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M.A. Garćıa-March1,2, N.L. Harshman3, H. da Silva4, T. Fogarty5, Th. Busch5, M. Lewenstein6,7, and
A. Ferrando8

1ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels

(Barcelona), Spain
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We show that a system of three trapped ul-
tracold and strongly interacting atoms in one-
dimension can be emulated using an optical fiber
with a graded-index profile and thin metallic
slabs. While the wave-nature of single quantum
particles leads to direct and well known analo-
gies with classical optics, for interacting many-
particle systems with unrestricted statistics such
analoga are not straightforward. Here we study
the symmetries present in the fiber eigenstates
by using discrete group theory and show that, by
spatially modulating the incident field, one can
select the atomic statistics, i.e., emulate a sys-
tem of three bosons, fermions or two bosons or
fermions plus an additional distinguishable par-
ticle. We also show that the optical system is
able to produce classical non-separability resem-
bling that found in the analogous atomic sys-
tem.

1 Introduction
After the successful quest for preparing and measur-
ing single quantum particles (see for example [1, 2]),
the next task is to achieve the same kind of control over
quantum systems with increasing degrees of complexity.
This will further advance our understanding of funda-
mental quantum mechanics and is also predicted boost
the possibilities offered by modern quantum technolo-

gies. However, due to the exponential increase of the
size of the Hilbert space for many particle systems, this
is a formidable task in which theoretical and experimen-
tal progress must go hand in hand, assisting each other
to facilitate scientific accomplishments.

Cold atomic systems have been at the forefront of this
quest for the last two decades and by today a large effort
into understanding few particle systems exists theoret-
ically and experimentally [3]. However, the experimen-
tal challenge is still very large and especially measur-
ing small systems reliably remains as an arduous quest.
One strategy to mitigate these are to take advantage of
experimental simulators, which are setups that are eas-
ier to control but follow the same dynamics as the orig-
inal system. For quantum mechanical systems one can
exploit the well-known similarity between the matter
wave nature of particles and classical wave optics, which
is based on the fact that the paraxial wave equation for
monochromatic light propagating along the paraxial di-
rection z of an optical waveguide is of the same form
as the Schrödinger equation. This similarity has been
exploited in many examples in the past [4–6], however
mostly for single particle dynamics.

Here we consider a one-dimensional quantum sys-
tem of three harmonically trapped atoms interacting
through a strong, short-range potential and show that
an analogy with a graded-index (GRIN) optical fiber
with three thin slabs of a metallic material in an hexag-
onal geometry exists (see Fig. 1). The paraxial propaga-
tion of a polarized monochromatic laser beam in such a
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Figure 1: Schematic of the system. (a) Three interacting atoms
in a one-dimensional harmonic trap. (b) Representation of the
refractive index in the x− y plane. (c) Schematic of the fiber.

fiber is described by a wave propagation equation which
is Schrödinger-like and often called the Fock-Leontovich
equation [7, 8]. The longitudinal dimension along the
fiber plays the role of time and the inhomogeneous re-
fractive GRIN index profile of the fiber plays the role of
an external potential. We will show below that the thin
metallic slabs can play the role of the contact interac-
tions between the atoms and that by properly designing
the spatial profile of the incident laser beam it is possi-
ble to select the statistics of the atoms emulated, that
is, if they resemble bosons, fermions, or mixtures.

We emphasize here that the characterization of the
modes guided by the GRIN fiber with three thin metal-
lic slabs is of interest in itself for the optics community,
independently of the analogy with the quantum sys-
tem of three atoms. Graded-index fibers are multimode
fibers, that is, they can propagate several modes [9–
11]. There is a recent revival in the interest in these
kinds of fibers, as they have been identified as very
versatile systems to study spatio-temporal non-linear
effects [12, 13]. A non-comprehensive list of recent
works include the observation of optical solitons and
soliton self-frequency lifting [14], the generation of ul-
trashort pulses and even supercontinuum [15], or beam
self-cleaning [16, 17]. However, the description of pulse
propagation in these fibers is rather difficult, as it must
include both the three spatial dimensions and time to
correctly capture the non-linear dynamics of multiple
co-propagating modes (for a simplified model see [18]).
Yet, GRIN fibers represent an ideal set-up for a va-
riety of phenomena in complexity science, due to the
collective dynamics associated with the interplay be-
tween disorder, dissipation, and non-linearity [16]. Here
we do not consider spatio-temporal dynamics or non-
linearities, as we detail later. However, multimode
GRIN fibers with thin metallic slabs allow for both to
be included in future work.

As our model is an example of an analogy between
a classical and a quantum system, an inferred property
for the target optical system from the source quantum
system is the existence of classical entanglement [19–
22]. Classical entanglement occurs in a wide variety

in optical systems, is not restricted to those described
by the Fock-Leontovich equation, and often includes
polarization degrees of freedom [23, 24]. It has been
proposed that a better name for this property is clas-
sical non-separability [25], because the classical target
system lacks the potential non-locality of quantum sys-
tems with entanglement [24]. It is also worth stressing
that classical entanglement cannot be used as a resource
for applications in quantum information theory. In our
system non-locality is associated with a measurement
of an entangled system, which when taken in one re-
gion of space dictates the outcome in another region.
In this sense one can distiniguish two types of entan-
glement [19, 20, 23, 26]: (i) intersystem entanglement
(or true-multiparticle entanglement) and (ii) intrasys-
tem entanglement (between different degrees of freedom
of a single particle). It is commonly accepted that in-
tersystem entanglement can only occur in quantum sys-
tems as it can lead to non-locality. The examples of
classical non-separability found in literature are mostly
associated with two different degrees of freedom of the
same particle, and a remarkable realization classically
non-separable states with three degrees of freedom were
done using path, polarization and transverse modes [27].
Below we show how in the system we introduce here
classical non-separability between different particles oc-
curs in a scalar system. In this sense it is an analo-
gous to type (i) entanglement (intersystem), but as the
measurement problem remains, it does not lead to non-
locality. We note that there is a set of works where the
goal is to use classical fields to reproduce non-classical
correlations between different measurements [28–31], in-
cluding simulations of Bell-like inequalities [32, 33].

