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OPERATORS ON THE FRÉCHET SEQUENCE SPACES
ces(p+),1 ≤ p <∞

ANGELAA. ALBANESE, JOSÉ BONET, WERNER J. RICKER

Abstract. The Fréchet sequence spaces ces(p+) are very different to
the Fréchet sequence spaces `p+, 1 ≤ p < ∞, that generate them,
[3]. The aim of this paper is to investigate various properties (eg.
continuity, compactness, mean ergodicity) of certain linear operators
acting in and between the spaces ces(p+), such as the Cesàro opera-
tor, inclusion operators and multiplier operators. Determination of the
spectra of such classical operators is an important feature. It turns
out that both the space of multiplier operators M(ces(p+)) and its
subspace Mc(ces(p+)) consisting of the compact multiplier operators
are independent of p. Moreover, Mc(ces(p+)) can be topologized so
that it is the strong dual of the Fréchet-Schwartz space ces(1+) and
(Mc(ces(p+))′β ' ces(1+) is a proper subspace of the Köthe echelon
Fréchet space M(ces(p+)) = λ∞(A), 1 ≤ p < ∞, for a suitable matrix
A.

1. Introduction

Given an element x = (xn)n = (x1, x2, . . .) of CN let |x| := (|xn|)n and
write x ≥ 0 if x = |x|. By x ≤ y we mean that (y − x) ≥ 0. The se-
quence space CN is a (locally convex) Fréchet space with respect to the
coordinatewise convergence. For each 1 < p <∞ define

ces(p) := {x ∈ CN : ‖x‖ces(p) := ‖( 1
n

∑n
k=1 |xk|)n‖p <∞}, (1.1)

where ‖ · ‖p denotes the standard norm in `p. An intensive study of the
Banach spaces ces(p), 1 < p < ∞, was undertaken in [6], [12]; see also
the references therein. They are reflexive, p-concave Banach lattices (for
the order induced by the positive cone of CN) and the canonical vectors
ek := (δnk)n, for k ∈ N, form an unconditional basis, [6], [9]. For every
pair 1 < p, q <∞ the space ces(p) is not isomorphic to `q, [6, Proposition
15.13]; it is also not isomorphic to ces(q) if p 6= q, [4, Proposition 3.3].

The Cesàro operator C : CN −→ CN, defined by

C(x) := (x1,
x1+x2

2
, . . . , x1+x2+...+xn

n
, . . .), x ∈ CN, (1.2)
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satisfies |C(x)| ≤ C(|x|) for x ∈ CN and is a topological, linear isomorphism
of CN onto itself. It is clear from (1.1) that

‖x‖ces(p) = ‖C(|x|)‖p, x ∈ ces(p), (1.3)

for each 1 < p < ∞. Hardy’s inequality, [14, Theorem 326], ensures that
`p ⊆ ces(p) with ‖x‖ces(p) ≤ p′‖x‖p for x ∈ `p, where the conjugate index p′

of p is given by 1
p

+ 1
p′

= 1. Moreover, the containment `p ⊆ ces(p) is proper,
[9, Remark 2.2]. It is routine to verify that C maps ces(p) continuously into
`p.

For each 1 ≤ p <∞ define the vector space `p+ :=
⋂
q>p `q; it is a Fréchet

space (and Fréchet lattice for the order induced by the positive cone of CN)
with respect to the increasing sequence of lattice norms

qk : x 7−→ ‖x‖pk , x ∈ `p+, k ∈ N, (1.4)

for any sequence p < pk+1 < pk with pk ↓ p. It is known that each `p+ ⊆ CN

(with a continuous inclusion) is a reflexive, quasinormable, non-Montel,
countably normed Fréchet space which is solid in CN and contains no isomor-
phic copy of any infinite dimensional Banach space, [10], [18] . Clearly, for
each 1 < p <∞, the Banach space `p ⊆ `p+ continuously and with a proper
inclusion. Since C : `p −→ `p is continuous for each 1 < p <∞ (with opera-
tor norm p′), [14, Theorem 326]), it follows that C : `p+ −→ `p+ is also con-
tinuous, [2, Section 2]. The class of Fréchet spaces ces(p+) :=

⋂
p<q ces(q),

for 1 ≤ p <∞, where ces(p+) is equipped with the increasing sequence of
lattice norms

rk : x 7−→ ‖x‖ces(pk) = ‖C(|x|)‖pk , x ∈ ces(p+), k ∈ N, (1.5)

for any sequence p < pk+1 < pk satisfying limk→∞ pk = p (i.e., ces(p+) =
projk ces(pk) ), has been studied in the recent article [3]. It was shown there
that ces(p+) coincides with the power series space of order one and finite
type Λ−1/p′(α) with α := (log(k))k∈N. The spaces ces(p+) are generated by
the spaces `p+ in the sense that the largest solid Fréchet lattice in CN which
contains `p+ and which C maps continuously into `p+ is precisely ces(p+),
[3].

The aim of this note is to investigate the behaviour of several natural
operators defined in the spaces ces(p+) for p ≥ 1. We point out that a
detailed investigation of the Cesàro operator C acting on the Banach spaces
ces(p), 1 < p < ∞, was carried out in [4], [9], and on the Fréchet spaces
`p+ for p ≥ 1 was undertaken in [2]. Here we treat C when it is acting
in the Fréchet spaces ces(p+) for p ≥ 1. Its spectrum is determined in
Theorem 2.3 and its mean ergodic properties are presented in Proposition
2.6. The properties of multiplier operators on ces(p+) are studied in Section
3, especially their spectrum, compactness and mean ergodicity. Curiously,
when acting in ces(p+), the multipliers (resp. the subclass of compact ones)
and their spectrum are independent of p; see Proposition 3.1 and Remark
3.2(ii) (resp. Proposition 3.7). The same is true for multipliers acting in `p+;
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see (3.9) and Proposition 3.15. Actually, the space of compact multipliers
for ces(p+) (resp. `p+) can be topologized so that it is isomorphic to the
strong dual space of the Fréchet-Schwartz space ces(1+) (resp. the reflexive
Fréchet space `1+); see Proposition 3.11 (resp. Proposition 3.17). This is
reminiscent of the dual space description of the space of compact (Fourier)
multiplier operators from Lp(G) to Lq(G) when G is a compact group and
1 < p, q <∞, [5]. Section 4 is devoted to various operators acting between
different spaces. For instance, it is shown that Cmaps ces(p+) continuously
into ces(q+) if and only if 1 ≤ p ≤ q <∞ (see Proposition 4.4), whereas it is
a compact operator if and only if p < q (cf. Proposition 4.5). These results
rely on a knowledge of the continuity/compactness properties of various
inclusion maps between the family of spaces {`p+, ces(q+) : 1 ≤ p, q <∞};
see Propositions 4.2 and 4.3.

We now introduce a few relevant notions needed in the sequel. Let X and
Y be locally convex Hausdorff spaces (briefly, lcHs). The identity operator
on X is denoted by I and L(X, Y ) denotes the space of all continuous
linear operators from X into Y . If X = Y , we denote L(X, Y ) simply by
L(X). Denote by ΓX any system of continuous seminorms determining the
topology of X. Let Ls(X) denote L(X) endowed with the strong operator
topology τs which is determined by the seminorms T → qx(T ) := q(Tx), for
each x ∈ X and q ∈ ΓX . Moreover, Lb(X) denotes L(X) equipped with the
topology τb of uniform convergence on the bounded subsets of X which is
determined by the seminorms γB,q : T → qB(T ) := supx∈B q(Tx), for each
bounded set B ⊆ X and q ∈ ΓX . For unexplained notation and standard
concepts from functional analysis and lcHs , we refer to [17]; see also [15].

Given a lcHs X and T ∈ L(X), the resolvent set ρ(T ) of T consists
of all λ ∈ C such that R(λ, T ) := (λI − T )−1 exists in L(X). The set
σ(T ) := C \ ρ(T ) is called the spectrum of T . The point spectrum σpt(T ) of
T consists of all λ ∈ C such that (λI − T ) is not injective. If we need to
stress the space X, then we write σ(T ;X), σpt(T ;X) and ρ(T ;X). Given
λ, µ ∈ ρ(T ) the resolvent identity R(λ, T )−R(µ, T ) = (µ−λ)R(λ, T )R(µ, T )
holds. Unlike for Banach spaces, it may happen that ρ(T ) = ∅ or that ρ(T )
is not open. This is why some authors prefer the subset ρ∗(T ) of ρ(T )
consisting of all λ ∈ C for which there exists δ > 0 such that B(λ, δ) :=
{z ∈ C : |z− λ| < δ} ⊆ ρ(T ) and {R(µ, T ) : µ ∈ B(λ, δ)} is equicontinuous
in L(X). Define σ∗(T ) := C \ ρ∗(T ), which is a closed set containing σ(T ).
If T ∈ L(X) with X a Banach space, then σ(T ) = σ∗(T ). The range
{Sx : x ∈ X} of S ∈ L(X) is denoted by Im(S) and its closure by Im(S).

2. The Cesàro operator on ces(p+)

The aim of this section is to investigate certain properties of C when it is
acting on the Fréchet spaces ces(p+) for p ≥ 1. Given 1 < p <∞, it follows
from Hardy’s inequality that

‖C(x)‖ces(p) := ‖C(|C(x)|)‖p ≤ p′‖C(x)‖p ≤ p′|C(|x|)‖p = p′‖x‖ces(p),
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for each x ∈ ces(p), i.e., C ∈ L(ces(p)) with operator norm ‖C‖op ≤ p′. In
view of the fact that the sequence of norms (1.5) generate the topology of
ces(p+) it is clear that C : ces(p+) −→ ces(p+) is necessarily continuous,
i.e., C ∈ L(ces(p+)). The continuity of C from ces(p+) into ces(q+) with
p 6= q will be treated in Section 4. We will require the following description
of the spectrum of C ∈ L(ces(p)); see [9, Theorem 5.1] and its proof. The
dual operator of a Fréchet space operator T ∈ L(X) is denoted by T ′ :
X ′ −→ X ′, where X ′ is the space of all continuous linear functionals on X.
When X ′ is equipped with its strong topology β we write X ′β.

