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Abstract 

 

Environmental and health concerns caused for traditional crop protection systems have 

stimulated interest in alternative weed management strategies. Worldwide, efforts are being 

made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. 

Natural herbicides based on allelopathic substances, such as volatile essential oils (EOs) 

extracted from plants, has been suggested to be one of the possible alternatives for achieving 

sustainable weed management. From one hand, EOs have shown ability to inhibit weeds seed 

germination and growth, on the other hand there is a lack of studies about the effects of such 

substances on soil microorganisms. 

Therefore, in this thesis the phytotoxic and herbicidal activities of EOs extracted from 

Mediterranean plants were investigated for their potential use as natural herbicides in a 

sustainable weed management context. In addition, the effects of EOs, as well as, of other plant 

extracts, such as hydrolates, aqueous extracts and fresh leaves obtained from Mediterranean 

plants, were tested on soil microorganisms. 

The donor species of EOs were selected based on previous experience of the research group 

and according to the current literature about the herbicidal activities of the secondary 

metabolites of these species or from species that are taxonomically closely related: Eucalyptus 

camaldulensis Dehnh., Eucalyptus occidentalis Endl., Eucalyptus globulus Labill., Eucalyptus 

torquata Luehm., Eucalyptus lesoufii Maiden, Thymbra capitata (L.) Cav., Mentha × piperita 

L. and Santolina chamaecyparissus L. The target weeds were two monocotyledons, Avena 

fatua L. and Echinochloa crus-galli (L.) P. Beauv, and two dicotyledons, Portulaca oleracea 

L. and Amaranthus retroflexus L., all them important weeds in Mediterranean crops. 

EOs composition was analyzed by means of Gas Chromatography (GC) and Gas 

Chromatography-Mass Spectrometry (GC-MS). The in vitro assays were performed in 

germination chambers, to assess the effects of EOs on weed seed germination and seedling 

growth. The in vivo trials were conducted in greenhouse conditions, where EOs emulsified by 

Fitoil were applied on weed species by watering. Effects on weeds were evaluated by 

measuring these plant parameters variables: root, aerial parts, and total length of the plants, 

fresh and dry weight, efficacy of the treatments on each plant, and damage level. The study of 

EOs effects on soil microorganisms was carried out in a laboratory pot experiment, where soils 

were treated with EOs and leaf extracts and then incubated at room temperature (20-23°C). 



 

 
 

Effects on soil microorganisms were measured by determining the main biochemical properties 

such as microbial biomass carbon and nitrogen, microbial respiration, and the relative 

abundance of the main microbial groups. 

Results obtained from the in vitro bioassays revealed that all used EOs displayed of 

effectiveness against assayed weeds, controlling completely their germination process or 

reducing it and significantly inhibiting their seedling growth. Among them, T. capitata was the 

most effective. At lower doses, it blocked completely the seed germination of A. retroflexus, 

P. olecerea, A. fatua and E. crus-galli.  

Greenhouse trials demonstrated herbicidal activity of T. capitata, M. piperita and S. 

chamaecyparissus, increasing their phytotoxicity with the dose. T. capitata was the most 

effective against all weeds at the maximum dose and P. oleracea was the most resistant weed. 

Soil microorganisms, after a transient upheaval period, induced by the addition of EOs, 

generally recovered their initial function and biomass. Only T. capitata EO at the highest dose 

did not allow soil microorganisms to completely recover their initial functionality.  

Results of leaf extracts application on soil provided evidence that Eucalyptus leaves and their 

extracts (EOs, hydrolates and aqueous extracts), affected soil microbial community in different 

ways, and those effects were dependent on the Eucalyptus species. 

So far, the results obtained make feasible to suggest EOs application as bio-herbicides in 

controlled environments, such as horticulture and in greenhouse conditions. However, the 

optimum dose of application must be determined, to control weeds and simultaneously, not 

negatively affect soil microorganisms. Nonetheless, further field research is necessary to 

completely understand the potential of EOs in field conditions, and it is required to develop an 

appropriate formulation to improve the persistence and penetrability of EOs and so increase 

their capacity to control weeds. 

 

 

  



 

 
 

Resumen 

 

Las preocupaciones ambientales y de salud causadas por los sistemas tradicionales de 

protección de cultivos han estimulado el interés en estrategias alternativas para el manejo de 

las malas hierbas. En todo el mundo se están haciendo esfuerzos para reducir la gran 

dependencia de los herbicidas sintéticos que se utilizan como principal método para el control 

de las plantas arvenses. Los herbicidas naturales basados en sustancias alelopáticas, como los 

aceites esenciales (AEs) extraídos de plantas, se han sugerido como una de las posibles 

alternativas para lograr un manejo sostenible de las arvenses. Por un lado, los AEs han 

mostrado capacidad para inhibir la germinación y el crecimiento de semillas de malas hierbas, 

por otro lado, hay una falta de estudios sobre los efectos de tales sustancias sobre los 

microorganismos del suelo. 

Por lo tanto, en esta tesis se ha investigado la actividad fitotóxica y herbicida de los AEs 

extraídos de plantas mediterráneas para determinar su potencial como herbicidas naturales en 

un contexto de manejo sostenible de las malas hierbas. Además, se han ensayado los efectos 

de los aceites esenciales, así como de otros extractos de plantas como hidrolatos, extractos 

acuosos y hojas frescas obtenidas de plantas mediterráneas, sobre los microorganismos del 

suelo. 

Las especies donadoras de AEs fueron seleccionadas en base a conocimientos previos del grupo 

de investigación, y de acuerdo con la bibliografía existente sobre la actividad herbicida de 

metabolitos secundarios de estas especies o de especies que están taxonómicamente 

estrechamente relacionadas: Eucalyptus camaldulensis Dehnh., Eucalyptus occidentalis Endl., 

Eucalyptus globulus Labill., Eucalyptus torquata Luehm., Eucalyptus lesoufii Maiden, 

Thymbra capitata (L.) Cav., Mentha × piperita L. y Santolina chamaecyparissus L. Como 

malas hierbas objetivo se seleccionaron dos monocotiledóneas, Avena fatua L. y Echinochloa 

crus-galli (L.) P. Beauv. y dos dicotiledóneas, Portulaca oleracea L. y Amaranthus retroflexus 

L., todas ellas importantes malas hierbas en cultivos Mediterráneos. 

La composición de los AEs se analizó mediante Cromatografía de gases (CG) y Cromatografía 

de gases-Espectrometría de masas (CG-EM). Los ensayos in vitro se realizaron en cámaras de 

germinación, para evaluar los efectos fitotóxicos de los AEs sobre la germinación de las malas 

hierbas y el crecimiento de las plántulas. Los ensayos in vivo se realizaron en condiciones de 



 

 
 

invernadero, los AEs se aplicaron emulsionados con Fitoil mediante riego. Los efectos sobre 

las malas hierbas se evaluaron midiendo las siguientes variables: longitud de la raíz, de la parte 

aérea y total de las plantas, peso fresco y seco, eficacia del aceite esencial en cada planta, y 

nivel de daño causado. El estudio de los efectos fitotóxicos de los AEs sobre los 

microorganismos del suelo se realizó en un experimento de laboratorio en macetas donde los 

suelos se trataron con los AEs y extractos de hojas y luego se incubaron a temperatura ambiente 

(20-23 ° C). Los efectos sobre los microorganismos del suelo se midieron determinando las 

principales propiedades bioquímicas como el carbono y nitrógeno de la biomasa microbiana, 

la respiración microbiana y la abundancia relativa de los principales grupos microbianos. 

Los resultados obtenidos de los ensayos in vitro revelaron que todos los AEs mostraron 

efectividad contra las malas hierbas ensayadas, controlando completamente su germinación o 

reduciéndola e inhibiendo significativamente el crecimiento de las plántulas. Entre ellos, T. 

capitata fue el más eficaz. A las dosis más bajas, bloqueó completamente la germinación de 

semillas de A. retroflexus, P. olecerea, A. fatua y E. crus-galli. 

Los ensayos en invernadero demostraron la actividad herbicida de T. capitata, M. piperita y S. 

chamaecyparissus, aumentando su fitotoxicidad con la dosis. T. capitata fue el AE más eficaz 

contra todas las malas hierbas a la dosis máxima y P. oleracea fue la especie más resistente. 

Los microorganismos del suelo, después de un período transitorio de agitación inducido por la 

adición de los AEs, generalmente recuperaron su función y biomasa iniciales. Solo el AE de T. 

capitata a la dosis más alta no permitió que los microorganismos del suelo recuperaran 

completamente su funcionalidad inicial. 

Los resultados de la aplicación de extractos de hojas al suelo proporcionaron evidencia de que 

las hojas de eucalipto y sus extractos (AE, hidrolatos y extractos acuosos), afectaron a la 

comunidad microbiana del suelo de diferente modo, y sus efectos fueron dependientes de la 

especie de Eucalyptus considerada. 

Hasta el momento, los resultados obtenidos permiten sugerir la aplicación de los Aes como 

bioherbicidas en entornos controlados, como en horticultura y en condiciones de invernadero. 

Se debe identificar la dosis óptima de aplicación para controlar las malas hierbas y 

simultáneamente, no afectar negativamente a los microorganismos del suelo. No obstante, se 

necesita más investigación de campo para determinar el potencial herbicidal de los AEs en 

condiciones de campo, y se debe desarrollar una formulación más apropidad para su aplicación, 



 

 
 

de modo que se mejore su persistencia y penetrabilidad, y así se incremente su potencial para 

controlar las malas hierbas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Resum 
 

Les preocupacions ambientals i de salut causades pels sistemes tradicionals de protecció de 

cultius han estimulat l'interès per estratègies alternatives de gestió de les males herbes. A tot el 

món, s'estan fent esforços per reduir la gran dependència dels herbicides sintètics que s'utilitzen 

com a principal mètode per al control de les males herbes. Els herbicides naturals basats en 

substàncies al·lelopàtiques, com els olis essencials (OEs) extrets de plantes, s'han suggerit com 

una de les alternatives possibles per aconseguir una gestió sostenible de les males herbes. Per 

una banda, els OEs han mostrat capacitat per inhibir la germinació i el creixement de llavors 

de males herbes, però per altra banda, falten estudis sobre els efectes d'aquestes substàncies 

sobre els microorganismes del sòl.  

Per tant, en aquesta tesi es van investigar les activitats fitotòxiques i herbicides dels OE extrets 

d’herbes mediterrànies per a un ús potencial com a herbicides naturals en un context de gestió 

sostenible de les males herbes. A més, es van provar els efectes d’aquests olis essencials i 

d’altres extractes vegetals, com hidrolats, extractes aquosos i fulles fresques obtingudes 

d’herbes mediterrànies sobre els microorganismes del sòl. 

Les espècies donants d’OEs es van seleccionar bassant-se en la experiencia previa del grup 

d’investigació i en la bibliografía existent sobre les activitats biològiques dels metabòlits 

secundaris d’aquestes espècies o d’espècies taxonòmicament properes: Eucalyptus 

camaldulensis Dehnh., Eucalyptus occidentalis Endl., Eucalyptus globulus Labill., Eucalyptus 

torquata Luehm., Eucalyptus lesoufii Maiden, Thymbra capitata (L.) Cav., Mentha × piperita 

L. i Santolina chamaecyparissus L. Les males herbes objectiu seleccionades van ser dos 

monocotiledóneas, Avena fatua L. i Echinochloa crus-galli (L.) P. Beauv. i dos dicotiledóneas, 

Portulaca oleracea L. i Amaranthus retroflexus L., totes elles importants males herbes en 

cultius Mediterranis.  

La composició dels OEs es va analitzar mitjançant Cromatografia de gasos (CG) i 

Cromatografia de gasos-espectrometria de mases (CG-EM). Els assajos in vitro es van realitzar 

en cambres de germinació per avaluar els efectes dels OEs sobre la germinació de les llavors 

de les males herbes i el creixement de les plàntules. Els assajos in vivo es van realitzar en 

condicions d’hivernacle, on es van aplicar per reg els OEs emulsionats amb Fitoil a les males 

herbes. Els efectes sobre les males herbes es van avaluar mesurant les variables: longitud de 



 

 
 

l’arrel, de la part aérea i total de les plantes, pes fresc i sec, eficacia i nivell de dany. L’estudi 

dels efectes dels OEs sobre els microorganismes del sòl es van realitzar en un experiment en 

tiestos en condicions de laboratori, en el qual els sòls van ser tractats amb els OEs i els extractes 

de fulles i després van ser incubats a temperatura ambient (20-23 ° C). Els efectes sobre els 

microorganismes del sòl es van mesurar determinant les principals propietats bioquímiques, 

com la biomassa microbiana, el carboni i nitrogen, la respiració microbiana i l’abundància 

relativa dels principals grups microbians. 

Els resultats obtinguts a partir dels assaigs in vitro van revelar que tots els OE estudiats van 

mostrar efectivitat contra les males herbes objectiu, controlant completament la seua 

germinació o reduint-la i inhibint significativament el creixement de les plàntules. Entre tots 

ells, T. capitata va ser el més eficaç. A dosis més baixes, va bloquejar completament la 

germinació de les llavors d’A. retroflexus, P. olecerea, A. fatua i E. crus-galli. 

Els assaigs en hivernacle van demostrar l’activitat herbicida de T. capitata, M. piperita i S. 

chamaecyparissus, augmentant la seva fitotoxicitat amb la dosi. T. capitata va ser l’OE més 

eficaç contra totes les males herbes a la dosi màxima i P. oleracea va ser la mala herba més 

resistent. Els microorganismes del sòl, després d’un període de trastorn transitori induït per 

l’addició dels OEs, en general van recuperar la seva funció inicial i la seva biomassa. Només 

l’oli de T. capitata, a la dosi més alta no va permetre als microorganismes del sòl recuperar 

completament la seva funcionalitat inicial. 

Els resultats de l’aplicació d’extractes de fulles al sòl van demostrar que les fulles d’eucaliptus 

i els seus extractes (OEs, hidrolats i extractes aquosos), afecten la comunitat microbiana del sòl 

de diferents maneres, i aquests efectes depenien de les espècies d’eucaliptus. 

Fins ara, els resultats obtinguts fan possible suggerir l'aplicació d'EOs com a bioherbicides en 

entorns controlats com l'horticultura i en condicions d’hivernacle, però s’ha d’identificar la 

dosi òptima d’aplicació per controlar les males herbes i simultàniament, no afectar 

negativament els microorganismes del sòl. Tot i això, cal fer més investigacions de camp per 

entendre completament el potencial real dels OEs en condicions de camp, e cal trovar una 

formulació adecuada per millorar la persistència i la penetrabilitat del OEs, la cual cosa 

aumentarà la seua eficacia per al control de les males herbes. 
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 I Weeds 

1 Definition and characteristics 

What is a weed? 

“Any plant or vegetation, fungi excluded, that interferes with human objectives” 

European Weed Research Society (EWRS, 1986) 

Are all wild plants growing in an agroecosystem “weed”? 

Despite its general acceptance, the term weed is not easily defined. What some farmers 

consider a weed, others will find innocuous or even charming. And what one may call a weed 

in a soybean crop, another may call a wildflower in a forest setting. Our perceptions of what a 

weed is will vary based on location, plant species, population size, and other factors. In a farm, 

weeds are those plants that negatively affect crop production. First and foremost, weeds 

compete with market crops for resources, such as light, nutrients, and water, and potentially 

reduce crop yields. Weeds also lead to increased production costs: the costs of controlling them 

and the insects and diseases they harbor. During harvest, weeds can interfere with machinery 

and further reduce crop quality through contamination. Despite the lack of a clear definition 

for every circumstance, plants that fall into the weed category have shared characteristics that 

earn them the “weedy” distinction (Finney and Creamer, 2008). 

Weed characteristics 

Weeds are highly competitive, most weeds exhibit rapid seedling growth and an ability to 

reproduce when young, especially when they experience stress. Weeds mature quickly 

compared to most crop species, and many species thrive under a broad range of conditions. 

They can tolerate a wide range of adverse environmental conditions, such as drought stress and 

soil compaction. Weeds can scavenge and compete for resources, and they respond rapidly to 

favorable growing conditions. Furthermore, weeds have several characteristics that enhance 

reproductive capability: 

• They reproduce by seeds or by vegetative propagation, or the most aggressive by both 

ways. 

• They exploit different efficient mechanisms for seed dispersal. 
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• Some of them display self-compatibility (Zimdahl, 2018): a single propagule is enough to 

start a sexually reproducing colony of plants. Self-compatible flowering plants can usually 

produce seed without visits from specialized pollinating insects. 

• They produce a great number of seeds. Examples of species that produce a great number 

of seeds per plant include redroot pigweed (Amaranthus retroflexus, 117,000 seeds per 

plant), common purslane (Portulaca oleracea, 52,000), shepherd’s purse (Capsella bursa-

pastoris, 38,000), common lambsquarters (Chenopodium album, 28,000), and yellow 

foxtail (Setaria glauca, 12,000) (Anderson, 1977). 

• Weed seeds can also be dispersed across time through extended dormancy. A longevity 

study that involved 20 species of weed seeds buried in soil for more than 80 years 

(Darlington and Steinbauer, 1961), found that, after 20 years, 11 of the buried species were 

still viable; after 40 years, 8 were still viable [including purslane (Portulaca oleracea L.), 

redroot pigweed (Amaranthus retroflexus L.), shepherd’s purse (Capsella bursa-pastoris 

(L.) Medik.), annual ragweed (Ambrosia artemisiifolia), and plantain (Plantago major)]; 

and after 80 years 3 species were still viable, specifically curly dock (Rumex crispus), 

common evening primrose (Oenothera biennis), and moth mullein (Verbascum blattaria). 

2 Status quo of weed problems in agriculture  

 

The global population is increasing daily and it is expected to reach 9.7 billion in 2050 and11.1 

billion in 2100 (United Nation, 2017). Therefore, the area of usable farmland per person 

decreases from day to day, as more people need more food per head from less land (Hüter, 

2011). In addition, because of various biotic factors (insects, fungi, bacteria, viruses, and 

weeds), food productivity by agriculture has decreased steadily (Mutlu et al., 2011). Therefore, 

maximizing world agricultural production depends greatly on the control of a wide variety of 

pests, including weed species, which can be defined as those undesired plants that interfere 

with human activity in agricultural and non-agricultural areas (Vyvyan, 2002). As an 

anthropologist term, they are plants which are called “out of place “. In the cut and thrust of 

ecosystem, there is no plant “out of place”, but the reason of considering them so, is that, they 

create problems for agriculture concern: weeds have an impact on farmed species competing 

with them for moisture, light and nutrients (Randall, 2017). In cultivated areas they reduce the 

yield of the crops, pollute the cultivation area, and increase the seed bank, maintaining the 

problem in the following crops (Vyvyan, 2002). Weeds are considered the major problem in 
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agriculture fields because they bring about 34% of crop losses, compared to pathogens leading 

to 18% of crop losses (Oerke, 2006). For instance, in USA, weeds cause up to 12% loss in crop 

yield each year and cost nearly $15 billion (Pimentel et al., 2009). Weeds are responsible for 

37–44% potential grain yield loss via competition for carbon dioxide, nutrients light and water 

in fields corn (Zea mays L.) in China (Wang et al., 2019). 

In crop fields, yield losses to weeds have been estimated approximately 30% in maize and 14-

30% in wheat (Bommarco et al., 2013). 

Thus, they are often recognized as the most serious threat to organic crop production, and fear 

of ineffective weed control, are often perceived by farmers as one of the major obstacles to 

conversion from conventional to organic farming (Bàrberi, 2002). 

Even, in weed-controlled systems, weeds can cause an approximate loss of 10% of the 

harvested final crop (Labrada et al., 1996). Furthermore, weed infestation does not only induce 

huge economic losses by reducing crop quantity yields, but also, generates, low-quality crop 

yields (Appleby et al., 2005).  

3  Weed management and different control practices in agricultural crops  

 

Weed control accounted for 46% of global pest management costs in 2005, accounting from 

the $33,600 million total spend (Agrow, 2006). Weed control can be achieved through several 

means such as: 

Cultural methods consist of the modification of the environment where weeds grow so that the 

crop is reinforced or the competition of weeds with the crop is diminished. It includes crop 

rotation. Through long-term variations of crop species and planting times, rotations create a 

changing environment and prevent the dominance of a weed species. Researchers have 

compared emerged weed densities in test crops grown in rotation versus continually grown test 

crops. For most of the crops studied, weed densities were lower when a crop was grown in 

rotation (Melander et al., 2017). Other techniques are the use of fertilizers to favor cultivation 

or cover crops, the preparation of seedlings for transplantation, the management of adequate 

planting doses and irrigation, the preparation of a false seedbed, and the use of improved, highly 

adapted and resistant crop varieties. Those methods were criticized to be less effective and time 

consuming. 
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Physical and mechanical methods include any physical action that is carried out to destroy the 

weeds, such as hand weeding or with tools, mow or cut them, plow, harrow, hoe bury them or 

asphyxiate them. Flooding and burning are included in these types of practices. However, He 

et al. (2009) and Carvalledo et al. (2013) pointed out that those methods are a burden for 

farmers, because it is labor-intensive and time-consuming. In addition, those techniques are 

less effective since they could stimulate further weed emergence or allow recovery from 

damage. They consist in soil disturbance caused by working implements leading to serious 

problems on the root system of the crop and could bring new weed seeds close to the soil 

surface and may enhance soil N mineralization (Barberi, 2002; Hatcher and Melander, 2003). 

Biological control of weed plants is based mainly on the fact that: ‘most organisms have natural 

enemies that can destroy them’. Grazing animals, parasites, pathogens, and viruses of weeds 

have been used against them. The drawback of these methods is that the biological agent must 

be selectively managed, or the effect of the control will be more harmful than that of the weed.  

 Chemical control based on the use of synthetic herbicides remain the most common used 

method to fight weeds (Batish et al., 2004). An herbicide is composed of an active ingredient, 

co-formulants and adjuvants. The active ingredient is the chemical or biological substance that 

produces the toxic effect. The co-formulants are inert and have the purpose to reduce the 

concentration of the active principle. The coadjuvants, instead, are inactive substances that 

allow the herbicide to be better distributed on the surface of the plants, increasing their adhesion 

and persistence on plant species. The use of chemical herbicides has been raised since the 

development of the agro-chemical industry, during the two world wars. Between 1940 and 

1970, great progress has been made in chemical products with the advent of the “Green 

Revolution” in Europe and the USA (Tilman et al., 2001). 

 Biotechnological control methods consist in using biotechnological tools as herbicide resistant 

crops by transgene technology, improvement of biocontrol agents, development of transgenic 

allelopathy in crops and characterization of weeds using molecular systematic. Plant 

transformation by transfer of cloned genes in susceptible plants through engineered vector 

technique is a popular method among those tools. In other words, this technology has the 

potential to make crops better competitors for weeds through improving competitive traits or 

making the crop more allelopathic. The advantage of herbicide resistance crops is increased 

crop yield due to broader spectrum of weed control and reduced crop injury. But precautions 

should be taken, whether herbicide resistance in weeds inviting shifting of weed flora or not. 
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This method is most used in USA than in Europe for the limitation of GMO use (Behrens et 

al., 2007; Duke et al., 2000). 

4  Herbicide use and its impacts 

4.1  Weed resistance 

The overuse of synthetic herbicides by farmers during the last decades, application at high 

doses and repeatedly during cultivations, causes ecological consequences, since the 

biodiversity of farmland is reduced, facilitating changes in weed populations and the evolution 

of herbicide-resistant weed biotypes to multiple herbicide sites of action (Figure 1) and the 

appearance of resistant weed strains by crops  (Figure 2) (Palumbi, 2001). The emergence of 

worldwide resistance (Figure 3) is linked to the repeated application of herbicides with the 

same mode of action and on the same crop, which imposes a selection of the most resistant 

individuals within the treated weed species, which were previously sensitive (Holt, 1992). In 

addition, many concerns have been expressed about herbicide potential health and 

environmental impact (Gitsopoulos et al., 2013). 

 

Figure 1. Weed species resistance to multiple herbicide site of action (modified from Weedscience.org, 

2019). 
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Figure 2. Number of herbicide-resistant species by crop (modified from Weedsciences.org, 2019). 

 

 

Figure 3. Increase in unique resistance in selected countries and Europe (modified from 

Weedscience.org, 2019). 
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4.2  Human health and environmental impacts 

The integration of herbicides into the cycle of natural decomposition of organic compounds is 

largely unknown and problematic. It was due to the detection of the first resistance in the 50s 

in insects and agricultural pests, that becomes clear that the use of pesticides including 

herbicides could have serious harmful impacts such as toxicity, which is the ability of a 

substance to cause damage in living organisms. The toxic effects produced by herbicides can 

be immediate (acute toxicity) or cumulative (chronic toxicity), depending on the duration of 

exposure, the dose and the herbicide in question (Hager and Refsell, 2008).The exposure to 

residues in the environment, in the food, or in the water could trigger acute and chronic effects 

on human health, including eye and skin irritation, burns, acute and chronic neurotoxicity, 

cardiopulmonary problems, childhood methemoglobinemia, various types of cancer, 

particularly hematopoietic cancers, immune disorders, and fertility problems (Weisenburger, 

1993). Furthermore, herbicides are moderately soluble in water and have relatively low 

adsorption coefficients in soil. Due to these properties, they can pollute the environment 

through agricultural runoff or leaching (Ren et al., 2011). Numerous investigations confirm the 

incidence (Holden et al., 1992; Walls et al., 1996), including impact on indigenous vegetation 

communities (Riemens et al., 2009).  

4.3  Soil microbial community impacts  

By the same token, herbicides also affect soil microorganisms. It has been determined that the 

number of substituents determines their toxic effects. The ability to capture electrons from 

substituents significantly influences the biological activity of herbicides, highlighting the 

electrostatic interactions between herbicide molecules and microorganisms (Nemes-Kósa and 

Cserháti, 1995). Soil microorganisms appear to be very suitable and sensitive early-warning 

indicators or predictive tools in soil health monitoring. Some herbicides have been found to 

inhibit the decomposition of cellulose in the soil. Also, repeated applications of herbicides 

could affect a shift in the microbial community structure. For example, fungi were most 

sensitive, being inhibited until the 40th day to combined prosulfuron + bromoxynil. The latter 

exerts an inhibitory effect on the activity of the dehydrogenase of about 80% for low 

concentrations and without any recuperation. This indicates that, despite the low quantities 

applied, herbicides had a deleterious effect on the activity and balance of the soil community 

and must be used with caution (Pampulha and Oliveira, 2006).  
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5 European Union (EU)legislations on plant protection products 

In order to protect human health and the environment, the European  Parliament and  Council, 

regulates the use and commercialization of pesticides in order to reduce their risks, by 

establishing  two important regulations: the Regulation (EC) No 1107/2009 of the European 

Parliament and of the Council of 21 October 2009 concerning the placing of plant protection 

products on the market, which repeals Council Directives 79/117/EEC and 91/414/EEC and 

the Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 

establishing a framework for Community action to achieve the sustainable pesticide use. At the 

same time, being involved and affected by pesticide use, generally, including herbicides, the 

society is becoming aware that new techniques must be used, that accomplish with the new 

regulations. They should be both effective, and conducive to the development of sustainable 

agriculture. The interest in sustainability increased after the term “sustainable development” 

was coined in 1987, in the report “Our Common Future”, published by the United Nations and 

the World Commission on Environment and Development (Constance, 2010). Therefore, 

efforts are being made towards a search for chemicals that quickly break down in the 

environment and possess novel target sites. Natural plant products that play a variety of 

physiological roles possess these two properties and thus can serve as a source of novel 

herbicides (Weston and Duke, 2003). Thus, new technologies based on natural products as an 

alternative to synthetic chemical herbicides are being developed in combination with traditional 

cultural practices to control weeds, (Dayan et al., 2011). 

Natural products are an interesting source for obtaining green herbicides, not only because of 

the great diversity and innovation of their formulas, but also because of the specific potential 

of their biological action and because of the reduced probability of producing accumulations 

of harmful waste in water and soils (Mercier, 2005).  

6  Allelopathy and potential natural herbicides 

Rice (1984) has defined allelopathy as any direct or indirect effect (stimulatory or inhibitory) 

of one plant (including microorganisms) on another, by releasing chemical compounds 

(allelochemicals) to the environment. Plants have their own defense mechanisms, not only 

against herbivorous predators but also against other plant species, in the fight for the 

colonization of space and the use of ecological resources. Besides, and according to the 

definition given by the International Allelopathy Society (IAS), Allelopathy is “the science that 
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studies any process involving secondary metabolites produced by plants, algae, bacteria and 

fungi that influence the growth and development of agricultural and biological systems” 

(Macías et al., 2008).  

Allelochemicals can be released into the environment by numerous mechanisms: leaf 

volatilization, root exudation and leaching of leaves and plant debris in the soil by precipitation 

(Putnam, 1983). Allelochemicals that suppress or eliminate competent plants near the source 

plant have received special attention due to their potential as selective natural herbicides (Sto-

nard and Miller-Wideman, 1995; Benner, 1996; Duke et al., 2000). The use of natural products 

as a reservoir of bioactive compounds has been widely exploited in medicine, the discovery 

and use of antibiotics being an example of this. The ethnobotanical approach, focusing on the 

study of plants traditionally used for medicinal purposes worldwide, demonstrates the 

importance of nature as a source of new drugs. This view has been considered only recently in 

agronomic studies (Macías et al., 2004). 

Evidence of allelopathic interactions in nature caused by plants containing volatile 

allelochemicals have been frequently described (Chou, 1989; Azirak et al., 2008; Benvenuti et 

al., 2017). Most of the germination and growth inhibitors produced by perennial angiosperms 

identified by Rice (1984) are phenolic compounds or derivatives of cinnamic acid. That means 

allelopathic compounds can be used as a biological control on weeds and pests to decline the 

use of dangerous chemical products. Other authors also found coumarins, flavonoids, alkaloids, 

cyanglucosides, proteins and amino acids among the inhibitory compounds (Macías et al., 

2008). To this list, terpenoids must be added, including volatile terpenes that are the main 

components of essential oils (EOs) (Fischer, 1986; Muller, 1965). Moreover, some EOs are 

classified as “Generally Recognized as Safe” (GRAS) by the US Food and Drug 

Administration (FDA).  

Allelochemicals affect many physiological functions and biochemical reactions: enzymatic 

activities, cell division, cell elongation, membrane permeability and ion absorption. These 

chemical compounds, when released, are usually a mixture of many organic compounds that 

can exert toxic effects synergistically (Kalinova, 2010). On the other hand, when the amount 

of one active compound is very high within a given EO, it is also true that this EO compound 

alone could be even effective (Araniti et al., 2017, Vasilakoglou et al., 2013, Verdeguer et al., 

2020). However, the details of the biochemical mechanism by which a compound exerts a toxic 

effect on plant growth are not yet well known (Batish et al., 2008). 
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7  Essential oils (EOs) 

EOs are volatile, natural, complex compounds characterized by a strong odor and are produced 

by plants as secondary metabolites. They can be synthesized from the non-woody parts of all 

plant organs i.e. buds, flowers, leaves, stems, twigs, seeds, fruits, roots, wood or bark, and are 

stored in secretory cells, cavities, canals, epidermic cells or glandular trichomes, (Batish et al., 

2008; Bakkali et al., 2008). They are extracted from various aromatic plants generally localized 

in temperate to warm countries like Mediterranean and tropical countries where they represent 

an important part of the traditional pharmacopoeia. They are liquid, volatile, limpid, and rarely 

colored, lipid soluble and soluble in organic solvents with a generally lower density than that 

of water. The extraction product can vary in quality, quantity and in composition according to 

climate, soil composition, plant organ, age, and vegetative cycle stage (Masotti et al., 2003; 

Angioni et al., 2006). So, in order to obtain EOs of constant composition, they must be 

extracted under the same conditions from the same organ of the plant which has been growing 

on the same soil, under the same climate and has been picked in the same season. In nature, 

EOs play an important role in the protection of the plants as antibacterial, antiviral, antifungal, 

insecticide and against herbivores by reducing their appetite for such plants. They also may 

attract some insects to favor the dispersion of pollens and seeds or repel undesirable others. At 

present, approximately 3000 EOs are known, 300 of which are commercially important 

especially for the pharmaceutical, agronomic, food, sanitary, cosmetic and perfume industries. 

EOs can contain about 20–60 components at quite different concentrations. They are 

characterized by one or many components at high concentrations (20–70%) compared to other 

components present in trace amounts. For example, carvacrol (30%) and thymol (27%) are the 

major components of the Origanum compactum EO, linalol (68%) of the Coriandrum sativum 

EO, - and -thuyone (57%) and camphor (24%) of the Artemisia herba-alba EO, 1,8-cineole 

(50%) of the Cinnamomum camphora EO, a-phellandrene (36%) and limonene (31%) of leaf 

and carvone (58%) and limonene (37%) of seed Anethum graveolens EO, menthol (59%) and 

menthone (19%) of Mentha x piperita EO. Generally, these major components determine the 

biological properties of them (Bakkali et al., 2008). 

7.1  EOs as potential herbicides 

The advantage of using EOs as herbicides is given by the joint action of several compounds 

present in them and not only by a single compound, whose quantity and persistence in the 

environment may be not enough to obtain a toxic response on its own. Furthermore, several  
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studies ( Dudai et al., 1999; De Feo et al., 2002; Singh et al., 2003; Verdeguer, 2011) exhibited 

that numerous plant species possess significant germination and seedling growth inhibitory 

effects, and confirmed that plant EOs are a potential source of new herbicides. Tworkoski 

(2002) pointed out that EOs can be used as viable weed control technology under organic 

farming systems. More specifically, Dudai et al. (2000) showed that the EOs extracted from 

three species, Cymbopogon citratus, Micromeria fruticosa and Origanum syriacum were very 

active inhibitors of the germination. Likewise, Azirak and Karaman (2008), demonstrated that, 

the EOs from Carum carvi, Mentha spicata, Origanum onites and Thymbra spicata showed 

high inhibitory activity on the germination of seven weed seeds in vitro (Alcea pallida, 

Amaranthus retroflexus, Centaurea salsotitialis, Raphanus raphanistrum, Rumex nepalensis, 

Sinapis arvensis and Sonchus oleraceus). These oils reduced the growth of weed seedlings at 

low concentrations. The effectiveness of EO extracted from Eucalyptus citriodora has been 

proven as an alternative method to control Phalaris minor (Batish et al., 2007). EOs from 

various varieties of oregano (Origanum spp.) and basil (Ocimum basilicum) have been tested 

against Echinochloa crus-galli and Chenopodium album with some success (Vasilakoglu et al., 

2007). These EOs, mainly composed of p-cimene (20-25%), γ-terpinene (15-20%) and thymol 

(10-35%), have been patented for moss control (Dayan et al., 2009). Leptospermum scoparium 

leaf EO is composed of more than 70% sesquiterpenes (Christoph et al., 1999) and is rich in β-

triketones (Hellyer, 1968; Douglas et al., 2004). Leptospermone, the most abundant triketone 

in this EO, causes bleaching of both broadleaf and narrowleaf weed leaves (Knudsen et al., 

2000). Natural triketones have a structure like some synthetic herbicides, such as sulcotrione 

and mesotrione, and act on p-hydroxyphenylpyruvate dioxygenase (Lee et al., 1997; Dayan et 

al., 2009). 
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 II Soil  

1 Definition 

What is soil? 

Several natural concepts lack a universally accepted definition. Soil is one of them. One of the 

reasons is its multifunctionality. Actually, land use conditioned the way soil was perceived. It 

was in the late 1880s that the Russian Vasilij V. Dokuchaev, the father of pedology, from the 

Greek pedon “soil” and logos “knowledge”, gave dignity to soil as something with its own 

identity in the realm of natural objects. Dokuchaev, in fact, proposed a naturalistic concept of 

soil that prescinds from soil use. Essentially, he referred to the soil as a tridimensional entity 

located at earth's surface with morphology and unique physical, chemical and biological 

properties acquired by the interaction, through time, among living and dead organisms, rock, 

and climate on a given topographic position. Besides, the Russian Jacob S. Joffe, defined soil 

as a natural body, differentiated into horizons of mineral and organic constituents, usually 

unconsolidated, of variable depth, which differs from the parent material below in morphology, 

physical properties and constitution, chemical properties and composition, and biological 

characteristics (Joffe, 1936). 