Our manuscript is structured as followed. In Section 2
we detail the characteristics of the fiber under study.
We perform a full modal analysis of it and classify the
modes according to the rotational discrete symmetry of
the system. The analogy with the atomic system is con-
structed in Section 3 and we show how the wave function
can be interpreted as giving information of the order-
ing of the particles. In Section 4 we discuss the non-
separability of the classical states and in Section 5 we
conclude by laying out possible applications and further
developments of this system. Two appendixes provide
supplementary details about the symmetry methods we
employ and about the Bose-Fermi mapping.

2 Optical system: GRIN fiber with three
thin metallic slabs

The paraxial propagation of a monochromatic optical
beam of constant polarization along a fiber with an in-
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homogeneous refractive index profile is given by

− i2n0k0
∂

∂z̃
Φ̃ =

[
∇2
t + k2

0
(
ñ2 (x̃, ỹ)− n2

0
)]

Φ̃, (1)

where z̃ is the axial coordinate of the fiber, {x̃, ỹ} are
the transverse coordinates, ∇2

t is the Laplacian in the
transverse coordinates, ñ(x̃, ỹ) is the index of refraction
profile with a reference value of n0, and k0 is the wave
number. To facilitate comparison with the Schrödinger
equation, we remove the length units by dividing by
−2n0k

2
0

i
∂

∂z
Φ =

(
−1

2∇
2
x,y + ∆n (x, y)

)
Φ, (2)

where, {x, y, z} are the dimensionless coordinates x =
k0
√
n0x̃, y = k0

√
n0ỹ, z = k0z̃, Φ(x, y, z) = Φ̃(x̃, ỹ, z̃),

n(x, y) = ñ(x̃, ỹ) and

∆n (x, y) = [n2
0 − n2 (x, y)]/2n0. (3)

When the refractive index profile remains close to the
reference index n0, eq. (3) simplifies to ∆n (x, y) ≈ n0−
n (x, y).

The form of eq. (2) mimics the two-dimensional time-
dependent Schrödinger equation with z playing the role
of time and ∆n (x, y) the role of a potential energy.
Making the substitution Φ(x, y, z) = exp(−iµz)φ(x, y)
to separate the longitudinal and transverse coordinates,
one can see that solving for the transverse optical modes
φ(x, y) and paraxial propagation constant µ is equiva-
lent to solving for the energy spectrum of a quantum
Hamiltonian with two degrees of freedom

Ĥφ(x, y) ≡
(
−1

2∇
2
x,y + ∆n (x, y)

)
φ(x, y) = µφ(x, y).

(4)
This analogy between fiber optics in the paraxial ap-
proximation and two-dimensional quantum mechanics
is well-known (see e.g. [34]) and eq. (2) is indeed some-
times called the optical Schrödinger equation [35]. Here,
we assume a longitudinally homogeneous fiber; relaxing
this requirement allows the simulation of quantum sys-
tems with time-varying mass or potential.

2.1 GRIN fiber optical modes
We build our effective potential for the analogy by com-
bining GRIN fibers with metallic sectioning. A GRIN
fiber has a refractive index n (x, y) that decreases con-
tinuously with the radial distance to the optical axis
of the fiber. Here we consider the particular case of
a parabolic profile that focuses the beam and provides
guidance in the fiber (also called selfoc fibers [8]), i.e.

∆nGRIN (x, y)=
{ 1

2
(
x2 + y2) ρ < R

1
2R

2 ρ ≥ R , (5)

where ρ =
√
x2 + y2. These kinds of GRIN fibers have

previously been proposed to simulate two-dimensional
quantum oscillators [4, 36].

For a fiber with transverse index ∆nGRIN, eq. (2)

is separable into radial ρ =
√
x2 + y2 and polar θ =

arctan(y/x) coordinates. The boundary at ρ = R can
be ignored for the lowest modes and in this approxi-
mation the optical Schrödinger equation (4) describes a
two-dimensional isotropic harmonic oscillator. Separat-
ing in polar coordinates, the corresponding solutions for
the mode functions in polar coordinates |`, ν〉 are given
by

φ`,ν(ρ, θ) = Nρ|`|L|`|ν (ρ2)e−ρ
2/2ei`θ, (6)

with L
|`|
ν (z) the generalized Laguerre polynomial and

normalization constant N =
√
ν!/π(ν + |`|)!. These

modes (6) correspond to Laguerre-Gaussian modes cen-
tered at the origin and the mode indices correspond to
orbital angular momentum (OAM) ` = 0,±1,±2, · · ·
and the number of radial nodes ν = 0, 1, · · · . The OAM
` gives the charge of the central singularity and is the
quantum number for the O(2) symmetry of the isotropic
oscillator. The propagation constant (analogous to en-
ergy) of the mode |`, ν〉 is µ = 2ν+ |`|+1 and except for
the lowest mode |`, ν〉 = |0, 0〉, all modes are degenerate
with degeneracy d(µ) = µ.