Theorem 2.1. Let 1 < p < ∞. Then C ∈ L(ces(p)) satisfies ‖C‖op = p′

and has spectra given by

σ(C; ces(p)) = {λ ∈ C : |λ− p′

2
| ≤ p′

2
} and σpt(C; ces(p)) = ∅. (2.1)

Moreover, if |λ− p′

2
| ≤ p′

2
, then Im(λI− C) 6= ces(p). In addition,

σpt(C
′; (ces(p))′) = {λ ∈ C : |λ− p′

2
| ≤ p′

2
}. (2.2)

The following result concerning the spectrum of certain operators on
Fréchet spaces will be needed in the sequel, [2, Lemma 2.1].

Lemma 2.2. Let X = ∩n∈NXn be a Fréchet space which is the intersection
of a sequence of Banach spaces ((Xn, ‖ · ‖n))n∈N satisfying Xn+1 ⊆ Xn with
‖x‖n ≤ ‖x‖n+1 for each n ∈ N and x ∈ Xn+1. Let T ∈ L(X) satisfy the
following condition:

(A) For each n ∈ N there exists Tn ∈ L(Xn) such that the restriction of
Tn to X (resp. of Tn to Xn+1) coincides with T (resp. with Tn+1).

Then σ(T ;X) ⊆ ∪n∈Nσ(Tn;Xn) and R(λ, T ) coincides with the restriction
of R(λ, Tn) to X for each n ∈ N and each λ ∈ ∩n∈Nρ(Tn;Xn).

Moreover, if ∪n∈Nσ(Tn;Xn) ⊆ σ(T ;X), then σ∗(T ;X) = σ(T ;X).

The spectra of the Cesàro operator acting in ces(p+), p ≥ 1, can now be
determined.

Theorem 2.3. (i) Let 1 < p <∞. The following statements are valid.
(a1) σpt(C; ces(p+)) = ∅.
(a2) σ(C; ces(p+)) = {λ ∈ C : |λ− p′

2
| < p′

2
} ∪ {0}.

(a3) σ∗(C; ces(p+)) = σ(C; ces(p+)) = {λ ∈ C : |λ− p′

2
| ≤ p′

2
}.

(ii) For p = 1 the following statements are valid.
(b1) σpt(C; ces(1+)) = ∅.
(b2) σ(C; ces(1+)) = {λ ∈ C : Reλ > 0} ∪ {0}.
(b3) σ∗(C; ces(1+)) = σ(C; ces(1+)) = {λ ∈ C : Re(λ) ≥ 0}.

Proof. The statements (a1) and (b1) follow from (2.1) since ces(p+) ⊆
ces(q), for 1 ≤ p < q, implies that σpt(C; ces(p+)) ⊆ σpt(C; ces(q)).
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For the remainder of the proof fix 1 ≤ p < pn+1 < pn satisfying pn ↓ p
(i.e., p′n ↑ p′) and denote by Cn : ces(pn) −→ ces(pn) the Cesàro operator
C ∈ L(CN) restricted to the Banach space ces(pn), for n ∈ N.

We now prove statements (a2) and (b2). First of all, for p > 1, apply
Lemma 2.2 (with X := ces(p+) and Xn := ces(pn), n ∈ N) and (2.1) for
each pn, n ∈ N, to conclude that

σ(C; ces(p+)) ⊆ ∪n∈Nσ(Cn; ces(pn)) ⊆ {λ ∈ C : |λ− p′

2
| < p′

2
} ∪ {0}.

Similarly, for p = 1, in which case p′ = ∞ and p′n ↑ ∞, we can conclude
that

σ(C; ces(1+)) ⊆ ∪n∈Nσ(Cn; ces(pn)) ⊆ {λ ∈ C : Reλ > 0} ∪ {0}.
Next we verify that 0 ∈ σ(C; ces(p+)), for which it suffices to show that

C ∈ L(ces(p+)) is not surjective. To this effect, define y :=
∑∞

i=1
1

2i−1e2i−1 ∈
`p+ ⊆ ces(p+). We point out that en := (δnk)k, for n ∈ N, are an un-
conditional basis for ces(p+), [3, Proposition 3.5]. Then the element x :=
C−1(y) = (1,−1, 1,−1, . . .) in CN satisfies |x| = (1, 1, 1, 1, . . . ) with C(|x|) =
|x| /∈ ces(q) for every q > 1. Accordingly x /∈ ces(p+) for all p ≥ 1. Since x
is the unique element in CN satisfying y = C(x) (as C ∈ L(CN) is an isomor-
phism), it follows that y ∈ ces(p+) is not in the range of C ∈ L(ces(p+))
for every p ≥ 1. So, we have shown that 0 ∈ σ(C; ces(p+)) for p ≥ 1.

Now fix λ ∈ C with |λ − p′

2
| < p′

2
if p > 1, and Re(λ) > 0 if p = 1.

In both cases there is n0 ∈ N such that |λ − p′n
2
| < p′n

2
for all n ≥ n0.

We prove that Im(λI − C) is not dense in ces(p+), which implies that
λ ∈ σ(C; ces(p+)). Proceeding by contradiction, assume that Im(λI −C) is
dense in ces(p+). Since the natural inclusion map of ces(p+) into ces(pn0)
is continuous with dense range, also Im(λI − Cn0) is dense in ces(pn0).
However, this contradicts Theorem 2.1. So, we have established that {λ ∈
C : |λ − p′

2
| < p′

2
} ⊆ σ(C; ces(p+)). This completes the proof of parts (a2)

and (b2).
It remains to show that statements (a3) and (b3) hold. In the proof of

parts (a2) and (b2) it was established that

∪n∈Nσ(Cn; ces(pn)) = σ(C; ces(p+)) ⊆ σ(C; ces(p+)).

Then Lemma 2.2 implies that σ∗(C; ces(p+)) = σ(C; ces(p+)). �

Proposition 2.4. (i) If 1 < p <∞, then

{λ ∈ C : |λ− p′

2
| < p′

2
} ⊆ σpt(C

′, (ces(p+))′β).

(ii) If p = 1, then

{λ ∈ C : Reλ > 0} ⊆ σpt(C
′, (ces(1+))′β).

Proof. (i) Let λ ∈ C satisfy |λ− p′

2
| < p′

2
, in which case |λ− r′

2
| < r′

2
for some

p < r < ∞. Since ces(p+) = Λ−1/p′(α), with α = (log(k))k∈N, is a power
series space, its dual space (ces(p+))′β ⊆ CN is a sequence space, [17, p.
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357] . It is then routine to verify that the dual operator C′ : (ces(p+))′β −→
(ces(p+))′β is given by

C′(y) := (
∞∑
k=n

yn
n

)n, y = (yn)n ∈ (ces(p+))′β.

Since (ces(r))′ ⊆ (ces(p+))′β, Theorem 2.1 implies that

{µ ∈ C : |µ− r′

2
| < r′

2
} = σpt(C; (ces(r))′) ⊆ σpt(C

′; (ces(p+))′β).

But, λ ∈ σpt(C′; (ces(r))′) via (2.2) and hence, λ ∈ σpt(C′; (ces(p+))′β).

(ii) Fix λ ∈ C with Reλ > 0 and select r′ > 1 such that |λ− r′

2
| < r′

2
. By

(2.2) there exists 0 6= u ∈ (ces(r))′ ⊆ (ces(1+))′β such that C(u) = λu. The
conclusion then follows as in part (i). �

Remark 2.5. (i) An operator T ∈ L(X), with X a lcHs, is called bounded
(resp. compact) if there exists a neighbourhood U of 0 ∈ X such that T (U)
is a bounded (resp. relatively compact) subset of X. If X is Montel (i.e.,
each bounded set is relatively compact), then T is compact if and only if
it is bounded. We point out that each ces(p+), 1 ≤ p < ∞, is a Fréchet-
Schwartz space, [3, Proposition 3.5], hence, a Montel space. Accordingly,
there is no distinction between C : ces(p+) −→ ces(p+) being compact
or bounded. Since the spectrum of a compact operator is necessarily a
compact subset of C, [11, Theorem 9.10.2], it follows from parts (a2) and
(b2) of Theorem 2.3 that C : ces(p+) −→ ces(p+) fails to be a compact
operator for every p ≥ 1.

(ii) For the Banach spaces `p, 1 < p < ∞, it is known that σ(C; `p) =

σ(C; ces(p)) = {λ ∈ C : |λ − p′

2
| ≤ p′

2
} and, moreover, that ces(p) is

the largest solid Banach lattice X ⊆ CN which contains `p and such that
C : `p −→ `p has a continuous linear extension C : X −→ `p, [9, Section
5]. Analogous to the Banach space case it turns out that also σ(C; `p+) =
σ(C; ces(p+)) for p ≥ 1; see Theorem 2.3 above and Theorems 2.2 and 2.4
in [2].

An operator T ∈ L(X), with X a lcHs space, is called power bounded
if {T n}∞n=1 is an equicontinuous subset of L(X). Given T ∈ L(X), the
averages

T[n] := 1
n

∑n
m=1 T

m, n ∈ N,
of the iterates of T are called the Cesàro means of T . It is routine to
verify that Tn

n
= T[n] − (n−1)

n
T[n−1] for n ≥ 2. The operator T is said to be

mean ergodic (resp., uniformly mean ergodic) if {T[n]}∞n=1 is a convergent
sequence in Ls(X) (resp., in Lb(X)), [16]. A lcHs operator T ∈ L(X), with
X separable, is called hypercyclic if there exists x ∈ X such that the orbit
{T nx : n ∈ N0} is dense in X, where N0 := N ∪ {0}. If, for some z ∈ X,
the projective orbit {λT nz : λ ∈ C, n ∈ N0} is dense in X, then T is called
supercyclic. Clearly, hypercyclicity implies supercyclicity.
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Proposition 2.6. The Cesàro operator C ∈ L(ces(p+)), for 1 ≤ p <∞, is
not power bounded, not mean ergodic and not supercyclic.