2 Soil quality  

Throughout the time, many definitions of soil quality had been proposed. In 1984, Anderson 

and Gregorich defined soil quality as the sustained capability of a soil to accept, store and 

recycle water, nutrients, and energy. After that, in 1994, Doran and Parkin proposed a more 

objective definition of soil quality suggesting that it is the capacity of a soil to function, within 

ecosystem and land boundaries, to sustain productivity, maintain environmental quality and 

promote plant and animal health. Then, Karlen et al. (1997) assigned the ability of a specific 

soil to function within natural or managed ecosystem boundaries to sustain plant and animal 

productivity, maintain or enhance water and air quality, and support human health and 

habitation as a definition of soil quality. Nowadays, this definition is still accepted in the 

scientific literature, as dealing with the integrated view of soil quality. Keesstra et al. (2016) 

and Vogel et al. (2018) indicated that based on the integrative definition of soil quality, soils 

are no longer seen as a support for production only, but rather as a complex system interacting 

with the surrounding environment to provide various services. In view of soil multi-

functionality, soil quality should be assessed because it expresses the capacity of soil to 
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function, sustain long-term crop production and to maintain a productive ecosystem services, 

environmental quality and biodiversity conservation (Bünemann et al., 2018). Soil quality can 

be assessed by measuring soil chemical, physical and biological parameters. Doran and Parkin 

(1996) have proposed a minimum data set to be used for soil quality assessment which includes 

physical (texture, rooting depth, infiltration rate, bulk density, water retention capacity), 

chemical (pH, total carbon, content, electrical conductivity, nutrients level) and biological (C 

and N microbial biomass, potentially mineralizable N, soil respiration) as basic indicators for 

an initial characterization of soil quality. Other supplementary soil properties could be used to 

evaluate soil quality based on specific climatic, geographic, and socio-economic conditions. 

Many authors (Klein et al., 1985; Nannipieri et al., 1990) have proposed several biological and 

biochemical parameters as sensitive parameters to the slight modifications that the soil can 

undergo under the action of any disturbing agent. Since soil microorganisms due to their quick 

metabolism can respond rapidly, they may reflect a hazardous environment and should be, 

therefore, preferentially considered when monitoring soil status (Laudicina et al., 2012). 

Furthermore, Bloem et al. (2005) suggested that national and international programs for 

monitoring soil quality should include microflora and respiration measurements and nitrogen 

mineralization, microbial diversity, and functional groups of soil fauna. 

3 Microbial Biomass  

Soil microbial biomass (MB) can be defined as the portion of soil organic matter that 

constitutes living microorganisms smaller than 5–10 μm3 (Jenkinson and Ladd, 1981). 

Microbial biomass constitutes approximately 1–4% of the total organic carbon (MBC; 

Anderson and Domsch, 1989; Sparling, 1992) and 2–6% of the total organic nitrogen (MBN; 

Jenkinson, 1988). Typically, MBC ranges from 100 to >1000 mg C kg–1 of soil (klug, 1999). 

MB has a turnover time less than 1 year (Paul, 1984) and, therefore, responds to 

stress/disturbance factors more rapidly than the whole soil organic matter, the content of which 

may need decades to appreciably change. MB monitoring through the time is required to infer 

considerations on the changes in amount and nutrient content of the MB (Rice et al., 1996). 

MB is typically measured indirectly using the following methods: fumigation incubation (FI), 

substrate-induced respiration (SIR), fumigation-extraction (FE) and/or measurement of ATP 

content (Jenkinson and Powlson, 1976; Anderson and Domsch, 1978; Jenkinson and Ladd, 

1981; Brookes et al., 1985; Vance et al., 1987). These methods have greatly improved 

measurements of MB and its associated nutrient pools. However, Rice et al. (1996) recommend 
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the fumigation techniques since they are cheaper, easy to use, and facilitate assessment of the 

mineralizable C and N fractions of soil organic matter. Of the two fumigation methods, Klug, 

(1999) recommend the FE method as it is faster than FI and gives more reproducible results. 

FE involves two key steps: (1) destruction of microbial cell membranes by chloroform 

fumigation, and (2) extraction and analysis of cell constituents (Klug, 1999).  MB acts as both 

a nutrient reservoir and as a catalyst for organic matter decomposition. Consideration of MB is 

crucial, therefore, to understand nutrient fluxes within and between ecosystems (Smith and 

Paul, 1990). Jenkinson et al. (1987) defined the MB as “the eye of the needle through which 

all organic matter needs to pass”. MB is a sensitive indicator of toxicity attributable to 

pesticides, heavy metals, and other pollutants. Pollutants can affect microorganisms directly by 

causing toxic effects or indirectly by, for instance, decreasing the availability of substrates such 

as plant root exudates. Thus, the decreased energy available to the microbes could also result 

in a smaller population (Brookes, 1995; Kizilkaya et al., 2004; Perez-de- Mora et al., 2006). 

4 Microbial Activity 

Soil microbial activities are of critical importance for biogeochemical cycles. Microbial 

activity is regulated by many factors including nutrient, oxygen, water availability, 

temperature, and soil pH. Soil microbial activity can be measured under either field or 

laboratory conditions. In the field, variations in meteorological conditions during the 

experiment are inevitable. Furthermore, field measurements are often difficult to be interpreted. 

For example, soil respiration determined in the field is due to activity of microorganisms and 

other organisms such as macrofauna and plants, which vary significantly in different systems 

and throughout the season (Dilly et al., 2000). Laboratory procedures are usually carried out 

on sieved and stabilized soil samples at standardized temperature and water content. Such 

measurements generally include assays of enzyme activities, C and N mineralization. These, 

and eventually other microbial activity measurements, may be helpful to evaluate effects of 

soil management, land use and specific environmental conditions (Burns, 1977) on microbial 

activity. Laboratory methods allow the standardization of environmental factors and, thus, the 

comparison of results from soils of different geographical locations, environmental conditions, 

and even different laboratories. However, laboratory measurements generally represent 

microbial potential activities, as they are determined under optimized conditions (Nannipieri 

et al., 1990). 
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5 Carbon Mineralization (Soil Respiration) 

Carbon dioxide (CO2) release from soils, or soil respiration, is a multi-component process and, 

when it depends only on soil microorganisms, it is called “microbial respiration”. Hence, 

microbial respiration (MR), soil respiration minus root respiration, is a measure of the total 

metabolic activity of soil microorganisms that are decomposing organic matter (Haynes, 2005). 

MR, provides an indication of C available to soil microbes (Robertson et al., 1999) and can act 

as an index of soil organic matter quality (Haynes, 2005). MR is measured by incubating, in 

sealed chambers and at a constant temperature (generally 20 or 25°C), pre-conditioned live 

root-free soil samples at field-moisture level or re-wetted up to 40–60% of their water holding 

capacity (WHC). The CO2 accumulated in the chamber headspace is then determined by 

different methods, i.e. by alkali trapping, gas-chromatography, or infrared-gas analysis. As it 

is evolved under controlled and optimal conditions, the amount of CO2 efflux evolved during 

a short-term incubation (from 10 to 30 days) is also referred to as the potentially mineralizable 

C and is generally expressed in mg kg–1 of soil. The potentially mineralizable C generally 

coincides with the soil C fraction easily available to microflora. On the other hand, long-term 

incubations (up to several months) may supply information on C pools with a slow turnover.  

The short- and long-term release of CO2 can, in fact, be used mathematically to indicate the 

functional pools of soil organic C commonly referred to as active (labile) and passive 

(recalcitrant) fraction soil organic C (Laudicina et al., 2012). 

6 Microbial Community structure 

The recent development of molecular and biochemical techniques has enabled a better 

understanding of microbial community structures in soil ecosystems (Kennedy and Gewin, 

1997), with most of the species being unknown and unculturable (Torsvik et al., 1998). One 

widely used approach is the analysis of microbial phospholipid‐linked fatty acid (PLFA) 

composition. In this method, microbial lipids are extracted from environmental samples in a 

phase mixture of chloroform, methanol, and water (Bligh and Dyer, 1959). Lipids associated 

with the organic phase are then fractionated into neutral, glyco‐ and phospholipids on silicic 

acid columns (Vestal and White, 1989). Finally, the phospholipids are subjected to alkaline 

methanolysis to produce fatty acid methyl esters (FAMEs) for gas chromatography analysis. 

Recently, less harsh methods have been developed. Hence, microbial fatty acids can be directly 

extracted from soil by a simple method that is easier and quicker (Hinojosa et al., 2005). It 

consists of a mild alkaline reagent to lyse cells (KOH in methanol) and release fatty acids from 
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lipids (ester-linked fatty acids; ELFAs) once the ester bonds are broken (Schutter and Dick, 

2000). For instance, the ELFA method has been successfully used to characterize microbial 

communities in grass seed field soils and placed communities into groupings like those 

generated by a DNA‐based method (Ritchie et al., 2000). Besides, some studies of Drijber et 

al. (2000) and Schutter and Dick, (2000) have outlined the effectiveness of the ester‐linked 

fatty acid (ELFA) procedure for assessing community structure.  
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The thesis was accomplished from January 2017 until May 2020 within two departments:  

1) Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale delle 

Scienze, Edificio 4, 90128 Palermo, Italy. 

2) Institute of Mediterranean Agroforestry (IAM), Polytechnic University of Valencia, Camino 

de Vera s/n, C.P. 46022 Valencia, Spain 

The thesis was arranged as a thesis of publications, including four chapters incorporated as the 

following order: 

Chapter 1: Phytotoxic activity of seven essential oils extracted from Mediterranean species 

on weed seed germination and seedling growth 

Aims: to assess the in vitro phytotoxic potential of EOs extracted from Thymbra capitata (L.) 

Cav., Mentha × piperita L., Santolina chamaecyparissus L., Eucalyptus camaldulensis Dehnh., 

Eucalyptus occidentalis Endl., Eucalyptus lesouefii Maiden and Eucalyptus torquate luehm. 

against the target weeds Amaranthus retroflexus L., Portulaca oleracea L., Avena fatua L. and 

Echinochloa crus-galli (L.) P. Beauv. 

Chapter 2: Soil bioindicators and herbicidal activity as affected by EOs extracted from three 

different Eucalyptus species applied in pre- and post- emergence. 

This chapter was a preliminary experiment to figure out the adequate concentrations that should 

be applied in in vivo and to assay the suitable methodology in greenhouse conditions.  

Aims: to test the effectiveness of three Eucalyptus species, named Eucalyptus camaldulensis 

Dehnh., Eucalyptus occidentalis Endl. and Eucalyptus globulus Labill. in controlling soil seed 

bank germination (pre-emergence) and the spontaneous plants weed flora of the soil (post-

emergence) as well as their potential, on microbial biomass C, respiration and on the main 

microbial groups. 

Chapter 3: Potential effects of essential oils extracted from Mediterranean aromatic plants on 

target weeds and soil microorganisms 

Aims: To evaluate the herbicidal potential of Thymbra capitata (L.) Cav., Mentha × piperita 

L.  and Santolina chamaecyparissus L. essential oils (EOs) on Avena fatua L., Echinochloa 

crus-galli (L.) P. Beauv, Portulaca oleracea L. and Amaranthus retroflexus L. and their effects 

on soil microorganisms. 
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Chapter 4: Effects of Eucalyptus leaves and their extracts on soil microorganisms. 

Aims: to assess the effects of Eucalyptus leaves and leaf extracts (Essential oils, hydrolats, 

Aqueous extracts) on soil microbial biomass C and N, microbial biomass activity, on the 

relative abundance of the main microbial groups as well as on microbial and metabolic 

quotients.
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1 Introduction 

Weeds cause serious problems in agricultural ecosystems because their competition with crops 

for water and nutrient uptake, light, and carbon dioxide, causing great losses in crops yield, up 

to 34% (Monaco et al., 2002; Oerke, 2006; Murphy et al., 2008). However, the overuse of 

synthetic herbicides to increase agriculture productivity has contributed to the emergence of 

weed resistance, gradual degradation of soil and adverse effects in environment, living 

organism and human health (Vyvyan, 2002). Therefore, environmental concerns, the great 

interests in sustainable and organic agriculture have stimulated the need to adopt alternative, 

natural and biodegradable tools, without negative impacts on human health and environment. 

(Dayan and Duke, 2010). 

Secondary metabolites of plant species, such as volatile essential oils (EOs) and their 

constituents have been considered as a potential candidate to develop bioherbicides (Weston 

and Duke, 2003). 

EOs are generally characterized by low toxicity, such as Citronella EO (Sharma et al., (2019) 

Calamintha nepeta and Origanun virens EOs (Arantes et al., 2019), Mentha arvensis and 

Litsea cubeba EOs (Wu et al., 2019) and Eucalyptus camaldulensis EO (Islam et al., 2014). 

As well as low persistence, since they contain a range of natural chemical compounds. Such 

diversity may lead to different modes of action, acting at different points of metabolism, so the 

probability that weeds develops resistant biotypes is lower than with synthetic herbicides, based 

on one active ingredient (Dayan et al., 2010). Particularly, terpenoids, monoterpenes and 

sesquiterpenes, are the main components of EOs and are often responsible for their plant 

inhibitory activity and phytotoxicity (Duke et al., 2002). 

Many EOs demonstrated great species-specific phytotoxicity against seed germination, and 

seedlings growth (Azirak and Karaman, 2008). For instance, the phytotoxicity of Eucalyptus 

spp. EOs against Parthenium hysterophorus, Cassia occidentalis, Echinochloa crus-galli have 

been well documented (Batish et al., 2004; Singh et al., 2006). Furtherthemore, the EO 

extracted from Eucalyptus camaldulensis Dehnh., inhibited the germination and reduced the 

seedling growth of Amaranthus hybridus and Portulaca oleracea (Verdeguer et al., 2009) and 

the EO from Eucaluptus citriodora was effective to control the invasive noxious weed 

Parthenium hysterophorus, Bidens pilosa, Amaranthus viridis, Rumex nepalensis and 

Leucaena leucocephala (Singh et al., 2005; Setia et al., 2007; de Araújo-Filho et al., 2018). 

Also, Eucalyptus tereticornis shown a great phytotoxic potential (Kohli et al. 1998). Ramezani 
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et al. (2008) reported that EOs from Eucalyptus nicholii strongly inhibited the germination of 

Amaranthus retroflexus, Portulaca oleracea and Acroptilon repens. Besides, Eucalyptus 

salubris EO had the highest inhibition index for Solanum elaeagnifolium germination, root and 

shoot growth (Zhang et al., 2012). 

EOs from Eucalyptus spp., which are composed of a variety of volatile monoterpenes such as 

1,8-cineole, citronellol, citronellal, limonene, linalool and α-terpinene, have been found to be 

economically viable when they are used for crop protection, because Eucalyptus spp. are 

characterized by a high yield and high biomass productivity (Brooker and Kleinig, 2004; Batish 

et al., 2008). In addition, EO extracted from Eucalyptus camaldulensis Dehnh. (river red gum) 

is the highest commercialized in the world and it was investigated widely for its phytotoxic 

effects against many weeds (Green, 2002). However, EOs extracted from other eucalyptus 

species such as Eucalyptus lesoufii Maiden (goldfields blackbutt), Eucalyptus torquata Luehm. 

(coral gum) and Eucalyptus occidentalis Endl. (flat topped yate) have not been explored for its 

phytotoxic effects previously to our knowledge. However, E. occidentalis aqueous extract was 

investigated for its allelopathic effects against some species (Saadaoui et al., 2014). 

In addition, EOs extracted from Lamiaceae have been proved byin vitro studies to be effective 

to inhibit seed germination (Angelini et al., 2003). Among this species, Mentha x piperita L. 

(peppermint), had revealed phytotoxic effects in several studies (Rolli et al., 2014; Mahdavikia 

and Saharkhiz., 2015 Campiglia et al, 2017) and Thymbra capitata L. (Cav) (thyme) 

(Verdeguer, 2011; Pirbalouti et al., 2013;). Likewise, EOs from Asteraceae showed great 

herbicidal potential (Benvenuti et al., 2017), including Santolina chamaecyparissus L. (cotton 

lavender, Asteraceae) whose herbicidal activity has been reported (Grosso et al., 2010).  

Avena fatua L. (wild oat) is one of the most harmful, resistant grassy, weed of cereal crops in 

the world (Sharama and Born, 1978), together with Echinochloa crus-galli (L.) P. Beauv. 

(Barnyard grass), another monocotyledon serious weed of irrigated crops, especially rice. 

(Maun and Barrett, 1986; Chung et al., 2001). Portulaca oleracea L. (common purslane) and 

Amaranthus retroflexus L. (redroot pigweed) are two dicotyledons, annual weeds of tropical 

and subtropical crops and summer weds in Mediterranean crops, with an extensive world 

distribution. (Mitich, 1997; Weaver and McWilliams, 1980). All the above-mentioned weeds 

were selected in this work for being a major quality problem and a serious economic threat to 

crop yields. 
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Although, as above reported, some studies have shown that EOs extracted from E. 

camaldulensis, M. piperita, T. capitata and S. chamaecyparissus, may inhibit seed germination, 

their selectivity depends on the weed against they were applied. In addition, not all EOs exert 

the same effect on weeds at a given concentration. Hence, it is worthy to examine diverse 

sources of EOs and their phytotoxic potential to have the possibility to develop selective 

herbicides against specific weeds.  

The aim of this work was to study the phytotoxic potential of EOs from T. capitata, M. piperita, 

S. chamaecyparissus, E. camaldulensis, E. occidentalis, E. lesouefii and E. torquata against 

the target weeds A. retroflexus, P. oleracea, A. fatua and E. crus-galli to determine if they 

could be a safer and effective alternative for weed management. 

2 Materials and methods  

2.1   Weeds 

Seeds of Portulaca oleracea L. and Avena fatua L. were purchased from Herbiseed, (Reading, 

UK) in 2016 and 2017 respectively, and plants of Echinochloa crus-galli (L.) P.Beauv and 

Amaranthus retroflexus L. were collected from rice fields in Sollana (Valencia province, Spain) 

in September 2017. The plants were dried for 15 days at room temperature, afterwards seeds 

were extracted. Uniform mature and healthy seeds were selected and stored at room 

temperature until germination tests. 

2.2  Essential oils 

Fresh leaves of Eucalyptus camaldulensis Dehnh. and Eucalyptus occidentalis Endl. were 

collected in an afforested area near Agrigento (Sicily province, Italy) during November and 

December of 2017. The leaves of Eucalyptus lesouefii Maiden and Eucalyptus torquata 

Luehm. were collected during March, April, and May from Gabes, located in the South of 

Tunisia in 2015. 

The four EOs were extracted by hydrodistillation with a Clevenger type apparatus according 

to the standard procedure described in the European Pharmacopoeia (1975) and stored at 4 °C 

until their use. EOs extracted from Thymbra capitata L. (Cav), Mentha x piperita L. and 

Santolina chamaecyparissus L. were purchased respectively from Bordas (Sevilla province, 

Spain), Sigma-Aldrich (Darmstadt, Germany) and Ecoaromuz (Ademuz, Valencia province, 

Spain). 
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2.3 Phytotoxic assay  

For the in vitro phytotoxicity tests, Twenty seeds of P. oleracea and A. retroflexus, ten of E. 

crus-galli and five of A. fatua, were selected and sowed in two layers of filter paper (73 g/m2) 

in Petri dishes (9 cm diameter) previously wetted with 5ml of distilled water, in case of the 

dicotyledons, and 6 ml for the monocotyledons. Different concentrations of the EOs were 

prepared and loaded on the inner side of other two layers of filter paper above the seeds. The 

controls were prepared with the same quantities of distilled water. For each concentration, five 

replicates were conducted for the dicotyledons and ten in the case of the monocotyledons. All 

the Petri dishes were sealed with Parafilm to reduce loss of moisture and release of EOs, then 

incubated in a germination-growth chamber from Equitec (Spain). According to previous 

assays, the germination conditions were alternated between 30.0 ± 0.1 °C, 16 h in light and 

20.0 ± 0.1 °C, 8 h in dark for A. retroflexus,  P. oleracea  and E. crus-galli, while for A. fatua 

were set at 23.0 ± 0.1 °C, 8 h in light and 18.0 ± 0.1 °C, 16 h in dark. To evaluate the phytotoxic 

activity of the selected EOs, on germination and seedling length, data were recorded after 3, 5, 

7, 10 and 14 days, by taking digital images of the Petri dishes, that were later processed with 

the software Digimizer v.4.6.1 (MedCalc Software, Ostend, Belgium, 2005-2016) to determine 

the seed germination percentage and the seedling length.  

2.4 Gas Chromatography (GC) 

EOs constituents were quantified by GC using a Clarus 500GC Perkin–Elmer apparatus 

equipped with a flame ionization detector (FID), and a capillary column ZB-5 (30 m x 0.25 

mm i.d. x 0.25 m film thickness). The injection volume was 1 μl. The GC oven temperature 

was set at 60 °C for 5 min, with 3 °C increases per min to 180 °C, then 20 °C increases per min 

to 280 °C which was maintained for 10 min. Helium was the carrier gas (1.2 ml/min). Injector 

and detector temperatures were set at 250 °C. The percentage composition of the EO was 

computed from GC peak areas without correction factors by means of the software Total 

Chrom 6.2 (Perkinelmer inc., Wellesley, PA, USA). 

2.5 Gas Chromatography-Mass Spectrometry (GC–MS) 

EOs constituents were identified by gas chromatography coupled to mass spectrometry 

analysis using a Clarus 500 GC–MS from Perkin-Elmer Inc. apparatus equipped with the same 

capillary column, carrier, and operating conditions as described above for GC analysis. The 

temperature for the ionization source was set at 200 °C and an electron impact mode of 70 eV 

was employed. MS spectra were obtained by means of total ion scan (TIC) mode (mass range 
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m/z 45–500 uma). The total ion chromatograms and mass spectra were processed with the 

Turbomass 5.4 software (Perkinelmer inc.). Retention indexes were determined by injection of 

C8–C32 n-alkanes standard under the same conditions (Adams, 2007). 

The EOs components were identified by comparison of their mass spectra with those of 

computer library NIST MS Search 2.0 and available data in the literature. Identification of the 

following compounds was confirmed by comparison of their experimental RI with those of 

authentic reference standards (Sigma-Aldrich, Darmstadt, Germany): α-pinene, β-pinene, 

camphene, myrcene, limonene, camphor, terpinolene, borneol, terpinen-4-ol and linalool. 

2.6 Statistical analyses 

All data were processed using the Statgraphics® Centurion XVI statistical package. A one-

way ANOVA was performed. For the dicotyledons (A. retroflexus and P. olecerea) the  

ANOVA was performed for the germination and the total seedling growth and for the 

monocotyledons (A.fatua and E. crus-galli) the ANOVA was performed for the germination, 

and for coleoptile, radical and total seedling length. Percentage values were arcsin transformed. 

The means were compared using Fisher’s least significant difference (LSD) test (P < 0.05). 

3 Results  

3.1 Chemical composition of the tested EOs 

A total of 171 compounds were determined in all analyzed EOs, from which 30 (95.63%), 17 

(92.53%), 15 (99.18%), 18 (96.11%), 17 (99.80%), 35 (99.66%) and 39 (98.95%) in E. 

camaldulensis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita and S. 

chamaecyparissus EO respectively (Table 1). Components were clustered by phytochemical 

groups in monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, 

oxygenated sesquiterpenes, ketones and others, and listed according to the order of their elution 

on a methyl silicone HP-1 column. 

In E. camaldulensis EO, the monoterpene compounds constituted 88.25% (49.32% the 

monoterpene hydrocarbons and 38.93% de oxygenated hydrocarbons, with p-cymene 

(38.83%), 1,8-cineole (18.67%) and cryptone (10.91%), as main compounds.  

Regarding E. lesoufii EO, oxygenated monoterpenes (56.82%) were the main qualitative and 

quantitative phytochemical group found, being this EO rich in 1,8-cineole (53.42%). 

Oxygenated sesquiterpenes (33.45%) was the second most important group, with globulol 
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29.99 %, being the main compound in this fraction and the second more abundant constituent 

in the EO.  

In E. occidentalis EO, the main phytochemical group was the oxygenated monoterpenes 

fraction, which accounted for 72.15%, represented essentially by 1,8-cineole (56.84%) and 

trans-pinocarveol (10.75%), followed by oxygenated monoterpenes (25.04%), with  α-pinene 

(24.3%) as the most abundant component on this fraction, and second most abundant in the EO 

composition.  

E. torquata EO, was characterized predominantly by ketones which constituted about 40% of 

the EO composition, mainly torquatone (39.76%), and a high fraction of oxygenated 

sesquiterpene (25.94%), among which γ-eudesmol (11.14%) and α-eudesmol (8.00%) were the 

most abundant. The compounds 1,8-cineole (13.31%) and trans-pinocarveol (4.22%) were the 

main constituents of the oxygenated monoterpene fraction (18.75%), while α-pinene 10.13 % 

constituted almost the totality of the monoterpene hydrocarbons group.  

T. capitata EO was characterized by a high content of oxygenated monoterpenes (74.0%) with 

a high carvacrol percentage (72.30%), followed by monoterpene hydrocarbon fraction 

(22.50%), among which p-cymene (8.93%) and γ-terpinene (7.00%) were the main 

components. β-caryophyllene (3.14%) and caryophyllene oxide (0.14) were the only 

compounds detected in oxygenated and hydrocarbon sesquiterpenes, respectively. 

The EO of M. piperita was outlined by a great amount of oxygenated monoterpenes (95.35%), 

characterized by menthol (51.8%) and menthone (20.5%). Lower percentage of sesquiterpene 

hydrocarbons (2.22%) and monoterpenes (1.95%) were detected. 

Finally, the oxygenated monoterpenes (39.32%) were the most abundant fraction in S. 

chamaecyparissus EO, with 1,8-cineole (17.50%) as main compound. Other important 

constituents of this EO were, germacrene-D (12.60%), viridiflorol (13.56%) and 8‐methylene‐

3‐oxatricyclo [5,2,0,0(2,4)] nonane (12.24%).  
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Table 1. Chemical composition of essential oils extracted by hydrodistillation from E. camaldulensis 

(EC), E. lesouefi (EL); E. occidentalis (EO); E. torquata (ET); T. capitata (TC), M. piperita (MP) and 

S. chamaecyparissus (SC). KI, Kovats index. 

Compounds KI EC EL EO ET TC MP SC 

Monoterpene 

hydrocarbons (%) 
  

49.32 

 

0.87 

 

25.04 

 

11.59 

 

22.54 

 

1.95 

 

9.30 

Santolina triene 908 - - - - - - 0.13 

α-Thujene 930 1.13 - - - 0.89 0.01 - 

α-Pinene 938 3.93 0.77 24.3 10.13 0.74 0.28 0.85 

Thuja-2,4(10)-diene 947 0.13 - 0.16 - - - - 

Camphene 951 _ - 0.17 - - - 0.28 

Sabinene 975 0.57       - - - - 0.14 0.17 

β-Pinene 978 3.79 - 0.41 0.08 0.29 0.43 3.98 

Myrcene 991 0.65 - - - 1.95 0.01 - 

α-Phellandrene 1004 - - - - 0.16 - - 

γ-Terpinene 1016 - - - - 7.77 0.13 1.18 

α-Terpinene 1016 - - - - 1.61 - 0.69 

p-Cymene 1025 38.83 0.10 - 1.38 8.93 0.18 2.01 

Limonene 1029 - - - - 0.20 0.73 - 

β-Phellandrene 1038 t - - - - _ - 

(Z)-β-Ocimene 1040 - - - - - 0.03 - 

cis-Linalool oxide 1078 t - - - - - - 

iso-Terpinolene 1087 - - - - - 0.02 - 

p-Cymenene 1090 0.29 - - - - - - 

Oxygenated 

monoterpenes (%) 
 38.93 56.82 72.15 18.57 73.98 95.35 39.32 

1,8-Cineole 

(eucalyptol) 
1031 18.67 53.42 56.84 13.31 0.11 4.31 17.50 

Artemisia ketone 1062 - - - - - - 4.63 

(Z)-Sabinene 

hydrate 
1070 - - - - - 0.76 - 

α-Pinene oxide 1099 - - 0.12 - - - - 

Linalool 1104 0.27 - - - 0.77 0.09 0.42 

trans-Thujone 1117 0.20 - - - - - - 

endo-Fenchol 1118 - - 0.10 - - - - 

α-Campholenal 1130 t - 0.21 - - - - 

Nopinone 1141 t - - - - - - 

Camphor 1142 - - - - - - 4.03 

trans-Pinocarveol 1143 0.72 1.07 10.75 4.22 - - 0.17 

Camphene hydrate 1153 - t - - - - - 

Menthone 1154 - - - - - 20.52 - 

(E)-Pinocamphone 1159 - - - - - - 0.18 

(Z)-Chrysanthemol 1162 - - - - - - 3.80 

Menthofuran 1163 - - - - - 5.21 - 

neo-Menthol 1165 - - - - - 3.12 - 

Pinocarvone 1166 0.26 0.21 3.12 0.91 - - - 

Borneol 1168 - - - - 0.16 - 1.11 

Isoborneol 1170 - - 0.25 - - - - 

(Z)-Pinocamphone 1172 - - - - - - 2.03 

Menthol 1175 - - - - - 51.81 - 

Terpinen-4-ol 1177 2.21 0.46 - - 0.37 0.67 2.69 

iso-menthol 1182 - - - - - 0.60 - 

Neoisomenthol 1187 - - - - - 0.08 - 

α-Terpineol 1188 0.35 0.44 0.45 0.13 - 0.17 0.21 

trans-ρ-Mentha-

1(7),8-dien-2-ol 
1191 - 0.54 0.31 - - - - 

Myrtenal 1192 0.59 - - - - - 1.31 
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Myrtenol 1193 - - - - - - 1.07 

Cryptone 1196 10.91 - - - - - - 

Verbenone 1198 0.13 - - - - - 0.16 

m-Cumenol 1230 - - - - - - - 

cis-p-Mentha-

1(7),8-dien-2-ol 
1233 - 0.49  - - - - 

Pulegone 1236 - - - - - 0.83 - 

Cumin aldehyde 1245 2.73 - - - - - - 

Carvone 1249 1.27 - - - - - - 

Carvotanacetone 1250 - - - - - - - 

Piperitone 1251 - - - - - 0.32 - 

neo-Menthyl 

acetate 
1273 - - - - - 0.16 - 

p-Menth-1-en-7-al 1279 - - - - - - - 

α-Terpinen-7-al 1288 0.23 - - - - - - 

Menthyl acetate 1291 - - - - - 6.56 - 

Thymol 1292 - - - - 0.27 - - 

Carvacrol 1300 0.05 - - - 72.30 - - 

iso-Menthyl acetate 1303 - - - - - 0.16 - 

Methyl geranate 1324 - 0.19 - - - - - 

4-hydroxy-

Cryptone 
1326 0.14 - - - - - - 

3-oxo-ρ-Menth-1-

en-7-al 
1340 0.20 - - - - - - 

Sesquiterpene 

hydrocarbons (%) 
 0.56 1.39 1.07 0.00 3.14 2.22 21.78 

α-Ylangene 1373 - - - - - - 0.08 

α-Bourbonene 1381 - - - - - 0.17 - 

β-Caryophyllene 1415 - - - - 3.14 1.47 0.39 

β-Farnesene 1454 - - - - - 0.02 - 

allo-

Aromadendrene 
1457 - - 1.07 - - - 4.23 

Aromandendrene 1464 0.56 1.28 - - - - - 

trans-Cadina-

1(6),4-diene 
1473 - - - - - - 0.36 

Germacrene-D 1477 - - - - - 0.42 12.60 

β-Selinene 1491 - - - - - 0.13 - 

Elixene 1492 - - - - - - 2.80 

Bicyclogermacrene 1499 - 0.11 - - - - - 

γ-Cadinene 1509 - - - - - - 0.32 

δ-Cadinene 1519 - - - - - - 1.00 

Oxygenated 

sesquiterpenes (%) 
 6.82 33.45 0.92 25.94 0.14 0.00 15.64 

Bornyl acetate 1283 - - - - - - 0.08 

Spathulenol 1447 6.82 - - 1.29 - - 1.42 

Globulol 1559 - 29.99 - 3.08 - - - 

Caryophyllene 

oxide 
1577 - - - - 0.14 - 0.19 

Viridiflorol 1587 - 1.01 0.92 0.42 - - 13.56 

β-Oplopenone 1602 - - - - - - 0.16 

Spathulenol isomer 1616 - - - - - - - 

β-Eudesmol 1629 - 1.74 - 11.14 - - - 

Eremoligenol 1633 - - - 0.09 - - - 

γ-Eudesmol 1634 - 0.71 - 1.41 - - - 

iso-spathulenol 1640 - - - - - - - 

Agarospirol 1644 - - - 0.51 - - - 

α-Cadinol 1649 - - - - - - 0.23 

α-Eudesmol 1662 - - - 8.00 - - - 

Ketones (%)  0.00 0.00 0.00 40.01 0.00 0.00 0.00 
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In bold, the most significant compounds for each EO    t<0.04                                                                               

 

3.2 Germination trials  

The germination of all the species assayed was significantly affected by the applied EOs, 

however, the most sensitive species to the EOs tested were A. fatua and A. retroflexus with 

0.19 and 0.30 germination, respectively (Table 2), whereas E. crus-galli was significantly the 

most resistant weed, followed by P. oleracea which was the second less susceptible species. 

Table 2. Overall essential oils germination effects per species. 

Germination data showed are the percentage values arcsin transformed.  

6.1.1 A. retroflexus  

All selected EOs at all the applied concentrations exerted significant phytotoxic effects on A. 

retroflexus seed germination as compared to the control (Table 3) The reduction of the 

germination appeared noteworthy already at the minimum concentration of all EOs. T. capitata 

EO provided the strongest activity, with a complete inhibition of germination at 1 µl/ml 

concentration S. chamaecyparissus and E. camaldulensis EOs reached the total germination 

inhibition at the dose of 2µl/ml and M. piperita EO at 4µl/ml. Moderate performances were 

recorded with E. lesouefii, E. torquata and E. occidentalis EOs which showed at 4µl/ml a 

germination reduction up to 4 %, 6% and 13% respectively (Table 3). 

Apodophylene 1716 - - - 0.14 - - - 

Torquatone 1833 - - - 39.76 - - - 

demethyl-

Isotorquatone 
1881 - - - 0.11 - - - 

Others (%)  0.00 0.00 0.00 0.00 0.00 0.14 12.91 

1-Butanol. 2-

methyl-, propanoate 
973 - - - - - - 0.20 

1-Octen-3-ol 980 - - - - - 0.02 - 

3-Octanol 995 - - - - - 0.07 - 

iso-Amyl 2-methyl 

butyrate 
1101 - - - - - 0.02 - 

n-Amyl isovalerate 1106 - - - - - 0.04 0.48 

8-methylene 

oxatricyclo[5,2,0,0(

2,4)]nonane 

1117 - - - - - - 12.24 

TOTAL 

IDENTIFIED (%) 
 95.63 92.53 99.18 96.11 99.80 99.66 98.95 

Species Germination (± SE) 

Amaranthus retroflexus  0.30 ± 0.02 c 

Portulaca oleracea  0.63 ± 0.02 b 

Avena fatua  0.19 ± 0.01 d 

Echinochloa crus-galli  0.78 ± 0.01 a 
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6.1.2 P. oleracea  

The EO of T. capitata was the most effective, as it completely blocked P. oleracea seed 

germination at 2 µl/ml dose, also, it showed phytotoxic significant effects already at the 

minimum concentration tested at 0.125 µl/ml (Table 4). The rest of applied EOs did not reach 

the total inhibition even with the highest concentrations. However, they significantly reduced 

P. oleracea seed germination. At the same concentration, 8 µl/ml, S. chamaecyparissus showed 

a slightly greater inhibitory effect (97.36% of germination reduction) than M. piperita, E. 

torquata and E. occidentalis with 92.10 %, 91.35 % and 88.88 % of reduction, respectively. 