2.2 GRIN fiber and metallic slabs
Next, we section the fiber longitudinally with thin slabs
of metal. For later applications to three-particle sys-
tems, we consider the case of three slabs that split the
fiber into six identical sectors (see Fig. 1). This is de-
scribed by adding to ∆nGRIN an additional term formed
by three Gaussians of width σ

∆nC6v
(x, y)= g

σ
√

2π

{
exp
[
−x

2

σ2

]
+ exp

[
− (x+

√
3y)2

4σ2

]
+ exp

[
− (x−

√
3y)2

4σ2

]}
. (7)

The function ∆nC6v (x, y) has three maxima at the
lines x = 0 and x = ±

√
3y, or equivalently at θ ∈

{π/6, π/2, 5π/6, 7π/6, 3π/2, 11π/6}.
The exact form of g in (7) in terms of the optical

parameters is crucial in the particle analogy in Section 3
and after restoring the spatial dimensions for σ̃ = σ λ,
one obtains

g =
∆nmax

C6v
(λ)
√

2πσ̃
λ

. (8)

In this work we are mainly interested in the limit where
g is large. Because the right hand side of eq. (8) in-
cludes only dimensional optical parameters, the large-g
limit can be reached experimentally with thin slabs of
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Figure 2: Eigenenergies (propagation constant) for the opti-
cal Schrödinger equation (4) with ∆ntot = ∆nGRIN + ∆nC6v

plotted against varying barrier strength g for a fixed, narrow
width σ. The shaded golden area highlights the region of large
values of g, where the thin metallic slabs can be implemented
with e.g. gold, as discussed in main text. The shaded green
area highlights the region of low g, which has a weak ∆nC6v

refractive index that could be implemented with dielectric ma-
terials. Inset and the right of the graph depicts the eigenmodes
corresponding to the lowest seven modes (see Figs. 3 and 4). In
all representations of the eigenmodes, the dotted lines indicate
the position of the metallic slabs.

a metallic material of width σ̃. For a perfect conductor
n2

metal → −∞ and therefore ∆nmax
C6v

= (n2
0−n2

metal)/2n0
and consequently g tends to infinity. One has to be
careful though, as in the experimentally relevant case
with a realistic metal, the dielectric constants also have
an imaginary part, i.e., ε = ε1 + iε2 and, for example,
for gold at λ = 1500nm, one has ε1 = −106.94 and
ε2 = 10.231. However, for the limit in which g is large
and σ̃ small the losses due to the imaginary part are
small because in the regions with large g the optical
modes have suppressed intensity, as we show later.

Combining the thin slabs of a metal with the GRIN
fiber, the total refractive index is ∆ntot = ∆nGRIN +
∆nC6v

. The fiber then has six identical symmetric do-
mains Ωj (j ∈ {1, . . . , 6}) where ∆nGRIN dominates
separated by the thin barriers where ∆nC6v dominates.
This fiber profile has the six-fold symmetry of a snow
flake denoted as C6v Schönflies notation [37]; see Ap-
pendix A for a summary of the group C6v and its rep-
resentations 1.

Since the barriers break the O(2) rotational sym-
metry, the angular variation of the wave function is
no longer uniform and as a result orbital angular mo-
mentum ` is no longer a good modal index. Addi-
tionally, for arbitrary strengths and widths, the bar-
riers break polar separability so ν is also not a good
quantum number. However, the discrete C6v symme-

1The symmetry C6v is also denoted as the D6 or I2(6) de-
pending on context or application. More generally, if there are s
bisecting metal slabs inserted evenly, then the system has C2sv

(aka Ds ∼ I2(2s)) symmetry.

try provides the possibility for alternate modal num-
bers [38, 39]. One useful index is called orbital angular
pseudo-momentum (OAPM) and was introduced in the
context of vortex solitons [40, 41]. OAPM is a discrete
index m ∈ {0,±1,±2, 3} that identifies how the state
transforms under a discrete rotation by π/3 and it gives
the charge of the central singularity [42]. In the sub-
space of solutions with OAPM m, a counterclockwise
rotation by π/3 changes the phase of the optical mode
φ(ρ, θ) by exp(imπ/3). In the case m = 0 the mode
is symmetric with respect to C6v and there is no phase
change from sector to sector, and when m = 3 the mode
is antisymmetric with respect to C6v and the phase flips
from sector to sector.

Previewing the analogy with the one-dimensional,
three-body system developed in the next section, the
OAPM correlates to the particle content. The modes
indexed by m = 0 and m = 3 correspond to three indis-
tinguishable bosons or fermions. Another mode index,
the reflection parity r = ±1 under reflection across the
thin slab oriented along x = 0 or θ = ±π/2, indicates
whether particles with OAPM m = 0 or m = 3 are
bosons or fermions. The cases of OAPM m = ±1 and
m = ±2 contain solutions that describe identical but
partially distinguishable particles, such as two spin-up
fermions and one spin-down fermion.

2.3 Infinite delta-barrier limit

In the limit of infinitely narrow slabs σ̃ → 0, the Gaus-
sian profiles in (7) tend to delta functions and can be
approximated as

∆nC6v≈g
[
δ(x) +

√
2δ(x+

√
3y) +

√
2δ(x−

√
3y)
]

= g

ρ

6∑
j=1

δ

(
θ − 2j − 1

6

)
. (9)

Note that the apparent singularity at ρ = 0 is not strong
enough to disrupt the self-adjointness of the effective
Hamiltonian and there is no danger of “falling to the
center” [43]. However, the potential in (9) does not
have the correct form for polar separability for arbitrary
g; only in the limit of impenetrable barriers g → ∞
does polar separability return and we can provide exact
solutions.

In the narrow, impenetrable barrier limit, each identi-
cal sector Ωj is dynamically-isolated from the rest and
within each sector approximate polar separability re-
turns. This means the number of radial nodes by ν̃
and the number of azimuthal nodes ˜̀within each sector
are good mode labels (or quantum numbers). Choosing
Ω1 = [−π/6, π/6] as the first sector, the optical mode
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Figure 3: Numerical eigenfunction solutions for g = 10, σ =
0.05 and R → ∞; compare to infinite delta-barrier solutions
|m, ν̃, ˜̀〉 in (11). (a) Ground state, |m, ν̃, ˜̀〉 = |0, 0, 0〉. (b)
seventh state, |m, ν̃, ˜̀〉 = |0, 1, 0〉, which carries the first radial
excitation of the ground state; (c) and (d) amplitude and phase
of the vortex state |1, 0, 0〉; (e) and (f) same for vortex state
|2, 0, 0〉. (g) sixth excited state, |m, ν̃, ˜̀〉 = |3, 0, 0〉; and (h)
eighteenth state, |m, ν̃, ˜̀〉 = |0, 0, 1〉.

solutions are

φ1
ν̃,˜̀(ρ, θ) = Nρ

˜̀
L

˜̀
ν̃(ρ2)e−ρ

2/2 sin[3(˜̀+ 1)(θ + π/6)].
(10)

This equation satisfies the optical Schrödinger equation
for a GRIN fiber (i.e., it is a special case of (6)) and also
satisfies the nodal boundary condition at the sectioning
metal slabs when ν̃ and ˜̀ are non-negative integers. By
analogy with (6) or by direct calculation, one shows the
propagation constant of this mode is µ = 2ν̃ + 3˜̀+ 4.