Proof. First let 1 < p < ∞. By Proposition 2.4(i) λ := (1 + p′)/2 belongs
to σpt(C′, (ces(p+))′β) and so there exists a non-zero vector u ∈ (ces(p+))′β
satisfying C′(u) = λu. Choose x ∈ ces(p+) such that 〈x, u〉 6= 0. Then

〈 1
n
Cnx, u〉 = 1

n
〈x, (C′)n(u)〉 = 1

n
λn〈x, u〉, n ∈ N,

with λ > 1. Hence, the set { 1
n
Cn(x) : n ∈ N} is unbounded in ces(p+)

and so the sequence { 1
n
Cn}∞n=1 cannot converge to 0 in Ls(ces(p+)). This

implies that C is not mean ergodic as Cn

n
= C[n]− (n−1)

n
C[n−1] for n ≥ 2. Since

each space ces(p+), 1 ≤ p < ∞, is reflexive and power bounded operators
in reflexive spaces are necessarily mean ergodic, [1, Corollary 2.7], it follows
that C ∈ L(ces(p+)) cannot be power bounded.

Suppose that C ∈ L(ces(p+)) is supercyclic. As ces(p+) is dense in CN, it
follows that C : CN −→ CN is supercyclic; a contradiction to [2, Proposition
4.3].

Consider now p = 1. By Proposition 2.4(ii), there is a non-zero vector
u ∈ (ces(1+))′β satisfying C′(u) = 2u. Choose x ∈ ces(p+) such that
〈x, u〉 6= 0. Then 〈 1

n
Cnx, u〉 = 2n

n
〈x, u〉, for each n ∈ N. The proof can now

be completed as for the case p > 1 above. �

3. Multiplier operators on ces(p+)

Given ϕ = (ϕi)i ∈ CN, the multiplication operator Mϕ : CN −→ CN

is defined coordinatewise by Mϕ(x) := (ϕixi)i for each x = (xi)i ∈ CN.
We will also write ϕx for (ϕixi)i. According to entry 16 in the table on
p.69 of [6], given 1 < p ≤ q < ∞ an element ϕ = (ϕi)i ∈ CN satisfies
Mϕ(ces(p)) ⊆ ces(q) if and only if (i

1
q
− 1
pϕi)i ∈ `∞; see also [6, p.71]. Observe

that (1
q
− 1

p
) ≤ 0.

The aim of this section is to investigate the class

M(ces(p+)) := {ϕ ∈ CN : Mϕ ∈ L(ces(p+))}, 1 ≤ p <∞,
of all multipliers acting in ces(p+) as well as its subclass

Mc(ces(p+)) := {ϕ ∈M(ces(p+)) : Mϕ ∈ L(ces(p+)) is compact},
for 1 ≤ p < ∞, consisting of all the compact multipliers. Both of these
classes will be explicity identified and the spectra of their members deter-
mined. Recall that ces(p+) is generated, via a certain averaging process, by
the space `p+, for p ≥ 1.Accordingly, it is of some interest to also identify the
corresponding multipliers spacesM(`p+) andMc(`p+) of `p+ and to com-
pare the situation with ces(p+). It will be shown that both Mc(ces(p+))
and Mc(`p+) are the strong dual spaces of suitable Fréchet spaces (inde-
pendent of p). The mean ergodic properties of multiplier operators in `p+
and ces(p+) will also described.
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Proposition 3.1. Let 1 ≤ p < ∞ and ϕ = (ϕi)i ∈ CN. The following
conditions are equivalent .

(i) Mϕ(ces(p+)) ⊆ ces(p+).
(ii) ϕ ∈M(ces(p+)), i.e., Mϕ ∈ L(ces(p+)).
(iii) For each r > p there exist s ∈ (p, r] and C > 0 such that |ϕi| ≤

Ci
1
s
− 1
r for all i ∈ N.

(iv) For each η ∈ (0, 1) there exists K > 0 such that |ϕi| ≤ Kiη, for
i ∈ N.

Proof. Conditions (i) and (ii) are equivalent by the closed graph theorem
for Fréchet spaces.

Since ces(p+) = projp<qces(q) is the projective limit of the Banach spaces
(ces(q), ‖ · ‖ces(q)) for q > p, condition (ii) is equivalent to the following
requirement:

∀r > p ∃s ∈ (p, r] ∃A > 0 such that ||Mϕ(x)||ces(r) ≤ A||x||ces(s),
for x ∈ ces(s). This requirement is equivalent to the fact that for each r > p
there exists s ∈ (p, r] such that Mϕ : ces(s) −→ ces(r) is continuous. By
entry 16 in the table on p.69 of [6], this is precisely the condition (iii).

(iii) =⇒ (iv). Fix η ∈ (0, 1). Set r := (p + η) > p and select s ∈ (p, r)
according to (iii). Then δ := (s − p) satisfies 0 < δ < η and s = p + δ.
Moreover,

1
s
− 1

r
= (n−δ)

(p+η)(p+δ)
< (η−δ)

p2
≤ (η − δ) < η. (3.1)

Since |ϕi| ≤ Ci
1
s
− 1
r for i ∈ N (by (iii)), condition (iv) follows from (3.1).

(iv) =⇒ (iii). Let r > p be given. Select ε ∈ (0, 1) with ε < (r − p).
Then s := p+ ε

2
satisfies p < s < r. By (iv) applied to η := ε

(p+1)(2p+1)
∈ (0, 1)

there exists K > 0 such that |ϕi| ≤ Kiη for all i ∈ N. Since (p+1)(2p+1) >
(p+ ε)(2p+ ε), it follows that

0 < η < ε
(p+ε)(2p+ε)

= 1
p+(ε/2)

− 1
(p+ε)

<
(
1
s
− 1

r

)
.

Accordingly, |ϕi| ≤ Kiη < Ki
1
s
− 1
r for i ∈ N, i.e., (iii) is satisfied. �

Remark 3.2. (i) It is clear from (iv) of Proposition 3.1 that `∞ ⊆
M(ces(p+)) for every 1 ≤ p < ∞. Note that ϕ := (log(i + 1))i /∈ `∞
also satisfies condition (iv) of Proposition 3.1. So, `∞ $M(ces(p+)) is a
proper containment for all p ≥ 1.

(ii) Given 0 < η < 1, define the weight wη := (i−η)i ∈ CN and write
u ∈ `∞(wη) if and only if the coordinatewise product uwη ∈ `∞. Then the
characterization given in Proposition 3.1(iv) can be formulated as

M(ces(p+)) =
⋂

0<η<1

`∞(wη), p ≥ 1. (3.2)

In particular, M(ces(p+)) is independent of p ∈ [1,∞) and, by part (i),
properly contains `∞. Observe that 0 < η1 < η2 < 1 implies that `∞(wη1) ⊆
`∞(wη2). It follows that the vector space (3.2) is also an algebra relative to
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coordinatewise multiplication (which corresponds to composition of opera-
tors in L(ces(p+)) ). It is routine to check from (3.2) that M(ces(p+)) is
also solid, that is, if ϕ ∈ M(ces(p+)) and ψ ∈ CN satisfies |ψ| ≤ |ϕ|, then
also ψ ∈M(ces(p+)). Let A = (an)∞n=1 be the Köthe matrix corresponding
to the increasing sequence of functions an : N −→ C given by an := w1/n

for n ∈ N. Then, as a linear subspace of CN, the right-side of (3.2) is pre-
cisely the Köthe echelon space of infinite order corresponding to A, which
we denote symbolically by λ∞(A), [17, Ch.27]. That is,

M(ces(p+)) = λ∞(A), p ≥ 1. (3.3)

We now turn our attention to the compactness of multipliers. For this we
first require a description of the spectra of multiplier operators in L(ces(p+)).

Proposition 3.3. Let 1 ≤ p <∞ and ϕ ∈M(ces(p+)).

(i) σpt(Mϕ; ces(p+)) = {ϕi : i ∈ N}, where ϕ = (ϕi)i.
(ii) The complex number λ ∈ ρ(Mϕ; ces(p+)) if and only if for each

r > p there exist s ∈ (p, r] and ε > 0 such that

|λ− ϕi| ≥ ε · i
1
r
− 1
s , i ∈ N.

In this case the inverse operator (Mλ−ϕ)−1 = M1/(λ−ϕ) in L(ces(p+))
and so 1/(λ− ϕ) ∈M(ces(p+)).

(iii) σ(Mϕ; ces(p+)) = σ∗(Mϕ; ces(p+)) = {ϕi : i ∈ N}.

Proof. (i) Since Mϕ(ei) = ϕiei for i ∈ N, it is clear that {ϕi : i ∈
N} ⊆ σpt(Mϕ; ces(p+)). Moreover, if λ ∈ C satisfies Mϕ(x) = λx, that
is, (ϕixi)i = (λxi)i for some x ∈ ces(p+) r {0}, then λ ∈ {ϕi : i ∈ N}.

(ii) It is clear (from (i)) that λ ∈ C belongs to ρ(Mϕ; ces(p+)) if and
only if λ /∈ {ϕi : i ∈ N} and the element ψλ := ( 1

λ−ϕi )i ∈ CN belongs to
M(ces(p+)). Accordingly, the stated condition follows from Proposition 3.1
applied to ψλ. Clearly, (Mλ−ϕ)−1 = Mψλ whenever ψλ ∈M(ces(p+)).