(Table 4). 

6.1.3 A. fatua 

A. fatua seed germination was completely blocked with all applied EOs at different extent. T. 

capitata and M. piperita showed the strongest phytotoxic effects, controlling completely A. 

fatua germination at 0.5 µl/ml, while all the other EOs, except E. torquata reached complete 

inhibition with 2 µl/ml. E. torquata showed germination stoppage with its highest dose 4µl/ml 

(Table 5).  

6.1.4  E. crus-galli  

In this set of trials, all EOs assayed exhibited significant reduction of the germination at their 

lowest dose 0.25 µl/ml. (Table 6). However, the phytotoxicity of T. capitata and M. piperita 

was highly remarkable, exhibiting a total suppression of E. crus-galli seed germination at the 

highest dose, 2 µl/ml. On the other hand, the rest of tested EOs could not block E. crus-galli 

germination. However, at the highest dose assayed, 2 µl/ml, they significantly reduced it by 

28.08 % for E. camaldulensis, 21.34% for E. lesouefii, 25.84% for E. torquata, and 37.07% for 

S. chamaecyparissus (Table 6). 



Chapter 1 Amira Jouini 2020 
 

43 
 

Table 3. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against A. 

retroflexus seed germination 

Germination (% ± SE) 

Concentrations 

(µl/ml) 
E. camaldulensis E. lesouefii E. occidentalis E. torquata T. capitata M. piperita S. chamaecyparissus 

Control (0) 82.0 ± 3.4 a 82.0 ± 3.4 a 82.0 ± 3.4 a 82.0 ± 3.4 a 87.0 ± 2.0 a 87.0 ± 2.0 a 87.0 ± 2.0 a 

0.125 - - - - 62.0 ± 6.8 b - - 

0.25 - - - - 18.0 ± 1.2 c - - 

0.5 4.0 ± 2.9 b 16.0 ± 4.3 b 63.0 ± 10.9 b 18.0 ± 5.6 b 6.0 ± 2.9 d 16.0 ± 7.9 b 14.0 ± 3.3 b 

1 1.0 ± 1.0 b 14.0 ± 4.0 b 55.0 ± 3.5 b 14.0 ± 6.2 b 0.0 ± 0.0 e 8.0 ± 5.8 bc 4.0 ± 5.2 c 

2 0.0 ± 0.0 b 10.0 ± 2.7 bc 26.0 ± 7.0 c 9.0 ± 2.4 b - 1.0 ± 1.0 c 0.0 ± 0.0 c 

4 0.0 ± 0.0 b 4.0 ± 1.9 c 13.0 ± 5.4 c 6.0 ± 4.0 b - 0.0 ± 0.0 c 0.0 ± 0.0 c 

Values are means ± standard error after 14 days of incubation. Within each EO, different letters in the same column indicate that mean are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test. 

Table 4. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against P. 

oleracea seed germination  

Germination (% ± SE) 

Concentrations 

(µl/ml) 
E. camaldulensis E. lesouefii E. occidentalis E. torquata T. capitata M. piperita S. chamaecyparissus 

Control (0) 81.0 ± 1.9 a 81.0 ± 1.9 a 81.0 ± 1.9 a 81.0 ± 1.9 a 76.0 ± 5.8 a 76.0 ± 5.8 a 76.0 ± 5.8 a 

0.125 - - - - 26.0 ± 4.8 b - - 

0.25 74.0 ± 2.9 a 75.0 ± 2.2 a 73.0 ± 2.5 ab 66.0 ± 6.8 b 17.0 ± 4.1 bc - - 

0.5 62.0 ± 4.4 ab 59.0 ± 3.7 b 69.0 ± 2.4 abc 58.0 ± 5.8 b 9.0 ± 2.9 c 61.0 ± 2.9 b 68.0 ± 3.4 ab 

1 46.0 ± 9.3 b 54.0 ± 7.9 b 64.0 ± 5.5 bc 51.0 ± 4.6 bc 2.0 ± 1.2 d 54.0 ± 2.4 bc 56.0 ± 2.9 b 

2 12.0 ± 6.5 c 27.0 ± 2.8 c 60.0 ± 4.5 c 42 ± 6.4 c 0.0 ± 0.0 d 39.0 ± 3.4 c 32.0 ± 5.4 c 

4 4.0 ± 1.9 c 5.0 ± 2.7 d 35.0 ± 7.1 d 25 ± 3.5 d - 13.0 ± 2.0 d 9.0 ± 2.9 d 

8 - - 9.0 ± 1.9 e 7.0 ± 2.5 e - 6.0 ± 1.9 e 2.0 ± 1.2 e 
Values are means ± standard error after 14 days of incubation. Within each EO, different letters in the same column indicate that mean are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test.  
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Table 5. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against A. fatua 

seed germination 

Values are means ± standard error after 14 days of incubation. Within each EO, different letters in the same column indicate that mean are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test.  

Table 6. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against E. crus-

galli seed germination 

Germination (% ± SE) 

Concentrations 

(µl/ml) 

E. camaldulensis E. lesouefii E. occidentalis E. torquata T. capitata M. piperita S. chamaecyparissus 

Control (0) 89.0 ± 3.5 a 89.0 ± 3.5 a 89.0 ± 3.5 a 89.0 ± 3.5 a 89.0 ± 3.5 a 89.0 ± 3.5 a 89.0 ± 3.5 a 

0.25 80.0 ± 2.6 b 78.0 ± 2.0 b 81.0 ± 3.1 b 78.0 ± 2.0 b 50.0 ± 5.6 b 64.0 ± 4.5 b 77.0 ± 3.3 b 

0.5 70.0 ± 3.7 bc 76.0 ± 3.1 b 76.0 ± 3.1 bc 72.0 ± 3.6 b 31.0 ± 6.7 c 37.0 ± 5.4 c 74.0 ± 3.4 b 

1 67.0 ± 3.3 c 73.0 ± 3.3 b 73.0 ± 3.0 bc 68.0 ± 2.0 bc 13.0 ± 4.0 d 23.0 ± 6.8 d 69.0 ± 7.4 bc 

2 64.0 ± 4.0 c 70.0 ± 3.0 b 66.0 ± 3.7 c 60.0 ± 2.8 c 0.0 ± 0.0 e 0.0 ± 0.0 e 56.0 ± 4.3 c 

Values are means ± standard error after 14 days of incubation. Within each EO different letters in the same column indicate that mean are different at the 95% level of probability 

(p < 0.05) using Fisher’s LSD test.  

 

Germination (% ± SE) 

Concentrations 

(µl/ml) 
E. camaldulensis E. lesouefii E. occidentalis E. torquata T. capitata M. piperita S. chamaecyparissus 

Control (0) 86.0 ± 5.2 a 86.0 ± 5.2 a 86.0 ± 5.2 a 86.0 ± 5.2 a 64.0 ± 5.8 a 64.0 ± 5.8 a 86.0 ± 5.2 a 

0.125 - - - - 56.0± 9.3 a - - 

0.25 10.0 ± 4.5 b - - - 14.0 ± 7.9 b 42.0 ± 9.6 b - 

0.5 6.0 ± 3.7 b 48.0 ± 7.4 b 24.0 ± 7.8 b 54.0 ± 9.3 b 0.0 ± 0.0 c 0.0 ± 0.0 c 28.0 ± 6.8 b 

1 4.0 ± 2.7 bc 28.0 ± 6.8 c 18.0 ± 8.1 b 14.0 ± 4.3 c 0.0 ± 0.0 c 0.0 ± 0.0 c 4.0 ± 2.7 c 

2 0.0 ± 0.0 c 0.0 ± 0.0 d 0.0 ± 0.0 c 2.0 ± 2.0 cd - 0.0 ± 0.0 c 0.0 ± 0.0 c 

4 0.0 ± 0.0 c 0.0 ± 0.0 d 0.0 ± 0.0 c 0.0 ± 0.0 d - 0.0 ± 0.0 c 0.0 ± 0.0 c 
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3.3 Seedling growth  

6.1.5 A. retroflexus  

All the applied EOs showed a significant inhibitory effect on seedling length with respect to 

the control. However, not all of them exerted significant phytotoxic effect at the minimum 

concentration. For the EOs that did not blocked seed germination with any concentrations, the 

maximum reduction of seedling length was found at the highest doses applied, 4 µl/ml, being 

80.61% for E. lesouefii, 82.81% for E. torquata and 36% for E. occidentalis (Figure 1). 

6.1.6 P. oleracea 

In Figure 2 are shown results of seedlings length over time as affected by all the applied EOs. 

All of them exerted significant inhibitory effects on P. oleracea seedling growth with respect 

to the control at the minimum assayed concentration. At 4 µl/ml concentration E. 

camaldulensis attained 69% and E. lesouefii 77% of seedlings length reduction. At 8 µl/ml S. 

chamaecyparissus reached 86% of seedling length reduction followed by E. torquata, E. 

occidentalis and M. piperita, with reductions of 85%, 81 %, and 75%, respectively. The latter 

seems to be the more effective in inhibiting the germination than reducing seedlings length 

(Figure 2). 

6.1.7 A. fatua  

All assayed EOs have exerted significant phytotoxic effects on A. fatua seedling growth 

(Figure 3), coleoptile expansion (Table 7) and radicle elongation (Table 8) compared to the 

control at the lowest applied concentrations.  Both T. capitata and M. piperita EOs, exerted the 

best performance by inhibiting 100 % seed germination (Figure 3), by blocking completely the 

coleoptile enlargement (Table 7) and the radical elongation (Table 8) at 0.5 µl/ml. No 

significant differences were noticed between the doses (0.125 and 0.25 µl/ml) on reducing 

radical length by T. capitata (Table 8). On the other hand, no significant differences within 

concentrations were observed, between total seedling length, coleoptile and radicle growth 

compared to the control for the rest of assayed EOs (Figure 3, Tables 7 and 8). 

6.1.8  E. crus-galli 

All assayed EOs have exerted significant phytotoxic effects on E. crus-galli seedling (Figure 

4), coleoptile (Table 9) and radicle length (Table 10) of E. crus-galli compared to the control 
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at the lowest applied concentration 0.25 µl/ml. Only T. capitata and M. piperita achieved a total 

growth inhibition at the concentration 2µl/ml. At the same dose, E. camaldulensis, E. torquata, 

E. lesouefii, S. chamaecyparissus and E. occidentalis exhibited 67, 56, 54, 49 and 44% of total 

seedling growth reduction (Figure 4); 58, 53, 55, 53 and 35% inhibition of coleoptile length 

(Table 9), and 77, 59, 54, 44 and 56% diminution of radicle elongation, respectively (Table 10). 
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Figure 4. Seedling length (mm) (mean ± SE) measured for 14 days of A. retroflexus control or treated 

with EOs from E. camaldulensis  E. lesouefii,E. occidentalis, E. torquata, M. piperita, S. 

chamaecyparissus at 0.5, 1, 2, 4 µl/ml and T. capitata at 0. 125, 0.25, 0.5, 1 µl/ml concentrations. For 

each EO, different letters indicate that means are different at the 95% level of probability (p < 0.05) 

using Fisher’s LSD test. 
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Figure 5. Seedling length (mm) (mean ± SE) measured for 14 days of P. oleracea control or treated 

with EOs from E. camaldulensis and E. lesouefii at 0.25, 0.5, 1, 2, 4 µl/ml concentrations, E. 

occidentalis and E. torquata at 0.25, 0.5, 1, 2, 4 ,8 µl/ml concentrations, M. piperita and S. 

chamaecyparissus at 0.5, 1, 2, 4, 8 µl/ml and T. capitata at 0.125, 0.25, 0.5, 1, 2  µl/ml concentrations. 

For each EO, different letters indicate that means are different at the 95% level of probability (p < 0.05) 

using Fisher’s LSD test. 
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Figure 6. Seedling length (mm) (mean ± SE) measured for 14 days of A. fatua control or treated with 

EOs from E. camaldulensis at 0.25, 0.5, 1, 2, 4 µl/ml concentrations and  E. lesouefii , E. occidentalis, 

E. torquata  and S. chamaecyparissus at 0.5, 1, 2, 4 µl/ml concentrations,  M. piperita, at 0.25, 0.5, 1, 

2  µl/ml and T. capitata at 0.125, 0.25, 0.5, 1 µl/ml concentrations. For each EO, different letters indicate 

that means are different at the 95% level of probability (p < 0.05) using Fisher’s LSD test. 
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Figure 7. Seedling length (mm) (mean ± SE) measured for 14 days of E. crus-galli control or treated 

with EOs from E. camaldulensis,  E. lesouefii , E. occidentalis, E. torquata  and S. chamaecyparissus , 

M. piperita, and T. capitata at 0.25, 0.5, 1, 2 µl/ml concentrations. For each EO, different letters indicate 

that means are different at the 95% level of probability (p < 0.05) using Fisher’s LSD test. 
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Table 7. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against A. fatua 

coleoptile growth. 

Values are means ± standard error after 14 days of incubation. Within each EO, different letters in the same column indicate that means are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test; *: indicates 0 mm in case of 0 germination 

Table 8. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against A. fatua 

radical growth 

Radicle length in mm (± SE) 

Concentrations 

(µl/ml) 

E. 

camaldulensis 

E.  

leousoufii 

E.  

occidentalis 

E. 

torquata 

T.  

capitata 

M.  

piperita 

S. 

chamaecyparissus 

Control (0) 37.93 ± 2.90 a 37.93 ± 2.90 a 37.93 ± 2.90 a 37.93 ± 2.90 a 21.12 ±1.23 a 21.12 ± 1.23 a 37.93 ± 2.90 a 

0.125 ** ** ** ** 1.55 ± 0.37 b ** ** 

0.25 1.82 ± 0.31 b  ** ** ** 0.39 ± 0.11 b 1.47 ± 0.43 b ** 

0.5 1.73 ± 0.37 b  2.93 ± 0.58 b 17.10 ± 1.45 b 10.40 ± 1.17 b ** ** 15.54 ± 0.95 b 

1 1.13 ± 0.20 b  2.59 ± 0.30 b 13.38 ± 1.05 b 14.00 ± 4.3 b ** ** 13.51 ± 0.81 b 

2 ** ** ** ** ** ** ** 

4 ** ** ** ** ** ** ** 

Values are means ± standard error after 14 days of incubation. Within each EO, different letters in the same column indicate that means are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test; *: indicates 0 mm in case of 0 germination 

 

Coleoptile length in mm (± SE) 

Concentrations 

(µl/ml) 

E. 

camaldulensis 

E. lesouefii E. occidentalis E. torquata T. capitata M. piperita S. 

chamaecyparissus 

Control (0) 45.25 ± 5.2 a  45.25 ± 2.90 a 45.25 ± 2.90 a 45.25 ± 2.90 a 22.52 ± 0.78 a 22.52 ± 0.78 a 45.25 ± 2.90 a 

0.125 ** ** ** ** 6.84 ± 1.43 b ** ** 

0.25 5.27 ± 2.34 b ** ** ** 1.11 ± 0.48 c 1.82 ± 0.56 b ** 

0.5 3.36 ± 0.46 b  4.00 ± 0.61b 18.38 ± 2.76 b 12.47 ± 0.98 b ** ** 15.83 ± 0.96 b 

1 2.42 ± 0.28 b 2.26 ± 0.43b 14.56 ± 0.84 b 7.24 ± 1.07 b ** ** 12.79 ± 0.47 b 

2 ** ** ** ** ** ** ** 

4 ** ** ** ** ** ** ** 
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Table 9. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against E. crus-

galli coleoptile growth 

Values are means ± standard error after 14 days of incubation. Within each EO, different letters in the same column indicate that means are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test; *: indicates 0 mm in case of 0 germination 

Table 10. In vitro effects of E. camaldulesnis, E. lesouefii, E. occidentalis, E. torquata, T. capitata, M. piperita, and S. chamaecyparissus, EOs against E. crus-

galli radicle growth 

Values are means ± standard error each after 14 days of incubation. Within each EO, different letters in the same column indicate that means are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test; *: indicates 0 mm in case of 0 germination 

 

Coleoptile length in mm (± SE) 

Concentra-

tions µl/ml 

E. 

camaldulensis 

E.  

leousoufii 

E.  

occidentalis 

E.  

torquata 

T.  

capitata 

M.  

piperita 

S. 

chamaecyparissus 

Control (0) 51.28 ± 1.88 a 51.28 ± 1.88 a 51.28 ± 1.88 a 51.28 ± 1.88 a 51.28 ± 1.88 a 51.28 ± 1.88 a 51.28 ± 1.88 a 

0.25 36.34 ± 1.59 b 28.92 ± 1.61 b 40.61 ± 0.65 b 27.37 ± 1.40 b 26.03 ± 1.59 b 27.46 ± 2.14 b 35.43 ± 2.62 b 

0.5 31.37 ± 1.83 c 24.76 ± 0.81 c 39.49 ± 1.49 b 26.89 ± 0.72 b 22.56 ± 1.84 b 16.41 ± 1.42 c 31.32 ± 2.87 b 

1 28.26 ± 1.47 c 24.53 ± 1.07 c 36.48 ± 1.86 bc 25.13 ± 0.90 b 15.50 ± 0.65 c 10.04 ± 0.99 d 30.42 ± 1.47 b 

2 21.49 ± 1.68 d 23.47 ± 1.07 c 32.75 ± 1.87 c 24.16 ± 0.71 b ** ** 23.78 ± 1.20 c 

Radicle length in mm (± SE) 

Concentra- 

tions µl/ml 

E.  

camaldulensis 

E. 

 leousoufii 

E.  

occidentalis 

E.  

torquata 

T.  

capitata 

M.  

piperita 

S. chamaecyparissus 

Control (0) 38.81 ± 1.12 a 38.81 ± 1.12 a 38.81 ± 1.12 a 38.81 ± 1.12 a 38.81 ± 1.12 a 38.81 ± 1.12 a 38.81 ± 1.12 a 

0.25 28.65 ± 1.07 b 27.45 ± 1.35 b 29.16 ± 1.72 b 23.59 ± 1.29 b 18.00 ± 2.28 b 11.18 ± 1.22 b 32.38 ± 1.06 b 

0.5 23.64 ± 1.17 c 22.11 ± 1.47 c 28.32 ± 0.68 b 19.60 ± 1.22 c 14.60 ± 1.66 b 8.33 ± 0.81 bc 31.01 ± 1.77 bc 

1 18.27 ± 1.35 d 18.95 ± 1.58 cd 22.90 ± 1.06 c 18.44 ± 0.75 cd 12.70 ± 0.60 b 6.09 ± 0.68 c 27.00 ± 1.54 c 

2 8.68 ± 0.40 e 17.72 ± 0.74 d 17.29 ± 1.53 d 16.26 ± 1.01 d ** ** 22.34 ± 2.15 d 
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4 Discussion  

To our knowledge the current study is the first in which the phytotoxic effects of the EOs from 

the following eucalyptus species, E. occidentalis, E torquata and E. lesouefii, were tested. On 

the other hand, EOs from the other species have been demonstrated to have phytotoxic effects, 

inhibiting the germination and growth of some weeds, so they could be an alternative to 

synthetic herbicides, harmless to the environment and people's health. EOs from different 

aromatic plants belonging to Lamiaceae, Compositae, Myrtaceae and Verbenaceae families 

have been reported to have allelopathic properties (Dudai et al., 1999; Angelini et al., 2003; 

Azirak and Karaman, 2008; Shafique et al., 2011). 

Our findings confirm that the phytotoxic effects of EOs are closely related to several factors, 

one of them is the species on which they are applied (Lee et al., 2002; Verdeguer 2011). All 

tested EOs exerted phytotoxic effects in some extent, they were generally selective according 

to the assayed weed. Their effectiveness on controlling seed germination followed this order: 

T. capitata > E. camaldulensis > S. chamaecyparissus > M. piperita > E. lesouefii > E. 

torquata > E. occidentalis for A. retroflexus;  T. capitata > E. camaldulensis > E. lesouefii >S. 

chamaecyparissus > M. piperita > E. torquata > E. occidentalis for P. oleracea; T. capitata 

> M. piperita > E. camaldulensis > S. chamaecyparissus > E. occidentalis > E. lesouefii > E. 

torquata for A. fatua; and T. capitata > M. piperita > S. chamaecyparissus >E. torquata > E. 

camaldulensis > E. occidentalis > E. lesouefii for E. crus-galli. From an overall, point of view, 

the germination sensitivity of the examined weeds to inhibitory effect of assayed EOs, was 

different. The order of sensitiveness of the species for EOs was as follows: A. fatua >A. 

retroflexus> P. oleracea > E. crus-galli (Table 2). The high ability of P. oleracea and E. crus-

galli in facing chemical-induced stress, adopting molecular, biochemical and anatomical 

strategies, is largely reported (Juliano et al., 2010; Malpassi., 2006; Norswothy and Riar et al., 

2013; Mahdavikia and Saharkhiz, 2015). 

Other factor is the employed doses of EOs. Overall, all tested EOs showed a dose-dependent 

effects although sometimes, no significant differences were noticed between the doses. The 

higher the applied dose was, the greater the inhibitory effect became. The most powerful were 

those, which showed great inhibitory activity against all the species tested even at low 

concentrations, as was the case of T. capitata in our study, since it totally blocked the 

germination of the four weed species tested  at lower concentrations as compared to the rest of 

the assayed EOs and reduced drastically their seedlings length, by 90.56% for A. retroflexus 
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(0.5 µL/mL) (Figure 1), 89% for P. oleracea (1 µL/mL) (Figure2) 96.56% for A. fatua (with 

0.25 µL/mL dose) (Figure 3), 68.7 % for E. crus-galli (1 µL/mL) (Figure 4). Similar results 

were found with Mentha spicata, Origanum onites, Origanum vulgare ssp. hirtum, which 

inhibited the germination of all tested weeds (Amaranthus retroflexus, Echinochloa crus-galli, 

Portulaca oleracea, Setaria verticillata and crops (tomato, cotton and rice) on which they were 

tested (Argyropoulos et al., 2008). 

Moreover, the chemical composition is another factor closely related to EOs activity. Indeed, 

some authors have stated that oils rich in oxygenated monoterpenes are more active and 

phytotoxic than those that have a high content of hydrocarbon monoterpenes (Asplund, 1968; 

Vaughn and Spencer, 1993, Scrivanti et al., 2003; López et al., 2009). However, not all tested 

EOs have shown greater activity at a higher content of oxygenated compounds, E. 

camaldulensis and E. torquata EOs with high contents of monoterpenes hydrocarbons 

(49.32%) and ketones (40%) respectively (Table1), showed evenly phytotoxic effects, 

suggesting that the complex mixture of compounds present in each EO constrains their 

activities. The bioactivity of EO, normally attributed to the majority compounds, may also be 

due to the combined effects of various minor components or to the synergistic effects of some 

compounds (Barney et al., 2005; Koroch et al., 2007), T. capitata EO was characterized by a 

high content of carvacrol (72.30%), followed by p-cymene (8.93%). In literature, three 

chemotypes of T. capitata have been described, depending on the content of thymol (1), 

carvacrol (2) or both (3) (Bounatirou et al., 2007). Our tested EO was carvacrol chemotype (2), 

indicating a similar profile as reported in previous studies (Napoli et al., 2010; Ballester-Costa 

et al., 2013; Alam et al., 2014; Gagliano et al., 2019; Zaïri et al., 2019). The phytotoxicity of 

carvacrol as a single compound, as well as from T. capitata and other species EOs, have been 

largely reported. For instance, carvacrol was able to total suppress seed germination and 

seedling growth of Amaranthus retroflexus, Chenopodium album, and Rumex crispus (Kordali 

et al., 2008). Also, it led to a significant increase of ungerminated fresh seeds in all weed 

species (100% in P. oleracea, 98.7% in E. crus-galli, and 72% in C. album) (Angelini et al., 

2003). Furthermore, Saoud et al. (2013) outlined that carvacrol (83.86%) from T. capitata EO 

inhibited the germination of Sinapis arvensis. T. capitata EO from populations growing in 

Tunisia with carvacrol content 69.15% reduced the germination of Phalaris canariensis and 

Lolium rigidum (Hanana et al., 2017). Likewise, P. oleracea germination was blocked at 0.5 

and 1 µl/mL by T. capitata EO (carvacrol 77.02%) in Petri dishes assays (Verdeguer, 2011). 

Our results are according to other reports, in which oregano EO with 60.42% of carvacrol 
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content exhibited a total inhibition of P. oleracea, L. multiflorum, and E. crus-galli (Ibáñez and 

Blázquez, 2017). Other species, such as S. rosmarinus, S. hortensis, T. vulgaris and their 

phenolic compound (carvacrol) also demonstrated potent herbicidal effect on weed 

germination and seedling growth of various plant species (Angelini et al., 2003). Our results 

indicate that T. capitata EO is an effective broad-spectrum herbicide, due to its main 

component, carvacrol, as suggested by all the previously mentioned studies. 

On the other hand, EO from E. camaldulensis was rich in p-cymene (38.83%) and 1,8-cineole 

(18.67%), being the most important constituents. Such results are coincident with EO 

composition of E. camaldulensis growing in Sardenia and in Turkey reported by Barra et al 

(2010) and Basak and Candan (2010) which found the same main compounds: p-cymene 

(42.7%) and 1,8-cineole (39.5%) for the EO from Sardenia, p-cymene (68.43%) and 1,8-

cineole (13.92%) for the EO from Turkey. The phytotoxic effects of E. camaldulensis has been 

reported by controlling totally or reducing weed seed germination of many species such as: 

Conyza canadensis, Parietaria judaica and C. album (Verdeguer, 2011) and by inhibiting or 

reducing seedling growth of Allium cepa, Spinacia oleracea, Lepidium sativa, Zea mays, 

Lycopersicon esculentum, Echinochloa crus-galli, Avena fatua and Rumex acetosella. 

(Moradshahi et al., 2003). E. camaldulensis rich in 1,8-cineol (32.85%) and p-cymene 

(23.95%) from Turkey was able to control Convolvulus arvensis, Melilotus offcinalis and 

Amaranthus retroflexus in in vitro trials (Üstüner et al., 2018). However, the single compounds, 

p-cymene and 1,8-cineole were not suggested to be responsible for the phytotoxic and 

herbicidal effects. Since, in in vitro conditions, p-cymene as a single compound affected 

weakly the germination of C. album, R. crispus and A. retroflexus. In like manner, in 

greenhouse conditions, it did not exert any significant phytotoxic effect against the same plant 

species (Kordali et al., 2008). In addition, the inhibition index of 1,8-cineole on either 

germination or seedling growth of silverleaf nightshade was lower than that of the extracted 

eucalyptus spp EOs (Zhang et al., 2012). Nevertheless, Verdeguer et al. (2009) suggested 

according to other authors (Angelini et al., 2003) that 1,8-cineol is not the principal responsible 

for the allelopathic effect from Eucalyptus spp. EO. It has been suggested that the bioactive 

mechanism of E. camaldulensis EO against some weeds consists in decreasing the mitotic 

index in the apical meristem of Allium cepa, affecting Hill's reaction in the isolated chloroplasts 

of Spinacia oleracea and reduced the peroxidase activity in Lepidium sativum, Echinochloa 

crus-galli, Avena fatua, Rumex acetosella, Zea mays and Lycopersicon esculentum 

(Moradshahi et al., 2003), such several modes of action could not be associated to a single 
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major compound, but may result from the synergistic effects of several bioactive minor 

compounds.  

M. piperita EO was constituted by menthol (51.81%) and menthone (20.52%) being the most 

abundant, followed by menthyl acetate (6.56%). These are the typical main components of 

peppermint EO that has been reported in previous investigations (Synowiec and Drozdek, 

2016; Brahmi et al., 2017; Desam et al., 2017). The allelopathic potential of the EO from 

peppermint has been previously confirmed by some researchers (Campiglia et al., 2007; Dudai 

et al., 1999). Nevertheless, Fatemi et al. (2014) and Kamatou et al. (2013) corroborated that 

the biological properties of peppermint depend on its chemical composition, especially on its 

major components, menthol and menthone. The high percentage of menthol in peppermint oil 

confers its effectiveness in inhibiting ryegrass (62%) and wild mustard (44%) seed germination 

(Campiglia et al., 2007). Besides, M piperita EO showed strong phytotoxic effect against 

germination and seedling growth of some noxious weeds (Saharkhiz et al., 2010). The main 

component responsible for the depolarization of the membrane was menthol, followed by 

menthone. Withal, Mucciarelli et al. (2001) demonstrated that both menthol and menthone 

significantly reduced mitochondrial respiration in root cells. Finally, the knowledge of the 

phytotoxic effects of peppermint oil against weeds could be important for its development as 

bioherbicide, of broad-spectrum activity or selective.  

Concerning S. chamaecyparissus EO, three components were the most abundant: 1,8-cineole 

(17.50%), viridiflorol (13.56%), and germacrene-D (12.60%), and 8-methylene-3-oxatricyclo 

[5,2,0,0(2,4)] nonane (12.24%).  In our sample 1,8-cineole was the main component, as 

reported by Ahuja et al. (2004), Grosso et al. (2010) and Salah-Fatnassi (2017). However, 

variation in the number and abundance of identified compounds have been described in S. 

chamaecyparissus EOs from different origins, like Egypt (Aboutabl et al., 1987), France 

(Vernin, 1991), Italy (Tognolini et al., 2006) or Algeria (Nouasri et al., 2015). Grosso et al. 

(2010) proposed that S. chamaecyparissus EO can be a promising alternative to synthetic 

herbicides due to its potential herbicidal activities against the leaf growth of L. perenne as weed 

species and scarce and moderate damage to crops, especially on L. sativa seeds. Furthermore, 

seed germination inhibition of P. oleracea in Petri dishes was more efficient with S. 

chamaecyparissus EO than with the synthetic herbicide Agrocide that can persist in the soil for 

54 days or Prowl with a half-life about 90 days (Grosso et al., 2010). Besides, S. 

chamaecyparissus EO rich in 1,8-cineole (24.8%) was able to control P. oleracea and Vicia 

sativa germination and reduced significantly shoot and root length. In addition, in greenhouse 
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conditions, Mercedes et al. (2020) demonstrated that S. chamaecyparissus EO was effective to 

control Erigeron bonariensis. The advantage of using volatile herbicides such as S. 

chamecyparissus EO is due to their low persistence in the field when compared with 

nonvolatile herbicides such as, for instance, Agrocide and Prowl (Grosso et al., 2010). 

Compared with previous studies, the composition of our analyzed E. torquata EO sample, with 

torquatone (39.76%) and 1,8-cineol (13.31 %) being the predominant compounds, was similar 

to the same species from Australia: torquatone (42.0% ), 1,8-cineole (11.2%) (Branska et al., 

2005), but, differed greatly from the EO of E. torquata collected from Iran, being 1,8-cineol 

the main compound (Sefidkon et al., 2010). Regarding E. ocidentalis EO composition, 1,8-

cineol (56.84%) was the most abundant compound along with α-pinene (24.3%), qualitative 

and quantitative differences were detected from the composition determined  in studies 

conducted in Iran, in which the main constituents were t-cadinol (17.20%) and 1,8-cineol 

(15.50%) (Bande-Borujeni et al., 2018). Lastly, there are few studies about the chemical 

composition of E. lesouefii EO.  Our findings revealed that E. lesouefii was the oil with the 

lowest content of monoterpene hydrocarbons (0.78%) as compared to the rest of studied EOs 

(Table 1). The major components were 1,8-cineole (53.42 %) and globulol (29.99%). This EO 

showed the modest phytotoxic effects compared to the rest of investigated EOs. However, it 

was able to totally inhibit the germination of A. fatua, one from the four weed species assayed. 

On the other hand, E. torquata suppressed the germination of A. retroflexus, P. oleracea and 

E. crus-galli by about 93, 91 and 33% respectively and reduced their seedlings length by about 

83, 85 and 55% respectively, whereas E. occidentalis was capable to restrain seed germination 

of A. rerflexus, P. oleracea and E. crus-galli by 84, 89 and 26% respectively and to reduce 

their seedling length by 36, 80 and 44% respectively. Finally, E. lesouefii inhibited A. 

retroflexus, P. oleracea and E. crus-galli germination by 95, 94 and 21%, respectively and 

reduced their seedlings length by 80, 78 and 54%, respectively. So, the herbicidal effects of 

those EOs should be evaluated in greenhouse and field conditions to verify their potential use 

as natural herbicides.  

Althoughnot much is known about the mechanism of the inhibitory activity on seedling growth 

of EOs and their compounds, yet inhibition of cell proliferation in root apical meristems has 

been discussed as one of the reasons for growth inhibition (Kaur et al., 2010). Golisz et al. 

(2008) noted that some allelochemicals can cause root cell death indirectly by facilitating the 

production of reactive oxygen species which may also act as signaling molecules leading to 

changes in hormonal balance during seed germination (Singh et al., 2005; Kaur et al., 2010; 
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Mutlu et al., 2011). Many studies have revealed that phenolic compounds and volatile 

monoterpenes can seriously interfere with metabolic processes during germination, seedling 

growth and later growth stages (Kaur et al., 2010; Scrivanti, 2010; Nourimand et al., 2011; 

Poonpaiboonpipat et al., 2013), leading to accumulation of lipid globules in the cytoplasm, 

reduction in some organelles, such as mitochondria, possibly due to inhibition of DNA and 

synthesis or disruption of membranes surrounding mitochondria and nuclei (Nishida et al., 

2005). Therefore, the secondary metabolites of plant species offer the organic potential to 

develop new herbicide formulations based on natural compounds, or as a guide towards 

identifying active components to obtain natural herbicides (Verdeguer et al., 2011). 

5  Conclusions  

This research shows that there is a potential to control weed germination and seedling growth 

using natural compounds, since results clearly demonstrated that the tested EOs, to a different 

extent, were significantly effective against assayed weeds, controlling completely their 

germination process or reducing it and inhibiting significantly their seedling growth. 

Among them, T. capitata was the most effective, exhibiting a very strong phytotoxic activity 

against all species tested. At lower doses, it blocked completely the seed germination of A. 

retroflexus, P. olecerea, A. fatua and E. crus-galli. This wide herbicidal action could be used 

for the development of broad-spectrum herbicides. The second most effective was M.  piperita 

EO, which was capable to control completely the germination of all the weeds studied except 

P. oleracea, causing a severe reduction of their seedling length. E. camaldulensis and S. 

chamaecyparissus are the following in effectiveness being able to totally block the germination 

of 2 of the 4 investigated weeds at different concentrations: A. retroflexus and A. fatua and 

reducing their seedling length.  

Finally, the three EOs from eucalyptus species which herbicidal activity was tested for the first 

time, E. torquata, E. occidentalis and E. lesouefii EOs, displayed lower phytotoxicity. They 

inhibit completely the germination of only the most sensitive weed A. fatua. They as well 

caused a significant decrease in seed germination and seedling growth of the rest of the weeds, 

suggesting a selective activity, so their possible use as selective bio-herbicides.  

So far, the results obtained make feasible to suggest EOs application as bio-herbicides in 

controlled environments such as horticulture and in greenhouses. Nevertheless, more trials in 

real conditions are needed to completely understand the real potential of these EOs as bio-
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herbicides. Persistence of EOs should be improved, these natural compounds being highly 

volatile and so less lasting in the environment.  Nonetheless, further field research is necessary 

to develop an appropriate technology of EO application to control weed plant species. 

  



Chapter 1 Amira Jouini 2020 
 

60 
 

References  

Aboutabl, E. A., Hammerschmidt, F. J., & Elazzouny, A. A. (1987). The essential oil of 

Santolina chamaecyparissus L. Sci. Pharm, 55, 267-271. 

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass 

spectrometry (Vol. 456). Carol Stream, IL: Allured publishing corporation. 