The mode solutions in the entire fiber can be built
by using the OAPM m to patch together single sector
solutions like (10) with the correct phase differences.
An explicit expression for the mode |m, ν̃, ˜̀〉 built from
sectors with ν̃ radial nodes and ˜̀azimuthal modes takes
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Figure 4: Eigenfunctions for g = 10 and σ = 0.05. (a) and
(b), first excited doublet obtained combining the vortices with
m = 1 and m = −1, that is, |1, 0, 0〉±i|−1, 0, 0〉, respectively.
(c) and (d), second excited doublet obtained as |2, 0, 0〉 ± i| −
2, 0, 0〉, respectively.

the form

φm,ν̃,˜̀(ρ, θ) = φ1
ν̃,˜̀(ρ, θ − θj) e−imθj for θ ∈ Ωj (11)

where θj = (j − 1)π/3 and Ωj = [(2j − 3)π/6, (2j −
1)π/6]. The six ways to choose the relative phases and
paste the section functions together such that the state
respects C6v symmetry are precisely the six possible val-
ues the OAPM m takes: m = 0,±1,±2 and 3. The six
states |m, ν̃, ˜̀〉 with the same ν̃ and ˜̀are degenerate and
have the same propagation constant µ = 2ν̃+3˜̀+4 inde-
pendent of OAPM m. In this limit, the effective Hamil-
tonian is superintegrable, i.e. there are more integrals of
motion than degrees of freedom [44]. This degeneracy is
only present in the idealized case of delta-barriers and
infinite g. For both the idealized finite-g delta-barrier
potential (9) and the more realistic Gaussian potential
(6), the tunneling among sectors lifts the degeneracy so
that states with different |m| have different propagation
constants.

To show how this works, we calculated numerically
the eigenfunctions in the presence of the metal slabs of
height g = 10, width σ = 0.05, and R larger than the
size of the computational domain (a box of side L = 10).
As shown in Fig. 2, in this limit the six modes with
different m and same ν̃ and ˜̀ are quasi-degenerate and
approximate the infinite delta-barrier solutions (11). A
selection of modes are depicted in Fig. 3, including 3(a)
the ground state mode |0, 0, 0〉; 3(b) the lowest energy
state mode with one radial excitation |0, 1, 0〉; and 3(h)
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the highest energy state mode with one polar excitation
|0, 0, 1〉.

Subfigures 3(c)-3(g) depict three other modes with
ν̃ = 0 and ˜̀= 0. The C6v symmetry ensures that pairs
of modes with |m| = 1 and with |m| = 2 are degenerate,
so we only depict the magnitude and phase of the m = 1
in 3(c)-3(d) and the magnitude and phase of m = 2 in
3(e)-3(f). Because these modes are degenerate, instead
of working with the complex modes | ± 1, ν̃, ˜̀〉 and | ±
2, ν̃, ˜̀〉 we can take take linear combinations such as
|1, ν̃, ˜̀〉±i|−1, ν̃, ˜̀〉 that result in real modes. Examples
are presented in Fig. 4 that show that these real modes
are no longer OAPM eigenstates of π/3 rotations, but
they diagonalize into a pair of orthogonal reflections and
have C2v symmetry.

3 Optical analogy to the three-particle
model

In this section, we show how the fiber introduced above
can be used to simulate a specific quantum system of
current interest in ultracold atomic physics: three in-
teracting atoms trapped in a one-dimensional harmonic
potential with strong, short-range interactions (see e.g.
the striking experiments in [45, 46]). We also show that
the optical modes of the fiber can simulate the wave
functions of energy eigenstates for any particle statis-
tics, including single-species and multi-species fermions
and bosons. For this the OAPM modal number m and
reflection parity r play the role of effective statistical
parameter.

3.1 The three particle Hamiltonian

To see that the optical Schrödinger equation for the
fiber above can simulate a three-body, one-dimensional
system, let us start by considering the quantum Hamil-
tonian for three interacting particles in a one dimen-
sional harmonic trap

H = ~ω
2

3∑
i=1

(
− d2

dx2
i

+ x2
i

)
+
∑
i<j

Vij (|xi − xj |) . (12)

For convenience, we have scaled all distances by the har-
monic oscillator length a =

√
~/(mω) and the coordi-

nates xi are the unitless positions of the three particles.
The two-body interaction depends only on the distance
between pairs of particles. Next we perform a transfor-
mation from the particle positions coordinates to the

normalized Jacobi coordinates

R = x1 + x2 + x3

3 , (13)

x = x1 − x2√
2

, (14)

y = x1 + x2√
6
−
√

2
3x3, (15)

where R is proportional to the center-of-mass and x and
y are a specific but arbitrary choice for the orientation of
three-body relative coordinates. With this, the Hamil-
tonian in eq. (12) can be split into a center-of-mass and
a relative part, H = Hcm +Hrel, with

Hcm =− ~ω
2

d2

dR2 + ~ω
2 R2 , (16a)

Hrel =− ~ω
2

(
d2

dx2 + d2

dy2

)
+ ~ω

2 (x2 + y2) + Vint(x, y) ,

(16b)

and

Vint(x, y) = V12

(√
2|x|

)
+V13

(
|x+
√

3y|√
2

)
+ V23

(
|x−
√

3y|√
2

)
. (16c)

This transformation therefore separates out the trivial
center-of-mass degree of freedom whose dynamics are
described by the one-dimensional oscillator Hcm. The
remaining two relative degrees of freedom are described
by Hrel that has the same six-fold symmetry of the pre-
vious section.