(iii) Part (i) implies that {ϕi : i ∈ N} ⊆ σ(Mϕ; ces(p+)). Hence,

{ϕi : i ∈ N} ⊆ σ(Mϕ; ces(p+)) ⊆ σ∗(Mϕ; ces(p+)). (3.4)

Suppose that λ /∈ {ϕi : i ∈ N}. Then there exists ε > 0 such that |λ−ϕi| ≥ ε
for each i ∈ N. If µ ∈ C satisfies |µ − λ| < ε/2, then |µ − ϕi| ≥ ε/2 for
each i ∈ N. Via part (ii) we can conclude (by choosing s := r for each
r > p) that µ ∈ ρ(Mϕ; ces(p+)) and (Mµ−ϕ)−1 = M1/(µ−ϕ). Moreover, for
each r > p, we have

||M1/(µ−ϕ)(x)||ces(r) = ‖( xi
µ−ϕi )i‖ces(r) ≤ (2/ε)||x||ces(r), x ∈ ces(p+).

Since ces(p+) = projp<rces(r), it follows that {(Mµ−ϕ)−1 : |µ−λ| < ε/2} is
an equicontinuous subset of L(ces(p+)), that is, λ ∈ ρ∗(Mϕ; ces(p+)). So,
we have established that (C r {ϕi : i ∈ N} ⊆ ρ∗(Mϕ; ces(p+)). Combined
with (3.4) this yields the desired conclusion. �
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Remark 3.4. (i) Remark 3.2(i) and Proposition 3.3(iii) show that the
spectrum of ϕ ∈ M(ces(p+)) need not be a compact subset of C. This
may occur because ϕ 6∈ `∞; consider ϕ := (log(i+ 1))i as in Remark 3.2(i).
The phenomenon also occurs for certain bounded multipliers. For instance,
ψ := (1/ϕ) ∈ `∞ ⊆ M(ces(p+)) has bounded spectrum σ(Mψ; ces(p+))
but, σ(Mψ; ces(p+)) is not compact in C as it fails to contain the limit
point 0 (because (Mψ)−1 = Mϕ ∈ L(ces(p+)) and so 0 ∈ ρ(Mψ; ces(p+)) ).

(ii) If T ∈ L(X), with X a lcHs, is compact, then σ(T ;X) is a com-
pact subset of C and every non-zero point of σ(T ;X) is isolated, [11,
Theorem 9.10.2], [13, p.204]. This implies, via Proposition 3.3(iii), that
if ϕ ∈Mc(ces(p+)), then necessarily ϕ ∈ c0. That is,

Mc(ces(p+) ⊆ c0, p ≥ 1.

(iii) For each p ≥ 1, Proposition 3.3(ii) implies that the unital, commu-
tative subalgebra {Mϕ : ϕ ∈ M(ces(p+))} of L(ces(p+)) is inverse closed
in L(ces(p+)). That is, if T ∈ {Mϕ : ϕ ∈ M(ces(p+))} is invertible in
L(ces(p+)), then T−1 = Mψ for some ψ ∈M(ces(p+)).

Lemma 3.5. Let 1 ≤ p < ∞ and ϕ ∈ M(ces(p+)). The operator Mϕ ∈
L(ces(p+)) is compact if and only if there exists q > p such that for all r ∈
(p, q) the operator Mϕ ∈ L(CN) maps the Banach space ces(q) continuously
into the Banach space ces(r) (denoted simply by Mϕ : ces(q)→ ces(r) ).

Proof. Assume first that there exists q > p such that Mϕ : ces(q)→ ces(r)
is continuous for all r ∈ (p, q). Set Up,q := {x ∈ ces(p+) : ||x||ces(q) ≤ 1},
which is a neighbourhood of 0 in ces(p+). Since Up,q is contained in the
closed unit ball of the Banach space ces(q), the continuity assumption on
Mϕ implies that Mϕ(Up,q) is a bounded set in ces(r) for all r ∈ (p, q)
Accordingly, Mϕ(Up,q) is a bounded set in ces(p+) and hence, is relatively
compact as ces(p+) is a Montel space.

Conversely, if Mϕ ∈ L(ces(p+)) is compact, then by definition there
exists q > p such that Mϕ(Up,q) is a relatively compact (i.e., bounded) set
in ces(p+). Thus, Mϕ(Up,q) is a bounded set in ces(r) for all r ∈ (p, q).
Hence, for each r ∈ (p, q), the operator Mϕ : (ces(p+), ‖ · ‖ces(q)) → ces(r)
acting between these two normed spaces is continuous. The density of
ces(p+) in ces(q) ensures that there is a unique continuous, linear extension
T : ces(q) → ces(r) of Mϕ. By considering the canonical basis vectors
{en : n ∈ N} it is routine to check that this unique extension T is precisely
Mϕ : ces(q)→ ces(r). �

Given x = (xi)i ∈ `∞, its least decreasing majorant x̂ ∈ `∞ is defined by

x̂ := (sup
i≥k
|xi|)k,

[6, p.9]. For each r ∈ (1,∞) the space

d(r) := {x ∈ `∞ : x̂ ∈ `r}
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is a Banach space when endowed with the norm

‖x‖d(r) := ‖x̂‖r, x ∈ d(r),

[6, p.3 & p.9]. Since |x| ≤ x̂ whenever x ∈ `∞, it is clear that d(r) ⊆ `r ⊆ c0
for 1 < r <∞. If 1 < p < ∞, then d(p′) is isomorphic to the dual Banach
space (ces(p))′ of ces(p), [6, p.61 & Corollary 12.17].

The following result is Proposition 2.5 of [4].

Proposition 3.6. Let 1 < r < q. For ϕ ∈ CN the following assertions are
equivalent.

(i) The operator Mϕ : ces(q) −→ ces(r) is continuous.
(ii) The operator Mϕ : ces(q) −→ ces(r) is compact.
(iii) ϕ ∈ d(s), where s > r is given by 1

s
:= 1

r
− 1

q
.

It is now possible to characterize the compact multipliers for ces(p+).

Proposition 3.7. Let 1 ≤ p < ∞ and ϕ ∈ M(ces(p+)). The following
conditions are equivalent.

(i) ϕ ∈Mc(ces(p+)), that is, Mϕ ∈ L(ces(p+)) is a compact operator.
(ii) ϕ̂ ∈ `(∞−) := ∪t>1`t ⊆ c0.
(iii) ϕ ∈ d(∞−) := ∪s>1d(s) ⊆ c0.

Proof. Recall from Remark 3.4(ii) thatMc(ces(p+)) ⊆ c0.
(ii) =⇒ (i). Since ϕ̂ ∈ `(∞−), there exists t > p such that ϕ̂ ∈ `t. Select

ε > 0 according to p+ p2

ε
= t and set q := p+ ε. Now fix any r ∈ (p, q) and

define s > 0 by 1
s

= 1
r
− 1

q
. Since p < r, it follows that 1

s
< ε

p2+εp
= 1

t
. Hence,

s > t. Therefore ϕ̂ ∈ `s as `t ⊆ `s, that is, ϕ ∈ d(s). Proposition 3.6 implies
that Mϕ : ces(q) −→ ces(r) is continuous. Since q > p with r ∈ (p, q)
arbitrary, we can apply Lemma 3.5 to conclude that Mϕ ∈ L(ces(p+)) is
compact.

(i) =⇒ (ii). Since the operatorMϕ ∈ L(ces(p+)) is compact, there exists
q > p such that Mϕ : ces(q) −→ ces(r) is continuous for each r ∈ (p, q);

see Lemma 3.5. Define r := (p + q)/2 and s := (p+q)q
q−p . Then

1
s

= 1
r
− 1

q
.

Proposition 3.6 yields that ϕ̂ ∈ `s ⊆ `∞− as s > 1.
(ii)⇐⇒ (iii). Observe, that ϕ ∈ ∪s>1d(s) if and only if ϕ ∈ d(t) for some

t > 1, that is, if and only if ϕ̂ ∈ `t for some t > 1, which is equivalent to
ϕ̂ ∈ `(∞−). �

Remark 3.8. (i) Proposition 3.7 shows thatMc(ces(p+)) = ∪s>1d(s) is
independent of p ∈ [1,∞). Moreover, the containment ∪s>1d(s) ⊆ c0 is
proper. To see this consider ψ := ( 1

log(1+i)
)i. Since ψ ∈ `∞, Remark 3.2

implies that ψ ∈ λ∞(A). However, ψ is not a compact multiplier. Indeed,
by Remark 3.2(i) also ϕ := 1

ψ
∈ λ∞(A). So, if ψ were compact, then the

identity operator I = MϕMψ would be compact.
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(ii) Via the description of the dual space (ces(1+))′β of ces(1+) as given
in Proposition 4.6 of [3] it follows from Proposition 3.7(iii) that also

Mc(ces(p+)) = (ces(1+))′β, 1 ≤ p <∞, (3.5)

as an equality of linear spaces.
(iii) It is immediate from Proposition 3.7(iii) that Mc(ces(p+)), for

p ≥ 1, is a solid sublattice of CN.

Fix any p ≥ 1 . There are two natural ways to topologize the linear space
λ∞(A) of all p-multipliers for ces(p+). Indeed, it is clear from (3.2) and
(3.3) that λ∞(A) = proj0<η<1`∞(wη) is the Köthe echelon Fréchet space of
infinite order (see Chapter 27 of [17]) when it is equipped with the topology
κ∞ determined by the increasing sequence of norms

‖ϕ‖(∞)
1/k := sup

i∈N
|ϕi|i−1/k, ϕ ∈ λ∞(A), k ∈ N.