Ahuja, A., Bakshi, S. K., Sharma, S. K., Thappa, R. K., Agarwal, S. G., Kichlu, S. K., ... & 

Kaul, M. K. (2005). Production of volatile terpenes by proliferating shoots and 

micropropagated plants of Santolina chamaecyparissus L. (cotton lavender). Flavour 

and fragrance journal, 20(4), 403-406. 

Alam, S. B., Benyelles, N. G., Dib, M. E. A., Djabou, N., Tabti, L., Paolini, J., ... & Costa, J. 

(2014). Antifungal activity of essential oils of three aromatic plants from western 

Algeria against five fungal pathogens of tomato (Lycopersicon esculentum Mill). 

Journal of Applied Botany and Food Quality, 87. 

Angelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). 

Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. Journal 

of Agricultural and Food Chemistry, 51(21), 6158-6164. 

Arantes, S. M., Piçarra, A., Guerreiro, M., Salvador, C., Candeias, F., Caldeira, A. T., & 

Martins, M. R. (2019). Toxicological and pharmacological properties of essential oils 

of Calamintha nepeta, Origanum virens and Thymus mastichina of Alentejo (Portugal). 

Food and Chemical Toxicology, 133, 110747. 

Argyropoulos, E. I., Vokou, D., & Eleftherochorinos, I. (2008). In vitro evaluation of essential 

oils from Mediterranean aromatic plants of the Lamiaceae for weed control in tomato 

and cotton crops (No. RefW-14-58965). Aristotle University of Thessaloniki. 

Asplund, R. O. (1968). Monoterpenes: relationship between structure and inhibition of 

germination. Phytochemistry, 7(11), 1995-1997. 

Azirak, S., & Karaman, S. (2008). Allelopathic effect of some essential oils and components 

on germination of weed species. Acta Agriculturae Scandinavica Section B-Soil and 

Plant Science, 58(1), 88-92. 



Chapter 1 Amira Jouini 2020 
 

61 
 

Ballester-Costa, C., Sendra, E., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, 

M. (2013). Chemical composition and in vitro antibacterial properties of essential oils 

of four Thymus species from organic growth. Industrial Crops and Products, 50, 304-

311. 

Bande-Borujeni, S., Zandi-Sohani, N., & Ramezani, L. (2018). Chemical composition and 

bioactivity of essential oil from Eucalyptus occidentalis leaves against two stored 

product pests. International Journal of Tropical Insect Science, 38(3), 216-223. 

Baranska, M., Schulz, H., Reitzenstein, S., Uhlemann, U., Strehle, M. A., Krüger, H., ... & 

Popp, J. (2005). Vibrational spectroscopic studies to acquire a quality control method 

of Eucalyptus essential oils. Biopolymers: Original Research on Biomolecules, 78(5), 

237-248. 

Barney, J. N., Hay, A. G., & Weston, L. A. (2005). Isolation and characterization of allelopathic 

volatiles from mugwort (Artemisia vulgaris). Journal of chemical ecology, 31(2), 247-

265. 

Barra, A., Coroneo, V., Dessi, S., Cabras, P., & Angioni, A. (2010). Chemical variability, 

antifungal and antioxidant activity of Eucalyptus camaldulensis essential oil from 

Sardinia. Natural Product Communications, 5(2), 1934578X1000500232. 

Basak, S. S., & Candan, F. E. R. D. A. (2010). Chemical composition and in vitro antioxidant 

and antidiabetic activities of Eucalyptus camaldulensis Dehnh. essential oil. Journal of 

the Iranian Chemical Society, 7(1), 216-226. 

Batish, D. R., Setia, N., Singh, H. P., & Kohli, R. K. (2004). Phytotoxicity of lemon-scented 

eucalypt oil and its potential use as a bioherbicide. Crop Protection, 23(12), 1209-1214. 

Batish, D. R., Singh, H. P., Kohli, R. K., & Kaur, S. (2008). Eucalyptus essential oil as a natural 

pesticide. Forest ecology and management, 256(12), 2166-2174. 

Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: 

Asteraceae essential oils as natural herbicides. Weed research, 57(5), 342-353. 

Bounatirou, S., Smiti, S., Miguel, M. G., Faleiro, L., Rejeb, M. N., Neffati, M., ... & Pedro, L. 

G. (2007). Chemical composition, antioxidant and antibacterial activities of the 

essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food chemistry, 

105(1), 146-155. 



Chapter 1 Amira Jouini 2020 
 

62 
 

Brahmi, F., Khodir, M., Mohamed, C., & Pierre, D. (2017). Chemical composition and 

biological activities of Mentha species. Aromatic and Medicinal Plants-Back to Nature. 

Brooker, I., & Kleinig, D. A. (2004). Field Guide to Eucalypts: Northern Australia: Volume 

Three. Bloomings Books. 

Campiglia, E., Mancinelli, R., Cavalieri, A., & Caporali, F. (2007). Use of essential oils of 

cinnamon, lavender, and peppermint for weed control. Italian Journal of Agronomy, 

171-178. 

Chung, I. M., Ahn, J. K., & Yun, S. J. (2001). Assessment of allelopathic potential of barnyard 

grass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars. Crop protection, 

20(10), 921-928. 

Dayan, F. E., & Duke, S. O. (2010). Natural products for weed management in organic farming 

in the USA. Outlooks on Pest Management, 21(4), 156-160. 

Dayan, F. E., Duke, S. O., & Grossmann, K. (2010). Herbicides as probes in plant biology. 

Weed science, 58(3), 340-350. 

de Araújo-Filho, J. V., Ribeiro, W. L., André, W. P., Cavalcante, G. S., de CM Guerra, M., 

Muniz, C. R., ... & de Oliveira, L. M. (2018). Effects of Eucalyptus citriodora essential 

oil and its major component, citronellal, on Haemonchus contortus isolates susceptible 

and resistant to synthetic anthelmintics. Industrial Crops and Products, 124, 294-299. 

Desam, N. R., Al-Rajab, A. J., Sharma, M., Mylabathula, M. M., Gowkanapalli, R. R., & 

Albratty, M. (2019). Chemical constituents, in vitro antibacterial and antifungal activity 

of Mentha× Piperita L.(peppermint) essential oils. Journal of King Saud University-

Science, 31(4), 528-533. 

Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., & Lerner, H. R. (1999). 

Essential oils as allelochemicals and their potential use as bioherbicides. Journal of 

Chemical Ecology, 25(5), 1079-1089. 

Duke, S. O., Dayan, F. E., Rimando, A. M., Schrader, K. K., Aliotta, G., Oliva, A., & Romagni, 

J. G. (2002). Chemicals from nature for weed management. Weed science, 50(2), 138-

151. 



Chapter 1 Amira Jouini 2020 
 

63 
 

Fatemi, F., Dini, S., Rezaei, M. B., Dadkhah, A., Dabbagh, R., & Naij, S. (2014). The effect of 

γ-irradiation on the chemical composition and antioxidant activities of peppermint 

essential oil and extract. Journal of Essential Oil Research, 26(2), 97-104. 

Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential 

Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived 

Surfaces. Plants, 8(9), 300. 

Golisz, A., Sugano, M., Hiradate, S., & Fujii, Y. (2011). Microarray analysis of Arabidopsis 

plants in response to allelochemical L-DOPA. Planta, 233(2), 231-240. 

Green, C. (2002). Export development of essential oils and spices by Cambodia. CL Green 

Consultancy Services, Kent, UK. 

Grosso, C., Coelho, J. A., Urieta, J. S., Palavra, A. M., & Barroso, J. G. (2010). Herbicidal 

activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated 

by hydrodistillation and supercritical fluid extraction. Journal of agricultural and food 

chemistry, 58(20), 11007-11013. 

Grosso, C., Coelho, J. A., Urieta, J. S., Palavra, A. M., & Barroso, J. G. (2010). Herbicidal 

activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated 

by hydrodistillation and supercritical fluid extraction. Journal of agricultural and food 

chemistry, 58(20), 11007-11013. 

Hanana, M., Mansour, M. B., Algabr, M., Amri, I., Gargouri, S., Romane, A., ... & Hamrouni, 

L. (2017). Potential Use of Essential oils from Four Tunisian Species of Lamiaceae: 

Biological Alternative for Fungal and Weed Control. Records of Natural Products, 

11(3). 

Ibáñez, M. D., & Blázquez, M. A. (2017). Herbicidal value of essential oils from oregano-like 

flavour species. Food and Agricultural Immunology, 28(6), 1168-1180. 

Islam, F., Khatun, H., Khatun, M., Ali, S. M. M., & Khanam, J. A. (2014). Growth inhibition 

and apoptosis of Ehrlich ascites carcinoma cells by the methanol extract of Eucalyptus 

camaldulensis. Pharmaceutical biology, 52(3), 281-290. 

Juliano, L. M., Casimero, M. C., & Llewellyn, R. (2010). Multiple herbicide resistance in 

barnyardgrass (Echinochloa crus-galli) in direct-seeded rice in the Philippines. 

International Journal of Pest Management, 56(4), 299-307. 



Chapter 1 Amira Jouini 2020 
 

64 
 

Kamatou, G. P., Vermaak, I., Viljoen, A. M., & Lawrence, B. M. (2013). Menthol: a simple 

monoterpene with remarkable biological properties. Phytochemistry, 96, 15-25. 

Kaur, S., Singh, H. P., Mittal, S., Batish, D. R., & Kohli, R. K. (2010). Phytotoxic effects of 

volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. 

Industrial Crops and Products, 32(1), 54-61. 

Kohli, R. K., Batish, D. R., & Singh, H. P. (1998). Eucalypt oils for the control of parthenium 

(Parthenium hysterophorus L.). Crop protection, 17(2), 119-122. 

Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M., & Mete, E. (2008). Antifungal, 

phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum 

acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource 

Technology, 99(18), 8788-8795. 

Koroch, A., Ranarivelo, L., Behra, O., Juliani, H. R., & Simon, J. E. (2007). Quality attributes 

of ginger and cinnamon essential oils from Madagascar. Issues in new crops and new 

uses, 338-341. 

Lee, S. Y., Shim, K. C., & Kil, J. H. (2002). Phytotoxic effect of aqueous extracts and essential 

oils from southern marigold (Tagetes minuta). New Zealand Journal of Crop and 

Horticultural Science, 30(3), 161-169. 

López, M. L., Bonzani, N. E., & Zygadlo, J. A. (2008). Allelopathic potential of Tagetes minuta 

terpenes by a chemical, anatomical and phytotoxic approach. Biochemical Systematics 

and Ecology, 36(12), 882-890. 

Mahdavikia, F., & Saharkhiz, M. J. (2015). Phytotoxic activity of essential oil and water extract 

of peppermint (Mentha× piperita L. CV. Mitcham). Journal of Applied Research on 

Medicinal and Aromatic Plants, 2(4), 146-153. 

Mahdavikia, F., & Saharkhiz, M. J. (2015). Phytotoxic activity of essential oil and water extract 

of peppermint (Mentha× piperita L. CV. Mitcham). Journal of Applied Research on 

Medicinal and Aromatic Plants, 2(4), 146-153. 

Maisonneuve, S. A. (1975). European pharmacopoeia. Sainte-Ruffine, France, 3, 68-80. 

Malpassi, R. N. (2006). Herbicide effects on cuticle ultrastructure in Eleusine indica and 

Portulaca oleracea. Biocell, 30(1), 51-56. 



Chapter 1 Amira Jouini 2020 
 

65 
 

Maun, M. A., & Barrett, S. C. H. (1986). THE BIOLOGY OF CANADIAN WEEDS.: 77. 

Echinochloa crus-galli (L.) Beauv. Canadian journal of plant science, 66(3), 739-759. 

Mitich, L. W. (1997). Redroot pigweed (Amaranthus retroflexus). Weed technology, 11(1), 

199-202. 

Monaco, T. J., Weller, S. C., & Ashton, F. M. (2002). Weed science: principles and practices. 

John Wiley & Sons. 

Moradshahi, A., Ghadiri, H. O. S. S. E. I. N., & Ebrahimikia, F. A. R. Z. A. N. E. H. (2003). 

Allelopathic effects of crude volatile oil and aqueous extracts of Eucalyptus 

camaldulensis Dehnh. leaves on crops and weeds. Allelopathy Journal, 12(2), 189-195. 

Mucciarelli, M., Scannerini, S., Bertea, C., & Maffei, M. (2003). In vitro and in vivo 

peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal 

colonization. New Phytologist, 158(3), 579-591. 

Murphy, K. M., Dawson, J. C., & Jones, S. S. (2008). Relationship among phenotypic growth 

traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field 

Crops Research, 105(1-2), 107-115. 

Mutlu, S., Atici, Ö., Esim, N., & Mete, E. (2011). Essential oils of catmint (Nepeta meyeri 

Benth.) induce oxidative stress in early seedlings of various weed species. Acta 

Physiologiae Plantarum, 33(3), 943-951. 

Napoli, E. M., Curcuruto, G., & Ruberto, G. (2010). Screening of the essential oil composition 

of wild Sicilian rosemary. Biochemical Systematics and Ecology, 38(4), 659-670. 

Nishida, N., Tamotsu, S., Nagata, N., Saito, C., & Sakai, A. (2005). Allelopathic effects of 

volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation 

and DNA synthesis in the root apical meristem of Brassica campestris seedlings. 

Journal of chemical ecology, 31(5), 1187-1203. 

Norsworthy, J. K., & Smith, J. P. (2005). Tolerance of leafy greens to preemergence and 

postemergence herbicides. Weed technology, 19(3), 724-730. 

Nouasri, A., Dob, T., Krimats, S., Dahmane, D., Toumi, M., Lynda, L., ... & Racheme, F. 

(2015). Chemical composition, antioxidant and antimicrobial activities of the essential 

oil of Santolina chamaecyparissus L. of Algeria. J. Coast. Life Med, 3, 220-227. 



Chapter 1 Amira Jouini 2020 
 

66 
 

Nourimand, M., Mohsenzadeh, S., Teixeira da Silva, J. A., & Saharkhiz, M. J. (2011). 

Allelopathic potential of fennel (Foeniculum vulgare Mill.). Medicinal and Aromatic 

Plant Science and Biotechnology, 5(1), 54-57. 

Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43. 

Pirbalouti, A. G., Hashemi, M., & Ghahfarokhi, F. T. (2013). Essential oil and chemical 

compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. 

Industrial Crops and Products, 48, 43-48. 

Poonpaiboonpipat, T., Pangnakorn, U., Suvunnamek, U., Teerarak, M., Charoenying, P., & 

Laosinwattana, C. (2013). Phytotoxic effects of essential oil from Cymbopogon citratus 

and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Industrial 

Crops and Products, 41, 403-407. 

Putnam, A. R., & Duke, S. O. (1985). Weed allelopathy. Weed physiology. Vol. I. 

Reproduction and ecophysiology, 131-155. 

Ramezani, S., Saharkhiz, M. J., Ramezani, F., & Fotokian, M. H. (2008). Use of essential oils 

as bioherbicides. Journal of Essential oil-bearing Plants, 11(3), 319-327. 

Rolli, E., Marieschi, M., Maietti, S., Sacchetti, G., & Bruni, R. (2014). Comparative 

phytotoxicity of 25 essential oils on pre-and post-emergence development of Solanum 

lycopersicum L.: A multivariate approach. Industrial Crops and Products, 60, 280-290. 

Saadaoui, E., Ghazel, N., & Romdhane, C. B. (2014). Allelopathic Effects of Aqueous Extracts 

of Eucalyptus occidentalis, Acacia ampliceps and Prosopis juliflora on the Germination 

of Three Cultivated Species. Tunisian Journal of Plant Protection, 9(1), 11-16. 

Saharkhiz, M. J., Smaeili, S., & Merikhi, M. (2010). Essential oil analysis and phytotoxic 

activity of two ecotypes of Zataria multiflora Boiss. growing in Iran. Natural Product 

Research, 24(17), 1598-1609. 

Salah-Fatnassi, K. B. H., Hassayoun, F., Cheraif, I., Khan, S., Jannet, H. B., Hammami, M., ... 

& Harzallah-Skhiri, F. (2017). Chemical composition, antibacterial and antifungal 

activities of flowerhead and root essential oils of Santolina chamaecyparissus L., 

growing wild in Tunisia. Saudi journal of biological sciences, 24(4), 875-882. 



Chapter 1 Amira Jouini 2020 
 

67 
 

Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., ... & Jamoussi, B. 

(2013). Chemical composition weed killer and antifungal activities of Tunisian thyme 

(Thymus capitatus Hoff. et Link.) essential oils. Acta alimentaria, 42(3), 417-427. 

Scrivanti, L. R. (2010). Allelopathic potential of Bothriochloa laguroides var. laguroides (DC.) 

Herter (Poaceae: Andropogoneae). Flora-Morphology, Distribution, Functional 

Ecology of Plants, 205(5), 302-305. 

Scrivanti, L. R., Zunino, M. P., & Zygadlo, J. A. (2003). Tagetes minuta and Schinus areira 

essential oils as allelopathic agents. Biochemical systematics and ecology, 31(6), 563-

572. 

Sefidkon, F., Assareh, M. H., Abravesh, Z., & Barazandeh, M. M. (2010). Chemical 

composition of the essential oils of four cultivated Eucalyptus species in Iran as 

medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Iranian 

Journal of Pharmaceutical Research, (2), 135-140. 

Setia, N., Batish, D. R., Singh, H. P., & Kohli, R. K. (2007). Phytotoxicity of volatile oil from 

Eucalyptus citriodora against some weedy species. Journal of Environmental Biology, 

28(1), 63-66. 

Shafique, M., Khan, S. J., & Khan, N. H. (2011). Study of antioxidant and antimicrobial 

activity of sweet basil (Ocimum basilicum) essential oil. Pharmacologyonline, 1, 105-

111. 

Sharma, M. P., & Born, W. V. (1978). THE BIOLOGY OF CANADIAN WEEDS.: 27. 

AVENA FATUA L. Canadian Journal of Plant Science, 58(1), 141-157. 

Sharma, R., Rao, R., Kumar, S., Mahant, S., & Khatkar, S. (2019). Therapeutic potential of 

citronella essential oil: a review. Current drug discovery technologies, 16(4), 330-339. 

Singh, G., Maurya, S., Catalan, C., & De Lampasona, M. P. (2005). Studies on essential oils, 

Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger 

essential oil and its oleoresin. Flavour and fragrance journal, 20(1), 1-6. 

Singh, H. P., Batish, D. R., Kaur, S., Kohli, R. K., & Arora, K. (2006). Phytotoxicity of the 

volatile monoterpene citronellal against some weeds. Zeitschrift für Naturforschung C, 

61(5-6), 334-340. 



Chapter 1 Amira Jouini 2020 
 

68 
 

Singh, H. P., Batish, D. R., Setia, N., & Kohli, R. K. (2005). Herbicidal activity of volatile oils 

from Eucalyptus citriodora against Parthenium hysterophorus. Annals of applied 

biology, 146(1), 89-94. 

Synowiec, A., Możdżeń, K., Krajewska, A., Landi, M., & Araniti, F. (2019). Carum carvi L. 

essential oil: A promising candidate for botanical herbicide against Echinochloa crus-

galli (L.) P. Beauv. in maize cultivation. Industrial Crops and Products, 140, 111652. 

Tognolini, M., Barocelli, E., Ballabeni, V., Bruni, R., Bianchi, A., Chiavarini, M., & 

Impicciatore, M. (2006). Comparative screening of plant essential oils: 

phenylpropanoid moiety as basic core for antiplatelet activity. Life sciences, 78(13), 

1419-1432. 

Üstüner, T., Kordali, Ş., Bozhüyük, A. U., & Kesdek, M. (2018). Investigation of Pesticidal 

Activities of Essential Oil of Eucalyptus camaldulensis Dehn Tamer Üstüner, Şaban 

Kordali, Ayşe Usanmaz Bozhüyük and Memiş Kesdek. Records of Natural Products, 

12(6), 557. 

Vaughn, S. F., & Spencer, G. F. (1993). Volatile monoterpenes as potential parent structures 

for new herbicides. Weed Science, 41(1), 114-119. 

Verdeguer, M. (2011) Fitotoxicidad de aceites esenciales y extractos acuosos de plantas 

Mediterráneas para el control de arvenses. Doctoral Thesis, Universitat Politècnica de 

València, Valencia, Spain. 

Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, 

Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of 

Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362-369. 

Verdeguer, M., García-Rellán, D., Boira, H., Pérez, E., Gandolfo, S., & Blázquez, M. A. 

(2011). Herbicidal activity of Peumus boldus and Drimys winterii essential oils from 

Chile. Molecules, 16(1), 403-411. 

Vernin, G. (1991). Volatile constituents of the essential oil of Santolina chamaecyparissus L. 

Journal of Essential Oil Research, 3(1), 49-53. 

Vyvyan, J. R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. 

Tetrahedron, 58, 1631-1636. 



Chapter 1 Amira Jouini 2020 
 

69 
 

Weaver, S. E., & McWilliams, E. L. (1980). The Biology of Canadian Weeds.: 44. Amaranthus 

retroflexus L., A. powellii S. Wats. and A. hybridus L. Canadian Journal of Plant 

Science, 60(4), 1215-1234. 

Weston, L. A., & Duke, S. O. (2003). Weed and crop allelopathy. Critical Reviews in Plant 

Sciences, 22(3-4), 367-389. 

Wu, H., Zhang, M., & Yang, Z. (2019). Repellent activity screening of 12 essential oils against 

Aedes albopictus Skuse: Repellent liquid preparation of Mentha arvensis and Litsea 

cubeba oils and bioassay on hand skin. Industrial crops and products, 128, 464-470. 

Zaïri, A., Nouir, S., Zarrouk, A., Haddad, H., Khélifa, A., Achour, L., ... & Trabelsi, M. (2019). 

Chemical composition, Fatty acids profile and Biological properties of Thymus 

capitatus (L.) Hoffmanns, essential Oil. Scientific Reports, 9(1), 1-8. 

Zhang, J., An, M., Wu, H., Li Liu, D., & Stanton, R. (2012). Chemical composition of essential 

oils of four Eucalyptus species and their phytotoxicity on silverleaf nightshade 

(Solanum elaeagnifolium Cav.) in Australia. Plant growth regulation, 68(2), 231-237. 

 

 

 

 

 

 

 

 

 

 

  



 

70 
 

 

 

 

Chapter 2: 

 
Soil bioindicators and herbicidal activity as 

affected by EOs extracted from three different 

Eucalyptus species applied in pre and post 

emergence.

 

 

 

 

 

 

 

 

 
 

  



Chapter 2 Amira Jouini 2020 
 

71 
 

1 Introduction 

During the past years, an increasing demand for agricultural techniques respectful with the 

environment has led to reduce the reliance on synthetic pesticides and has encouraged the use 

of sustainable pest management techniques, according to the Directive 2009/128/EC, by which  

the European Union promoted integrated pest management to control pests, prioritizing 

techniques like cultural, mechanical or biological control methods, as an alternative to the use 

of synthetic pesticides (Durel et al., 2015). In this framework, sustainable weed control is one 

of the main challenges for integrated pest management, because of the weak presence of 

developed products on the market (Cordeau et al., 2016; Puig et al., 2018). Therefore, the 

investigation of new strategies based on the use of plant species able to produce and release 

phytotoxic compounds, could be an effective method to substitute synthetic herbicides 

(Benvenuti et al., 2017). Among these plants Eucalyptus spp. could offer a great opportunity 

(Singh et al., 2005; Zhao et al., 2007). 

Eucalyptus genus (family Myrtaceae) is native of Australia, but it grows over a wide range of 

soils and climates. For this great adaptability, it has been introduced into North and South 

Africa, Asia, and Southern Europe (Spain, Portugal, and Italy) (Ahmad et al., 2005; Tolosana 

et al., 2010). Eucalyptus plantations are easily established and fast growing and can be highly 

profitable for the commercial production of timber and fiber products (Zhao et al., 2007). In 

Italy, about 60 species of Eucalyptus trees are distributed all-around, of these Eucalyptus 

camaldulensis Dehnh. (River red gum) is the most common species (Campisi et al, 2002). In 

Sicily, three species have naturalized: E. camaldulensis, Eucalyptus occidentalis Endl. (flat 

topped yate) and Eucalyptus globulus Labill (tasmanian blue gum) (Badalamenti et al., 2018). 

Eucalytpus trees perform a variety of indirect services. They are tall and evergreen trees with 

fragrant foliage rich in oil glands, an excellent source of essential oils (EOs) which are a 

complex mixture of variety of monoterpenes and sesquiterpenes, and aromatic phenols. EOs 

from eucalyptus are among the most important commercially EOs in the world due to its wide 

range of biological properties, which could beexploitated for pest management (Green, 2002; 

Dhakad et al., 2018). In fact, several studies undertaken on Eucalyptus EOs showed their 

antimicrobial (Sartorelli et al., 2007; Gilles et al., 2010), antibacterial (Elaissi et al., 2011 and 

2012 a and b), antifungal (Tolba et al., 2015), antioxidant (Tavakoli et al., 2017; Ray et al., 

2018) and insecticidal (Batish et al., 2008; Filomeno et al., 2017) activities. 
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On the other hand, different species of the genus Eucalyptus have been the subject of several 

chemical, allelopathic and phytotoxic studies (Aragão et al., 2015; Batish et al., 2008; Kaur et 

al., 2012; Zhang et al., 2010, 2012, 2014). Setia et al. (2007) reported that volatile EOs from 

E. citriodora were phytotoxic to the germination and growth of several weed species, such as 

Bidens pilosa, Amaranthus viridis, Rumex nepalensis and Leucaena leucocephala. Similarly, 

Ramezani et al. (2009) reported that EOs from E. nicholii strongly inhibited the germination 

of Amaranthus retroflexus, Portulaca oleracea and Acroptilon repens. More specifically, E. 

globulus EO has been widely studied for its high content of allelochemicals and phytotoxic 

activity (Boulekbache-Makhlouf et al., 2013; Rassaeifar et al., 2013; Luís et al., 2016; Jaime 

and Ferrer, 2018). Also, E. camaldulensis EO inhibited the germination and growth of many 

weeds (Khan et al., 2009; Maaloul, 2019; Verdeguer et al., 2009 and 2020).  

To our knowledge, no studies have been carried out before about the phytotoxic activity of E. 

occidentalis EO, although the phytotoxic potential of its aqueous extracts has been investigated 

(Saadaoui et al., 2014). Moreover, EOs are generally regarded as safer compounds because of 

their biodegradable nature (Isman, 2000), hence, they may serve as an excellent ecofriendly 

tool for weed management. It is thus worthwhile to explore Eucalyptus EOs as potential novel 

herbicides (Zhang et al., 2010). Therefore, the first aim of this study was to test the 

effectiveness of three Eucalyptus EOs, from the species  E. camaldulensis E. occidentalis and 

E. globulus to control germination of  weeds from the soil weed seed bank (applied in pre-

emergence) and to control the spontaneous weeds emerged from the soil weed seed bank  

(applied in post-emergence). 

Moreover, their in-situ application may alter soil microbial communities and affect soil 

biological equilibrium due to their possible accumulation in soil layers, thus influencing 

nutrient cycling (Meite, 2018; Salazar Ledesma et al., 2018; Shaheen et al., 2017). 

Therefore, EOs impact on soil health is an emerging issue, since long term agricultural 

sustainability and productivity depends on maintaining favorable chemical, biological and 

physical features of the soil (Arias et al., 2005). As it is well known, soil is a heterogeneous 

mixture of organic and inorganic substances where chemical, biological and physical changes 

occur at the molecular level. So, a slight disturbance in its composition can result in a 

significant change in suitability for agricultural use. More specifically, soil microorganismsare 

the most important players within the ecosystem, for participating in the global nutrients cycle, 

decomposition of organic matter and release of nutrients, therefore they are crucial indicators 
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of soil health (Pankhurst et al., 1995; Bever, 2003). Thus, changes in microbial community 

size, community structure and activity can be used as early indicators of soil quality and health 

after being treated by Eucalyptus EOs (Acosta-Martínez et al., 2011; Brennan and Acosta-

Martinez, 2017; Van Der Heijden et al., 2008). 

Nevertheless, the second aim of the present study was to assess the potential of E. 

camaldulensis, E. occidentalis and E. globulus, on microbial biomass C, respiration and on the 

main microbial groups. 

2 Materials and methods 

2.1 Plant material and oil extraction  

Fresh leaves of E. camaldulensis, E. occidentalis and E. globulus were collected from an 

afforested area near Agrigento (Sicily, Italy) (37° 28′ 10″ N; 13° 40′ 04″ E) on April 2017, and 

were subjected to hydro-distillation for 5 h, using a Clevenger apparatus. The EO yield was 

0.21 %, 0.4%, and 0.4% (v/w) for E. camaldulensis, E. occidentalis and E. globulus, 

respectively. EOs were dried with anhydrous sodium sulphate and stored at 4 °C for further 

use. The yield percentage is expressed in (v/w): volume of oil obtained in milliliters, per grams 

of distilled plant x 100. 

2.2 Chemical analysis of essential oils Gas chromatography–mass spectrometry 

(GC/MS) 

An Agilent 6890 gas chromatograph instrument equipped with the mass spectrometer detector 

Agilent 5975 B was used for the chromatographic analyses. A fused silica capillary column 

SLB5MS (length 30 m, internal diameter 0.25 mm, 0.25 μm film thickness of silphenylene 

polymer equivalent in polarity to poly-5 % diphenyl / 95 % dimethyl siloxane phase) from 

Supelco, Italy, was the stationary phase. The injector in splitless mode had a temperature of 

250°C. Experimental chromatographic conditions were as follows: Helium carrier gas at 1 

ml/min; oven temperature program: 5 min isotherm at 40°C followed by a linear temperature 

increase of 4°C min-1 up to 200°C held for 2 min. MS scan conditions were: ionization 

technique, electronic impact (EI) at 70 eV, source temperature 230°C, interface temperature 

280°C, mass scan range 33-350 m/z. The sample injected 1/50 diluted in pentane was 1 ml. For 

quantitative results, each sample was analyzed in GC-FID 2.23. The instrumental conditions 

for the gas chromatograph were the same as above reported. The FID detector was set at 250°C 

and 1ml of neat oil was injected. The quantitative composition was obtained by peak area 
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component was considered equal to 1 and three replicates of each sample were made. Internal 

standard was undecane. Identification of the individual components was based (i) on 

comparison of their GC retention indices (RI), determined relatively to the retention, time of a 

series of n-alkanes with linear interpolation, with those of authentic compounds, (ii) on 

computer matching with mass spectral libraries (NIST 05) and (iii) comparison with spectra of 

authentic samples or literature data. 

2.3 Experimental set up  

2.3.1 Pre-Emergence herbicidal tests 

To test the potential effect of EOs on weeds from soil seed bank and on soil microorganisms, 

a short-term experiment in greenhouse conditions was set-up. The topsoil (0-5 cm) of an 

Inceptisol within the campus of Palermo University, never treated with synthetic herbicides, 

was used. Its main characteristics were sand 54.95 %, silt 18.85 %, clay 26.20 %, total organic 

carbon (TOC) 17.15 g kg-1, pH 7.1, electric conductivity (EC) 0.65 dS m-1 and total carbonates 

33.04 %. After sampling, the soil was air-dried and sieved at 1 cm. Subsequently, 500 g of this 

soil were placed in 20 aluminum trays (10 x 20 x 5 cm). The aliquots were brought up to 100 

% of its water holding capacity (WHC) by adding 150 mL of tap water, followed by 70 mL of 

tap water containing 8 mL L-1 of each extracted EO. The amount of EO added were 112 µl 100 

g-1 of soil for E. camaldulensis (EC), E. occidentalis (EO) and E. globulus (EG), respectively. 

Considering that, EOs are immiscible with water, fitoil (Xeda, Italy) which is a biological 

adjuvant with 40% soybean oil, was used as emulsifier at a concentration of 1 ml L-1. Two 

controls were used, the first with only water (Cw) and the second with water and Fitoil at the 

concentration of 0.1% (v/v) (Cf). Treatments were applied when the soils were bare before any 

weed seedlings sprouted. Four replicates per treatment were run, then placed in greenhouse for 

30 days. During this period, soil humidity was weekly adjusted up to 50% of WHC by 

replenishing the water loss. At the 30th day, sprouted plants were cut, counted, identified, 

weighted, and dried at 100 °C to determine the following parameters: number of sprouted plants 

from each identified species, fresh and dry weight. Simultaneously, soils aliquots were sampled 

from the trays to determine the main soil microbial groups, and 20 g of each soil were incubated 

as described above in 200 mL jars at constant temperature (25.0 ± 0.5°C), to measure soil 

respiration rate (CO2 emission) after 1, 3, 7, 10, 14, 18, 24 and 28 days of incubation. Water 

contents were added to maintain constant moisture after each gas sampling occasion. 
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2.3.2 Post-Emergence herbicidal test 

For the post-emergence herbicidal test, the same soil for the pre emergence test was used. The 

soil was air dried, sieved at 1 cm and then aliquots of 500 g were placed in 20 aluminum trays 

(10 × 20 x 5cm) and incubated under greenhouse conditions. During incubation, the water 

content was kept at 50% of its WHC by irrigating it with tap water. After 20 days and when 

weed seedlings have emerged and were in the phenological stage of third leaf emerged, each 

EO was applied by spraying it with a manual trigger sprayer on the plants, at the same 

concentration used for the pre-emergence experiment, 112 µl 100 g -1 of soil for EC, EG and 

EO. The two controls Cw and Cf were used as well. Plants were repeatedly treated by the same 

concentration of EOs (112 µl 100 g -1 of soil for EC, EG and EO) three times, in alternating 

days for one week. This experiment was carried out in quadruplicate as well. After 15 days 

from the last application of the treatments, plants and soils were sampled in identic way as done 

for the pre-emergence experiment to determine also the following plants parameters: number 

of grown plants from each identified species, fresh and dry weight, and the following soil 

biochemical parameters: microbial biomass carbon (MBC), extractable C, main microbial 

groups. Soil respiration was determined by incubating 20 g of soil from each tray in  200 mL 

jars at constant temperature (25.0 ± 0.5°C) and sampling the CO2 accumulated in the headspace 

of the jars at days 1, 3, 7, 10, 14, 18, 24 and 28 after incubation. Water contents were added to 

maintain constant moisture after each gas sampling occasion 

2.3.3 Soil analyses 

C mineralization was determined for both samples from postemergence and preemergence 

experiments, in the headspace of the incubated bottles as explained above by a gas 

chromatograph (Thermo Trace GC 90 GC, fitted with a thermal conductivity detected, Poropak 

Q column and using He as the carrier). After each CO2 sampling, flasks were ventilated with 

fresh air for 30 min and then sealed again, after possible replenishment of lost soil moisture by 

distilled water. The C mineralization rate, expressed as mg CO2–C kg-1 dry soil day-1, was fitted 

to the following first-order decay function: 

Mineralized C = C0 e
-kt 

where C0 is the biologically available C (mg kg -1) at time zero (i.e. the intercept value), k is 

the decay rate constant, and t is the sampling incubation time. The total CO2–C mineralized 
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over 28 days of incubation was calculated by the linear interpolation of two neighboring rates 

and the integration over time: 

Total C mineralized= ∑ [(𝑟𝑖 + 𝑟𝑖+1) ∗
d

2
+ ⋯ + (𝑟𝑛−1 +  𝑟𝑛) ∗

d

2
]

𝑛

𝑖
 

where i is the date of the first measurement of CO2–C rate, n is the last day of measurement of 

CO2–C rate, r is the CO2–C rate expressed as mg CO2–C kg-1 dry soil day-1, d is the number of 

days between the two consecutive CO2 rate measurements. 

