1996) 1650-1663.

Lu, Yilong and Fernandez, F. Anibal, An eflicient finite element solution of inhomogeneous anisotropic and lossy dielectric waveguides,
IEEE Transactions on Microwave Theory and Techniques, 41 (6) (1993) 1215-1223.

Lee, J. E, Finite Element analysis of lossy dielectric waveguides, IEEE Transactions on Microwave Theory and Techniques, 42 (6) (1994)
1025-103.

Nuiio, Luis, Balbastre, Juan V. and Castaiie, Hector, Analysis of general lossy inhomogeneous and anisotropic waveguides by the finite-
element method (FEM) using edge elements, IEEE Transactions on Microwave Theory and Techniques, 45 (3) (1997) 446-449.

Pan, G. and Tan, J., General edge element approach to lossy and dispersive structures in anisotropic media, IEE Proceedings-Microwaves,
Antennas and Propagation, 144 (2) (1997) 81-90.

Lindell, Ismo V., Sihvola, A. H., Tretyakov, S. A. and Viitanen, A.J., Electromagneic Fields in bi-isotropic media, Artech House, 1994,
Svedin, Jan A. M., Propagation analysis of chirowaveguides using the finite-element method, IEEE Transactions on Microwave Theory and
Techniques, 38 (10) (1990) 1488-1496.

Shen, Zhongxiang, The theory of chiroferrite waveguides, Microwave and Optical Technology Letters, 6 (7) (1993) 397-401.

Wenyan, Yin, Wenbing, Wang and Pao, Li, Guided electromagnetic waves in gyrotropic chirowaveguides, IEEE Transactions on Microwave
Theory and Techniques, 42 (11) (1994) 2156-2163.

Xu, Yansheng and Bosisio, Renato G., An efficient method for study of general bi-anisotropic waveguides, IEEE Transactions on Microwave
Theory and Techniques, 43 (4) (1995) 873-879.

Jakoby, Bernhard and De Zutter, Daniel, Analysis of guided waves in inhomogeneous bianisotropic cylindrical waveguides, IEEE Transac-
tions on Microwave Theory and Techniques, 44 (2) (1996) 297-310.

Graglia, Roberto D., Sarto, Maria 5. and Uslenghi, Piergiorgio L.E., TE and TM modes in cylindrical metallic structures filled with bian-
isotropic material, IEEE Transactions on Microwave Theory and Techniques, 44 (8) (1996) 1470-1477.

Valor, Luis and Zapata, Juan, An efficient finite element formulation to analyze waveguides with lossy inhomogeneous bi-anisotropic mate-
rials, IEEE Transactions on Microwave Theory and Techniques, 44 (2) (1996) 291-296.

Fernandez, F. Anibal and Lu, Yilong, Microwave and optical waveguide analysis by the finite element method, John Wiley & Sons, Inc.,
1996.

Lee, Jin-Fa, Sun, D. K. and Cendes, Z. J., Tangential vector finite elements for electromagnetic field computation, IEEE Transactions on
Magnetics, 27 (5) (1991) 4032-4035.

Herndndez, Vicente, Romdn, José Enrique, Vidal, Vicente, SLEPc: Scalable Library for Eigenvalue Problem Computations, Lecture Notes in
Computer Science, vol. 2565 (2003), p. 377-391.

11