On the other hand, Proposition 3.1 implies that the map Jp : λ∞(A) −→
Lb(ces(p+)) given by

Jp(ϕ) := Mϕ, ϕ ∈ λ∞(A),

is well defined, linear and injective. Accordingly, the topology τb can be
transferred from Lb(ces(p+)) to λ∞(A). Namely, each continuous seminorm
ν on Lb(ces(p+)) defines a corresponding seminorm on λ∞(A) via the for-
mula ϕ 7−→ ν(Jp(ϕ)) for ϕ ∈ λ∞(A). Denote this lcH-topology on λ∞(A)
by τb(∞). Of course, τb(∞) is generated by the family of seminorms γ̃B,q
given by

γ̃B,q(ϕ) := γB,‖·‖ces(q)(Jp(ϕ)) = sup
x∈B
‖Mϕ(x)‖ces(q), ϕ ∈ λ∞(A), (3.6)

for all bounded sets B ⊆ ces(p+) and all q > p; see Section 1. Somewhat
surprisingly, τb(∞) coincides with the Fréchet space topology κ∞ on λ∞(A).
In order to establish this we require a preliminary result.

Lemma 3.9. (i) For each p > 1 there exist positive constants Ap, Bp such
that

Ap
i1/p′

≤ ‖ei‖ces(p) ≤
Bp

i1/p′
, i ∈ N.

(ii) For each s > 0, the canonical basis vectors {ei}i∈N ⊆ d(s) satisfy
‖ei‖d(s) = i1/s for i ∈ N.

(iii) For each q > 1 there exist positive constants Cq, Dq such that

Cqi
1/q′ ≤ ‖ei‖(ces(q))′ ≤ Dqi

1/q′ , i ∈ N. (3.7)

(iv) For all pairs 1 < p ≤ q < ∞ and with η := (1
p
− 1

q
) ≥ 0 the space

`∞(wη) as defined in Remark 3.2(ii) is a Banach space relative to the norm

‖ϕ‖(∞)
p,q := sup

i∈N
|ϕi|i−η, ϕ ∈ `∞(wη).
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Given ϕ ∈ `∞(wη) the operator Mϕ is continuous and so belongs to the Ba-
nach space Lb(ces(p), ces(q)). Moreover, there exists a constant M(p, q) > 0
satisfying

‖Mϕ‖op := sup
‖u‖ces(p)≤1

‖Mϕ(u)‖ces(q) ≤M(p, q)‖ϕ‖(∞)
p,q , ϕ ∈ `∞(wη).

Proof. (i) See Lemma 4.7 in [6].
(ii) Since êi = (1, . . . , 1, 0, 0, . . .) with 1 in the first i coordinates, it

follows that ‖ei‖d(s) := ‖êi‖s = i1/s, for i ∈ N.
(iii) Since the dual Banach space (ces(q))′ is isomorphic to d(q′), there

exist positive constants Cq, Dq such that

Cq‖x‖d(q′) ≤ ‖x‖(ces(q))′ ≤ Dq‖x‖d(q′), x ∈ d(q′).

Part (ii) and the choice x := ei, for each i ∈ N, then imply (3.7).
(iv) Since (`∞(wη), ‖ · ‖(∞)

p,q ) is a weighted `∞-space, it is surely a Ba-
nach space. The discussion prior to Proposition 3.1 shows that Mϕ ∈
L(ces(p), ces(q)) for each ϕ ∈ `∞(wη). It follows that the map Φp,q :
`∞(wη) −→ Lb(ces(p), ces(q)), acting between Banach spaces and given
by Φp,q(ϕ) := Mϕ is well defined, linear and injective. The existence of
M(p, q) > 0 is equivalent to the continuity of Φp,q which we establish via
the closed graph theorem.

Consider any sequence {ϕ(k)}k∈N ⊆ `∞(wη) which converges to 0 for
the norm ‖ · ‖(∞)

p,q and such that {Φp,q(ϕ
(k))}k∈N converges for the operator

norm to some element T ∈ Lb(ces(p), ces(q)). The aim is to show that
T = 0, for which it suffies to show that T (ei) = 0 for each basis vector
ei ∈ ces(p), i ∈ N. This is achieved by verifying that Mϕ(k)(ei) −→ 0 in
ces(q) for k −→ ∞. So, fix i0 ∈ N. Since Mϕ(k)(ei0) = ϕ

(k)
i0
ẽi0 (where ẽi0

(resp. ei0) indicates the i0-th canonical basis vector considered as an element
of ces(q) (resp. of ces(p)), it follows that

‖Mϕ(k)(ei0)‖ces(q) = |ϕ(k)
i0
| · ‖ẽi0‖ces(q) = iη0‖ẽi0‖ces(q)|ϕ

(k)
i0
|i−η0

≤ iη0‖ẽi0‖ces(q)‖ϕ(k)‖(∞)
p,q ,

for each k ∈ N. Letting k −→ ∞ it is clear that Mϕ(k)(ei0) −→ 0 in
ces(q). �

Proposition 3.10. Let 1 ≤ p < ∞. The linear map Jp : (λ∞(A), κ∞) −→
Lb(ces(p+)) is a bicontinuous isomorphism of λ∞(A) onto its image Im(Jp) =
Jp(λ

∞(A)) in Lb(ces(p+)). In particular, the lcH-topology τb(∞) and the
metrizable lc-topology κ∞ coincide on λ∞(A).

Proof. To verify that Jp is continuous fix any seminorm γ̃B,q of the form
(3.6) with q > p and B ⊆ ces(p+) a bounded set. Since each r ∈ ( q

q+1
, q)

satisfies αr := (1
r
− 1

q
) < 1, it is possible to choose r close enough to q

so that also r ∈ (p, q). Fix such an r, in which case 0 < αr < 1. Since
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‖ · ‖ces(r) is a continuous norm on ces(p+), there exists R(r) > 0 such that
‖x‖ces(r) ≤ R(r) for all x ∈ B , that is,

‖ x
R(r)
‖ces(r) ≤ 1, x ∈ B. (3.8)

It follows from (3.6), (3.8) and Lemma 3.9(iv) that, for each ϕ ∈ λ∞(A),
we have
γB,q(Jp(ϕ)) = R(r) supx∈B ‖Mϕ( x

R(r)
)‖ces(q) ≤ R(r) sup‖u‖ces(r)≤1 ‖Mϕ(u)‖ces(q)

≤ R(r)M(r, q)‖ϕ‖(∞)
r,q ,

where the norm ‖ · ‖(∞)
r,q of `∞(wαr) restricted to (λ∞(A), κ∞) is continuous.

The continuity of Jp is thereby established.
To establish the continuity of J−1p : (Im(Jp), τb) −→ (λ∞(A), κ∞) we need

to consider two separate cases.
Case (i). Let p > 1. Fix 0 < α < 1 and choose s ∈ (0, 1

p
) such that

0 < (1
p
− s) < α. Then q(α) := 1

s
satisfies p < q(α) and (1

p
− 1

q(α)
) ∈ (0, α).

Let ϕ ∈ λ∞(A) ⊆ `∞(wα). For each i ∈ N we have |ϕi| = 〈Mϕ(ei), ẽi〉,
with ei ∈ ces(p) and where ẽi indicates the i-th canonical basis vector
considered as an element of (ces(q(α)))′. Since ϕ ∈ `∞(wα) implies that
Mϕ ∈ L(ces(p), ces(q(α))), it follows from parts (i), (iii) of Lemma 3.9 that

|ϕi| ≤ ‖Mϕ‖op‖ei‖ces(p)‖ẽi‖(ces(q(α)))′ ≤ BpDq(α)‖Mϕ‖opi
1

q(α)′−
1
p′

= BpDq(α)‖Mϕ‖opi
1
p
− 1
q(α) ,

for each i ∈ N. Because 0 < (1
p
− 1

q(α)
) < α implies i

1
p
− 1
q(α) < iα, it follows

that
‖ϕ‖(∞)

α := sup
i∈N
|ϕi|i−α ≤ BpDq(α)‖Mϕ‖op.

But, continuity of the inclusion ces(p) ⊆ ces(p+) implies that the unit ball
Up of ces(p) is a bounded subset of ces(p+). Hence,

‖Mϕ‖op = sup
x∈Up
‖Mϕ(x)‖ces(q(α)) = γUp,‖·‖ces(q(α))(Jp(ϕ))

which, together with the previous inequality, yields

‖ϕ‖(∞)
α ≤ BpDq(α)γUp,‖·‖ces(q(α))(Jp(ϕ)), ϕ ∈ λ∞(A).

Since 0 < α < 1 is arbitrary, this shows that J−1p : (Im(Jp), τb) −→
(λ∞(A), κ∞) is continuous.

Case (ii). Suppose now that p = 1. Since there is no Banach space
“ces(1)”, the proof of Case (i) is not applicable. The continuous inclusions
`1 ⊆ `1+ ⊆ ces(1+) imply that the unit ball V1 of `1 is a bounded subset of
ces(1+).

Fix any 0 < α < 1 and choose q(α) > 1 such that 0 < (1− 1
q(α)

) < α. Since
`1 ⊆ ces(1+) ⊆ ces(q(α)) and J1(ϕ) ∈ Lb(ces(1+)), for each ϕ ∈ λ∞(A),
imply that Mϕ(ces(1+)) ⊆ ces(1+), it follows that Mϕ(`1) ⊆ ces(q(α)).
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Via the closed graph theorem it can be shown that Mϕ ∈ L(`1, ces(q(α)))
for all ϕ ∈ λ∞(A). Fix i ∈ N. As for Case (i), now with ei ∈ `1 (so that
‖ei‖1 = 1) and ẽi ∈ ces(q(α)) the canonical basis vectors, we have

|ϕi| ≤ ‖Mϕ‖op‖ẽi‖ces(q(α)) ≤ ‖Mϕ‖opDq(α)i
1

q(α)′

= ‖Mϕ‖opDq(α)i
1− 1

q(α) < ‖Mϕ‖opDq(α)i
α.