The soil microbial community structure of both experiments was analyzed by direct extraction 

of ester-linked fatty acids (ELFAs) according to the Schutter and Dick (2000) method. Briefly, 

5 g of soil of each sample (fresh weight) were mixed with 15 ml 0.2 M KOH in methanol and 

0.5 ml of internal standard (C19:0). Then, they were incubated at 37 ºC and shaken with vortex 

every 10-15 minutes for one hour, thus allowing the release and subsequent methylation of 

ELFAs. The soil pH was then neutralized by the addition of 3 ml 1.0 M acetic acid and fatty 

acid methyl esters (FAMEs) were extracted with 10 ml hexane. After being centrifugated at 

1000-1500 rpm, the upper hexane layer was transferred to clean tubes and evaporated in a 

desiccating centrifuge. The dried samples were re-suspended in 200 μl hexane to be analyzed 

by a gas chromatograph (FOCUS™ GC, Thermo Scientific Inc., Waltham, MA USA) equipped 

with a flame ionization detector and a fused-silica capillary column Mega-10 (50 m x 0.32 mm 

I.D.; film thickness 0.25 μm). The GC temperature progression was initial isotherm at 115°C 

for 5 minutes, increase at a rate of 1.5 °C per minute from 115 to 230°C, and final isotherm at 

230°C for 2 minutes. Both injection port and detector were set up at 250°C and helium at 1 mL 

min-1 in a constant flow mode was used as carrier. The injected volume was 1 μL (50:1 split 

ratio). Nonadecanoic acid methyl ester (19:0; cat no. N-5377, Sigma-Aldrich Co.) was used as 

internal standard for the quantification of FAMEs. The identification of the peaks was done by 

comparing the retention times of each FAMEs to known standards (Supelco Bacterial Acid 

Methyl Esters mix cat no. 47080-U and Supelco 37 Component FAME mix cat no. 47885-U). 

Fatty acids with less than 14 carbon atoms or more than 20 carbon atoms were excluded as 

considered originating from non-microbial sources. The FAs i15:0, a15:0, 15:0, i16:0, i17:0, 

17:0, cy17:0,18:1ω7, cy19:0 were used to represent bacterial biomass while 18:2ω6,9 for 

fungal biomass. The FAs i15:0, a15:0, i16:0, i17:0 were chosen to represent Gram-positive 

bacteria (bac G+) while 16:1ω7, 18:1ω7, cy17:0 and cy19:0 for Gram-negative bacteria (bac 

G-) (Laudicina et al., 2011). The summed mass of all the extracted ELFAs (nmol fatty acid g− 

1 soil) was used as indicator of Microbial biomass (MB) for postemergence experiment. 
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2.3.4 Statistical analysis  

Trials were conducted in a randomized complete design with four replications. Plants data were 

evaluated for normality and homogeneity and then subjected to one-way ANOVA followed by 

Fisher's multiple comparison test (LSD intervals, Least Significant Difference, at P<0.05) for 

the separation of the means. 

3 Results 

3.1 Chemical composition of EOs 

A total of 94 compounds were identified in the three tested EOs: 38 in E. camaldulensis, 29 in 

E. occidentalis and 27 in E. globulus (Table 1). The qualitative and quantitative composition 

of the three species, is reported in Table 1, in which the compounds were clustered in 

monoterpene hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, and 

oxygenated sesquiterpenes. The highest quantities of oxygenated monoterpenes (about 89%) 

were found in E. occidentalis EO, being 1,8-cineol the main compound (about 83%). Likewise, 

the other two EOs were also rich in oxygenated monoterpenes and in addition 1,8-cineol was 

also the most abundant compound (67% and 52% for E. globulus and E. camaldulensis EOs, 

respectively). E. globulus EO was characterized by the highest amount of monoterpene 

hydrocarbons (about 23%) represented mainly by α-pinene (about 22%), followed by E. 

camaldulensis EO (22% of monoterpene hydrocarbons) represented by 15% of α-pinene and 

6% of p-cymene. E. occidentalis EO contained the lowest percentage of monoterpene 

hydrocarbons (about 10%), in which α-pinene accounted for 8%. Sesquiterpene hydrocarbons 

fraction was more abundant in E. camaldulensis EO than in the other EOs, with 

Aromadendrene (by about 3%) as the main compound of this fraction (Table 1).  
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Table 1. Chemical composition of essential oils from fresh and mature leaves of E. camaldulensis (EC), 

E. occidentalis (EO) and E. globulus (EG). KI, Kovats index.  

Compounds KI Concentrations (% peak area) 

  EC EO EG 

Monoterpene hydrocarbons  22 10.03 23.18 

α-Pinene                                                                                                                         939 15.03 8.46 21.79 

α-Fenchene + Camphene 953 0.18 0.06 0.17 

Thuja-2,4(10) -diene 957 0.11 0.05 0.10 

Verbenene 967 - - 0.05 

β-Pinene 980 0.21 0.18 0.27 

Decane 1000 0.05 0.02 - 

α-Phellanderene 1005 0.06 0.07 - 

p-Cymene 1026 6.08 1.10 0.73 

δ-Terpinene 1062 0.12 0.04 0.02 

p-Cymenene 1089 0.16 0.05 0.05 

Oxygenated Monoterpenes  74.3 89.26 75 

1,8-cineol (eucalyptol)                      1035 51.84 83.05 66.66 

Endo-fenchol 1112 0.31 0.08 0.14 

cis-Para-menth-2-en-1-ol 1121 0.04 - - 

α-Campholenal 1125 0.20 0.10 0.11 

trans-Pinocarveol 1139 13.00 2.59 5.53 

Exo-methylcamphenilol 1155 0.06 - - 

Pinocarvone 1164 6.09 1.35 1.61 

Borneol 1165 0.34 0.07 0.16 

Pinocamphone 1173 0.05 - - 

Terpinen-4-ol 1175 0.20 0.13 0.05 

p-cymen-8-ol 1183 0.09 - 0.01 

trans p-mentha 1,7,8 dien-2-ol 1185 0.33 0.42 0.16 

α-terpineol 1189 0.43 0.23 0.25 

Myrtenal+Myrtenol 1193 0.34 0.08 0.10 

Verbenone 1204 0.03 - - 

L-carveol 1210 0.05 - - 

trans-Carveol 1220 0.19 0.12 0.07 

cis-p-Mentha-1(7),8-dien-2-ol 1225 0.21 0.26 0.11 

d-Carvone 1234 0.05 0.05 - 

Thymol 1290 0.30 0.12 - 

3-p-Cymenol 1295 0.04 - - 

Sabynil acetate 1297 0.03 - - 

Carvacrol 1298 0.08 - - 

Exo 2-hydroxycineole acetate 1344 - 0.07 0.04 

α-Terpinyl acetate 1400 - 0.54 - 

Sesquiterpene hydrocarbons  3.40 0.65 0.97 

β-Caryophyllene 1418 0.04 0.31 - 

β-Gurjunene 1432 0.05 - 0.03 

Aromadendrene 1439 3.06 0.20 0.85 

α-Humulene 1450 - 0.14 - 

Allo-Aromadendrene 1461 0.18 - 0.09 

β-selinene 1490 0.07 - - 

Oxygenated sesquiterpenes  0.30 0.06 0.85 

Selina-3,7(11) -diene 1542 - - 0.72 

Spathulenol 1576 0.30 - - 

Viridiflorol 1590 - 0.06 0.13 

Total  100 100 100 
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3.2 Effects of pre-emergence treatment on plants  

The results of the number of sprouted plants and their biomass parameters (fresh and dry 

weight) of the pre-emergence treatments are reported in Table 2. The number of identified 

species is reported in Table 3. The identified species were Datura stramonium, Ecballium 

elaterium, Amaranthus retroflexus., Portulaca oleracea and Avena fatua.  

The three EOS tested did not show phytotoxic effects, as there were no significant differences 

in the number of sprouted plants among the different treatments with EOs and the controls 

(Table 2), only E. globulus EO reduced the number of sprouted plants significantly by 30% 

compared to Cw, but its number of plants was not significant different from Cf. Biomass plant 

parameters were not affected by any treatments. However, Cf declined significantly the dry 

weight compared to Cw. Regarding the number of identified species, it was halved by EG and 

EC (Table 2).  

Table 2. Number of sprouted plants, their biomass (fresh and dry weight) and number of identified 

species in soil treated in pre-emergence with E. camaldulensis (EC), E. occidentalis (EO) and E. 

globulus (EG) essential oils. 

Treatments Number of 

Sprouted plants  

Fresh 

weight 

(g) 

Dry weight 

(g) 
Number of 

identified 

species 

Cw 27 ± 4 a 2.05 ± 0.39 a 0.18 ± 0.03 a 4 

Cf 21 ± 1 ab 1.13 ± 0.22 a 0.08 ± 0.01 b 4 

EC 25 ± 2 ab 1.48 ± 0.21 a 0.10 ± 0.02 ab 2 

EO 23 ± 2 ab 1.67 ± 0.26 a 0.17 ± 0.03 a 4 

EG 19 ± 1 b 1.60 ± 0.23 a 0.12 ± 0.02 ab 2 
Reported results are means of four replicates ± standard error. Different letters in the same column indicate 

significant differences among treatments at P<0.05. 
 

On the other hand, E. camaldulensis and E. occidentalis EOs did not show any significant 

differences from the controls on all identified species. While E. globulus EO exhibit significant 

phytotoxic effects on A. retroflexus compared to Cf, and on P. oleracea and A. fatua compared 

to Cw (Table3). 
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Table 3. Number of weeds from each identified species emerged from soil treated in pre-emergence 

with E. camaldulensis (EC), E. occidentalis (EO) and E. globulus (EG) essential oils. 

Treatments Datura 

stramonium 
Ecballium 

elaterium 
Amaranthus 

retroflexus 
Portulaca 

oleracea 
Avena 

fatua 

Cw 2 ± 1 a 1 ± 1 a 0 ab 23 ± 4 a 1 ± 0 a 

Cf 4 ± 1 a 0 a 1 ± 0 a 15 ± 0 ab 1 ± 0 ab 

EC 5 ± 1 a 0 a 0 ab 20 ± 2 ab 0 ab 

EO 4 ± 0 a 0 a 1 ± 1 ab 17 ± 2 ab 1 ± 1 ab 

EG 5 ± 1 a 0 a 0 b 14 ± 1 b 0 b 
Reported results are means of four replicates ± standard error. Different letters in the same column indicate 

significant differences among treatments at P<0.05. 

3.3 Effects of post-emergence treatments in plants 

Table 4 shows the results of the number of weeds grown  and their biomass parameters (fresh 

and dry weight) of the post-emergence treatments (EC, EO, EG, EOs at 8µl mL-1, two controls: 

Cw, water and Cf, water + Fitoil). Results of the number of identified weed species are 

presented in Table 5 Identified species were Datura stramonium, Sonchus arvensis, 

Amaranthus retroflexus, Portulaca oleracea and Avena fatua. 

The highest number of grown plants was observed in Cf, which kept a number higher than all 

the other treatments, including the water control Cw. All used EOs significantly reduced the 

number of grown plants compared to Cf but no significant differences were observed between 

the treatments and Cw. No statistical differences were observed in plant biomass parameters 

between the treatments and the two controls (Table 4). 

Table 4. Effects of post-emergence treatments with 8 µL mL-1 of E. camaldulensis (EC), E. occidentalis 

(EO) and E. globulus (EG) EOs on the number of grown plants and their biomass parameters (fresh 

weight and dry weight) and number of identified species 

Treatments Number of 

grown plants 
Fresh weight 

(g) 
Dry weight 

(g) 
Number of 

identified species 

Cw 19 ± 3 ab 3.10 ± 0.32 a 0.23 ± 0.03 a 5 

Cf 27 ± 1 a 3.72 ± 0.32 a 0.28 ± 0.03 a 5 

EC 17 ± 2 b 2.49 ± 0.25 a 0.20 ± 0.02 a 3 

EO 17 ± 2 b 2.80 ± 0.49 a 0.21 ± 0.05 a 3 

EG 18 ± 1 b 3.29 ± 0.24 a 0.23 ± 0.02 a 3 
Reported results are means of four replicates ± standard error. Different letters in the same column indicate 

significant differences among treatments at P<0.05. 

 

D. stramonium was not present in the treatments with E. occidentalis and E. globulus, which 

showed significant differences with the controls (Table 5). The rest of the identified species 

were not affected by any EO (Table 5). 
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Table 5. Effects of post-emergence treatments with 8 µL mL-1 of E. camaldulensis (EC), E. occidentalis 

(EO) and E. globulus (EG) EOs on the number of the identified sprouted species: Datura stramonium, 

Sonchus arvensis, Amaranthus retroflexus, Portulaca oleracea. 

Treatments Datura 

Stramonium 
Sonchus 

arvensis 
Amaranthus 

retroflexus 
Portulaca 

oleracea 
Avena 

fatua 

Cw 2 ± 1 a 1 ± 0 a 1 ± 1 a 14 ± 3 a 1 ± 0 a 

Cf 2 ± 0 ab 2 ± 1 a 1 ± 0 a 22 ± 1 a 1 ± 1 a 

EC 1 ± 0 abc 0 a 0 a 15 ± 2 a 1 ± 0 a 

EO 0 c 1 ± 1 a 0 a 15 ± 2 a 1 ± 1 a 

EG 0 c 2 ± 1 a 0 a 16 ± 1 a 1 ± 0 a 
Reported results are means of four replicates ± standard error. Different letters in the same column indicate 

significant differences among treatments at P<0.05. 

 

3.4 Effects of EOs on soil biochemical properties and main microbial groups 

Carbon mineralization and the abundance of the main microbial groups were not affected by 

the application of EOs neither in pre-emergence (Table 6; Figure 1; Figure 2) nor in post-

emergence (Table7; Figure 3; Figure 4). However, in post-emergence although elfas did not 

show significant differences, the B+/B- ratio was decreased by the EOs compared to the 

controls. 

Table 6. Main microbial groups in nmol g-1 of soil treated in pre-emergence with E. camaldulensis 

(EC), E. occidentalis (EO) and E. globulus (EG) EOs 

 
 

 

 

 

Reported results are means of four replicates ± standard deviation. Reported results are means of four replicates 

± standard deviation. Different letters in the same column indicate that means are different at the 95% level of 

probability (p < 0.05) using Fisher’s LSD test 

Treatments Bacteria Fungi B+/B- F/B 

Cw 106.62 ± 8.82 a 34.48 ± 4.88 a 1.38 ± 0.01a 0.32 ± 0.02 a 

Cf 97.65 ± 7.24 a 46.94 ± 1.11 a 1.35 ± 0.09a 0.48 ± 0.02 a 

EC 96.91 ± 6.99 a 29.05 ± 2.90 a 1.34 ± 0.12a 0.30 ± 0.01 a 

EO 96.50 ± 2.12 a 36.90 ± 2.98 a 1.65 ± 0.21a 0.38 ±0.04 a 

EG 106.23 ± 4.56 a 39.14 ± 5.00 a 1.55 ± 0.01a 0.37 ± 0.03 a 
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Figure 1. Microbial respiration rate fitted to the exponential first order decay function (Mineralized C 

= C0 e-kt) and derived parameters (C0, biological available C; k, turnover constant rate; C0K, initial 

potential rate of C mineralization) determined on soil treated in pre-emergence with E. camaldulensis 

(EC), E. occidentalis (EO) and E. globulus (EG) essential oils. Reported results are means (n=4) 

 

 

Figure 2. Total Carbone mineralized of soil treated in pre-emergence with E. camaldulensis (EC), E. 

occidentalis (EO) and E. globulus (EG) EOs. Reported results are means (n=4). Bars indicate the 

standard deviations. 
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 Table 7. Main microbial groups and total elfas (ester linked fatty acids) in nmol g-1 of soil treated in 

post-emergence with E. camaldulensis (EC), E. occidentalis (EO) and E. globulus (EG) EOs 

Treatments Total elfas Bacteria Fungi B+/B- F/B 

Cw 240.98 ± 5.68 a 97.98 ± 5.69 a 23.04 ± 1.36 a 4.00 ± 0.62 a 0.24 ± 0.00 a 

Cf 175.01 ± 8.41 a 61.49 ± 9.30 a 22.37 ± 2.30 a 3.69 ± 0.50 a 0.37 ± 0.02 a 

EC 182.86 ± 2.63 a 72.5 ± 7.71 a 15.72 ± 1.61 a 2.00 ± 0.01 b 0.22 ± 0.00 a 

EO 183.87 ± 12.41 a 59.51 ± 12.12 a 18.02 ± 3.13 a 1.84 ± 0.05 b 0.31 ± 0.12 a 

EG 204.81 ± 30.50 a 84.08 ± 18.05 a 18.97 ± 2.87 a 1.97 ± 0.44 b 0.23 ± 0.01 a 

Reported results are means of four replicates ± standard deviation. Different letters in the same column indicate 

that means are different at the 95% level of probability (p < 0.05) using Fisher’s LSD test 
 

 

Figure 3. Microbial respiration rate fitted to the exponential first order decay function (Mineralized C 

= C0 e-kt) and derived parameters (C0, biological available C; k, turnover constant rate; C0K, initial 

potential rate of C mineralization) determined on soil treated in post-emergence with E. camaldulensis 

(EC), E. occidentalis (EO) and E. globulus (EG) EOs. Reported results are means (n=4) 
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Figure 4. Total Carbon mineralized of soil treated in post-emergence with E. camaldulensis (EC), E. 

occidentalis (EO) and E. globulus (EG) essential oils. Reported results are means (n=4). Bars indicate 

the standard deviations. 

4 Discussion  

4.1 Percentage Yield and chemical composition of EOs  

E. camaldulensis showed the lowest yield average 0.21% compared to the other two assayed 

EOs which provided the same value of the yield average 0.4%. Our tested species provided 

lesser yield than species reported in other studies: 0.71% was reported for E. camaldulensis EO 

from Spain (Verdeguer et al., 2009), 1.91% and 0.7% for E. globulus EO from Pakistan and 

Chile respectively (Ghaffar et al., 2015; Tampe et al., 2020), 1.1 % for E. occidentalis EO from 

Tunisia (Elaissi et al., 2010). The yields of Eucalyptus EOs from leaves depend on the species 

studied and vary from 0.10 to 9.0 % (Zangh et al., 2010). This fluctuation is due to tree age 

(De Andrade and Gomes, 2000), leaf age (Goguadze et al., 1986; Silvestre et al., 1997), altitude 

(Manian and Gopalakrishnan, 1995), season (Rafique and Chaudhary,1996), harvest time 

(Doran et al., 1996) and the different climatic conditions and the geographic parameters 

(Ghaffar et al., 2015). 

Regarding the chemical composition, 1,8-cineole was the most abundant compound in all EOs 

tested. It was present in E. camaldulensis EO by about 52%, followed by α-pinene 15%. The 

E. camaldulensis EO composition from different origins had been widely reported and two 

groups were distinguished: those that contain 1,8-cineole and α-pinene as the main compounds, 

including E. camaldulensis from Nigeria, Egypt, Iran, Tunisia and Senegal (Oyedeji et al., 

2000; Maximous, 2004; Sefidkon et al., 2006; Sebei et al., 2015; Ndiaye et al., 2017), 
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corresponding to our findings, and those that contain spathulenol, p-cymene and cryptone as 

main compounds and small quantities of 1,8-cineol, including E. camaldulensis from south 

Florida, Greece and Spain (Pappas and Sheppard-Hanger, 2000; Tsiri et al., 2003; Verdeguer 

et al., 2009). Similarly, EO from E. globulus was rich in 1,8-cineole (67%) and α-pinene (22%), 

such findings agreed with previous results of E. globulus EO composition from China, 

Pakistan, Iran, Chile and Ethiopia (Yang et al., 2004; Ghaffar et al., 2015; Rassaeifar et al., 

2013; Tampe et al., 2020 ; Fikremariam et al., 2019). Also 1,8-cineol (83%) was the most 

abundant compound along with α-pinene (8%) in EO from E. occidentalis. The EO 

composition of E. occidentalis from Iran was determined and the main constituents were t-

cadinol (17.20%) and 1,8-cineol (15.50%) (Bande-Borujeni et al., 2018). Overall, little 

differences were distinguished between the three extracted EOs chemical compositions. 

4.2 Herbicidal activity  

4.2.1  Pre-emergence treatments  

In our pre-emergence bioassay, the results obtained with fitoil applied at 1µl/ml, in which no 

significant differences were observed in the germination and the fresh weight, corroborate the 

work of other authors, such as Verdeguer (2011) and García (2013). However, a significant 

reduction of the dry weight occurred with Cf and this could be explained by the fact that we 

did not consider the roots in the weight of the plants, since plants were cut from the trays to let 

the soil intact.  

Since in this study treatments were applied on seeds from the soil seedbank and there were low 

presence in the used soil of the weeds D. stramonium, E. elaterium, A. retroflexus and A. fatua, 

solid conclusions about the results of the EOs against the germination of these weeds cannot 

be stablished. Only the results on P. olecerea, which was the most abundant weed on the trays 

are reliable. In previous assays, P. oleracea showed more resistance than other weeds to 

treatments to control its germination with EOs (Verdeguer, 2011). 

EOs herbicidal potential is closely related to the species on which they are applied. E. globulus 

EO reduced P. oleracea germination significantly only respect to Cw. Azizi and Fuji (2005) 

demonstrated the phytotoxic effect of E. globulus EO on P. olecerea and other weeds like A. 

retroflexus and A. fatua. Rassaeifar et al. (2013) confirmed the allelopathic effect of E. globulus 

EO on seed germination and seedling establishment of other weed species such as: Amaranthus 

blitoides and Cynodon dactylon.  
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At the applied dose 8 µl ml -1, E. globulus EO was only able to reduce the germination of P. 

oleracea with respect to Cw. However, greater effects could be expected with higher doses, 

since Ataollahi et al. (2014), explained that the higher was the concentration of E. globulus 

extracts, superior was the inhibition of germination and seedling growth of S. nigrum. 

 On the other hand, E. camaldulensis EO did not show any significant phytotoxic effects. In 

previous works, seed germination of P. oleracea was not inhibited by extract aqueous of E. 

camaldulensis (Dadkhah, 2013). Verdeguer et al. (2009) reported the phytotoxicity of E. 

camaldulensis EO which significantly decreased the germination of Amaranthus hybridus and 

P. oleracea in in vitro conditions. Dadkhah (2012) found that germination, growth, and 

photosynthesis of A. retroflexus were inhibited by aqueous extract of E. camaldulensis. In in 

vitro assays the phytotoxic effects of EOs against weed seeds germination are maximum 

because they are very close to the seeds they must control. In in vivo conditions EOs volatilize 

and are not permanently in contact with the seeds, as they are in a Petri dish. So, to find 

phytotoxic effects in in vivo conditions the doses must be increased and the EOs formulated 

adequately to avoid quick volatilization. 

To our knowledge, this is the first time that the herbicidal potential of E. occidentalis EO was 

tested in vivo. Although it contained the highest quantity of 1,8-cineol, it exhibited no effect at 

all. According to other authors (Angelini et al., 2003; Verdeguer et al., 2009), these findings 

suggest that 1,8-cineol is not the principal compound responsible for the allelopathic effect of 

Eucalyptus spp. EOs 

To sum up, the weak or no effectiveness of the tested EOs could be related to the used dose, in 

the way that higher doses need to be tested, and to the sandy texture of the used soil since del 

Moral and Muller (1970) explained that herbal inhibition could not occur in sand, and the 

optimal conditions for the allelopathic effects were found in poorly drained soils, poorly 

aerated, superficial and with a high colloidal content, since they favored the accumulation of 

allelochemicals. 

4.2.2  Post emergence treatment 

In the post-emergence bioassay, the highest values of the number of grown plants were 

recorded in the controls, the one with fitoil above all, that apparently exhibited a stimulatory 

effect, as it was reported in Verdeguer et al, (2020). 
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 The three sprayed EOs were able to reduce the number of grown plants significantly respect 

Cf (Table 4), so EOs could be counteracting that stimulatory effect of Cf. Therefore, the use of 

fitoil at the dose 1µl ml-1 could mask the activity of EOs. The reduction of the number of 

identified species confirm the inhibitory effect of the used EOs and could indicate that they 

were exercising a selective control over some species. Indeed, studies showed that the 

sensitivity of different species against allelopathic effects of EOs can be different (Dudai et al., 

1999, Verdeguer, 2011). In like manner, Chu et al. (2014) proved that in nature, the inhibitory 

effects relating to allelopathy in Eucalyptus urophylla plantation vary according to the present 

species.  

It is interesting to note that although treatments were not significant between them, E. globulus 

EO herbicidal activity against Phaseolus aureus, Hordeum vulgare, Avena sativa, Echinochloa 

crus-galli and D. stramonium was reported in Kohli et al. (1998) and Jaime et al. (2018). 

Likewise, E. globulus aqueous extract inhibited lettuce germination and radicle growth, 

displaying dose-dependent phytotoxic activity (Souto et al., 1994; Yamagushi et al., 2011; Puig 

et al., 2018). More specifically, α-pinene high content in E. globulus EO, suggest that it is 

related to its herbicidal effect. Indeed, many reports showed that α-pinene inhibited the root 

growth of the Zea mays (Scrivanti et al. 2003). De Martino et al. (2010) have demonstrated 

that α-pinene inhibited the germination and radical elongation of R. sativus and Lepidium 

sativum. Although the mode of action of EOs against germination still remains unclear, several 

studies showed that α-pinene and 1,8-cineole, the two main components of these EOs, act by 

increasing the lipid peroxidation, leading to a disruption of the membrane integrity, uncoupling 

the oxidative phosphorylation by acting as a classical protonophoric agent, and inhibiting the 

electron transfer chain (Dayan et al. 2000; Scrivanti et al., 2003). Other minor compounds may 

also contribute to the herbicidal effects with possible synergistic and antagonistic interactions 

among the components (Ben Ghnaya et al., 2013). 

Lastly, at the same concentration of 8µl ml -1, E. occidentalis EO sprayed in post-emergence 

showed weak herbicidal effect compared to no effect in the pre-emergency bioassay. It could 

be that this oil act better when it is sprayed on the plants than on seeds, or for the high 

susceptibility of D. stramonium to post-emergence herbicides as it is reported in Bowers and 

Baumn (1984) and Dobbels and Kapusta (1993). 
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4.2.3 Effects of EOs on soil biochemical properties and main microbial groups 

The absence of effects on soil microorganisms following the application of Eucalyptus EOs in 

pre-emergence treatment may be ascribed to the low amount of EO applied per unit weight of 

soil. Indeed, being this the first experiment, such results were used to individuate a starting 

dose to be used for the following experiments. 

Regarding the effect of essential EOs in post-emergence on soil microorganisms, although the 

amount of EOs applied was higher than that applied in pre-emergence since three application 

were done, the effect on soil microorganisms were scarce. Indeed, only the B+/B- ratio were 

decreased compared to the control. Such results may be ascribed to an increase of C availability 

by the addition of the assayed EOs (Fanin et al., 2019). 

5 Conclusions 

Overall, all EOs at the tested dose of 8 µl mL -1, showed a weak herbicidal effect or no effect 

at all. In pre-emergence assay, E. occidentalis and E. camaldulensis EOs were not able to 

inhibit the germination of any weed, while E. globulus showed a weak effect reducing P. 

oleracea germination, with significant differences with Cw but not with Cf and the other EOs. 

In post-emergence assay, E. camaldulensis lacked also of phytotoxicity and E. occidentalis and 

E. globulus showed weak herbicidal effects. On the other hand, such dose did not affect soil 

microorganisms. It is important to highlight that the weak herbicidal activity of the EOs tested 

could be due to the low applied concentration. More research is necessary, with higher 

concentrations and testing the EOs against different weed species to better understand their 

herbicidal potential and weed responses to their application. 
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1 Introduction 

One of the main challenges of the Agriculture of the 21st century is to increase crop production 

in a sustainable way, e.g. minimizing the use of pesticides (Villa et al. 2017). The widespread 

use of synthetic herbicides may lead to the accumulation of toxic residues in agricultural 

products and result in soil and groundwater pollution, development of weed resistance and 

adverse effects on human and animal health (Hatcher and Melander 2003; Hossard et al. 2017). 

Synthetic herbicides can be immobilized in soil by adsorption or binding to colloids (Kanissery 

et al. 2019) so affecting both soil organic matter turnover and microbial community 

composition (Haney et al. 2000; Lancaster et al. 2010; Ntalli et al. 2019). One potential 

fulfillment to the demand of alternative natural and safe products is the exploitation of 

renewable resources, such as medicinal and aromatic plants known for their allelopathic effects 

(Benvenuti et al. 2017; Della Pepa et al. 2019).  

A variety of allelochemicals, including plant secondary metabolites, such as essential oils 

(EOs), have been proved to inhibit seed germination and weed growth (Della Pepa et al. 2019). 

EOs are suitable in sustainable and organic agriculture for their rapid decomposition in 

environment and volatile characteristics (El Gawad et al. 2019). Their effectiveness in the 

control of weeds lies on the joint action of an array of different compounds present in them, 

whose quantity and persistence in the environment may be not enough to inhibit seed 

germination and plant growth on its own (Araniti et al. 2013; Xianfei et al. 2007). However, 

when the amount of one active compound is very high within a given EO, it is also true that 

this EO compound alone could be even effective (Araniti et al. 2017, Vasilakoglou et al. 2013, 

Verdeguer et al., 2020). In addition, since EOs usually have various modes of action, it is more 

complicated for weeds to easily develop resistance against them. (Blazquez 2014; Sadgrove 

and Jones 2015). In fact, they can suppress the weed growth by affecting biochemical and 

physiological processes such as reducing cell survival, chlorophyll content, RNA contents, acid 

soluble carbohydrates and water-soluble carbohydrate (Araniti et al. 2018; Zhang et al. 2010). 

Despite their allelopathic potential, many EOs are classified as “Generally Recognized as Safe” 

(GRAS) by the US Food and Drug Administration (FDA) (Tworkoski 2002). 

EOs extracted from Lamiaceae have been demonstrated in in vitro studies to be effective in 

inhibiting seed germination (Angelini et al. 2003). The most important species in this family, 

in terms of high economical value due to the great production of EOs, are Mentha x piperita L. 

(Peppermint) and Thymbra capitata L. (Cav) (synonym Thymus capitatus (L.) Hoffmanns. & 

Link) (Thyme) (Pirbalouti et al. 2013; XiaoHua et al. 2012). Mentha x piperita L. is a cultivated 
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natural hybrid of Mentha aquatica L. (water mint) and Mentha spicata L. (spearmint), both 

native species of the Mediterranean region. It is cultivated worldwide because its EO has 

antioxidant and antimicrobial activities and is used as eco-friendly pesticide (Gharib and 

Teixeira da Silva 2013; Okmen et al. 2017). Likewise, its phytotoxic activity has been 

demonstrated in several studies (Mahdavikia and Saharkhiz 2015; Rolli et al. 2014). 

The species of Thymus genus, native of Southern Europe, North Africa, and Asia (Lawrence 

and Tucker 2002; Morales 2002), are largely used as medicinal plants (Barros et al. 2010). Due 

to the presence of polyphenols, T. capitata EO is used in food preservation (Solomakos et al. 

2008) and has been demonstrated possessing antioxidant properties (Bozin et al. 2006). 

Moreover, the antimicrobial (Gagliano Candela et al. 2019; Küçükbay et al. 2014) and 

herbicidal activities (Verdeguer 2011; Verdeguer et al. 2020) of T. capitata EO have been 

verified. Santolina chamaecyparissus L. (cotton lavender) is an aromatic plant belonging to 

Asteraceae family. Its analgesic, bactericidal, fungicidal, vermifuge and vulnerary properties 

have been described (Cuellar et al. 1998). Furthermore, its herbicidal activity is well 

documented (Grosso et al. 2010). Although, as aforementioned, some studies have shown EOs 

extracted from M. piperita, T. capitata and S. chamaecyparissus may inhibit seed germination 

and weed growth, the majority of them have been conducted in in vitro conditions and against 

few weed species. Therefore, their selectivity towards some of the most widespread and 

troublesome weeds has yet to be investigated. On the other hand, even few studies are available 

about the effects of such EOs on soil microorganisms. Vokou and Liotiri (1999) found that 

EOs extracted from five different aromatic plants, not including those tested in this study, 

increased microbial respiration. Similarly, also EOs extracted from Lavandula stoechas L. 

increased microbial respiration as a result of bacteria growth stimulation (Vokou et al. 2002). 

Such results, however, are in contrast with those of Khare et al. (2019) who reported a decrease 

of microbial biomass and activity. Such few studies with even contrasting results demonstrated 

that, if EOs were deemed to be used in the field for an integrated pest management, further 

studies are needed to better elucidate their effects on soil microorganisms as playing pivotal 

roles in the soil organic matter turnover and nutrient cycling. In addition, not all EOs exert the 

same effect on weeds at a given concentration (Verdeguer et al. 2009; Verdeguer 2011). 

Therefore, this study has two main purposes: the first, to assess the effectiveness of M. piperita, 

T. capitata and S. chamaecyparissus EOs to control some of the most troublesome weeds of 

many crops around the world such as Avena fatua L. (wild oat), Echinochloa crus-galli (L.) P. 

Beauv. (barnyard grass), Portulaca oleracea L. (common purslane) and Amaranthus 

retroflexus L. (redroot pigweed) and, the second, to assess the effect of these EOs on microbial 
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biomass C and N, respiration and on the relative abundance of main microbial groups. Such 

soil biochemical properties were selected because an increase or decrease, or a shift of the main 

microbial groups are easy to interpret in terms of substrates availability and stress/disturbance 

for soil microorganisms (Anderson, 2003; Kaur et al. 2005; Laudicina et al. 2012). The 

hypotheses tested in this study were that T. capitata, M. piperita and S. chamaecyparissus EOs 

are able to i) inhibit or, at least, to reduce weeds growth, ii) negatively affect soil microbial 

biomass C and N and microbial activity, iii) increase the bacteria to fungi ratio as the former 

are abler than fungi in using available C source, iv) as an overall effect, determine a 

stress/disturbance conditions for soil microorganisms.  

2 Materials and Methods 

2.1 Essential oils  

Thymbra capitata (L.) Cav., Mentha × piperita L. and Santolina chamaecyparissus L.  EOs 

were purchased from Bordas (Sevilla, Spain), Sigma-Aldrich (Darmstadt, Germany) and 

Ecoaromuz (Ademuz, Valencia, Spain), respectively. They were analysed by gas 

chromatography (GC) coupled with mass spectrometry (Clarus 500 GC–MS from Perkinelmer 

inc.) equipped with the capillary column ZB-5 (30 m × 0.25 mm i.d. × 0.25 μm film thickness). 

The injection volume was 1 μL. The GC oven temperature was set at 60°C for 5 min, with 

increases of 3°C per min up to 180°C, then increases of 20°C per min up to 280°C which was 

maintained for 10 min. Helium was the carrier gas at a flux of 1.2 mL min-1. Injector and 

detector temperatures were set at 250°C. Ionization source temperature was set at 200°C and 

70 eV electron impact mode was employed. MS spectra were obtained by means of total ion 

scan mode (mass range m/z 45–500 uma). The total ion chromatograms and mass spectra were 

processed with the Turbomass 5.4 software (PerkinElmer Inc., UK). Retention indexes were 

determined by injection of C8–C32 n-alkanes standards under the same conditions. The EO 

components were identified by comparison of their mass spectra with those of computer library 

NIST MS Search 2.0 and available data in the literature. Identification of α-pinene, β-pinene, 

camphene, myrcene, limonene, camphor, terpinolene, β-thujone, borneol, terpinen-4-ol, bornyl 

acetate and linalool was confirmed by comparison of their experimental RI with those of the 

reference standards (Sigma-Aldrich). The quantification of the compounds found in each EO 

was performed by gas chromatography (Clarus 500GC, PerkinElmer Inc., UK) equipped with 

a flame ionization detector, the same column, and operating conditions as described above for 
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the GC-MS. The percentage composition of each EO was computed from the GC peak areas 

by means of the software Total Chrom 6.2 (Perkin Elmer Inc., Wellesley, PA, USA). 