If we now take Vij to be given by a narrow Gaussian

Vij(z) = g

σ
√

2π
exp
[
− z2

2σ2

]
, (17)

we recover the effective Hamiltonian given by the fiber
mode propagation equation of the previous section with
∆ntot = ∆nGRIN+∆nC6v and all the analysis of the pre-
vious section holds. In the limit of highly localized and
strong scattering potentials, the modes |m, ν̃, ˜̀〉 become
exact and all six states with the same ν̃ and ˜̀ become
six-fold degenerate again.

3.2 Particle permutation symmetry, OAPM and
particle statistics
Like the metallic slabs section the fiber into six sectors,
the two-body interactions section the (x, y) relative con-
figuration space of the three particles into six sectors.
Each section corresponds to the particles being in a spe-
cific order (see Fig. 5). In a model with distinguishable
particles, the phase relation between different orderings
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of particles is unconstrained. In contrast, three identi-
cal bosons must be symmetric under a particle exchange
and three identical fermions must be antisymmetric. As
a result, sectors corresponding to different orders must
have specific phase relations if they are to represent
the solutions of identical particles. Conveniently, the
OAPM m and reflection parity r that derive from the
C6v symmetry can be used as parameters that account
for particle statistics [47].

In the original Hamiltonian (12), the particle per-
mutation symmetry is evident: one can permute the
coordinates (x1, x2, x3) without changing the form of
the Hamiltonian. The group of particle permutations
is called S3 and we denote the operators that represent
these transformations by σ̂p for p ∈ S3. For example,
the operator σ̂213 exchanges particles 1 and 2, the op-
erator σ̂312 cycles (x1, x2, x3) into (x3, x1, x2), and the
operator σ̂123 = ê is the identity. Additionally, the par-
ity inversion (x1, x2, x3) → (−x1,−x2,−x3) leaves the
Hamiltonian invariant. We denote the parity inversion
operator by π̂ and the two-element group it generates
by Z2. Because parity inversion and particle permuta-
tions commute, the total symmetry group is the direct
product S3×Z2; see Appendix A for an enumeration of
all twelve elements of this symmetry group.

When restricted to the relative plane, the particle
permutations and parity are realized as the transforma-
tions in C6v. For example, the pairwise exchange σ̂213 is
the reflection across x = 0 that maps (x, y) into (−x, y).
The other two pairwise exchanges σ̂321 and σ̂132 are also
realized as reflections in the relative (x, y)-plane along
the lines x = −

√
3y and x =

√
3y, respectively. The

two three-cycles σ̂312 and σ̂231 are rotations by +2π/3
and −2π/3, respectively, and parity π̂ is a rotation by
π. Finally, combining parity π̂ and the three-cycle σ̂231,
the symmetry transformation ĉ6 = π̂σ̂231 is a rotation
by +π/3.

Therefore by looking at how optical modes trans-
form under the reflections and rotations in C6v, we also
analyze how the analogous three-particle wave func-
tion transforms under particle permutations and par-
ity S3 × Z2. In fact, the mode numbers OAPM m ∈
{0,±1,±2, 3} and reflection parity r introduced in the
previous section are the eigenvalues of the operators ĉ6
and σ̂213, respectively. Using them we build a classifi-
cation of particle statistics as follows:

• The energy subspaces with (m, r) = (0, 1) or (3, 1)
are non-degenerate modes with the requisite sym-
metry to realize states of three indistinguishable
bosons, denoted BBB modes. These states also
could represent identical but distinguishable parti-
cles.

• The energy subspaces with (m, r) = (0,−1) or

(3,−1) are also non-degenerate. These wave func-
tions have the requisite symmetry to be states
of three indistinguishable fermions, denoted FFF
modes. As before, these states also could represent
identical but distinguishable particles.

• The energy subspaces labelled by |m| = 1 or
|m| = 2 correspond to doubly-degenerate modes.
In these two-dimensional subspaces, the operators
ĉ6 and σ̂213 do not commute and the OAPM m
and reflection parity r cannot be simultaneously
diagonalized. Choosing to diagonalize σ̂213 within
the |m| = 1 or |m| = 2 subspace, there are su-
perpositions that describe states with r = 1 that
are symmetric under exchanges of particles 1 and
2, but have no fixed phase relation for a pairwise
exchange including particle 3. We call this a BBX
mode, because it can describe the state of two iden-
tical bosons and one distinguishable third parti-
cle. Similarly, there are FFX modes where the ex-
change of two identical fermions is antisymmetric
with r = −1 and the third particle is distinguish-
able.

Additionally, from the relation between parity inver-
sion and six-fold rotation π̂ = (ĉ6)3, states with OAPM
m have parity inversion exp(imπ/3)3 = (−1)m. More
details on how to derive these results are provided
in [44, 48, 49] and Appendix A.

In light of this assignment of OAPM and reflection
parity to possible combinations of identical particles,
the mode level structure depicted in Fig. 2 reveals fur-
ther insights. First, note because the phase of FFF
modes must change sign at the section boundaries, the
density must drop to zero and, as a result, FFF modes
do not ‘feel’ the interaction strongly (or at all, in the
impenetrable delta-function barrier limit). The energies
of these FFF modes are therefore nearly horizontal even
as the interaction strength g is increased. In contrast,
the symmetric BBB modes experience the greatest vari-
ation with g, and in the large g converge to the same
energy as an FFF mode with the same wave function
in the sector (i.e. same ν̃ and ˜̀). This is reminiscent
of the famous Bose-Fermi mapping for infinite strength
contact interactions, first identified by Girardeau [50];
see Appendix B for more details.