Moreover,

‖Mϕ‖op = sup
x∈V1
‖Mϕ(x)‖ces(q(α)) = γV1,‖·‖ces(q(α))(J1(ϕ))

which, together with the previous inequality, yields

‖ϕ‖(∞)
α := sup

i∈N
|ϕi|i−α ≤ Dq(α)γV1‖·‖ces(q(α))(J1(ϕ)), ϕ ∈ λ∞(A).

So, also J−11 : (Im(J1), τb) −→ (λ∞(A), κ∞) is continuous. �

Proposition 3.7 shows that the compact multipliers for ces(p+) satisfy

Mc(ces(p+)) = d(∞−) := ∪s>1d(s), 1 ≤ p <∞,
where the union is formed with respect to the increasing family of Ba-
nach spaces {d(s)}s>1. Hence, we can endow d(∞−) with the inductive
limit topology τind, [17, Ch.24]. In particular, (d(∞−), τind) is a regular
(LB)-space, [17, p.291]. According to Proposition 4.6 of [3] the space
(d(∞−), τind) is linearly isomorphic to the strong dual space (ces(1+))′β
of the Fréchet space ces(1+). So, we have established the following fact.

Proposition 3.11. For each p ≥ 1, the space of compact multipliersMc(ces(p+))
is linearly isomorphic to the strong dual space of the fixed Fréchet-Schwartz
space (independent of p)

Mc(ces(p+)) = (d(∞−), τind) ' (ces(1+))′β, 1 ≤ p <∞.

Since Mc(ces(p+)) ⊆ M(ces(p+)) for 1 ≤ p < ∞, that is, d(∞−) ⊆
λ∞(A), one can also equip d(∞−) with the relative topology κ∞ from
λ∞(A). The relationship between the lcHs’ (d(∞−), τind) and (d(∞−), κ∞)
is clarified by the following result.

Proposition 3.12. The identity map j : (d(∞−), τind) −→ (d(∞−), κ∞)
is continuous and the topology τind on d(∞−) is strictly stronger than the
lc-metrizable topology κ∞.

Proof. To establish the continuity of j it suffices to show that j : (d(∞−), τind) −→
(λ∞(A), κ∞) is continuous. By [17, Proposition 24.7] this reduces to show-
ing, for each fixed s > 1, that the identity inclusion js : (d(s), ‖ · ‖d(s)) −→
(λ∞(A), κ∞) between Fréchet spaces is continuous. Since js = j2 ◦ j1, with
both j1 : (d(s), ‖·‖d(s)) −→ (`∞, ‖·‖∞) and j2 : (`∞, ‖·‖∞) −→ (λ∞(A), κ∞)
being the natural inclusion maps, it suffices to show that both j1, j2 are con-
tinuous.
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Concerning j1, note that ‖ϕ‖∞ = ‖ϕ̂‖∞ for every ϕ ∈ `∞ and that
‖ψ‖∞ ≤ ‖ψ‖s for every ψ ∈ `s. Since ϕ ∈ d(s) ⊆ `∞ implies that ϕ̂ ∈ `s, it
follows that

‖j1(ϕ)‖∞ = ‖ϕ‖∞ = ‖ϕ̂‖∞ ≤ ‖ϕ̂‖s := ‖ϕ‖d(s), ϕ ∈ d(s).

Accordingly, j1 is continuous.
To establish the continuity of j2 fix 0 < α < 1. Then

‖j2(ϕ)‖(∞)
α = ‖ϕ‖(∞)

α := supi∈N
|ϕi|
iα
≤ ‖ϕ‖∞, ϕ ∈ `∞.

Hence, j2 is also continuous. The continuity of j is thereby established.
The continuity of j implies that τind is certainly a stronger topology on

d(∞−) than κ∞. If these two topologies were equal, then the identity map
j−1 : (d(∞−), κ∞) −→ (d(∞−), τind) would also be continuous and so τind
would be a lc-metrizable topology on d(∞−). By the Grothendieck-Floret
factorization theorem this is impossible, [19, Proposition 8.5.38]. Hence,
τind is strictly stronger than κ∞. �

Because of significant differences, it is worthwhile to compare the spaces
Mc(`p+),M(`p+) with the corresponding spacesMc(ces(p+)),M(ces(p+)),
whereM(`p+) := {ϕ ∈ CN : Mϕ ∈ L(`p+)} andMc(`p+) := {ϕ ∈M(`p+) :
Mϕ ∈ L(`p+) is compact}, for 1 ≤ p < ∞. The multiplier spaceM(`p+) is
already known, namely

M(`p+) = `∞, 1 ≤ p <∞, (3.9)

[7, Corollary 5.3]. This space is obviously independent of p ≥ 1 and different
to M(ces(p+)) = λ∞(A), which contains `∞ as a proper subspace; see
Remark 3.2(i). In order to identifyMc(`p+) we require some preliminaries.
The following fact is immediate from the entries 1 and 17 in the tables on
pp. 69–70 of [6].

Lemma 3.13. Let 1 ≤ p, q <∞ be an arbitrary pair and ϕ ∈ CN.

(i) If p ≤ q, then Mϕ : `p −→ `q is continuous if and only if ϕ ∈ `∞.
(ii) If p > q, then Mϕ : `p −→ `q is continuous if and only if ϕ ∈ `r

where r satisfies 1
r

= 1
q
− 1

p
.

Concerning compactness of the Banach space operators Mϕ from `p to `q
we have the following characterization.

Lemma 3.14. Let 1 ≤ p, q <∞ be an arbitrary pair and ϕ ∈ CN.

(i) If p ≤ q, then Mϕ : `p −→ `q is compact if and only if ϕ ∈ c0.
(ii) If p > q, thenMϕ : `p −→ `q is compact if and only if it is continuous

if and only if ϕ ∈ `r with 1
r

= 1
q
− 1

p
.

Proof. (i) Suppose that ϕ ∈ c0. Then Mϕ ∈ L(`p, `q) by Lemma 3.13(i).
Define ϕ(N) := (ϕ1, . . . , ϕN , 0, 0, . . .) for N ∈ N. Then Mϕ(N) : `p −→ `q is
a finite rank operator and hence, is compact for each N ∈ N. Since p ≤ q,
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it is routine to verify that each ϕ − ϕ(N) satisfies (relative to the operator
norm in L(`p, `q))

‖Mϕ−ϕ(N)‖op ≤ ‖ϕ− ϕ(N)‖∞, N ∈ N.

Hence, as ‖ϕ−ϕ(N)‖∞ −→ 0 for N −→∞, it follows that Mϕ is a compact
operator.

Conversely, suppose that Mϕ is compact. In particular, Mϕ ∈ L(`p, `q).
By a standard compactness criterion for continuous linear operators be-
tween Banach sequence spaces, it follows that limm→∞Mϕ(xm) = 0 in `q
whenever {xm}∞m=1 is a bounded sequence in `p satisfying limm→∞ xm = 0
in the Fréchet space CN, [4, Lemma 2.1]. Since the canonical basis vectors
xm := em, for m ∈ N, are norm bounded in `p and satisfy em −→ 0 in
CN for m −→ ∞, it follows that |ϕm| = ‖Mϕ(em)‖q −→ 0 for m −→ ∞.
Accordingly, ϕ ∈ c0.

(ii) This follows from the facts that compact operators are necessarily
continuous, Lemma 3.13(ii), and Pitt’s theorem, which states that every
operator T ∈ L(`p, `q) is necessarily compact whenever p > q, [20]. �

The following result for `p+ is the analogue of Proposition 3.7 for ces(p+).

Proposition 3.15. Let 1 ≤ p < ∞ and ϕ ∈ M(`p+) = `∞. The following
conditions are equivalent.

(i) ϕ ∈Mc(`p+), that is, Mϕ ∈ L(`p+) is a compact operator.
(ii) ϕ ∈ `(∞−) = ∪s>1`s.

Proof. (i) =⇒ (ii). Let ϕ ∈ Mc(`p+). By definition there exists q > p
such that the Banach space operator Mϕ : `q −→ `r is compact (hence,
continuous) for every r ∈ (p, q). Choose r := p+q

2
∈ (p, q) in which case

q > r. Then s := (p+q)q
(q−p) > 0 satisfies 1

s
= 1

r
− 1

q
and so Lemma 3.14(ii)

implies that ϕ ∈ `s ⊆ `(∞−).
(ii) =⇒ (i). Fix ϕ ∈ `(∞−). Then there exists s > p such that ϕ ∈ `s.

Set ε := p2

(s−p) > 0 (in which case s = p+ p2

ε
) and define q > p by q := p+ ε.

Now, fix any r ∈ (p, q) and define t via 1
t

= 1
r
− 1

q
. Since p < r, we have

1
t
< ε

p2+εp
= 1

s
and t > s, that is, ϕ ∈ `t (as `s ⊆ `t). Then Lemma 3.14(iv)

implies that Mϕ : `q −→ `r is compact. So, we have shown that there
exists q > p such that Mϕ : `q −→ `r is compact for all r ∈ (p, q), that is,
Mϕ ∈ L(`p+) is a compact operator. �

Given any p ≥ 1, we know that ϕ ∈ CN satisfies ϕ ∈M(`p+) if and only
if ϕ ∈ `∞ and that ϕ ∈Mc(`p+) if and only if ϕ ∈ `(∞−); see Proposition
3.15.

Proposition 3.16. Let 1 ≤ p < ∞. The linear map Λp : (`∞, ‖ · ‖∞) −→
(Lb(`p+), τb) defined by Λp(ϕ) := Mϕ, for ϕ ∈ `∞, is a bicontinuous isomor-
phism of the Banach space (`∞, ‖ · ‖∞) onto its image Im(Λp) in Lb(`p+).
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In particular, the lcH-topology on `∞ induced by τb (from Lb(`p+)) coincides
with the norm topology on `∞ induced by ‖ · ‖∞.