2.2 Herbicidal activity of EOs against target weeds 

Seeds of Portulaca oleracea L., Amaranthus retroflexus L. and Avena fatua L. were purchased 

from Herbiseed (United Kingdom) in 2017, and seeds of Echinochloa crus-galli (L.) P. Beauv. 

were collected from rice fields in Sollana (Valencia, Spain) in September 2017. Seeds 

germination was achieved using a germination-growth chamber (Equitec, Spain). P. oleracea, 

A. retroflexus and E. crus-galli seeds were germinated using a 16h / 8h (light/dark) 

photoperiod, settling the temperatures at 30 ± 0.1°C and 20 ± 0.1°C for light and dark 

conditions, respectively. A. fatua seeds were germinated using 8 h (23.0 ± 0.1°C) / 16 h (18.0 

± 0.1°C) light/dark conditions. After germination (about one week), emerged seedlings were 

selected for uniformity in growth and individually transplanted in polypropylene square pots 

(8 x 8 x 7 cm) previously filled with a 2 cm drainage layer of perlite and a 5 cm layer of soil 

(220 g) collected in an organic citrus orchard (39º 37′ 24.8″ N, 0º 17′ 25.6″ W, Puzol, Valencia, 

Spain). Transplanted seedlings were then transferred in a glass greenhouse. Dates during which 

weeds were grown and greenhouse temperature and humidity conditions are reported in Table 

1. 

Table 1. Greenhouse temperature and relative humidity conditions during the experimental period. 

Species Date 
Temperature (°C) Relative Humidity (%) 

Mean Maximum Minimum Mean Maximum Minimum 

A. 

retroflexus 

30/08/2018-

28/09/2018 
26.8 38.0 20.0 71.3 89.0 31.14 

P. 

oleracea 

3/07/2018-

22/07/2018 
29.0 44.0 23.2 64.0 94.0 17.4 

A. fatua 
26/05/2018-

24/06/2018 
26.0 37.7 19.0 62.3 97.5 23.2 

E. crus-

galli 

16/07/2018-

25/07/2018 
28.8 44.0 23.2 64.3 92.0 17.4 

 

To each pot, 80 mL of water were added to bring the soil to 4/5 of its water holding capacity 

(WHC) and left overnight. The day after, 100% of soil WHC was reached by irrigation adding 

20 mL of an emulsion containing a given EO (Ogg 1986, Potter et al. 2008). EO water 

emulsions were prepared using 0.5 mL L-1 of the emulsifier Fitoil (Xeda, Italy). Based on the 

results of previous studies (García-Plasencia 2013; Verdeguer 2011, Verdeguer et al. 2020), 

three different emulsions were prepared for each EO at the following concentrations: 

- T. capitata: 4 (T1), 8 (T2), 12 (T3) µL mL-1; 
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- M. piperita: 12 (M1), 16 (M2), 20 (M3) µL mL-1; 

- S.  chamaecyparissus: 12 (S1), 16 (S2), 20 (S3) µL mL-1  

Also, two controls were established: the first irrigated only with water (Cw) and the second 

irrigated with water plus Fitoil at 0.5 mL L-1 (Cf). EOs treatments were applied when plants 

reached the phenological stage of 2-3 true leaves, corresponding to 12-13 BBCH (Biologische 

Bundesanstalt, Bundessortenamt and CHemical industry) scale for the monocotyledons A. 

fatua and E. crus-galli, and 3-4 true leaves, corresponding to 13-14 BBCH scale for the 

dicotyledons P. oleracea and A. retroflexus. Ten replicates per each treatment were performed. 

To evaluate any phytotoxic effect, photos of the plants were taken just after 24 and 48 h after 

the application of the treatments and then each 3 or 5 days for the whole experiment. At the 

end of the experiment, the entire plant from each pot was reclaimed by dipping in water the 

root apparatus to remove any soil residues and images of all plants were registered. The 

software Digimizer v.4.6.1 (MedCalc Software, Ostend, Belgium, 2005-2016) was used to 

process and analyse the images to determine total (TL), root (RL) and aerial part (APL) length 

of the plants and also the damage level (DL). The latter was assessed developing a damage 

scale for each species. The scale range was from 0 (no damage) to 4 (death of the plant) for the 

monocotyledons (A. fatua and E. crus-galli, Figures 1 and 2, respectively), and from 0 (no 

damage) to 3 (death of the plant) for the dicotyledons (P. oleracea and A. retroflexus; Figures 

3 and 4, respectively). Fresh (FW) and dry weights (at 60°C for 48 h; DW) were also 

determined. The efficacy of a given EO was considered as its capacity to kill the plants and 

was assessed by attributing the value 0 if the plant was alive and 100 if the plant was dead.  

 

Figure 8. Scale of damage level for the monocotyledon Avena fatua 
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Figure 9. Scale of damage level for the monocotyledon Echinochloa crus-galli 

 

 

Figure 10. Scale of damage level for the dicotyledon Portulaca oleracea 

 

Figure 11.Scale of damage level for the dicotyledon Amaranthus retroflexus 

2.3 Effects of EOs on soil microorganisms 

To test the effects of EOs on soil microorganisms, a short-term laboratory incubation 

experiment was set-up. The topsoil (0-15 cm) of a citrus [Citrus sinensis (L.) Osbeck] orchard 

never treated with synthetic herbicides was used. Its main characteristics were sand 64.9 %, 

clay 15.9 %, organic carbon 2.3 %, pH 7.0, electric conductivity 0.1 dS m-1 and total nitrogen 

1.2 g kg-1. After sampling, the soil was air-dried and sieved at 2 mm. Aliquots of 350 g of soil 

were placed in 1L plastic bottles and moistened with only water up to 2/3 of 50% of its WHC. 
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Then, a volume of EO emulsion was added thus reaching the 50% of its WHC. The amounts 

of EO added were 31 (T1), 62 (T2) and 93 μL 100 g-1 (T3) of soil for T. capitata treatment, and 

93, 123 and 153 μL 100 g-1 of soil for both M. piperita (M1, M2, M3) and S. chamaecyparissus 

(S1, S2, S3) treatments. Two controls were also prepared: the first with only water (Cw) and 

the second with water and fitoil (Cf) at a concentration of 0.05% (v/v) to moist the soil. Four 

replicates per treatment were run. After the EOs addition, plastic bottles were incubated in the 

dark, at constant temperature (25.0 ± 0.5°C), for 56 days. During the incubation, water loss 

was monitored by weighing the bottles and eventually watering them with only water to 

maintain the soil WHC at 50%. 

At days 7, 28 and 56, soils were analysed to determine some biochemical properties. The 

fumigation– extraction method (Vance et al. 1987) was used to assess microbial biomass C 

(MBC). Fulabilemigated and not fumigated soil sub-samples (15 g) were extracted with 0.5 M 

K2SO4, at a ratio of 1:4 (w/v). Total organic C in soil extracts was determined by hot digestion-

oxidation (sulphuric acid-dichromate mixture). MBC was estimated as the difference between 

the organic C held in fumigated extract and that in not fumigated extract, multiplied by a 

conversion factor (kEC) of 2.64. The K2SO4-extractable C of not fumigated soil was assumed 

as a proxy of the readily available C pool (Laudicina et al. 2013). Microbial biomass N (MBN) 

was calculated multiplying by 5 the difference between the ninhydrin reactive N determined 

on fumigated and not fumigated soil 0.5M K2SO4 extracts, respectively, according to 

(Joergensen and Brookes 1990). Concurrently, glass jars of 200 mL with 20 g of soil aliquots 

from each of the above treatment were incubated, in the dark and at 23-25°C, to determine 

microbial respiration. The CO2 accumulated in the headspace of the glass jars at days 1, 4, 7, 

10, 17, 23, 31, 39 and 53 was assessed by a gas chromatograph equipped with a thermal 

conductivity detector. At each CO2 determination, jars were ventilated with fresh air for 30 min 

and then sealed again, after possible replenishment of lost soil moisture by distilled water. The 

C mineralization rate, expressed as mg CO2–C kg-1 dry soil day-1, was fitted to the following 

first order decay function (Riffaldi et al. 1996): 

Mineralized C = C0 e
-kt  

where C0 is the biologically available C (mg kg 1) at time zero (i.e. the intercept value), k is the 

decay rate constant, and t is the sampling incubation day. The total CO2–C evolved over 53 

days of incubation was calculated by the linear interpolation of two neighbouring rates and the 

integration over time: 
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Total C mineralized = ∑ [(𝑟𝑖 + 𝑟𝑖+1) ∗
d

2
+ ⋯ + (𝑟𝑛−1 +  𝑟𝑛) ∗

d

2
]

𝑛

𝑖
 

where i is the date of the first measurement of CO2–C rate, n is the last day of measurement of 

CO2–C rate, r is the CO2–C rate expressed as mg CO2–C kg-1 dry soil day-1, and d is the number 

of days between the two consecutive CO2 rate measurements. The specific respiration rate, or 

metabolic quotient (qCO2), i.e. the amount of CO2 emitted per unit of MBC per time unit, was 

calculated as mg CO2–C g−1 MBC h−1. 

Fatty acids (FAs) were extracted from soils according to the modified Bligh and Dyer method 

(Wu et al. 2009). The fatty acid methyl esters (FAMEs) were detected by a gas chromatograph 

(FOCUS™ GC, Thermo Scientific Inc., Waltham, MA USA) equipped with a flame ionization 

detector and a fused-silica capillary column Mega-10 (50 m x 0.32 mm I.D.; film thickness 

0.25 μm). The GC temperature progression was initial isotherm at 115°C for 5 minutes, 

increases of 1.5 °C per min up to 230°C, and final isotherm at 230°C for 2 minutes. Both 

injection port and detector were set at 250°C and helium at 1 mL min-1 in a constant flow mode 

was used as carrier. The injected volume was 1 μL (50:1 split ratio). Nonadecanoic acid methyl 

ester (19:0; cat no. N-5377, Sigma-Aldrich Co.) was used as internal standard for the 

quantification of FAMEs. Peak identification was done by comparing the retention times of 

each FAMEs to known standards (Supelco Bacterial Acid Methyl Esters mix cat no. 47080-U 

and Supelco 37 Component FAME mix cat no. 47885-U). Fatty acids with less than 14 carbon 

atoms or more than 20 carbon atoms were excluded as considered originating from non-

microbial sources. The FAs i15:0, a15:0, 15:0, i16:0, i17:0, 17:0, cy17:0,18:1ω7, cy19:0 were 

used to represent bacterial biomass while 18:2ω6,9 for fungal biomass. The FAs i15:0, a15:0, 

i16:0, i17:0 were chosen to represent Gram-positive bacteria (bacG+) while 16:1ω7, 18:1ω7, 

cy17:0 and cy19:0 for Gram-negative bacteria (bacG-) (Laudicina et al. 2011). 

2.4 Statistical analysis 

Plant experiment was carried out with a completely randomized design with ten replicates. 

Biometric plant variables (TL, RL, APL, FW, DW) and DL data were evaluated for normality 

and variance homogeneity and then subjected to one-way ANOVA, followed by Fisher's 

multiple comparison test (LSD intervals, Least Significant Difference, at P<0.05) for the 

separation of the means in each species. A multifactor analysis of variance (ANOVA) was 

performed on efficacy including species and treatment as effects. 

Reported soil data, referred to oven-dry soil (105 °C) weight, are the arithmetic means of four 

replicates. Before performing parametric statistical analyses, normal distribution and variance 
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homogeneity of the data were checked by Kolmogorov–Smirnoff goodness-of-fit and Levene’s 

tests, respectively. Within each EO treatment, soil data were subjected to two-way ANOVA 

with EO dose (four levels; three EO doses and the control, Cf) and incubation day (three levels: 

days 7, 28 and 56) as factors. Within each EO type (T. capitata, M. piperita, S. 

chamaecyparissus), significant differences at P<0.05 among doses at the same incubation day 

and among incubation days at the same dose were assessed by the least significant difference 

(LSD) post-hoc test. All analyses were performed by Statgraphics Centurion version XVII. 

3 Results 

3.1 Essential oils composition 

A total of 91 compounds (Table 2) were identified in the three tested EOs: 17 in T. capitata, 

35 in M. piperita and 39 in S. chamaecyparissus. T. capitata EO was characterized mainly by 

a high content of oxygenated monoterpenes (74.0%) and monoterpene hydrocarbons (22.5%; 

Table 2). Among the oxygenated monoterpenes, carvacrol was the most abundant (72.3%; 

Table 2). Also M. piperita (95.3%) and S. chamaecyparissus (39.3%) EOs were particularly 

rich in oxygenated monoterpenes. Among them, menthol (51.8%) and menthone (20.5%) were 

the most abundant components in M. piperita, whereas 1,8-cineole (17.5%) in S. 

chamaecyparissus (Table 2). 

Table 2. Chemical composition of essential oils extracted by hydrodistillation from T. capitata (TC), 

M. piperita (MP) and S. chamaecyparissus (SC). KI, Kovats index. 
 

Compounds KI. TC MP SC 

Monoterpene hydrocarbons (%)  22.54 1.95 9.30 

Santolina triene 908 - - 0.13 

α-Thujene 930 0.89 0.01 - 

α-Pinene 938 0.74 0.28 0.85 

Thuja-2,4(10)-diene 947 - - - 

Camphene 951 - - 0.28 

Sabinene 975 - 0.14 0.17 

β-Pinene 978 0.29 0.43 3.98 

Myrcene 991 1.95 0.01 - 

α-Phellandrene 1004 0.16 - - 

γ-Terpinene 1016 7.77 0.13 1.18 

α-Terpinene 1016 1.61 - 0.69 

p-Cymene 1025 8.93 0.18 2.01 

Limonene 1029 0.20 0.73 - 

(Z)-β-Ocimene 1040 - 0.03 - 

iso-Terpinolene 1087 - 0.02 - 

Oxygenated monoterpenes (%)  73.98 95.35 39.32 

1,8-Cineole 1031 0.11 4.31 17.50 

trans-Pinocarveol 1037 - - 0.17 

Artemisia ketone 1062 - - 4.63 
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(Z)-Sabinene hydrate 1070 - 0.76 - 

Linalool 1097 0.77 0.09 0.42 

Camphor 1142 - - 4.03 

Menthone 1154 - 20.52 - 

(E)-Pinocamphone 1159 - - 0.18 

(Z)-Chrysanthemol 1162 - - 3.80 

Menthofuran 1163 - 5.21 - 

neo-Menthol 1165 - 3.12 - 

Borneol 1168 0.16 - 1.11 

(Z)-Pinocamphone 1172 - - 2.03 

Menthol 1175 - 51.81 - 

Terpinen-4-ol 1177 0.37 0.67 2.69 

iso-menthol 1182 - 0.60 - 

Neoisomenthol 1187 - 0.08 - 

α-Terpineol 1188 - 0.17 0.21 

Myrtenal 1192 - - 1.31 

Myrtenol 1193 - - 1.07 

Verbenone 1198 - - 0.16 

m-Cumenol 1230 - - - 

Pulegone 1236 - 0.83 - 

Piperitone 1251 - 0.32 - 

neo-Menthyl acetate 1273 - 0.16 - 

p-Menth-1-en-7-al 1279 - - - 

Menthyl acetate 1291 - 6.56 - 

Thymol 1292 0.27 - - 

Carvacrol 1300 72.30 - - 

iso-Menthyl acetate 1303 - 0.16 - 

Sesquiterpene hydrocarbons (%)  3.14 2.22 21.78 

α-Ylangene 1373 - - 0.08 

α-Bourbonene 1381 - 0.17 - 

β-Caryophyllene 1415 3.14 1.47 0.39 

β-Farnesene 1454 - 0.02 - 

allo-Aromadendrene 1457 - - 4.23 

trans-Cadina-1(6),4-diene 1473   0.36 

Germacrene-D 1477 - 0.42 12.60 

β-Selinene 1491 - 0.13 - 

Elixene 1492 - - 2.80 

γ-Cadinene 1509 - - 0.32 

δ-Cadinene 1519 - - 1.00 

Oxygenated sesquiterpenes (%)  0.14 0.00 15.64 

Bornyl acetate 1283 - - 0.08 

Spathulenol 1477 - - 1.42 

Caryophyllene oxide 1577 0.14 - 0.19 

Viridiflorol 1587 - - 13.56 

β-Oplopenone 1602 - - 0.16 

α-Cadinol 1649 - - 0.23 

Others (%)  0.00 0.14 12.91 

1-Butanol. 2-methyl-, propanoate 973 - - 0.20 

1-Octen-3-ol 980 - 0.02 - 

3-Octanol 995 - 0.07 - 

iso-Amyl 2-methyl butyrate 1101 - 0.02 - 

n-Amyl isovalerate 1106 - 0.04 0.48 

8-methylene-3-oxatricyclo 

[5,2,0,0(2,4)]nonane 
1117 - - 12.24 
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TOTAL IDENTIFIED (%)  99.80 99.66 98.95 
                    In bold, the most significant compounds for each EO   

 

3.2 Effect of EOs on target plants 

3.2.1 Effects of EOs on A. retroflexus 

The efficacy of EOs on A. retroflexus was the maximum for T. capitata and M. piperita EO at 

the two highest doses (Table 3). The only two treatments set up for S. chamaecyparissus EO 

(results of S1 treatment are not reported in Table 3 because of the lack of a sufficient number 

of plants to set up the treatment) also suggested an increase of the efficacy by increasing EO 

dose as efficacy increased from 60 for S2 to 90 for S3. However, regardless of EO type, alive 

plants showed plant biometric variables lower than those of the two controls (Table 3). The 

damage level (DL) was the maximum (3) for the two highest doses of T. capitata and M. 

piperita and close to them (2.8) for S3, also S2 presented higher DL than the two controls.  

 

Table 3. Effects of T. capitata (T1, T2 and T3 are 4, 8 and 12 µL mL-1 doses of application), M. piperita 

(M1, M2 and M3 are 12, 16 and 20 µL mL-1 doses of application), and S. chamaecyparissus (S1, S2 

and S3 are 12, 16 and 20 µL mL-1 doses of application) EOs applied against A. retroflexus on the 

efficacy (E), plant biometric variables [aerial part (APL), root (RL) and total length (TL), fresh (FW) 

and dry weights (DW)] and damage level (DL).  
 

Treatment/Dose E 

 

APL 

cm 

RL 

cm 

TL 

cm 

FW 

g 

DW 

g 

DL 

Cw 0 d 9.9 a 7.4 a 17.3 a 0.48 a 0.09 a 0.2 c 

Cf 0 d 11.4 a 6.5 a 17.9 a 0.46 a 0.08 a 0.1 c 

T1 30 c 5.9 b 2.6 b 8.5 b 0.32 ab 0.04 b 1.3 b 

T2 100 a 0 e 0 c 0 d 0 d 0 c 3.0 a 

T3 100 a 0 e 0 c 0 d 0 d 0 c 3.0 a 

M1 50 bc 5 bc 2.9 b 8.1 b 0.27 bc 0.04 b 1.6 b 

M2 100 a 0 e 0 c 0 d 0 d 0 c 3.0 a 

M3 100 a 0 e 0 c 0 d 0 d 0 c 3.0 a 

S1 - - - - - - - 

S2 60 b 2.9 cd 1.7 bc 4.5 bc 0.13 cd 0.02 bc 2.0 b 

S3 90 a 0.8  de 0.4 c 1.2 cd 0.03 d 0 c 2.8 a 
Reported results are means of ten replicates. Different letters along the column indicate significant differences 

among treatments at P<0.05 

3.2.2 Effects of EOs on P. oleracea  

Only T. capitata and M. piperita EOs were effective to control P. oleracea at the two highest 

doses, with the first EO the most effective. On the other hand, at the highest doses, all tested 

EOs affected the plant biometric variables (Table 4). The damage level followed the same 

pattern of efficacy so being significantly higher than the two controls only with the two highest 

doses of T. capitata and M. piperita EOs. 
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Table 4. Effects of T. capitata (T1, T2 and T3 are 4, 8 and 12 µL mL-1 dose of application), M. piperita 

(M1, M2 and M3 are 12, 16 and 20 µL mL-1 dose of application), and S. chamaecyparissus (S1, S2 and 

S3 are 12, 16 and 20 µL mL-1 dose of application) EOs applied against P. oleracea on the efficacy (E), 

plant biometric variables [aerial part (APL), root (RL) and total length (TL), fresh (FW) and dry weights 

(DW)] and damage level (DL).  

  

Treatment/Dose E 

 

APL 

cm 

RL 

cm 

TL 

cm 

FW 

g 

DW 

g 

DL 

Cw 0 c 9.3 a 10.9 a 19.1 a 1.6 a 0.20 a 0 c 

Cf 0 c 8.9 a 11.3 a 20.2 a 1.5 a 0.17 a 0 c 

T1 0 c 8.3 ab 8.5 abc 16.9 ab 1.3 ab 0.14 ab 0 c 

T2 40 b 4.9 cd 5.5 cd 10.4 de 0.7 c 0.07 c 1.2 b 

T3 90 a 0.7 e 0.7 e 1.3 f 0.1 d 0 e 2.7 a 

M1 30 bc 6.0 bc 6.1 bcd 12.1 bcd 1.0 bc 0.10 bc 0.9 bc 

M2 40 b 5.1 cd 5.3 cd 10.7 cde 0.7 c 0.08 c 1.2 b 

M3 40 b 3.0 de 2.8 de 5.7 ef 0.6 cd 0.05 ce 1.2 b 

S1 0 c 8.0 ab 8.4 abc 16.4 abc 1.6 ab 0.16 a 0 c 

S2 10 bc 7.9 ab 8.7 abc 16.7 abc 1.6 ab 0.16 a 0.3 bc 

S3 30 bc 5.8 bc 6.1 bcd 11.9 bcd 0.9 bc 0.08 bc 0.9 bc 
Reported results are means of ten replicates. Different letters along the column indicate significant differences 

among treatments at P<0.05. 

3.2.3 Effects of EOs on A. fatua 

This weed species was more effectively controlled by T. capitata and M. piperita EOs, with 

efficacy increasing with the dose. S. chamaecyparissus, although still significantly, was less 

effective but with S2 and S3 doses not differing between them (Table 5). It is to note that Cf 

stimulated fresh and dry plant weights.  

 

Table 5. Effects of T. capitata (T1, T2 and T3 are 4, 8 and 12 µL mL-1 dose of application), M. piperita 

(M1, M2 and M3 are 12, 16 and 20 µL mL-1 dose of application), and S. chamaecyparissus (S1, S2 and 

S3 are 12, 16 and 20 µL mL-1 dose of application) EOs applied against A. fatua on the efficacy (E), 

plant biometric variables [aerial part (APL), root (RL) and total length (TL), fresh (FW) and dry weights 

(DW)] and damage level (DL).  
 

Treatment/Dose E 

 

APL 

cm 

RL 

cm 

TL 

cm 

FW 

g 

DW 

g 

DL 

Cw 0 e 28.0 a 18.1 a 46.1 a 1.02 b 0.19 b 0.15 d 

Cf 0 e 28.5 a 17.7 a 46.2 a 1.45 a 0.23 a 0.15 d 

T1 80 abc 6.0 cd 3.3 c 10.4 cd 0.20 d 0.02 d 3.2 ab 

T2 90 ab 2.4 cd 1.8 c 4.2 cd 0.09 d 0.02 d 3.6 ab 

T3 100 a 0 d 0 c 0 d 0 d 0 d 4.0 a 

M1 70 bc 5.0 cd 4.1 c 9.2 cd 0.09 d 0 d 3.0 b 

M2 90 ab 1.4 d 0.5 c 1.9 cd 0.01 d 0 d 3.7 ab 

M3 100 a 0 d 0 c 0 d 0 d 0 d 4.0 a 

S1 30 d 16.3 b 9.3 b 25.6 b 0.57 c 0.09 b 1.4 c 

S2 60 c 8.8 c 3.7 c 12.6 c 0.16 d 0.02 d 2.9 b 

S3 60 c 5.0 cd 3.5 c 8.5 cd 0.06 d 0.01 d 3.1 ab 
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Reported results are means of ten replicates. Different letters along the column indicate significant differences 

among treatments at P<0.05. 

3.2.4 Effects of EOs on E. crus-galli  

T. capitata EO was the most effective to control this weed, reaching the full effectiveness at 

the highest dose. M. piperita EO showed similar performances to T2 and T3 at M2 and M3, 

respectively (Table 6). Otherwise, S. chamaecyparissus EO at the highest dose did not even 

reach half the effectiveness of the other two EOs. Also biometric variables of the remaining 

alive plants were affected by all EOs, being reduced strongly overall by T. capitata and M. 

piperita EOs at the highest doses and to a lesser extent by S. chamaecyparissus EO, although 

we have to consider that the doses the of T. capitata were the lowest. The damage level 

followed the same pattern of the biometric plant variables being on average higher in M. 

piperita followed by T. capitata and then by S. chamaecyparissus EO.  

 

Table 6. Effects of T. capitata (T1, T2 and T3 are 4, 8 and 12 µL mL-1 dose of application), M. piperita 

(M1, M2 and M3 are 12, 16 and 20 µL mL-1 dose of application), and S. chamaecyparissus (S1, S2 and 

S3 are 12, 16 and 20 µL mL-1 dose of application) EOs applied against E. crus-galli on the efficacy (E), 

plant biometric variables [aerial part (APL), root (RL) and total length (TL), fresh (FW) and dry weights 

(DW)] and damage level (DL). 
 

Treatment/Dose E 

 

APL 

cm 

RL 

cm 

TL 

cm 

FW 

g 

DW 

g 

DL 

Cw 0 d 28.6 a 20.8 a 49.5 a 1.20 a 0.15 a 0.10 f 

Cf 0 d 27.3 ab 19.9 a 47.2 a 0.90 ab 0.11 ab 0.10 f 

T1 10 cd 26.1 ab 17.2 ab 43.3 ab 0.91 ab 0.10 ab 0.9 e 

T2 50 b 14.6 cd 9.9 cd 24.5 cd 0.40 cde 0.06 bcde 2.4 bc 

T3 100 a 0 f 0 f 0 f 0 f 0 f 4.0 a 

M1 40 bc 10.4 cde 7.8 cde 18.5 cde 0.21 def 0.03 def 1.8 cd 

M2 50 b 6.1 def 5.6 def 11.7 def 0.16 ef 0.02 ef 3.7 ab 

M3 90 a 2.3 ef 2.5 ef 4.8 ef 0.21 f 0 f 4.0 a 

S1 10 cd 19.2 bc 13.1 bc 32.3 bc 0.70 bc 0.1 bc 0.8 de 

S2 30 bcd 17.2 c 12.3 bc 29.5 bc 0.54 cd 0.1 bcd 1.8 cd 

S3 40 bc 12.2 cd 6.9 cde 19.1 cde 0.32 def 0.04 cdef 2.3 bc 
Reported results are means of ten replicates. Different letters along the column indicate significant differences 

among treatments at P<0.05. 

3.2.5 Overall efficacy of EOs  

Among the investigated species A. retroflexus and A. fatua were the most sensitive targeted 

weed species to EOs being the efficacy for them greater than 50, whereas P. oleracea and E. 

crus-galli were the least sensitive with an EOs efficacy lower than 40 (Table 7). Fitoil treatment 

(Cf) did not exert any phytotoxic effect on weeds since no statistical differences were observed 

with water control (Cw). All EO treatments, at different extent, significantly provoked weeds 
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death, with however S. chamaecyparissus EO at the lowest dose causing the least damage 

(Table 7). T. capitata and M. piperita EOs were the most effective in killing the targeted weeds. 

Table 7. Overall essential oils efficacy per species and per treatment. Treatments were: T. capitata EO 

(T1, T2 and T3 are 4, 8 and 12 µL mL-1 doses of application), M. piperita EO (M1, M2 and M3 are 12, 

16 and 20 µL mL-1 doses of application) and S. chamaecyparissus EO (S1, S2 and S3 are 12, 16 and 20 

µL mL-1 doses of application).  
 

Species Efficacy 

Amaranthus retroflexus 64 a 

Portulaca oleracea 25 c 

Avena fatua 52 a 

Echinochloa crus-galli 38 b 

  

Treatment/Dose Efficacy 

Cw 0 g 

Cf 0 g 

T1 30 ef 

T2 70 bc 

T3 97 a 

M1 47 d 

M2 70 bc 

M3 82 ab 

S1 13 fg 

S2 40 de 

S3 55 cd 
Reported results are means of ten replicates. Different letters along the column indicate statistical differences 

among species or treatments at P < 0.05. 

3.3 Effects of EOs on soil biochemical properties and on the main microbial groups 

Regardless of incubation day, Cextr and MBN generally did not differ between Cw and Cf, while 

MBC and qCO2 were higher in Cf than Cw (Table 8). Consequently, in Cw the MBC/MBN 

ratio was more than twice in Cf. The two controls did not differ in respiration rate (Table 8). 

Regarding the main microbial groups, few differences occurred between the two controls: 

bacteria did not significantly differ, while fungi and gram-negative bacteria were greater in Cf 

than in Cw but only at day 56. The above results indicated that fitoil alone exerted some effects 

on the soil biochemical properties. Thus, to isolate the effects due to solely the added EOs, we 

decided to compare the results of the EOs treated soil with the Cf control.  
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Table 8. Biochemical parameters and main microbial groups determined in soil irrigated with water 

(Cw) or with fitoil emulsion (Cf, 0.5 mL L-1) during the incubation.  
 

Treatment Water Control (Cw) Fitoil Control (Cf) 

Sampling day 7 28 56 7 28 56 

Soil variables       

Cextr (mg kg-1) 136 Ba 152 Aa 69 Ab 171 Aa 164a A 81 Ab 

MBC (mg kg-1) 219 Ac 316 Ab 460 Aa 141 Bb 169 Bb 246 Ba 

MBN (mg kg-1) 14 Bb 21 Aab 28 Aa 20 Ab 28 Aab 36 Aa 

MBC/MBN 15.9 Aa 15.5 Aa 16.2 Aa 7.0 Ba 6.1 Ba 6.9 Ba 

Microbial respiration 

(mg CO2-C kg-1 d-1) 
15.5 Aa 11.9 Aab 8.7 Ab 14.3 Aa 11.4 Aab 8.8 Ab 

Metabolic quotient 

(qCO2; mg CO2-C g-1 MBC h-1) 
3.0 Ba 1.6 Bab 0.8 Bb 4.2 Aa 2.8 Aab 1.5 Ab 

Bacteria (nmol kg-1) 65.2 Aa 73.5 Ba 66.8 Ba 76.5 Aa 84.7 Ba 82.4 Ba 

Fungi (nmol kg-1) 13.8 Aa 18.6 Aa 2.3 Bb 13.3 Aa 18.8 Aa 17.3 Aa 

Bacteria gram positive (nmol kg-1) 20.7 Ac 36.4 Ab 53.1 Aa 32.0 Ab 43.5 Aa 46.7 Aa 

Bacteria gram negative (nmol kg-1) 44.4 Aa 37.1 Aa 13.7 Bb 44.5 Aa 41.2 Aa 35.7 Aa 

Fungi/Bacteria 0.21 Aa 0.25 Aa 0.04 Bb 0.17 Aa 0.22 Aa 0.23 Aa 

Bacteria Gram positive/ 

Gram negative 
0.48 Ab 1.00 Ab 4.14 Aa 0.72 Aa 1.06 Aa 1.28 Bb 

Capital letters indicate significant differences among the two controls at the same incubation day. Lower case 

letters indicate significant differences among incubation days within a given control. N = 4. 

3.3.1 Effects of T. capitata EO on soil biochemical properties and main microbial groups 

Extractable C was mainly affected by the interaction dose x day (77% of explained variance; 

Figure 5). During the incubation, it decreased in Cf and increased in soil treated with EO, 

especially with T1 and T2. MBC trend was opposite compared to Extractable C since 

throughout incubation it increased in Cf while decreased in EO treated soil at any dose. Dose 

and dose x day almost at the same extent affected MBC (Figure 5). MBC, regardless of 

incubation day, decreased with increasing EO dose (Figure 5). The interaction dose x day 

explained the greatest amount of variance of MBN as, during the incubation, it increased in Cf, 

did not change with T1 and T2 doses while decreased in T3 (Figure 5). Thus, except for T1 

and T2 doses, the trend of MBN was parallel to that of MBC. Cumulative CO2 was not affected 

by T. capitata EO at any dose (Figure 5); in fact, although at the beginning of the incubation, 

CO2 emission rate was higher in EO treated soils compared to Cf (and Cw), starting from day 

23 the rate was inverted (Figure 6). The biologically available C at time zero (C0), as well as 

the turnover constant rate, were higher in soil treated with EO than in Cf and proportionally 

increased with EO dose (Figure 6). The qCO2 was significantly affected by both factors (Table 

9); indeed, regardless of dose, it was the highest at day 7, whereas at any incubation day with 

the highest dose. Also, the main microbial groups were generally and similarly affected by both 

factors and their interaction. In comparison with Cf, T. capitata EO slightly decreased bacteria 



Chapter 3 Amira Jouini 2020 
 

115 
 

especially at 28 days of the incubation, while fungi strongly decreased with T3 (Table 9). As a 

consequence, the F/B ratio T1 and T2 at 56 days was much higher than Cf BacG+ decreased 

compared to Cf while BacG- did not differ so much, so that the ratio BacG+/BacG- at 28 days 

decreased compared to Cf.  

 

 

 
Figure 5. Biochemical soil variables determined at 7, 28 and 56 incubation days after Thymbra capitata 

L. (Cav) essential oil applied at different doses: Cf (0.03 µL Fitoil g-1 of soil and 0 µL EO g-1 of soil), 

T1 (0.03 µL Fitoil g-1 of soil and 0.31 µL EO g-1 of soil), T2 (0.03 µL Fitoil g-1 of soil and 0.67 µL EO 

g-1 of soil), and T3 (0.03 µL Fitoil g-1 of soil and 0.93 µL EO g-1 of soil). Reported results are means 

±standard deviations (n=4). The percentage of variance explained by incubation day, dose of essential 

oil and by their interaction are also reported. Capital letters indicate significant differences among doses 

within the same incubation day. Lower case letters indicate significant differences among incubation 

days within the same dose. *, ** and *** indicate significant at P<0.05, P<0.01 and P<0.001, NS, not 

significant. 
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Figure 6. Microbial respiration rate fitted to the exponential first order decay function (Mineralized C 

= C0 e-kt) and derived parameters (C0, biological available C; k, turnover constant rate; C0k, initial 

potential rate of C mineralization) determined on soil treated with Thymbra capitata L. (Cav.) essential 

oil. Treatments were: Cw (0 µL Fitoil g-1 of soil and 0 µL EO g-1 of soil), Cf (0.03 µL Fitoil g-1 of soil 

and 0 µL EO g-1 of soil), T1 (0.03 µL Fitoil g-1 of soil and 3.1 µL EO g-1 of soil), T2 (0.03 µL Fitoil g-
1 of soil and 0.67 µL EO g-1 of soil), and T3 (0.03 µL Fitoil g-1 of soil and 0.93 µL EO g-1 of soil). 

Reported results are means (n=4). Bars indicate the standard deviations. Lower case letters indicate 

significant differences among treatments.  
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Table 9. Metabolic quotient, main microbial groups (nmol g-1) and percentage of variance explained by 

incubation day, dose of essential oil and by their interaction. Treatments were: T. capitata (T1, T2 and 

T3 are 4, 8 and 12 µL mL-1 doses of application), M. piperita (M1, M2 and M3 are 12, 16 and 20 µL 

mL-1 doses of application) and S. chamaecyparissus (S1, S2 and S3 are 12, 16 and 20 µL mL-1 doses of 

application) essential oils; Cf, control with fitoil. 
 