Proper illumination of the fiber then permits to select
the appropriate mode. For instance, to excite a BBB
mode one can illuminate with a structured beam. For
example, one can illuminate with an intensity modula-
tion that follows the C6v symmetry of the BBB mode
with m = 0, ñ = 0 and ˜̀= 0. To excite the FFF mode
with m = 3, ñ = 0 and ˜̀ = 0 one has to modulate not
only the intensity but also to imprint a phase jump of
π between sectors, which can be achieved by using spa-
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Figure 5: (a) The full (x1, x2, x3) three-particle configuration
space. The three planes represent the two-body coincidences
x1 = x2 (red), x2 = x3 (green) and x3 = x1 (blue). (b) The
relative (x, y) configuration space defined by the orthogonal
Jacobi transformation (13). The lines are the projection of the
planes in subfigure (a). Each of the six sectors corresponds
to specific orderings of three particles. Reflecting across the
two-particle coincidence lines is equivalent to a pairwise ex-
change of identical particles. Complete BBB wave function
Ψ(x1, x2, x3, z) for the non-interacting (c) and impenetrable
delta-function barrier limits (d). Sub figure (e) and (f) are the
corresponding OBDM in each limit, respectively.

tial phase modulators. For BBX or FFX modes with
|m| = 1 or 2, the input beam has to mimic the C2v
symmetry and the π phase jumps as in Fig. 4.

4 Interpretation of the optical mode am-
plitude as a many-body wave function:
classical non-separability
In this section we discuss how to extract the infor-
mation on classical non-separability from the optical
field Φ(x, y, z) at a certain distance z. To reconstruct
the function in the (x1, x2, x3) configuration space, one
must account for the center of mass and its evolu-
tion along z. This is given by the modes of the
one-dimensional harmonic oscillator, which we label
with the quantum number nR, and denote as ϕnR(R),

so that the total wave function is Ψ(x, y,R, z) =
Φ(x, y, z)ϕnR(R) exp[−inRz]. From Ψ(x, y,R, z), one
can then transform back to the variables (x1, x2, x3)
to get Ψ(x1, x2, x3, z), which can be performed digitally
after phase and amplitude detection of Φ(x, y, z).

With the total wave function Ψ(x1, x2, x3, z), the
classical non-separability can be evaluated by first cal-
culating the one body density matrix (OBDM), defined
as

ρ(x, x′) =
∫

Ψ∗(x, x2, x3)Ψ(x′, x2, x3) dx2 dx3, (18)

and normalized to one. The classical non-separability
is then defined by the von Neumann entropy

Sρ(x,x′) = −Tr[ρ(x, x′) ln ρ(x, x′)] = −
∑
j

λj lnλj ,

(19)
where we have denoted the eigenvalues of ρ(x, x′) as
λj . We recall that the von Neumann entropy is zero
for a pure state (non-mixed) and maximal and equal
to ln(3) for a maximally mixed state (maximal non-
separability).

Let us illustrate the interpretation of the classi-
cal non-separability for a system of three bosons.
In this case the ground state wave function for
the non-interacting system is Ψg=0

B,gs(x1, x2, x3) =
C
[∏3

i=1 e
−x2

i /2
]
, with C being a normalization con-

stant (see Fig. 5 (c)). In the impenetrable delta-function
barrier limit, the wave function is

Ψg=∞
B,gs (x1, x2, x3) = C

[ 3∏
i=1

e−x
2
i /2

] ∏
1≤j<k≤3

|xk − xj |,

(20)
which is the solution obtained from the Bose-Fermi
mapping theorem (see Fig. 5 (d) and Appendix C). For
the non-interacting case the von Neumann entropy is
zero, and the system is therefore separable. For the so-
lution in the impenetrable delta-function barrier limit
it is equal to S = 1.056 which is close to the max-
imum, ln(3) = 1.099, i.e., it is close to a maximally
mixed state. In Fig. 5 (e) and (f) we show the OBDM
for both cases, which will help interpret what a mixed
state means in this system. The diagonal of the OBDM
(when x = x′) is the probability of finding a particle
at position x. For the non-interacting case, it is Gaus-
sian, as it corresponds to a single particle in a one-
dimensional parabolic trap. When the interactions in-
crease, this diagonal changes (see [47]) and the states
start to get mixed. This reflects the fact that the par-
ticles interact with each other. For the impenetrable
delta-function barrier limit, two particles cannot occupy
the same position along x and if one is found at the
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center of the trap, the other two have to be slightly
displaced to the edges. This explains the three-peak
shape of the diagonal of the OBDM, while the appear-
ance of structure in the off-diagonal terms indicates the
presence of correlations. The classical interpretation of
this is that, to determine the position of one particle,
information about the position of the other particles is
necessary, contrary to the non-interacting case. This is
the essence of classical non-separability in this system.

5 Concluding remarks
We have shown that a quantum system consisting of
three interacting atoms in one dimension with arbitrary
statistics can be simulated in an optical setup. For this
we have introduced a new kind of optical fiber with a
GRIN refractive index profile and three thin slabs of a
metallic material. Using discrete group theory we have
classified the optical modes in such a fiber with appro-
priate modal numbers, and obtained exact solutions for
the case in which the slabs are infinitely narrow and
high. In the analogy with the interacting atom system
the modal numbers turn into quantum numbers and,
in particular, the modal number of the orbital angular
pseudo-momentum together with the reflection parity
play the role of the parameters quantifying the parti-
cle statistics. We have shown that the spatial profile of
the input beam permits to select the statistics of the
atoms emulated in the fiber (e.g. three fermions, three
fermions or mixtures).

We remark that lesser symmetries can appear in the
system for specific choices of the coupling. For example,
if in the BBX case the coupling constants are g13 =
g23 6= g12 the symmetry is no longer C6v but C2v. A
similar situation appears for FFX if g13 = g23 6= 0.
In this work we have restricted our study to the most
general C6v system, however the two examples of C2v
symmetric systems can also be easily accessed with a
similar fiber set-up.