Proof. It is clear from (3.9) that Λp is well defined, linear and injective. The
seminorms γB,q determined by transfering the topology τb from Lb(`p+) to
`∞ are given by

γB,q(ϕ) := γB,‖·‖q(Λp(ϕ)) = sup
x∈B
‖Mϕ(x)‖q, ϕ ∈ `∞,

for all bounded sets B ⊆ `p+ and all q > p; see Section 1. Fix such a set B
and q > p. It follows that

γB,q(ϕ) ≤ ‖ϕ‖∞ sup
x∈B
‖x‖q = δB,q‖ϕ‖∞, ϕ ∈ `∞,

with δB,q := supx∈B ‖x‖q < ∞ because B is bounded in `p+ and hence, is
also bounded in `q as `p+ ⊆ `q continuously. This establishes the continuity
of Λp.

To verify the continuity of Λ−1p : (Im(Λp), τb) −→ (`∞, ‖ · ‖∞), let Bp

denote the unit ball of `p and let q > p be arbitrary. Since `p ⊆ `p+
continuously, Bp is also a bounded set in `p+. Note that the canonical basis
vectors {ek}k∈N of `p lie in Bp. Let ẽi, for i ∈ N, denote the basis vector
ei ∈ CN considered as an element of the dual Banach space `q′ of `q, in which
case ‖ẽi‖q′ = 1. For each ϕ ∈ `∞ it follows from Lemma 3.13(i) that the
Banach space operator Mϕ : `p −→ `q is continuous. Since {ek}k∈N ⊆ Bp,
it follows that
|ϕi| = |〈Mϕ(ei), ẽi〉| ≤ ‖Mϕ(ei)‖q‖ẽi‖q′ = ‖Mϕ(ei)‖q ≤ sup

x∈Bp
‖Mϕ(x)‖q

= γBp,q(Λp(ϕ)),

for each i ∈ N. Forming the supremum with respect to i ∈ N yields

‖ϕ‖∞ ≤ γBp,q(Λp(ϕ)), ϕ ∈ `∞,
that is, Λ−1p is continuous from (Im(Λp), τb) −→ (`∞, ‖ · ‖∞). �

Proposition 3.15 shows that

Mc(`p+) = `(∞−) = ∪s>1`s, 1 ≤ p <∞.
Equip `(∞−) with the inductive limit topology τind, in which case (`(∞−), τind)
is a regular (LB)-space. It is known that (`(∞−), τind) is precisely the strong
dual space (`1+)′β of the reflexive Fréchet space `1+. Summarizing yields the
following result.

Proposition 3.17. For each p ≥ 1, the compact multipliers for `p+ are
given by

Mc(`p+) = (`(∞−), τind) = (`1+)′β,

a space which is independent of p.

Since `(∞−) ⊆ `∞, one can also equip `(∞−) with the topology induced
by the norm ‖ · ‖∞.
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Proposition 3.18. The identity map ρ : (`(∞−), τind) −→ (`(∞−), ‖ ·‖∞)
is continuous and the topology τind is strictly stronger than the topology
induced by the norm ‖ · ‖∞.

Proof. For each s > 1, the identity inclusion ρs : (`s, ‖ · ‖s) −→ (`∞, ‖ · ‖∞)
is well known to be continuous. This implies that ρ is continuous; see the
proof of Proposition 3.12.

The analogous argument as in the last paragraph of the proof of Propo-
sition 3.12 shows that τind is a strictly stronger topology on `(∞−) than
the topology induced by ‖ · ‖∞. �

Remark 3.19. (i) The identity inclusion `1+ ⊆ ces(1+) is continuous
between reflexive Fréchet spaces and is proper, [3, Lemma 2.1], which implies
for their strong dual spaces that

d(∞−) = (ces(1+))′β $ (`1+)′β = `(∞−).

Hence, for each 1 ≤ p <∞ we have

Mc(ces(p+)) $Mc(`p+)

in contrast to

M(ces(p+)) = λ∞(A) % `∞ =M(`p+).

(ii) Due to the reflexivity of the Fréchet space ces(1+), the strong dual
of the compact multipliers (Mc(ces(p+)))′β = (d(∞−), τind)′β = ces(1+) is
identifiable with a proper linear subspace of the Fréchet spaceM(ces(p+)) =
(λ∞(A), κ∞) of all p-multipliers , for p ≥ 1. Similarly, (Mc(`p+))′β =
(`(∞−), τind)′β = `1+ is a proper linear subspace of the Banach space
M(`p+) = (`∞, ‖ · ‖∞) of all multipliers for `p+, for p ≥ 1. This is in
contrast to the situation for the space of all compact (Fourier) multiplier
operators acting in Lp(G), for G a compact group, where equality occurs,
[5].

The final part of this section examines the mean ergodic properties of
multiplier operators. We begin with the spaces ces(p+).

Proposition 3.20. Let 1 ≤ p <∞. The following conditions are equivalent
for ϕ ∈M(ces(p+)).

(i) Mϕ is power bounded.
(ii) Mϕ is mean ergodic.
(iii) Mϕ is uniformly mean ergodic.
(iv) ϕ ∈ `∞ and ||ϕ||∞ ≤ 1.
(v) σ(Mϕ; ces(p+)) ⊆ D.

Proof. (i) =⇒ (ii) because ces(p+) is a reflexive Fréchet space, [1, Corollary
2.7].

(ii) ⇐⇒ (iii). Clearly (iii) =⇒ (ii). Concerning (ii) =⇒ (iii), note that
the convergence of the sequence {(Mϕ)[n]}∞n=1 in Ls(ces(p+)) implies that
it is an equicontinuous subset of L(ces(p+)). Since ces(p+) is a Montel
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space, it follows that τb restricted to {(Mϕ)[n]}∞n=1 agrees with τs and so
{(Mϕ)[n]}∞n=1 also convergences in Lb(ces(p+)), that is, Mϕ is uniformly
mean ergodic.

(ii) =⇒ (iv). By condition (ii), for each x ∈ ces(p+) the sequence
{ 1
k
(Mϕ)k(x)}∞k=1 converges to 0 in ces(p+). In particular, for each basis

vector x = ej it follows that limk→∞
ϕkj
k

= 0 and hence, |ϕj| ≤ 1. Since
j ∈ N is arbitrary, ||ϕ||∞ ≤ 1 and so condition (iv) is satisfied.

(iv) =⇒ (i). Recall that a sequence {rk}∞k=1 of lattice norms generating
the topology of ces(p+) is given by (1.5). Suppose that ϕ ∈ `∞ and ||ϕ||∞ ≤
1. Then, for each n ∈ N, we have ‖ϕn‖∞ ≤ 1 and so

rk((Mϕ)n(x)) = rk(ϕ
nx) ≤ rk(x), x ∈ ces(p+), n, k ∈ N,

which implies that {(Mϕ)n : n ∈ N} is an equicontinuous subset of L(ces(p+)).
Hence, condition (i) is satisfied.

(iv) ⇐⇒ (v). This is a direct consequence of Proposition 3.3(iii). �

In order to determine the mean ergodic properties of multiplier operators
in `p+ we first require a knowledge of their spectra.

Proposition 3.21. Fix 1 ≤ p <∞ and let ϕ ∈M(`p+) = `∞.

(i) σpt(Mϕ; `p+) = {ϕi : i ∈ N}, where ϕ = (ϕi)i .

(ii) σ(Mϕ; `p+) = σ∗(Mϕ; `p+) = {ϕi : i ∈ N}.

Proof. (i) The analogous argument used in the proof of Proposition 3.3(i)
applies here.

(ii) Let P : 2N −→ Ls(`p+) denote the canonical spectral measure defined
via P (A) := MχA for A ⊆ N; see [7, Section 1]. Then the lcHs L1(P )
consisting of all the P -integrable functions is precisely

L1(P ) =M(`p+) = `∞

and
∫
N f dP = Mf for all f ∈ L1(P ), [7, Proposition 5.1 & Corollary 5.3].

Part (i) implies that

{ϕi : i ∈ N} ⊆ σ(Mϕ; `p+) ⊆ σ∗(Mϕ; `p+). (3.10)

Keeping in mind that
(I) the τs-bounded subsets of L(`p+) are precisely the equicontinuous

subsets of L(`p+),
(II) if f : N −→ C∗ := C∪{∞} is a P -integrable function, then f−1({∞})

is a P -null set, [21, p.279], and
(III) the only set A ⊆ N satisfying P (A) = I is the set A = N,

it follows that the spectrum σ(
∫
N ϕ dP ) of Mϕ =

∫
N ϕ dP ∈ L(`p+), for

ϕ ∈ L1(P ), as defined in [21] coincides with the spectrum σ∗(Mϕ; `p+) as
defined in Section 1 above. It then follows from the identity (2) in Theorem
1 of [21] that

σ∗(Mϕ; `p+) = {ϕi : i ∈ I}, (3.11)
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where the closure of {ϕi : i ∈ N} in C coincides with its closure in C∗ as
ϕ ∈ `∞. Combining (3.10) and (3.11) yields the desired equalities. �

Proposition 3.22. Fix 1 ≤ p < ∞ and let ϕ ∈ M(`p+) = `∞. The
following conditions are equivalent.

(i) Mϕ ∈ L(`p+) is power bounded.
(ii) Mϕ is mean ergodic.
(iii) ‖ϕ‖∞ ≤ 1.
(iv) σ(Mϕ; `p+) ⊆ D.

Proof. (i) =⇒ (ii). This follows from the reflexitivity of the Fréchet space
`p+, [1, Corollary 2.7].