Treatment/Dose Day qCO2 Bacteria Fungi BacG+ BacG- F/B BacG+/BacG- 

Cf 7 4.2 a 76 a 13 b 32 a 44 a 0.17 a 0.72 a 

Cf 28 2.8 b 85 a 19 a 43 a 41 a 0.22 a 1.06 a 

Cf 56 1.5 c 82 a 17 ab 47 a 36 b 0.23 a 1.28 a 

T1 7 2.4 Ca 67 Ba 15 Ab 30 ABa 37 Ba 0.22 Bb 0.81 Aa 

 28 1.8 Bb 69 Aa 16 Aab 30 Aa 39 Aa 0.23 Ab 0.77 Aab 

 56 1.2 Bc 16 Ab 20 Aa 6 Ab 9 Ab 1.31 Aa 0.71 Bb 

T2 7 3.2 Ba 55 Ba 12 Ba 24 Ba 31 Ba 0.22 Bb 0.91 Ab 

 28 1.8 Bb 64 Aa 13 Ba 27 Aa 36 Aa 0.20 Ab 0.74 Ab 

 56 0.9 Bc 32 Ab 13 ABa 19 Aa 13 Aa 1.04 Aa 1.55 Aa 

T3 7 5.2 Aa 97 Aa 3 Cb 35 Aa 61 Aa 0.03 Ba 0.57 Aa 

 28 2.7 Ab 46 Bb 4 Cb 20 Bb 27 Ba 0.08 Bab 0.74 Aa 

 56 2.9 Ab 60 Aab 9 Ba 20 Ab 40 Aa 0.18 Ba 0.69 Ba 

Day  59*** 16** 12* NS 22** 34** 14* 

Dose  22** 19** 72*** 27** 14* 19** 22** 

Day x Dose  14* 29** 6* 26** 24** 31** 29** 

M1 7 15.0 Aa  72 Aa 7 Bb 15 ABc 58 Aa 0.11 Bb 0.28 Ac 

 28 2.3 Bb 73 Aa 10 Bab 32 Ab 41 Ab 0.13 Cab 0.77 Ab 

 56 1.9 Ab 58 Aa 10 Ba 39 Aa 20 ABc 0.18 Bb 2.56 ABa 

M2 7 15.8 Aa 59 Aa 11 Ab 13 Bc 46 Aa 0.20 Aa 0.31 Ac 

 28 2.5 Bb 62 Ba 12 ABab 30 ABb 32 Bb 0.20 Ba 0.96 Ab 

 56 0.8 Bc 55 Aa 13 Ba 41 Aa 15 Bc 0.24 Ba 2.81 Aa 

M3 7 10.3 Ba 66 Aa 14 Ab 18 Ac 48 Aa 0.21 Ab 0.39 Ac 

 28 2.0 Bb 61 Bb 15 Ab 26 Bb 34 Bab 0.25 Ab 0.76 Ab 

 56 0.9 Bc 62 Aab 23 Aa 31 Aa 31 Ab 0.37 Aa 1.02 Ba 

Day  69*** NS 18** 51*** 53*** 24** 52*** 

Dose  7* 44*** 54*** 23** 5* 45*** 5* 

Day x Dose  22** NS 15* NS 12* 8* 25** 

S1 7 3.9 Ba 81 Aa 27 Aa 4 Bc 78 Aa 0.33 Aa 0.05 Bc 

 28 1.6 Cb 93 Aa 23 Ab 44 Ab 49 Ab  0.24 Ab 0.93 Ab 

 56 1.4 Ab 74 ABa 21 Ab 68 Aa 6 Bc 0.30 Aab 11.29 Aa 

S2 7 3.7 Ba 80 Ac 19 Ba 10 Ac 70 Aa 0.23 ABa 0.15 Ab 

 28 2.0 Bb 90 Ab 17 Bab 39 ABb 51 Ab 0.19 Bab 0.76 Ab 

 56 1.1 Ac 100 Aa 16 Bb 62 Aa 38 Ac 0.16 Bb 1.73 Ca 

S3 7 4.9 Aa 66 Ac 9 Ca 10 Ac 56 Ba 0.14 Ba 0.18 Ab 

 28 3.3 Ab 86 Aa 3 Cb 36 Bb 50 Aa 0.03 Cb 0.72 Ab 

 56 1.3 Ac 56 Bb 2 Cb 48 Aa 8 Bb 0.03 Cb 5.85 Ba 

Day  81*** 14* NS 72*** 61*** 5* 40*** 

Dose  7* 25** 82*** NS 6* 72*** 13* 

Day x Dose  NS 25** 10* 16** 28** 13* 44*** 

Capital letters indicate significant differences among doses at the same incubation day within a treatment. Lower 

case letters indicate significant differences among incubation days at the same dose within a treatment. Numbers 

in bold indicate significant differences at P<0.05 compared to the fitoil control (Cf) at a given day. BacG+ and 

BacG- indicate gram positive and negative bacteria, respectively. *, ** and *** indicate significant at P<0.05, 

P<0.01 and P<0.001, NS, not significant. N = 4. 

  



Chapter 3 Amira Jouini 2020 
 

118 
 

3.3.2 Effects of M. piperita EO on soil biochemical properties and main microbial groups 

Incubation day more than EO dose affected almost all the investigated soil biochemical 

parameters (Figure 7); however, at the end of incubation (56 days) changes among Cf and EO 

treatments were negligible. At day 7 extractable C increased with the EO dose, then strongly 

decreased whereas MBC increased with incubation day at the two highest doses (Figure 7). 

MBN pattern was affected mainly by the interaction of the two tested factors. Indeed, during 

the first 28 days of the incubation it was affected only by the lowest dose which decreased it 

compared to the control. At day 56, it was positively affected only by the intermediate dose. 

Compared to Cf, CO2 emission rates and, consequently, cumulative CO2 were higher in EO 

treated soils but not significantly different occurred among them (Figure 7 and 8). Also, the C0 

and k parameters were the highest in EO treated soils with no difference among dose. The qCO2 

was mainly affected by incubation day (69% of variance explained) as it decreased during the 

incubation at any EO dose (Table 9). Notably, the qCO2 at day 7 in EO treated soils was 2 to 3 

times higher than in Cf, then drastically decreased with negligible differences among EO 

treatments and control. Both bacteria and fungi slightly decreased compared to the control at 

any EO dose (Table 9). BacG+ decreased more consistently than BacG- after EO application, 

so that, at the beginning of the incubation, the ratio BacG+/BacG- was lower than the control. 

At day 56, however, all the microbial groups did not significantly differ from the control. 
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Figure 7. Biochemical soil variables determined at 7, 28 and 56 incubation days after Mentha x piperita 

L. essential oil applied at different concentrations: Cf (0.03 µL Fitoil g-1 of soil and 0 µL EO g-1 of soil), 

M1 (0.03 µL Fitoil g-1 of soil and 0.93 µL EO g-1 of soil), M2 (0.03 µL Fitoil g-1 of soil and 1.23 µL 

EO g-1 of soil), and M3 (0.03 µL Fitoil g-1 of soil and 1.54 µL EO g-1 of soil). Reported results are means 

± standard deviations (n=4). The percentage of variance explained by incubation day, dose of essential 

oil and by their interaction are also reported. Capital letters indicate significant differences among doses 

within the same incubation day. Lower case letters indicate significant differences among incubation 

days within the same dose. *, ** and *** indicate significant at P<0.05, P<0.01 and P<0.001, NS, not 

significant. 
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Figure 8. Microbial respiration rate fitted to the exponential first order decay function (Mineralized C 

= C0 e-kt) and derived parameters (C0, biological available C; k, turnover constant rate; C0K, initial 

potential rate of C mineralization) determined on soil treated with Mentha x piperita L. essential oil. 

Treatments were: Cw (0 µL Fitoil g-1 of soil and 0 µL EO g-1 of soil), Cf (0.03 µL Fitoil g-1 of soil and 

0 µL EO g-1 of soil), M1 (0.03 µL Fitoil g-1 of soil and 9.3 µL EO g-1 of soil), M2 (0.03 µL Fitoil g-1 of 

soil and 1.23 µL EO g-1 of soil), and M3 (0.03 µL Fitoil g-1 of soil and 1.54 µL EO g-1 of soil). Reported 

results are means (n=4). Bars indicate the standard deviations. Lower case letters indicate significant 

differences among treatments. 

3.3.3 Effects of S. chamaecyparissus EO on soil biochemical properties and main 

microbial groups 

As in M. piperita treatment, incubation day more than EO dose affected investigated soil 

parameters in S. chamaecyparissus treatment (Figure 9). Extractable C decreased in all 

treatments during the incubation (Figure 9) and at day 7 it increased with the EO dose. Then, 

it slumped with negligible differences among EO doses and Cf. MBC at day 7 and 28 was 

higher in EO treated soils than Cf, also decreasing with the dose, whereas at day 56 any 

difference among Cf and treated soils disappeared. The trend of MBN was peculiar since at 

day 7, in EO treated soil and regardless of dose, it was about three times higher than in Cf, at 

day 28 it slumped in the presence of EO down to Cf value with no difference among doses, 

whereas at day 56, compared to Cf, it decreased with increasing EO dose (Figure 9). 

Cumulative CO2 and other parameters related to C mineralization were higher in EO treated 

soils than Cf, with no significant difference among EO doses (Figures 9 and 10). The qCO2 
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was mainly affected by incubation day (Table 9) since at any EO dose it decreased during the 

incubation, with generally no difference among treatments and the control. Fungi were strongly 

affected by the EO dose, since during the whole incubation they were increased by S1 in 

comparison to Cf, whereas at days 28 and 56 were lowered by S3 (Table 9). Total bacteria were 

not much affected by EO, whereas at day 7 BacG+ were decreased and BacG- increased; 

consequently, the BacG+/BacG- ratio strongly increased during the incubation in EO treated 

soil (Table 9). 

 

Figure 9. Biochemical soil variables determined at 7, 28 and 56 incubation days after  Santolina 

chamaecyparissus L. essential oil applied at different concentrations: Cf (0.03 µL Fitoil g-1 of soil and 

0 µL EO g-1 of soil), S1 (0.03 µL Fitoil g-1 of soil and 0.93 µL EO g-1 of soil), S2 (0.03 µL Fitoil g-1 of 

soil and 1.23 µL EO g-1 of soil), and S3 (0.03 µL Fitoil g-1 of soil and 1.54 µL EO g-1 of soil). Reported 

results are means±standard deviations (n=4). The percentage of variance explained by incubation day, 

dose of essential oil and by their interaction are also reported. Capital letters indicate significant 

differences among doses within the same incubation day. Lower case letters indicate significant 

differences among incubation days within the same dose. *, ** and *** indicate significant at P<0.05, 

P<0.01 and P<0.001, NS, not significant. 
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Figure 10.  Microbial respiration rate fitted to the exponential first order decay function (Mineralized 

C = C0 e-kt) and derived parameters (C0, biological available C; k, turnover constant rate; C0K, initial 

potential rate of C mineralization) determined on soil treated with Santolina chamaecyparissus L. 

essential oil. Treatments were: Cw (0 µL Fitoil g-1 of soil and 0 µL EO g-1 of soil), Cf (0.03 µL Fitoil g-

1 of soil and 0 µL EO g-1 of soil), S1 (0.03 µL Fitoil g-1 of soil and 9.3 µL EO g-1 of soil), S2 (0.03 µL 

Fitoil g-1 of soil and 1.23 µL EO g-1 of soil), and S3 (0.03 µL Fitoil g-1 of soil and 1.54 µL EO g-1 of 

soil). Reported results are means (n=4). Bars indicate the standard deviations. Lower case letters 

indicate significant differences among treatments. 

4 Discussion 

4.1 Herbicidal activity of T. capitata, M. piperita and S. chamaecyparissus EOs 

To our knowledge this is the first study to test in vivo the herbicidal potential of T. capitata, M. 

piperita and S. chamaecyparissus EOs against the highly competitive and herbicide-resistant 

weeds A. retroflexus, P. oleracea, A. fatua and E. crus-galli (Heap 2020). The herbicidal 

activity of the tested EOs was dependent on the targeted weed species, the type of EOs (because 

of their different compositions) and the dose of application. The investigated target weed 

species showed an overall resistance to the tested EOs according to the following order: P. 

oleracea> E. crus-galli>A. fatua >A. retroflexus. The high ability of P. oleracea and E. crus-

galli in facing chemical-induced stress, adopting molecular, biochemical, and anatomical 

strategies, is largely reported (Juliano et al. 2010; Malpassi 2006; Norswothy and Riar et al. 

2013; Smith 2005). Anyway, such resistance is dependent on several ecological (e.g. genotype, 

ecotype) (Avila et al. 2005; Liu 2018) and non-ecological factors, such as the chemical used. 

For example, Norswothy and Smith (2005) reported that P. oleracea was significantly resistant 
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to the pre-emergence herbicide dimethenamid but extremely sensitive to pendimethalin. As 

well as synthetic herbicides, also natural compounds, such as terpenoids, could have a wide 

range of metabolic targets depending on their molecular structure (Chaimovitsh et al. 2010; 

Duke et al. 2004). For example, it has been reported that both the monoterpene citral and the 

sesquiterpene farnesene are able to alter the hormones balance and cell ultrastructure in 

seedlings of Arabidopsis thaliana (Araniti et al. 2016; Araniti et al. 2017; Graña et al. 2016), 

whereas the sesquiterpene trans-caryophyllene alter plant water status, photosystem II 

efficiency and may also inhibit the germination and growth of several weeds (Araniti et al. 

2017). Overall, these findings suggest that EOs, being a complex mixture of different 

molecules with different modes of action, could represent an interesting source for the 

development of new multi-targeted bioherbicides due to their wide and versatile chemical 

composition. Therefore, it is crucial to know the chemotype from which EOs are extracted as 

well as their main compounds which characterize them.  

In T. capitata EOs three chemotypes have been described: thymol, carvacrol, and 

thymol/carvacrol, each characterized by the predominance of the compounds (Bounatirou et 

al. 2007; Karousou et al. 2005; Miceli et al. 2006). The high abundance of carvacrol and the 

low amount of thymol, observed in the EO used in our experiments, suggest that it was a 

carvacrol chemotype. Similarly, the EO of S. chamaecyparissus, known to have several 

chemotypes particularly rich in camphor, borneol, 1,8-cineole and others (Garg et al. 2001), 

could be identified as an 1,8 cineole chemotype since this molecule was the most abundant. 

Finally, as largely reported (Brahmi et al. 2017; Synowiec et al. 2019), and confirmed by our 

analysis, the most abundant compounds characterizing the EO of M. piperita were menthol and 

menthone. 

Regarding the dose of application, the herbicidal activity of EOs increased by increasing the 

dose. T. capitata EO was the most effective, but also M. piperita EO displayed good potential 

as natural herbicide, except against P. oleracea. On the other hand, S. chamaecyparissus EO 

revealed more selectivity being very effective especially against A. retroflexus. Therefore, 

although the latter EO was not as much potent as T. capitata or M. piperita, it could be 

interesting for the development of selective natural herbicides. With regard to the latter issue, 

it is important to highlight that tested EOs could be an important and sustainable tool for weed 

management, not only by killing target weeds but also reducing their ability to compete with 

the crops, as they were capable to reduce their vigour and growth. Many in vitro studies have 

shown that T. capitata EO was able to inhibit seed germination of several noxious weeds 

(García-Plasencia 2013; Hanana et al. 2017; Verdeguer 2011), such as Erigeron bonariensis, 
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one of the most important cosmopolite weeds especially in no-tilled soils with problems of 

resistance to glyphosate (Verdeguer et al. 2020). In addtiton, T. capitata has been described as 

an allelopathic species capable to reduce both germination and growth of neighbouring species 

(Katz et al. 1987). Such allelopathic activity has been ascribed to carvacrol, the main EO 

constituent (Katz et al. 1987, Saoud et al. 2013). Phytotoxicity of pure carvacrol stood out its 

extremely high herbicidal activity on Amaranthus retroflexus and Chenopodium album, which 

was greater than the commercial herbicide 2,4-D isooctyl ester (Kordali et al. 2008). Moreover, 

de Assis Alves et al. (2018) demonstrated that carvacrol evidenced a genotoxic effect, higher 

than glyphosate, altering the cell cycle in Lactuca sativa and Sorghum bicolor meristematic 

cells. 

With regard to the herbicidal activity of M. piperita EO, previous studies confirmed the 

herbicidal potential of its EO against field bindweed (Convolvulus arvensis L.), purslane 

(Portulaca oleracea L.) and jungle rice (Echinochloa colonum L.), also suggesting its possible 

use in the formulation of natural herbicides (Mahdavikia and Saharkhiz, 2015). However, as 

M. piperita EO was phytotoxic for the crops on which was tested, it could be developed as non-

selective broad-spectrum herbicide. Campiglia et al. (2007), conducting a pot experiment, 

found that M. piperita EO was effective in controlling the germination of A. retroflexus, Sinapis 

arvensis, and Lolium spp. These results are consistent with this work findings, confirming that 

A. retroflexus is a sensitive species to M. piperita EO. The herbicidal activity of M. piperita 

EO is to be ascribed to its ability to interfere with root plasma membrane. Indeed, Maffei et al. 

(2001) have demonstrated that menthol and menthone, the main compounds held in M. piperita 

EO, are responsible for the depolarization of the membrane potential on cucumber roots. In 

addition, Mucciarelli et al. (2001) demonstrated that both menthol and menthone were 

significantly reducing mitochondrial respiration in root cells. About the herbicidal potential of 

S. chamaecyparissus EO, few studies are available, many of which have been performed in in 

vitro conditions. Such studies support the selectivity of this EO depending on the species 

against it is applied. S. chamaecyparissus EO, rich in 1,8-cineole (24.8%), was tested on seed 

germination and root and shoot growth of four crops (Zea mays, Triticum durum, Pisum 

sativum, and Lactuca sativa) and two weeds (Portulaca oleracea and Vicia sativa). The 

germination of both weeds, wheat and lettuce was inhibited while it was less harmful for sweet 

corn and dwarf pea. In addition, it was more active on P. oleracea, reducing its shoot and root 

length, than on the crops (Grosso et al. 2010). On the other hand, S. chamaecyparissus EO 

from an industrial sample, with 1,8‐cineole (9.8%) and 8‐methylene‐3‐oxatricyclo [5.2.0.02,4] 

nonane (8.2%) as main compounds, showed a moderate phytotoxicity against the leaf growth 
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of L. perenne, but did not show negative effects against L. sativa seeds (De Elguea-Culebras et 

al. 2018). 

4.2 Changes in soil biochemical properties and in main microbial groups following the 

addition of EOs 

Due to the scarcity of studies dealing with the effects of tested EOs on soil biochemical 

properties and on the main microbial groups, the discussion of these results was carried out in 

comparison with occurring in vitro studies, when available, aimed at assessing the effects of a 

single or few key constituents held within the EOs.  

4.2.1 T. capitata EO effects  

The addition of T. capitata EO stimulated soil microorganisms but in a different way, 

depending on the dose and incubation day. The increase of MBC, MBN and respiration, and 

the decrease of extractable C occurred immediately after the addition of the EO at the lowest 

dose, suggesting that the available C substrates already in soil, plus those added by EO 

treatment, were mainly immobilised by soil microorganisms and mineralised. On the contrary, 

by increasing the EO dose, at the beginning of incubation the stimulation concerned only 

microbial respiration. Towards the end of the incubation, the stimulation effects induced by the 

two lowest T. capitata EO doses vanished, whereas the highest dose decreased both MBC and 

activity. These results suggested that T. capitata EO at the highest dose killed part of soil 

microorganisms (MBC and MBN decreased) and that the surviving ones were not able to use 

the cytoplasmic materials released outside as demonstrated by the increase of extractable C and 

the low rate of respiration compared to the control. Overall, such results suggested that T. 

capitata EO at the highest concentration may be deleterious for soil microorganisms and that 

such negative effects occur after about two months. Such findings agreed with those of Vokou 

and Liotiri (1999) who reported T. capitata EO can be used as carbon source by soil 

microorganisms within one month since its supply. On the other hand, however, the reduction 

of microbial biomass agreed with Monokrousos et al. (2004) and Papatheodorou et al. (2002) 

who showed that the presence of T. capitata plants strongly interfered with soil microbial 

biomass and activity. 

The biocidal effect of T. capitata EO may be attributed to its main component, the carvacrol, 

that is able to permeate and depolarize the cytoplasmic membrane of microorganisms, so 

releasing outside the cell membrane associated materials (Helander et al. 1998; Xu et al. 2008). 

At the beginning of incubation, the changes in MBC and respiration, on average, decreased the 
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qCO2 at the two lowest doses while increased it at the highest one towards the end of 

incubation. Such changes may be attributed the increase of microbial biomass and the decrease 

of C substrates availability and the BacG+/BacG- ratio at the two lowest doses, whereas to the 

increase of C substrates availability and to the decrease of microbial biomass at the highest 

dose (Nannipieri et al. 2003; Vittori Antisari et al. 2016; Wardle and Ghani, 2018). 

4.2.2 M. Piperita EO effects 

M. piperita EO had an immediate antimicrobial activity as evidenced by the decrease of the 

soil microbial biomass and by the increase of extractable C at day 7. However, the fraction of 

soil microorganisms that survived to such initial antimicrobial activity later was able to utilise 

the fresh organic C substrates coming form killed microorganisms, as confirmed by the 

remarkable increase of both microbial biomass and respiration rate but also by the biological 

available C. Such changes were confirmed by the initial huge increase of the qCO2 indicating 

a strong stress/disturbance condition for soil microorganisms, which was followed by the return 

to qCO2 comparable to control at the end of incubation, once the stress finished (Wardle and 

Ghani 2018). 

The antimicrobial activity of M. piperita EO could probably be associated with its main 

constituent, menthol (51.81% in this study). Indeed, İşcan et al. (2002), using the 

bioautographic test, found that menthol was responsible for the antimicrobial activity against 

plant pathogenic microorganisms. However, also additive, synergistic, or antagonistic effects 

due to interactions among EO constituents, even those present at low concentrations, cannot be 

excluded (Xianfei et al. 2007; Zakarya et al. 1993). The later increases of MBC and MBN at 

day 28 and 56 were probably due to an adaptation to the compounds added by the EO and to 

the previous great amount of released organic C substrates which were immobilized by the 

surviving microbial biomass, so reducing the stress/disturbance conditions as evidenced by the 

decrease of qCO2. Therefore, such results indicated that M. piperita EO provoked a transient 

negative impact on soil microorganisms and/or that soil microorganisms had high resilience 

capability (Allison and Martiny 2008). Also the effects on the main microbial groups were 

transient as, after a reduction occurred during the first 28 days of incubation that concerned 

both bacteria and fungi, at the end of the incubation the fungi/bacteria and the bacG+/bacG- 

ratios did not show significant differences compared to the control. 
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4.2.3 S. chamaecyparissus EO treatment 

S. chamaecyparissus EO stimulated both soil microbial biomass and respiration, but up to 28 

days of incubation. However, the simultaneous great increase of extractable C might indicate 

that immediately after its addition some microorganisms were killed and the released 

cytoplasmic materials promptly either immobilised or mineralized, as confirmed by the 

increase of respiration rate and biological available C. 

The antimicrobial activity of S. chamaecyparissus EO was likely due to one of its main 

constituents, the 1,8- cineole, that is well known for its antimicrobial activity (Khubeiz and 

Mansour 2016; Morcia et al. 2012). Furthermore, as already stated, the inhibitory activity might 

result from the interaction of its constituents, even those present at low concentrations. In fact, 

as demonstrated by Viljoen et al. (2003), 1,8-cineole in combination with camphor (4.03% in 

the S. chamaecyparissus EO tested in this study) showed higher antimicrobial effects. The great 

stimulation induced by S. chamaecyparissus EO, however, did not affect the qCO2 since MBC 

and respiration rate were proportionally enhanced. Such stimulation effect was transient since 

at the end of the incubation both MBC and respiration were not significantly different from the 

control. On the other hand, MBN was significantly decreased at the end of the incubation 

suggesting, at least, an increase in the fungi to bacteria ratio since the first have higher 

MBC/MBN ratio than the latter (Cleveland and Liptzin 2007). PLFAs data partially confirmed 

such findings being the fungi/bacteria ratio higher than the control at the lowest EO 

concentrations and day 7. Moreover, PLFAs data put in evidence that the relative abundances 

of the main microbial groups at the end of the incubation rarely changed, with also no relapses 

on the microbial activity, so suggesting a good resilience of the soil microorganisms.  

5 Conclusions 

Several studies have been carried out on the phytotoxic activity of EOs against weeds and on 

their potential use as natural herbicides. Anyway, most of these works have been performed in 

in vitro experiments and not in microcosms that try to mimic the natural conditions. Moreover, 

in in vitro approaches seeds and/or seedlings are directly exposed to the EOs in sterile 

conditions, i.e. strongly reducing and/or retarding EOs transformation/degradation normally 

mediated by soil microorganisms. To our knowledge, this is the first time that the effects of 

essential oils from T. capitata, M. piperita and S. chamaecyparissus against targeted weeds and 

soil microorganisms have been studied with a more practical approach, i.e. in vivo conditions, 

monitoring their effects in order to know their real potential as an alternative to synthetic 
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herbicides, within a strategy of Integrated Weed Management, and analysing the benefits or 

disadvantages derived from their employment. 

Results clearly demonstrated that tested EOs, at a different extent, were significantly effective 

against weeds, killing them completely or significantly reducing their growth parameters. 

Among them, T. capitata was the most effective, followed by M. piperita. Both EOs showed 

broad spectrum of activity, with T. capitata at the highest doses applied (12 μl mL-1) killing 

plants of all weed species (100 efficacy), except for P. oleracea (90 efficacy). M. piperita at 

the highest dose (20 μl mL-1) controlled completely (100 efficacy) A. retroflexus and A. fatua 

plants but showed 90 and 40 efficacy on P. oleracea and E. crus-galli, respectively. Although 

S. chamaecyparissus EO was less active compared with the other EOs, it displayed a very 

remarkable selective activity, being highly effective against A. retroflexus (90 efficacy at the 

highest dose, 20 μl mL-1). It could be interesting to study it more profoundly as selective 

herbicide, while T. capitata and M. piperita could have a wider action, exhibiting excellent 

potential for the development of broad-spectrum herbicides. Anyway, a good natural herbicide 

besides to be effective, at the same time, should not have side effects on soil microorganisms. 

Here, results clearly demonstrated that, except for T. capitata EO at the highest concentration, 

which significantly increased the specific respiration rate, the other EOs generally stimulated 

soil biochemical properties, or their effect on them were transient. Furthermore, even when 

changes in the main microbial groups persisted, soil microbial activity was not irredeemably 

affected, suggesting that essential oils did not compromise the functional redundancy. 

Another advantage in using these EOs from a conservationist point of view in agro-ecosystems 

could be that, as they are able to decrease the weed growth parameters, thus reducing their 

fitness and competitiveness, they could contribute to maintain a high biodiversity by not 

completely eradicating the weeds, instead giving the crop an opportunity to outcompete them. 
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1 Introduction 

Eucalyptus is a large genus of the Myrtaceae family that includes 900 species and subspecies. 

In southern Europe (Italy, Spain, and Portugal) Eucalyptus spp. are the only large scale and 

economically successful short rotation tree plantations (Facciotto and Mughini, 2003; Tolosana 

et al., 2010; Tomé et al., 2001). Evidence of the bioactivity of Eucalyptus leaves and leaves 

extracts have been widely reported and include antimicrobial, antiviral, fungicidal, insecticidal, 

anti-inflammatory, anti-nociceptive and antioxidant activities (Zhang et al., 2010; Li et al., 

2012; Martins et al., 2013; Zhang et al., 2014). Moreover, Eucalyptus have showed strong 

phytotoxic potential due to the presence of a wide array of biologically active compounds, 

especially held in its essential oils (EOs) rich in terpenoids (Batish et al., 2008). Such an aspect 

is of great interest due to the increasing demand of natural herbicides in both developed and 

developing countries to be used in modern integrated pest management strategies and weed 

control in the context of sustainable and organic agriculture (Sodaeizadeh et al., 2009; El-

Darier et al., 2018; Azad et al., 2020). 

Puig et al., (2013) reported, in greenhouse conditions, the bioherbicide potential of Eucalyptus 

leaves incorporated into the soil as a green manure, pointing out different modes of action for 

target species and attributing the phytotoxic effects to the release of water-soluble compounds 

into the soil solution. Indeed, aqueous extracts of Eucalyptus fresh leaves and litter have been 

found to inhibit the growth of herbs in laboratory, greenhouse, and field experiments (Khan et 

al., 2008; Stanton et al., 2008; Zhang et al., 2014). For instance, (cold) aqueous extracts of E. 

globulus demonstrated a phytotoxic effect on germination and radicle growth of Amaranthus 

retroflexus and Echinochloa crus-galli (Puig et al., 2013). Khan et al. (2008) found that 

aqueous extracts from E. camaldulensis significantly inhibited weed germination and seedling 

growth. Also, the (hot) aqueous extract (hydrolate) of Eucalyptus dundasii obtained during 

steam distillation was reported to be phytotoxic on the germination and growth of Lolium 

rigidum and Hordeum glaucum (Wu et al., 2011). In addition, also EOs extracted from 

Eucalyptus leaves have shown strong phytotoxic effects against many weeds, such as 

Parthenium hysterophorus, Cassia occidentalis, Echinochloa crus-galli, Bidens pilosa, 

Amaranthus viridis, Rumex nepalensis, Leucaena leucocephala, Casuarina pusilla and 

Leptospermum myrsinoides (Singh et al., 2005; Batish et al., 2006; Setia et al., 2007). Hence, 

the phytotoxic activity of Eucalyptus leaves extracts obtained by different methods as well as 

the entire leaves suggests that they may be potentially used as bioherbicides.  Also, the authors 

observed that in different afforested zones of Eucalyptus species growing in Sicily (Italy) large 
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areas of soil surface beneath Eucalyptus trees were completely bare or with scarce vegetation 

(Figures S1). However, such bioherbicide activity is dependent on Eucalyptus species since, 

vigorously vegetation can also be found (Figure S2). Such bare soil surfaces were found mainly 

beneath E. occidentalis and not under E. camaldulensis. In contrast, del Moral and Muller 

(1970) reported that in California vegetation growing close to E. camaldulensis was severely 

inhibited with annual plants rarely reaching maturity where the litter of E. camaldulensis 

accumulated.  

However, applied in situ, leaves and leaves extracts could accumulate in the upper soil layers, 

and its leach or the surface runoff could influence soil properties by undergoing chemical 

processes such as hydrolysis, photolysis and chemical degradation and also interacting with 

soil microorganisms (Meite et al., 2018; Salazar-Ledesma et al., 2018; Shaheen et al., 2017). 

In fact, although hydrolysable phenolic compounds and tannins may have a short lifetime in 

soils, their effects or those of other compounds may outstay due to their hydrophobicity and oil 

vesicles prolonged integrity (Bernhard et al., 2003). The antimicrobial effects of Eucalyptus 

leaf extracts have been outlined in several studies (Delaquis et al., 2001; Takahashi et al., 2004; 

Somda et al., 2007; Sartorelli et al., 2007; Correa et al., 2019; Sabo and Knezevic, 2019; Tian 

et al, 2020). So, if the antimicrobial activity of leaf extracts injures soil microorganisms, soil 

processes mediated by them would be critically affected, as well. 

Little research has been carried out about Eucalyptus leaf extracts effects on soil 

microorganisms. Some old studies indicated that Eucalyptus leaves contain toxic organic 

compounds (Rice, 1984) which may have a deleterious impact on soil microorganisms 

(Dellacassa et al., 1995; Animon et al, 1999), and others outlined that the allelochemicals 

released into soil during decomposition of Eucalyptus leaves had a toxic effect on soil 

microorganisms and may thus affect the nutrient cycling and hence soil fertility (Chander et 

al., 1995). 

Such an aspect is of great environmental concern since soil microorganisms play a major role 

in soil fertility and resilience (Griffiths et al., 2008). Furthermore, soil biochemical properties 

are considered the most responsive bioindicators of soil quality (Laudicina et al., 2012). In 

addition, according to Powlson et al (1987), soil microbial biomass measurement can give an 

early indication of changes in total soil organic matter long before changes in total soil C and 

N can be reliably detected. Therefore, more studies would be needed to better elucidate the 

effects of Eucalyptus leaves and leaves extracts on soil microorganisms if they are thought to 

be used as natural herbicides. Thus, the aim of this study was to assess the effects of Eucalyptus 

leaves and leaves extracts on soil microbial biomass C and N, microbial biomass activity, on 
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the relative abundance of the main microbial groups as well as on microbial and metabolic 

quotients. Such biochemical soil properties were selected as they are early indicators of 

perturbation of soil microorganisms and soil functioning (Schloter et al. 2003; Anderson 2003; 

Kocak et al., 2016).  

With these aims we focused on E. camaldulensis which is worldwide the most important and 

studied species (Sabo and Knezevic, 2019) and E. occidentalis of which, to our knowledge, its 

biological activity against soil microorganisms has never been investigated. 

Specifically, a laboratory experiment was planned to test leaves and their extracts obtained by 

1) hydrodistillation (EOs and hydrolates; the latter are the byproducts obtained by 

hydrodistilation of plant materials) and 2) aqueous extracts from both E. camaldulensis and E. 

occidentalis. 

 

 

Figure S1. Bare soil under Eucalyptus occidentalis Endl. 
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Figure S2. Vigorous vegetation under Eucalyptus camaldulensis Denh. 

2 Materials and methods  

2.1  Plant extracts  

The plant material used in this study consisted of leaves of E. camaldulensis and E. occidentalis 

randomly collected in an afforested area near Agrigento (Sicily province, Italy) during March 

2019. The leaves were dried on paper towel at 40ºC for 48 h. 

EOs and hydrolates were extracted from leaves with a 1:2 ratio (w/v) by 12 hours of 

hydrodistillation using Clevenger apparatus as described in the European Pharmacopeia 

(2007). After the extraction, EOs were dried with anhydrous sodium sulphate and stored at 4 

°C for further use. Hydrolates were the water recovered after EOs hydrodistillation. 

Aqueous extracts were obtained by soaking 200 g of Eucalyptus leaves from each species in 2 

L of distilled water for 72 hours at 22-25ºC and filtered through Whatman 42 filter paper. 

Hydrolates, aqueous extracts and EOs were stored at -20°C in sterile containers until further 

use. 

Finally, fresh leaves from the two species were dried at 40°C for 48 hours, then cut into 

pieces (1-2 cm2), and stored at 4°C until further use. 
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2.2  Experimental design  

A laboratory experiment was carried out, using a completely randomized design with 4 

replicates. A citrus orchard soil was collected from the experimental field of the University of 

Palermo. The soil was air dried and then sieved at < 2 mm. The main characteristics of the soil 

were: sand 77.1 %, silt 17.6 %, clay 5.3 %, total organic carbon 21.8 g kg-1, total carbonates 

76 g kg-1, pH 7.08, electric conductivity 0.3 dS m-1 and total nitrogen 0.98 g kg-1. Aliquots of 

350 g of soil were weighed in 1 L plastic bottles and treatments were applied as follows:  

1) Cw, soil moistened up to 50% of its water holding capacity (WHC) with distilled water. 

2) Cf, soil moistened up to 50% of its WHC with a water suspension at 0.05% (v/v) of Fitoil 

(Xeda, Italy; it is an emulsifier 40% soybean oil).  

3) EC1 and EC2, soil moistened up to 50% of its WHC with E. camaldulensis EO emulsion to 

have 2.64 µL and 3.52 mL of EO g-1 of soil, respectively. 

4) EO1 and EO2, soil moistened up to 50% of its WHC with E. occidentalis EO emulsion to 

have 2.64 µL and 3.52 mL of EO g-1 of soil, respectively. 

5) LEC and LEO, soil was added with chopped leaves (dried at 40°C for 48 hours) of E. 

camaldulensis and E. occidentalis at a rate of 6.6 mg and 5.0 mg per g-1 of soil. The amount of 

chopped leaves added was calculated on the basis of the amount of litterfall present beneath E. 

camaldulensis and E. occidentalis during leaves sampling and that was 780 g and 575 g per m-

2 of soil (average of 4 replicates), respectively. 

6) HEC1 and HEC2, soil moistened up to 50% of its WHC with hydrolate of E. camaldulensis 

not diluted or diluted with water at 1:1 ratio (v/v), respectively. 