We have also discussed the appearance of classical
non-separability in the system in the limit where the
slabs are infinitely narrow and high, and where the
optical states are close to a maximally mixed state.
Due to the correspondence to multi-particle entangle-
ment, this represents classical intersystem entanglement
[19, 20, 23, 26]. It is interesting to note that one can
also explore nonlocality in the setup we present by using
the Wigner representation of the states [51–53].

The fundamental analogy between optical and quan-
tum systems opens the door to explore more techni-
cal analogies as well. For example, there are propos-
als for implementations of quantum computing algo-
rithms in optical systems [36, 54, 55], optical implemen-
tations of teleportation protocols [56], and applications

of the presence of classical non-separability for metrol-
ogy [57, 58]. On top of this other properties defined only
for the quantum system have been found in the classical
ones, such as analogies to quantum (wave) chaos [59],
quantum walks [60], or classical non-separability in vec-
tor vortex beams [61]. We expect that the system in-
troduced here allows for the exploration of this kind of
applications, especially when combined with polariza-
tion.
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twelve elements of C6v and their realizations as trans-
formations of relative configuration space are summa-
rized in Table 1. An optical fiber simulating the three-
particle model will have this hexagonal symmetry in the
transverse profile of the fiber.

Subgroups of C6v are useful when the particles are
partially distinguishable. We call attention to three
subgroups in particular:

• The group generated by reflections across the three
lines x = 0, x +

√
3y = 0, and x −

√
3y = 0 is a

subgroup of C6v isomorphic to C3v, the symme-
try of an equilateral triangle. This group has six
elements and is the realization in the fiber of the
permutation symmetry of three identical particles.
Each reflection corresponds to a pairwise particle
exchange. For example, the reflection across the
line x = 0 in the fiber corresponds to exchanging
particles 1 and 2 in the particle model. The prod-
uct of two different reflections is a rotation by 2π/3
correspond to cyclic three-particle exchanges in the
model.

• The subgroup containing only the rotations in C6v
is called C6. This group is useful for the analysis
of vortex states of light because the generator ĉ6 of
C6 is a rotation by π/3 and a state with OAPM m
transforms like exp(imπ/3) under this rotation.

• There are several subgroups of C6v that are isomor-
phic to C2v, i.e. the point symmetries of a rectan-
gle. In particular, we focus on the instance of C2v
that aligns with the {x, y} Jacobi coordinates and
includes the reflection σ̂213 corresponding to the ex-
change of particle 1 and 2 with eigenvalue r = ±1.
The other three elements of this C2v subgroup are
parity inversion π̂, the product σ̂213π̂ and the iden-
tity. This C2v subgroup is useful when considering
the case of partially distinguishable particles like
two bosons in the same spin state and one distin-
guishable by a different spin state. This subgroup
is also relevant in more generalized models in which
one of the two-body interactions is different from
the other two and is evident in Fig. 4.

Because C6v is a symmetry of the fiber and the rel-
ative interacting Hamiltonian, energy levels are associ-
ated to its irreducible representations (irreps), whose
properties are summarized in Table 2. There are four
one-dimensional (or singlet) irreps denoted A1, A2, B1
and B2 and two two-dimensional (or doublet) irreps
denoted E1 and E2. This means that unless some
other symmetry is present, there will only be singly-
degenerate or doubly-degenerate energy levels, as is
demonstrated by our numerical solutions, see Fig. 2.
Note that half of the irreps correspond to even parity

g ∈ C6v g ∈ S3 × Z2 ϕ→ ϕ′

E ê ϕ
σv σ̂213 −ϕ+ π
σv′ σ̂132 −ϕ+ π

3
σv′′ σ̂321 −ϕ− π

3
C−1

3 σ̂231 ϕ− 2π
3

C3 σ̂312 ϕ+ 2π
3

C2 π̂ ϕ+ π
σd π̂σ̂213 −ϕ
σd′ π̂σ̂132 −ϕ− 2π

3
σd′′ π̂σ̂321 −ϕ+ 2π

3
C6 π̂σ̂231 ϕ+ π

3
C−1

6 π̂σ̂312 ϕ− π
3

Table 1: The first column is the symmetry transformation des-
ignated by the corresponding element of the point symmetry
group of the regular hexagon permutation group C6v. The
second column is the same transformation expressed as the
corresponding element of S3 × Z2. We use the notation for
S3 permutation group elements such that σ̂p for p ∈ S3. For
example, σ̂213 exchanges particles 1 and 2, σ̂312 cycles the par-
ticles 123 to 312 and σ̂123 = ê the identity. The element π̂ is
parity inversion. The third column is the equivalent transfor-
mation of the cylindrical Jacobi coordinate tanϕ = y/x.

states and half to odd parity states. We plot in Fig. 3
two examples of XYZ solutions, these are very impor-
tant vortex-like solutions.

Distinguishable identical particles do not necessarily
have any specific particle exchange symmetry, so they
can populate any type of irrep. Indistinguishable bosons
must be symmetric under pairwise exchanges and can
only populate energy levels that carry the singlet irreps
A1 (positive parity) and B2 (negative parity). Indis-
tinguishable fermions must be antisymmetric, and can
only populateA2 (positive parity) andB2 (negative par-
ity) energy levels. Partially distinguishable bosons and
fermions are more complicated. For example, two indis-
tinguishable bosons and a third particle must be sym-
metric under the exchange of two of the particles, say
particles 1 and 2, but can have any symmetry relation
with the third. As a result, they effectively have C2v
symmetry and should be in a bosonic irrep of that sub-
group. See Table 2 for a cataloging of these results.