7) HEO1 and HEO2, soil moistened up to 50% of its WHC with hydrolate of E. occidentalis 

not diluted or diluted with water at 1:1 ratio (v/v), respectively.  

8) AEC1 and AEC2: soil moistened up to 50% of its WHC with aqueous extract of E. 

camaldulensis not diluted or diluted with water at 1:1 ratio (v/v), respectively. 

9) AEO1 and AEO2: soil moistened up to 50% of its WHC with hydrolate of E. occidentalis 

not diluted or diluted with water at 1:1 ratio (v/v), respectively.  
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Table 1.  Characteristics of hydrolates and aqueous extracts 

Characteristics HEC HEO AEC AEO 

Carbon (mg mL-1) 1.9 c 1.4 d 9.4 a 4.4 b 

Nitrogen (µg mL-1) 8.9 c 6.9 d 17.5 a 12.9 b 

pH 5.35 b 5.84 a 4.25 c 4.17 c 

EC (dS m-1) 1.6 d 1.5 c 2.6 a 1.6 b 

 

After the application of all the treatments, soils were incubated in dark at room temperature 

(20-23°C) for 35 days and their humidity weekly adjusted up to 50% of WHC by replenishing 

the lost water. Concurrently, 20 g of soil of each treatment were incubated as above in 200 mL 

jars and sealed with a rubber stopper to determine microbial activity (CO2 emission rate) during 

36 days of incubation.  

2.3 Leaf extract analyses 

Reaction of hydrolates and aqueous extracts was determined on not diluted sample aliquots 

potentiometrically by using a glass membrane electrode. Also, electrical conductivity was 

determined on not diluted sample aliquots by using a digital conductivity meter. Total C and N 

were determined by acid dichromate oxidation and by micro-Kjeldhal method, respectively, on 

hydrolates and aqueous extracts filtered through Whatman 42 paper and diluted (1:1; v/v) with 

distilled water 

EOs were analysed by gas impact mode was employed. MS spectra were obtained by means 

of total ion scan mode (mass range m/z 45–500 uma). The total ion chromatograms and mass 

spectra were processed with the Turbomass 5.4 software (PerkinElmer Inc., UK). Retention 

indexes were determined by injection of C8–C32 n-alkanes standards under the same conditions. 

The EO components were identified by comparison of their mass spectra with those of 

computer library NIST MS Search 2.0 and available data in the literature. Identification of α-

pinene, β-pinene, camphene, myrcene, camphor, borneol, terpinen-4-ol, and linalool was 

confirmed by comparison of their experimental RI with those of the reference standards 

(Sigma-Aldrich). The quantification of the compounds found in each EO was performed by 

gas chromatography (Clarus 500GC, PerkinElmer Inc., UK) equipped with a flame ionization 

detector, the same column and operating conditions as described above for the GC-MS. The 

percentage composition of each EO was computed from the GC peak areas by means of the 

software Total Chrom 6.2 (Perkin Elmer Inc., Wellesley, PA, USA) chromatography (GC) 

coupled with mass spectrometry (Clarus 500 GC–MS from Perkinelmer inc.) equipped with 
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the capillary column ZB-5 (30 m × 0.25 mm i.d. × 0.25 μm film thickness). The injection 

volume was 1 μL. The GC oven temperature was set at 60°C for 5 min, with increases of 3°C 

per min up to 180°C, and then increases of 20°C per min up to 280°C which was maintained 

for 10 min. Helium was the carrier gas at a flux of 1.2 mL min-1. Injector and detector 

temperatures were set at 250°C. Ionization source temperature was set at 200°C and 70 eV 

electron  

2.4 Soil analyses  

Seven days after the application of the treatments and at the end of the experiment (day 35), 

incubated soils were analyzed to determine some biochemical properties. Microbial biomass C 

(MBC) was determined by the fumigation–extraction method (Vance et al., 1987). Fumigated 

and not fumigated soil samples were extracted with 0.5 M K2SO4 solution at a ratio of 1:4 

(w/v). The total organic C in the extract was determined by dichromate-sulphuric acid digestion 

method and the C of microbial origin was obtained multiplying the differences between organic 

C in fumigated and not fumigated samples by 2.64. The concentration of K2SO4-extractable C 

from not fumigated samples was assumed as a proxy of available C for soil microorganisms 

(Laudicina et al. 2013). Microbial biomass N (MBN) was calculated by multiplying by 5 the 

difference between the ninhydrin reactive N determined on fumigated and not fumigated soil 

0.5M K2SO4 extracts, according to (Joergensen and Brookes, 1990). 

The CO2 daily accumulated by incubated 20 g soil aliquots in the headspace of the bottles was 

determined by a gas chromatograph (Thermo Trace GC 90 GC, fitted with a thermal 

conductivity detected, Poropak Q column and using He as the carrier) at day 1, 5, 8, 12, 15, 22, 

29, 36 during the incubation. After each CO2 sampling, flasks were ventilated with fresh air for 

30 min and then sealed again, after possible replenishment of lost soil moisture by distilled 

water. The C mineralization rate, expressed as mg CO2–C kg-1 dry soil day-1, was fitted to the 

following first-order decay function: 

Mineralized C = C0 e
-kt 

where C0 is the biologically available C (mg kg-1) at time zero (i.e. the intercept value), k is the 

decay rate constant, and t is the sampling incubation time. The total CO2–C mineralized over 

36 days of incubation was calculated by the linear interpolation of two neighboring rates and 

the integration over time: 

Total mineralized C = ∑ [(𝑟𝑖 + 𝑟𝑖+1) ∗
d

2
+ ⋯ + (𝑟𝑛−1 +  𝑟𝑛) ∗

d

2
]

𝑛

𝑖
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where i is the date of the first measurement of CO2–C rate, n is the last day of measurement of 

CO2–C rate, r is the CO2–C rate expressed as mg CO2–C kg-1 dry soil day-1, and d is the number 

of days between the two consecutive CO2 rate measurements. 

Fatty acids (FAs) were extracted from soils and analyzed according to the modified Bligh and 

Dyer method (Wu et al., 2009). The fatty acid methyl esters were detected and quantified by a 

gas chromatograph (FOCUS™ GC, Thermo Scientific Inc., Waltham, MA USA) equipped 

with a flame ionization detector and a fused-silica capillary column Mega-10 (50 m x 0.32 mm 

I.D.; film thickness 0.25 μm). The GC temperature progression was initial isotherm at 115°C 

for 5 minutes, increase at a rate of 1.5°C per minute from 115 to 230°C, and final isotherm at 

230°C for 2 minutes. Both injection port and detector were set up at 250°C and helium at 1 mL 

min-1 in a constant flow mode was used as carrier. The injected volume was 1 μL in a splitless 

mode. Nonadecanoic acid methyl ester (19:0; cat no. N-5377, Sigma-Aldrich Co.) was used as 

an internal standard for quantification of the fatty acid methyl esters (FAs). The identification 

of the peaks was based on comparison of retention times to known standards (Supelco Bacterial 

Acid Methyl Esters mix cat no. 47080-U and Supelco 37 Component FAME mix cat no. 47885-

U). Fatty acids with less than 14 carbon atoms or more than 20 carbon atoms were excluded as 

considered originating from non-microbial sources. The FAs i15:0, a15:0, 15:0, i16:0, i17:0, 

17:0, cy17:0,18:1ω7, cy19:0 were used to represent bacterial biomass while 18:2ω6,9 for 

fungal biomass. The FAs i15:0, a15:0, i16:0, i17:0 were chosen to represent Gram-positive 

bacteria (B+) while 16:1ω7, 18:1ω7, cy17:0 and cy19:0 for Gram-negative bacteria (B-) 

(Laudicina et al., 2012). 

2.5 Statistical analysis  

 

Reported soil data, referred to oven-dry (105 °C) soil weight, are the arithmetic means of four 

replicates. Before performing parametric statistical analyses, normal distribution and variance 

homogeneity of the data were checked by Kolmogorov–Smirnoff goodness-of-fit and Levene’s 

tests, respectively. Within each treatment (aqueous extract, leaf, essential oil, hydrolates) and 

within each incubation time (days 7 and 35), soil data were subjected to two-way ANOVA 

with eucalyptus type (two levels) and application dose (2 levels for aqueous extract, essential 

oil, hydrolate; 1 level for leaves) as factors. Significant differences at P<0.05 among eucalyptus 

type and application dose were assessed by the least significant difference (LSD) post-hoc test. 

All analyses were performed by Statgraphics Centurion version XVII. 
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3 Results  

3.1  Chemical composition of EOs 

The yield of EO was half in E. camaldulensis compared to that of E. occidentalis (2.1 mL and 

4.3 mL kg-1 of leaves, respectively). A total of 30 compounds in E. camaldulensis and 15 in E. 

occidentalis were identified (Table 2) and grouped according to their chemical properties 

(Table 2). E. occidentalis EO was characterized mainly by oxygenated monoterpenes (about 

72%), of which 1,8-cineole (eucalyptol) was the main compound (57%, Table 2), and by 

oxygenated sesquiterpenes (25%) represented mainly by α-pinene (about 24%).  E. 

camaldulensis EO consisted mainly of monoterpene hydrocarbons (about 49%), with p-

cymene (about 39%) as main compound, and oxygenated monoterpenes (39%; Table 2), of 

which 1,8-cineole was the main component (nearly 19%; Table 2). 
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Table 2. Chemical composition of essential oils from E. camaldulensis (EC) and E. occidentalis (EO). 

KI, Kovats index. 

 

Compounds KI. EC EO 

Monoterpene hydrocarbons (%)  49.32 25.04 

α-Thujene 930 1.13 - 

α-Pinene 938 3.93 24.30 

Thuja-2,4(10)-diene 947 0.13 0.16 

Camphene 951 - 0.17 

Sabinene 975 0.57 - 

β-Pinene 978 3.79 0.41 

Myrcene 991 0.65 - 

p-Cymene 1025 38.83 - 

β-Phellandrene 1038 T - 

cis-Linalool oxide 1078 T - 

p-Cymenene 1090 0.29 - 

Oxygenated monoterpenes (%)  38.93 72.15 

1,8-Cineole (eucalyptol) 1031 18.67 56.84 

α-Pinene oxide 1099 - 0.12 

Linalool                       1104 0.27 - 

trans-Thujone 1117 0.20 - 

endo-Fenchol 1118 - 0.10 

α-Campholenal 1130 T 0.21 

Nopinone 1141 T - 

trans-Pinocarveol  1143 0.72 10.75 

Pinocarvone   1166 0.26 3.12 

Borneol 1168 - - 

Isoborneol 1170 - 0.25 

Terpinen-4-ol 1177 2.21 - 

α-Terpineol 1188 0.35 0.45 

trans-ρ-Mentha-1(7),8-dien-2-ol 1191 - 0.31 

Myrtenal 1192 0.59 - 

Cryptone 1196 10.91 - 

Verbenone 1198 0.13 - 

Cumin aldehyde 1245 2.73 - 

Carvone 1249 1.27 - 

α-Terpinen-7-al   1288 0.23 - 

Carvacrol 1300 0.05 - 

4-hydroxy-Cryptone 1326 0.14 - 

3-oxo-ρ-Menth-1-en-7-al 1340 0.20 - 

Sesquiterpene hydrocarbons (%)  0.56 1.07 

allo-Aromadendrene 1457 - 1.07 

Aromandendrene 1464 0.56 - 

Oxygenated sesquiterpenes (%)  6.82 0.92 

Spathulenol 1447 6.82 - 

Viridiflorol 1587 - 0.92 

Total identified (%)       95.63      99.18 

                        In bold, the most significant compounds for each EO     t< 0.03 
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3.2  Effects of eucalyptus leaves on soil biochemical properties 

Extractable C was doubled by the addition of eucalyptus leaves compared to Cw. At day 7, 

extractable C did not differ between the two treatments, whereas at day 35 it was the highest 

in LEO (Figure 1). At both incubation days, also MBC was increased by the two treatments, 

with no differences between them, compared to Cw, but the increase was more consistent, 

about 40%, at day 7. Within each treatment, from day 7 to day 35, MBC decreased by 35% in 

Cw and LEC, whereas by 50% in LEO. MBN was affected only by LEO at day 7 when it was 

higher than other treatments. Microbial respiration was greatly stimulated by eucalyptus leaves. 

During the first 10 day of incubation, C mineralization rate was greater in LEC compared to 

LEO; then, C mineralization rate was similar in LEC and LEO but still greater than in the 

control (Figure 1). Also, the biological available C and the turnover rate constant was greater 

in treated soil being the highest in LEC, whereas the total C mineralized did not differ (Figure 

1). Both bacteria, specifically the gram-negative ones, and fungi increased following the 

addition of leaves. At day 7, bacteria were increased only by LEC and fungi by LEO. The fungi 

to bacteria ratio was increased only by LEO whereas LEC, as well as LEO at day 35, decreased 

the bacG+/G- ratio (Table 3). 
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Figure 1. Biochemical soil variables determined at 7 and 35 incubation days after moistening the soil 

up 50% of its water holding capacity with distilled water and adding E. camaldulensis (EC) and E. 

occidentalis (EO) leaves. Treatments were: LEC and LEO, soil was added with chopped leaves (dried 

at 40°C for 48 hours) of E. camaldulensis and E. occidentalis at a rate of 6.6 mg and 5.0 mg per g-1 of 

soil. The amount of chopped leaves added was calculated on the basis of the amount of litterfall present 

beneath E. camaldulensis and E. occidentalis during leaves sampling and that was 780 g and 575 g per 

m-2 of soil (average of 4 replicates), respectively. Microbial respiration rate fitted to the exponential 

first order decay function (Mineralized C = C0 e-kt) and derived parameters (C0, biological available C; 

k, turnover constant rate; C0k, initial potential rate of C mineralization). Reported results are means 

±standard deviations (n=4). Capital letters indicate significant differences among doses within the same 

incubation day. Lower case letters indicate significant differences between the two-incubation days at 

the same treatment. Numbers in bold indicate significant differences with the control. 
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Table 3. Main microbial groups in soil moistened up to 50% of its water holding capacity with distilled 

water and in which were added E. camaldulensis (EC) and E. occidentalis (EO) leaves. Treatments 

were: LEC and LEO, chopped leaves (dried at 40°C for 48 hours) of E. camaldulensis and E. 

occidentalis were added to the soil at a rate of 6.6 mg and 5.0 mg per g-1 of soil. Capital letters indicate 

significant differences among treatments within the same incubation day. Lower case letters indicate 

significant differences between the two incubation days at the same treatment. Numbers in bold indicate 

significant differences with the control 

 

Treatments day 

Microbial 

biomass Bacteria Fungi BacGp BacGn F_B Bp_Bn 

Cw 7 401 a 120 a 16 a 53 a 50 a 0.14 a 1.05 a 

Cw 35 541 a 119 a 14 a 61 a 50 a 0.13 a 1.27 a 

LEC 7 820 Aa 251 Aa 27 Aa 74 Aa 169 Aa 0.12 Aa 0.56 Aa 

LEO 7 798 Aa 184 Aa 45 Aa 73 Aa 100 Aa 0.25 Aa 0.74 Aa 

LEC 35 872 Aa 230 Aa 36 Aa 98 Aa 124 Aa 0.16 Aa 0.83 Aa 

LEO 35 676 Ba 174 Ba 45 Aa 69 Ba 92 Ba 0.26 Aa 0.75 Aa 

3.3  Effects of aqueous extracts on soil biochemical properties 

Aqueous extracts of eucalyptus increased extractable C compared to the control at both sample 

days. AEC increased extractable C more than AEO and such an increase was proportionally to 

the amount of aqueous extract added (Figure 2). MBC was affected by aqueous extracts only 

at the end of the incubation when it was the highest in AEC treatment and the lowest in the 

control. On the contrary, MBN was affected only by AEC and AEO treatments at day 7 

showing lower values than in the control. Microbial respiration rate, proportionally to the 

applied dose, was stimulated more by AEC than AEO. The biological available C and the total 

C mineralized followed the same pattern, being the highest in AEC treatment compared to 

AEO. The turnover rate constant decreased according to the following order: 

AEO1=AEO2>AEC1>AEC2>control (Figure 2). Bacteria were increased by AEC and AEO 

only at day 35 being such increase the highest with AEC1. Except AEO1, also fungi were 

increased by both treatments at day 35, whereas at day 7 only by the two AEO doses. Among 

bacteria, both bacG+ and G- were stimulated by AEC and AEO although with not a univocal 

trend: bacG+ were affected mainly by AEO at day 7, whereas bacG- were not affected only by 

AEO at day 7. AEC was the treatment, on average, which more stimulated bacG- The 

fungi/bacteria ratio was increased only by AEO treatments, except AEO2 at day 35, whereas 

the bacG+/G- ratio was lowered by all the treatments with no clear trend among them ( Table 

4). 
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Figure 2. Biochemical soil variables determined at 7 and 35 incubation days after moistening it up to 

50% of its water holding capacity with aqueous extracts of E. camaldulensis (EC) and E. occidentalis 

(EO) at two different doses: as they are (AEC1 and AEO1) or diluted with water at 1:1 ratio (AEC2 and 

AEO2). Microbial respiration rate fitted to the exponential first order decay function (Mineralized C = 

C0 e-kt) and derived parameters (C0, biological available C; k, turnover constant rate; C0k, initial 

potential rate of C mineralization). Reported results are means ±standard deviations (n=4). Capital 

letters indicate significant differences among doses within the same incubation day. Lower case letters 

indicate significant differences between the two-incubation day at the same treatment. Numbers in bold 

indicate significant differences with the control. 
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Table 4. Main microbial groups in soil moistened up to 50% of its water holding capacity with of E. 

camaldulensis (EC) and E. occidentalis (EO) aqueous extracts at two different doses: as they were 

obtained (AEC1 and AEO1) or diluted with water at 1:1 ratio (AEC2 and AEO2). Capital letters indicate 

significant differences among treatments within the same incubation day. Lower case letters indicate 

significant differences between the two incubation days at the same treatment. Numbers in bold indicate 

significant differences with the control. 

 

Treatment day 

Microbial 

biomass Bacteria Fungi BacGp BacGn F_B Bp_Bn 

Cw 7 401 a 120 a 16 a 53 a 50 a 0.14 a 1.05 a 

Cw 35 541 a 119 a 14 a 61 a 50 a 0.13 a 1.27 a 

AEC1 7 486 Ab 148 Ab 24 Aa 49 Aa 90 Aa 0.16 Aa 0.55 Ba 

AEC2 7 464 Ab 142 Ab 23 ABa 58 Aa 70 ABa 0.16 Aa 0.84 Aa 

AEO1 7 334 Bb 84 Bb 14 Ca 26 Ba 54 Ca 0.17 Aa 0.49 Ba 

AEO2 7 373 Bb 94 Bb 17 BCa 31 Ba 57 BCa 0.18 Ab 0.56 Ba 

AEC1 35 816 Aa 244 Aa 38 Ab 87 Ab 139 Ab 0.16 Ba 0.63 ABa 

AEC2 35 680 Ba 187 Ba 32 Ba 73 Aba 99 Bb 0.17 Ba 0.74 Aa 

AEO1 35 655 Ba 178 Ba 26 ABa 59 Bb 104 Bb 0.14 Ba 0.57 Ba 

AEO2 35 705 Ba 168 Ba 38 Ab 66 Bb 96 Bb 0.23 Aa 0.68 Aa 

3.4  Effects of hydrolates on soil biochemical properties 

After 7 days since the application of hydrolates both extractable and microbial biomass C were 

increased compared to the control with no differences among the treatments (Figure 3). At day 

35 extractable C and MBC decreased compared to day 7, but the former was still higher in all 

the treatments compared to the control and the latter only in HEC1. On the contrary to MBC, 

MBN was inhibited by HEC2, HEO1 and HEO2 treatments at day 7, whereas at day 15 no 

differences were observed between treatments and control. Microbial respiration rate, as well 

as the biological available C and total C mineralized, was stimulated at the beginning of the 

incubation only by HEC and HEO (Figure 3). Bacteria were stimulated by HEC treatments 

only at day 35, whereas fungi by all the treatments (except for HEC2 at day 7) with slight 

differences among them. Among bacteria only the bacG- were affected being increased by 

HEO treatments at day 7 and by HEC at day 35. The fungi/bacteria were generally increased 

by treatments but with not clear trend among them. On the other hand, the bacG+/G- ratio was 

decreased mainly by HEO treatments at both days of incubation (Table 5). 
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Figure 3. Biochemical soil variables determined at 7 and 35 incubation days after moistening it up to 

50% of its water holding capacity with hydrosol obtained during the hydrodistillation process of E. 

camaldulensis (EC) and E. occidentalis (EO) leaves at two different doses: as they are (HEC1 and 

HEO1) or diluted with water at 1:1 ratio (HEC2 and HEO2). Microbial respiration rate fitted to the 

exponential first order decay function (Mineralized C = C0 e-kt) and derived parameters (C0, biological 

available C; k, turnover constant rate; C0k, initial potential rate of C mineralization). Reported results 

are means ±standard deviations (n=4). Capital letters indicate significant differences among doses 

within the same incubation day. Lower case letters indicate significant differences between the two-

incubation day at the same treatment. Numbers in bold indicate significant differences with the control. 
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Table 5.  Main microbial groups in soil moistened up to 50% of its water holding capacity with hydrosol 

obtained during the hydrodistillation process of E. camaldulensis (EC) and E. occidentalis (EO) leaves 

at two different doses: as they were obtained (HEC1 and HEO1) or diluted with water at 1:1 ratio (HEC2 

and HEO2). Capital letters indicate significant differences among treatments within the same incubation 

day. Lower case letters indicate significant differences between the two incubation days at the same 

treatment. Numbers in bold indicate significant differences with the control. 

 

Treat day 

Microbial 

biomass Bacteria Fungi BacGp BacGn F_B Bp_Bn 

Cw 7 401 a 120 a 16 a 53 a 50 a 0.14 a 1.05 a 

Cw 35 541 a 119 a 14 a 61 a 50 a 0.13 a 1.27 a 

HEC1 7 491 Ab 131 Ab 46 Aa 45 Aa 54 Ba 0.36 Aa 0.84 Aa 

HEC2 7 422 Ab 109 Ab 21 Bb 46 Aa 60 ABa 0.20 ABa 0.81 Aa 

HEO1 7 513 Aa 151 Aa 23 Ba 59 Aa 83 Aa 0.16 Ba 0.70 Aa 

HEO2 7 500 Aa 126 Aa 26 Ba 47 Aa 72 ABa 0.21 Ba 0.66 Aa 

HEC1 35 751 Aa 230 Aa 28 ABb 105 Ab 120 Aa 0.13 Bb 0.88 Aa 

HEC2 35 710 Aa 179 Aa 37 Aa 77 Ab 98 Aa 0.21 Aa 0.79 ABa 

HEO1 35 450 Ba 118 Cb 23 Ba 50 Aa 65 Ba 0.19 Aa 0.76 ABa 

HEO2 35 489 Ba 142 Bb 25 Ba 54 Aa 77 Ba 0.18 Aa 0.70 Ba 

3.5  Effects of essential oils on soil biochemical properties 

At day 7, extractable C increased following the addition of the EOs and, at a given dose, E. 

occidentalis EOs raised it more than E. camaldulensis EOs. At day 35, extractable C was 

greater than the control only with EO treatments and in particular with EO2 (Figure 4). 

Microbial biomass C was generally decreased by EOs. At day 7, the lowest MBC values 

occurred at the two highest doses of EOs, whereas EC1 treatment did not affected MBC. At 

day 35, all the treatments decreased MBC according to the following order: 

EO2>EC2>EO1=EO1. It is to note that except for EC2 treatment, MBC was lower at day 35 

compared to that at day 7. MBN resembled MBC pattern at day 7. At day 35, all treatments 

decreased MBN occurring the greatest decrease with the highest EOs dose. On the contrary to 

what observed for MBC, MBN decreased during the incubation only with EC treatments. 

During the first 10 days of incubation, microbial respiration rate was stimulated proportionally 

to the applied EOs dose. Then, EO2 treatment still increased microbial respiration rate 

compared to EO1, whereas the opposite occurred with EC treatments being microbial 

respiration rate greater with EC1 compared to EC2. The biological available C was the highest 

with EC2 and EO2, followed by EC1 and then by EO1. The turnover constant rate did not show 

a univocal trend among treatment since it was lower with EC1 compared to EC2 treatment, 

whereas did not differ between the other two treatments. Finally, the total C mineralized was 

higher with EC treatments, that did not differ between them, compared to EO treatments, which 

total C mineralized was higher in EO2 compared to EO1 (Figure 4). Bacteria were decreased 
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by EOs at the highest dose at both days of incubation, except for EC2, that did not affect them 

at day 35. At day 7, mainly bacG+ were decreased by treatments, whereas bacG- were reduced 

only by EO2. At day 35, bacG+ were decreased only by EC2 whereas bacG- by EC1 and EO2. 

Fungi were also decreased by all the treatments except for EC2 and EO1 at day 35. Notably, 

the highest decreased of fungi was observed at day 35 with EO2. The fungi/bacteria ratio was 

reduced by all the treatments although such a reduction was significant only at day 7 with EC1. 

The bacG+/G- ratio was negatively affected by EC treatments with the highest decreased 

observed at day 35 with EC2 (Table 6). 
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Figure 3. Biochemical soil variables determined at 7 and 35 incubation days after moistening it up to 

50% of its water holding capacity with an emulsion containing essential oils extracted by 

hydrodistillation of E. camaldulensis (EC) and E. occidentalis (EO) leaves. Treatments are: EC1 and 

EC2, soil moistened up to 50% of its WHC with E. camaldulensis EO emulsion to have 2.64 µL and 

3.52 mL of EO g-1 of soil, respectively; EO1 and EO2, soil moistened up to 50% of its WHC with E. 

occidentalis EO emulsion to have 2.64 µL and 3.52 mL of EO g-1 of soil, respectively. Microbial 

respiration rate fitted to the exponential first order decay function (Mineralized C = C0 e-kt) and derived 

parameters (C0, biological available C; k, turnover constant rate; C0k, initial potential rate of C 

mineralization). Reported results are means ±standard deviations (n=4). Capital letters indicate 

significant differences among doses within the same incubation day. Lower case letters indicate 

significant differences between the two-incubation day at the same treatment. Numbers in bold indicate 

significant differences with the control. 
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Table 6. Main microbial groups in soil moistened up to 50% of its water holding capacity 

(WHC) with an emulsion containing E. camaldulensis (EC) and E. occidentalis essential oils. 

Treatments are: EC1 and EC2, soil moistened up to 50% of its WHC with E. camaldulensis EO 

emulsion to have 2.64 µL and 3.52 mL of EO g-1 of soil, respectively; EO1 and EO2, soil moistened up 

to 50% of its WHC with E. occidentalis EO emulsion to have 2.64 µL and 3.52 mL of EO g-1 of soil, 

respectively. Capital letters indicate significant differences among treatments within the same 

incubation day. Lower case letters indicate significant differences between the two incubation 

days at the same treatment. Numbers in bold indicate significant differences with the control. 

 

Treat day 

Microbial 

biomass Bacteria Fungi BacGp BacGn F_B Bp_Bn 

Cf 7 467 a 147 a 30 a 59 a 63 a 0.21 a 1.03 a 

Cf 35 363 b 91 b 15 b 42 b 44 a 0.16 a 0.99 a 

EC1 7 506 Aa 141 Aa 13 Ab 54 Aa 69 Aa 0.09 Bb 0.77 ABa 

EC2 7 417 Aa 108 ACa 16 Aa 44 Aa 56 Aa 0.14 Aa 0.78 ABa 

EO1 7 431 Ba 117 ABa 16 Aa 46 Aba 63 Aa 0.14 Aa 0.72 Ba 

EO2 7 338 Ca 88 Ca 12 Aa 36 Ba 38 Ba 0.14 Aa 0.98 Aa 

EC1 35 325 Ab 125 Aa 25 Aa 46 Aa 70 Aa 0.20 Aa 0.66 Ba 

EC2 35 279 Bb 78 Bb 10 Bb 26 Cb 47 Ba 0.13 Ba 0.56 Bb 

EO1 35 306 Ab 92 ABCa 10 BCb 38 Aba 50 ABa 0.12 ABa 0.82 ABa 

EO2 35 215 Cb 54 Cb 6 Cb 26 BCb 26 Ca 0.11 Ba 0.99 Aa 

4 Discussion 

4.1  Yield and chemical composition of EOs 

The yield of E. camaldulensis (0.21%) was similar to that reported by Barra et al. (2010) for 

the same species grown in Sardinia (Italy) and lower than that reported in other studies 

(Moudachirou et al., 1999; Verdeguer et al., 2009; Jemâa et al., 2011) in which it is reported 

to be 0.6% in E. camaldulensis from Bénin, 0.71% from Spain and 0.85% from Tunisia, 

respectively. On the other hand, the yield of E. occidentalis (0.43) was lower than that reported 

for the same species grown in Australia (1.34%) and in Tunisia (1.1%) (Bignell et al., 1996; 

Elaissi et al., 2010). Concerning the chemical composition, the high content (39%) of p-cymene 

found in E. camaldulensis EO agreed with Nadiye et al. (2016) that reported 32.6%, but lower 

than that found by Basak and Candan (2010) (68.43%). Other compositions, with different 

main compounds have been reported for E. camaldulensis EOs from different origins 

(Verdeguer et al. 2009; Maaloul et al., 2019). Regarding E. occidentalis EO, the determined 

composition, with high amounts of 1,8-cineol (57%) and α-pinene (24%) was different from 

that reported by Bande-Borujeni et al. (2018). However, such differences in chemical 

composition among EOs extracted from the same species from different origins have been 
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already reported and could be due to genetic differences as well as to abiotic factors (Ndiaye 

et al., 2016). 

4.2 Changes in soil biochemical properties and in main microbial groups following the 

addition of eucalyptus leaves 

The addition of eucalyptus leaves stimulated soil microorganisms so leading to an increase of 

MBC and of microbial respiration rate. Such an increase can be due to the enhanced availability 

of organic C substrates in treated soils as confirmed by the increase of extractable C. Similar 

stimulatory effect has been reported by Chander et al. (1995) that found an increase of MBC 

after 10 days since the addition of E. tereticornis leaves in a similar laboratory incubation 

experiment. The decline of MBC and respiration rate observed during the incubation suggested 

that the easily biodegradable pool of organic C present in leaves was progressively consumed. 

Similar behaviour has been reported in field experiments and in laboratory experiments, when 

soils were amended with different types of organic substrates (Ocio et al., 1991). However, 

after 35 days of incubation, the stimulatory effect on MBC was still evident. 

Considering that the extractable C content was similar between the two treatments, the higher 

values of MBC at day 35 and those of microbial respiration rate during the first 8 days of 

incubation with LEC compared to LEO suggested a greater palatability of the organic C 

substrates supplied by E. camaldulensis leaves. Such a hypothesis was also confirmed by the 

higher values of the biological available C (C0) and of the turnover constant rate. The mismatch 

stimulating effect of eucalyptus leaves on MBC and microbial respiration during incubation 

indicated that the organic substrate supplied to microorganisms by the addition of eucalyptus 

leaves was firstly respired and then, towards the end of the incubation, preferentially 

immobilized. The greater palatability of LEC compared to LEO was also evident on microbial 

groups since bacteria were more stimulated by the former. Indeed, bacteria are more adapted 

at exploiting easily degradable resources (Swift et al., 1979; Paul, 2015) and hence experience 

higher growth in the presence of more easily decomposable organic C substrates. This finding 

agreed with Fanin et al. (2019), who reported that gram negative bacteria were associated with 

simple C compounds whereas gram positive bacteria were more strongly associated with more 

complex C forms.   
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4.3 Changes in soil biochemical properties and in main microbial groups following the 

addition of eucalyptus aqueous extracts 

The higher amount of extractable C in AEC treatments compared to AEO ones reflected the C 

content of the aqueous extracts. The increase of labile C, in turn, stimulated microbial activity 

as suggested by the higher respiration rate. Such results agreed with Di Bene et al. (2013) and 

Gamba et al. (2005) following the addition of available C by olive mill wastewaters and have 

been ascribed to the rapid mineralization of added organic matter (Di Serio et al., 2008; Mechri 

et al., 2007). In general, the addition of organic substrates enhances microbial respiration, 

because they are potential energetic sources consumed through the oxidative metabolism of the 

heterotrophic soil microbiota (Bhattacharyya et al., 2001). However, to such higher amount of 

labile C at day 7 did not correspond an increase of MBC at the same day of observation. Such 

results were in contrast with Adrover et al. (2012) and Chen et al. (2008) who suggested that 

the positive effects of greater amount of labile C supplied by treated wastewater irrigation on 

soil microbial biomass can be attributed to the addition of easily decomposable organic matter 

and nutrients. However, MBC increased at day 35. Overall, the promptly increase of microbial 

respiration and the delayed increase of MBC following the addition of aqueous extracts 

indicated that the C supplied by aqueous extract was firstly mineralized and then immobilized 

by soil microorganisms. The absence of a concurrently increase of MBN suggested that 

changes of main microbial groups occurred. Furthermore, results indicated that, as already 

observed for the leaves treatment, AEC treatments provided more easily decomposable 

substrates as confirmed by the higher biological available C and total C mineralized in AEC 

treatments. Regarding the stimulation of microbial biomass as suggested by the MBC and 

MBN patterns, fungi were stimulated more than bacteria. On the other hand, among bacteria, 

the bacG- more than bacG+ took advantages by the addition of aqueous extracts so decreasing 

the bacG+/G- ratio and indicating a greater C availability for bacteria (Fanin et al., 2019).  

4.4 Changes in soil biochemical properties and in main microbial groups following the 

addition of eucalyptus hydrolates 

The C added by hydrolates was promptly immobilized by soil microorganisms and only 

partially respired as confirmed by the high increase of MBC at day 7 and the low microbial 

respiration rate at the beginning of the incubation. On the other hand, the reduction of MBN 

registered at day 7, i.e. when MBC increased, suggested changes of main microbial groups. 

Such a hypothesis was confirmed by the increase of fungi. Among bacteria, the gram-negative 
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ones were favored over gram positive so leading to, on average, a decrease of the bacG+/bacG- 

ratio as already reported for aqueous extract and leaves. 

4.5 Changes in soil biochemical properties and in main microbial groups following the 

addition of eucalyptus essential oils 

The increase in extractable C following the addition of EOs and the concomitant decrease in MBC, as 

well as MBN, suggested that EOs had a biocidal effect on soil microorganisms and that the cytoplasmic 

material released following their death was not completely used by the surviving microorganisms. 

Indeed, although soil respiration increased following the addition of EOs, such an increase was 

not proportional to the observed increase of labile C. Furthermore, it is to note that at the highest 

dose of EOs, the greatest reduction of MBC, MBN and microbial respiration rate was observed, 

whereas with regard to EO type, Eucalyptus occidentalis showed the highest deleterious effects 

on soil microorganisms. Fungi were the most negatively affected main groups since they were 

halved by EOs with no differences among treatments, whereas bacteria were reduced only at 

the highest doses. Notably EO2 at day 35 still reduced both bacteria and fungi. 

5 Conclusions 

The results of this study provide evidence that Eucalyptus leaves and their extracts (EOs, 

hydrolates and aqueous extracts), at contrasting way, affect soil microbial community. 

Furthermore, those effects were dependent on the Eucalyptus species. Eucalyptus leaves, 

aqueous extracts and hydrolates, by providing labile C, stimulated both microbial biomass and 

respiration, although in the case of Eucalyptus leaves and aqueous extracts a mismatch between 

microbial immobilization and respiration occurred. On the other hand, Eucalyptus EOs killed 

soil microorganisms and, consequently, the microbial cytoplasmic material released following 

their death was used by the surviving ones. Finally, also the relative abundance of the main 

microbial groups was affected. The addition of labile C by eucalyptus leaves, aqueous extracts 

and hydrolates increased bacteria, mainly the gram-negative bacteria, whereas EOs strongly 

reduced fungi. 
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