The C6v symmetry is independent of the strength
and exact form of the two-body interaction, and this
has consequences for adiabatic or diabatic changes in
the Hamiltonian. When the Hamiltonian changes, there
can at most be mixing between energy levels carrying
the same irrep. Therefore, the symmetry of the input
beam determines which irreps, and therefore, the ef-
fective particle content of the interacting model being
simulated.
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C6v [C3v]π OAPM r C2v Possibilities
A1 [3]+ m = 0 r = 1 A1 BBB, BBX, XYZ
A2 [13]+ m = 0 r = −1 A2 FFF, FFX, XYZ
B1 [13]− m = 3 r = −1 B1 FFF, FFX, XYZ
B2 [3]− m = 3 r = 1 B2 BBB, BBX, XYZ

E1 [21]− m = |1| r = −1 B1 FFX, XYZ
r = 1 B2 BBX, XYZ

E2 [21]+ m = |2| r = 1 A1 BBX, XYZ
r = −1 A2 FFX, XYZ

Table 2: The first column lists the irreps of C6v using the notation of [37]. The second column shows how irreps of C6v can also
be described as irreps of C3v and parity. The group C3v is isomorphic to the symmetric group S3 and has a totally symmetric
irrep denoted [3], a totally antisymmetric irrep denoted [13] and a mixed symmetry irrep denoted [21]. The third column lists the
OAPM that characterize the irreps of C6. The fourth column give the irreps of C2v; for the two-dimensional C6v irreps E1 and
E2 there are two irreps of C6 and C2v that appear, and they can be though of as different ways of diagonalizing the doublet.
The final column gives the possible particle content of each state. BBB (FFF) means three indistinguishable bosons (fermions);
BBX (FFX) two indistinguishable bosons (fermions) and one other identical but distinguishable particle; XYZ three identical but
distinguishable particles.

B Bose-Fermi mapping
The exact solutions for three bosons in a harmonic trap
in the infinite delta-barrier limit (9) can also be derived
from the Bose-Fermi mapping [50], which we describe
here briefly.

The non-interacting Hamiltonian (8) is a three-
dimensional isotropic harmonic oscillator and can be
exactly solved in many different coordinate systems.
Perhaps the most obvious is the product single-particle
wave functions

φn1,n2,n3(x1, x2, x3) = ϕn1(x1)ϕn2(x2)ϕn3(x3) (21)

where ϕn(x) is the one-dimensional harmonic oscillator
energy eigenstate

ϕn(x) =
(
π1/4
√

2nn!
)−1

e−x
2/2Hn(x) (22)

with energy ~ω(n + 1/2) (Hn(x) is the nth Hermite
polynomial). Therefore, the state (21) has total energy
E = ~ω(n1 + n2 + n3 + 3/2).

For distinguishable particles, the quantum numbers
ni can take any non-negative integer value, but for
identical (or partially identical) sets of fermions or
bosons, then there are restrictions on the sets of al-
lowed ni and the states (21) must be symmetrized
and antisymmetrized appropriately. The ground state
for three identical non-interacting bosons is the state
{n1, n2, n3} = {0, 0, 0} and remains separable, but the
first excited bosonic state is the symmetric combination
of the three permutations of {n1, n2, n3} = {0, 0, 1} and
is not separable.

Similarly, the ground state of fermions is the anti-
symmetrized superposition of six permutations of the
state (21) with {n1, n2, n3} = {0, 1, 2}, also known

as the Slater determinant. In the ground state each
fermion occupies one of the three lowest energy single-
particle eigenstates, and thus the energy of the state is
E = ~ω(1/2 + 3/2 + 5/2) = 9/2~ω. A bit of algebra
brings the antisymmetrized expression for the fermionic
ground state into a Jastrow form

φF,gs(x1, x2, x3) = C

[ 3∏
i=1

e−x
2
i /2

] ∏
1≤j<k≤3

(xk − xj),

(23)
with

C = 23/2
(

1
a

)3/2
[

3!
2∏

n=0
n!
√
π

]−1/2

. (24)

Because of the the factor (xk − xj) for each pair of
particles in (23), the function φF,gs(x1, x2, x3) vanishes
wherever two particles coincide and changes sign as one
moves across this boundary, as one expects for antisym-
metrized fermionic states (see Fig. 3). Excited fermion
states φF,exc(x1, x2, x3) can be constructed either by us-
ing Slater determinants of states with set of three dis-
tinct quantum numbers higher in energy that {0, 1, 2}
or, by analogy with (23), finding higher-order totally
antisymmetric polynomials of three variables.

Fermionic states have nodes whenever xi = xj , so
they do not “feel” the δ-function two-body interaction
and therefore non-interacting fermionic energy eigen-
states are also energy eigenstates of the Hamiltonian (9)
in the limit when the interactions are zero-range. Some
algebra demonstrates that when restricted to the rela-
tive coordinate, the ground state wave function (23) has
the same form as the eigenmode |m = 3, ν̃ = 0, ˜̀ = 0〉
and the first excited state constructed from the Slater
determinant of {0, 1, 3} corresponds to |m = 0, ν̃ =
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0, ˜̀ = 1〉. After that the identification gets more com-
plicated because of degeneracies.

The Bose-Fermi mapping theorem allows one to con-
struct the exact solution for three interacting identical
bosons with delta-barrier interactions and g →∞ from
the exact solution for non-interacting fermions [50].
This is easily fulfilled for the ground state taking the
modulus of the solution, φB,gs = |φF,gs|, which gives
rise to

φB,gs = C

[ 3∏
i=1

e−x
2
i /2

] ∏
1≤j<k≤3

|xk − xj |. (25)

The excited bosonic states are obtained in the same
way from those of the excited fermions by defining a
symmetrization function A(x1, x2, x3) =

∏
j>i sign(xj−

xi), with sign(x) the sign function to adjust the relative
phases. Then any excitation is obtained as φB,exc =
AφF,exc. In the relative eigenmode basis |m, ν̃, ˜̀〉, this
mapping is equivalent to exchaning the OAPM labels
m = 0 and m = 3 on the FFF and BBB states.
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