(ii) =⇒ (iii). Adapt the proof of (ii) =⇒ (iv) in Proposition 3.20 by
replacing ces(p+) with `p+.

(iii) =⇒ (iv). A sequence {qk}∞k=1 of lattice norms generating the topol-
ogy of `p+ is given by (1.4). Now, ‖ϕ‖∞ ≤ 1 implies that ‖ϕn‖ ≤ 1 for all
n ∈ N and so

qk((Mϕ)n(x)) = qk(ϕ
nx) ≤ ‖ϕn‖∞ · qk(x), x ∈ `p+,

for all n, k ∈ N. Hence, {(Mϕ)n : n ∈ N} is an equicontinuous subset of
L(`p+), that is, Mϕ is power bounded. �

There is no analogue for Proposition 3.22 of the condition (iii) in Propo-
sition 3.20. This is due to the fact that ces(p+) is a Montel space whereas
`p+ is not and is illustrated by the following example.

Remark 3.23. Fix 1 ≤ p < ∞. Let 0 ≤ ϕ = (ϕi)i be any increasing
sequence satisfying ϕi ↑ 1. Then ‖ϕ‖∞ ≤ 1 and so Mϕ is mean ergodic by
Proposition 3.22. However,Mϕ is not uniformly mean ergodic; see the proof
of Proposition 2.15 in [1] and note that the operator T (µ) defined there is
precisely Mϕ.

Given 1 < p < ∞, the multipliersM(ces(p)) = `∞ (see entry 16 in the
table on p. 69 of [6]). Similarly, for 1 ≤ p <∞, alsoM(`p) = `∞ (see entry
1 in the table on p. 69 of [6]). In both cases, if ϕ ∈ `∞, then it is known that
the corresponding multiplier operatorsMϕ ∈ L(`p) andMϕ ∈ L(ces(p)) are
not supercyclic, [4, Proposition 2.12]. For the Fréchet space `p+, 1 ≤ p <∞,
we know thatM(`p+) = `∞. It is routine to check that if ϕ ∈ `∞, then the
dual operator (Mϕ)′ ∈ L((`p+)′β) of Mϕ ∈ L(`p+) is precisely Mϕ ∈ L(CN)
acting continuously in (`p+)′β = `p′− := ∪s>p′`s. On the other hand, let
ϕ ∈ M(ces(p+)) = λ∞(A). Recall that (ces(p+))′β = d(p′−) = ∪r>p′d(r),
[3, Proposition 4.6]. Let T := (Mϕ)′ ∈ L((ces(p+))′β) and consider the
canonical vectors {ei}i∈N ⊆ (ces(p+))′β = d(p′−). Fix i ∈ N. Then

〈x, T (ei)〉 = 〈Mϕ(x), ei〉 = ϕixi = 〈x, ϕiei〉, x ∈ ces(p+),
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which implies that T (ei) = ϕiei, that is, (Mϕ)′(ei) = ϕiei for all i ∈ N. So,
in both cases, we have shown that

{ϕi : i ∈ N} ⊆ σpt((Mϕ)′;Z), (3.12)

where Z = (`p+)′β if ϕ ∈M(`p+) and Z = (ces(p+))′β if ϕ ∈M(ces(p+)).

Proposition 3.24. Let 1 ≤ p <∞.
(i) For each ϕ ∈M(`p+), the operator Mϕ ∈ L(`p+) is not supercyclic.
(ii) For each ϕ ∈ M(ces(p+)), the operator Mϕ ∈ L(ces(p+)) is not

supercyclic.

Proof. In both cases, if ϕ is non-constant, then (3.12) implies that (Mϕ)′

has at least two linearly independent eigenvectors. Since supercyclic is the
same as being 1-supercyclic in the sense of [8], it follows from Theorem 2.1
of [8] that Mϕ is not supercyclic.

In the event that ϕ = α(1, 1, 1, . . .) for some α ∈ C is constant it follows,
again in both cases, that Mϕ = αI and so (Mϕ)n = αnI, for n ∈ N. This
implies that {λ(Mϕ)n(x) : λ ∈ C, n ∈ N} ⊆ span{x} for each x (in the
appropriate space `p+ or ces(p+)). Accordingly, Mϕ is not supercyclic. �

4. Inclusions and operators from ces(p+) into ces(q+)

Consider a pair 1 ≤ p, q <∞.Denote by Cc(p),c(q) (resp. Cc(p),q;Cp,c(q);Cp,q)
the Cesàro operator C when it acts from ces(p+) into ces(q+) (resp. ces(p+)
into `q+; resp. `p+ into ces(q+); resp. `p+ into `q+), whenever this oper-
ator exists. The closed graph theorem then ensures that this operator is
continuous. We use the analogous notation for the natural inclusion maps
ic(p),c(q); ic(p),q; ip,c(q); ip,q whenever they exist. The main aim of this section
is to identify all pairs p, q for which these inclusion operators and Cesàro
operators do exist and, for such pairs, to determine whether or not the
operator is bounded or compact.

The following known result is needed below. Due to the difficulty in find-
ing a precise reference, we include a proof for the sake of self-containment.

Lemma 4.1. Let E := projmEm and F := projnFn be Fréchet spaces such
that E = ∩m∈NEm with each (Em, ‖·‖m) a Banach space (resp. F = ∩n∈NFn
with each (Fn, ‖ · ‖) a Banach space). Moreover, it is assumed that E is
dense in Em and that Em+1 ⊆ Em with a continuous inclusion for each
m ∈ N (resp. Fn+1 ⊆ Fn with a continuous inclusion for each n ∈ N). Let
T : E −→ F be a linear operator.

(i) T is continuous if and only if for each n ∈ N there exists m ∈ N such
that T has a unique continuous linear extension Tm,n : Em −→ Fn.

(ii) Assume that T is continuous. Then T is bounded if and only if
there exists m0 ∈ N such that, for every n ∈ N, the operator T has
a unique continuous linear extension Tm0,n : Em0 −→ Fn.
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Proof. (i) Suppose that T : E −→ F is continuous. According to [22, V
Proposition 4.12] the operator T : E −→ Fn is continuous for each n ∈ N.
That is, for each n ∈ N, there exists m ∈ N such that T : (E, ‖·‖m) −→ Fn
is continuous. By the density of E in Em there exists a unique continuous
linear map Tm,n ∈ L(Em, Fn) whose restriction Tm,n|E = T.

On the other hand, suppose that for each n ∈ N there exists m ∈ N
such that T : E −→ F has a unique continuous linear extension Tm,n ∈
L(Em, Fn). Then T : (E, ‖ · ‖m) −→ Fn is continuous and hence, so is T :
E −→ Fn as the inclusion map E ↪→ (Em, ‖·‖m) is continuous. Accordingly,
T : E −→ F is continuous, [22, V Proposition 4.12].

(ii) Assume that T ∈ L(E,F ) is a bounded map. Then there exists
m0 ∈ N such that the neighbourhood Um0 := {x ∈ E : ‖x‖m0 ≤ 1} of
0 in E has the property that T (Um0) is a bounded subset of F. That is,
T (Um0) is a bounded set in the Banach space (Fn, ‖ · ‖n) for all n ∈ N.
In particular, T : (E, ‖ · ‖m0) −→ (Fn, ‖ · ‖n) is also continuous for each
n ∈ N. By the density of E in Em0 there exists a unique continuous linear
extension Tm0,n : (Em0 , ‖ · ‖m0) −→ (Fn, ‖ · ‖n) for n ∈ N.

Conversely, suppose there exists m0 ∈ N such that, for each n ∈ N, the
operator T has a unique continuous linear extension Tm0,n : Em0 −→ Fn.
The 0-neighbourhood Um0 ⊆ E satisfies Um0 ⊆ {x ∈ Em0 : ‖x‖m0 ≤ 1}
and hence, T (Um0) = Tm0,n(Um0) is a bounded set in Fn for n ∈ N. Since
F = projnFn, it follows that T (Um0) is a bounded set in F, i.e., T ∈ L(E,F )
is a bounded operator. �

For the rest of this section, given pairs 1 ≤ p, q <∞, we define pn := p+ 1
n

and qn := q + 1
n
, for n ∈ N. In this case `p+ = projn`pn and `q+ = projn`qn

as well as ces(p+) = projnces(pn) and ces(q+) = projnces(qn).

Proposition 4.2. Let 1 ≤ p, q <∞ be an arbitrary pair.
(i) The inclusion map ip,q : `p+ −→ `q+ exists if and only if p ≤ q, in

which case the inclusion is continuous.
(ii) The inclusion map ip,c(q) : `p+ −→ ces(q+) exists if and only if

p ≤ q, in which case the inclusion is continuous.
(iii) The inclusion map ic(p),c(q) : ces(p+) −→ ces(q+) exists if and only

if p ≤ q, in which case the inclusion is continuous.
(iv) ces(p+) 6⊆ `q+ for all choices of 1 ≤ p, q <∞.

Proof. (i) Let p > q. Then `p+ * `q+ since x := (n−1/p)n belongs to `p+ but
x 6∈ `r with q < r := (p+ q)/2, i.e., x 6∈ `q+.

On the other hand, if p ≤ q, then pn ≤ qn for each n ∈ N and so `p+ ⊆ `q+
continuously (by Lemma 4.1(i) with Em = `qm , Fn = `pn and T = ip,q).

(ii) If p > q, then there exists n ∈ N such that qn < p. Hence, `p * ces(qn)
by [9, Remark 2.2(ii)]. Since `p ⊆ `p+ and ces(q+) ⊆ ces(qn), it follows that
`p+ * ces(q+).

Let p ≤ q. Then `pn ⊂ ces(qn) with a continuous inclusion, for each n ∈ N,
[4, Proposition 3.2(ii)]. Hence, `p+ ⊆ ces(q+) and via Lemma 4.1(i), with
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Em = `qm , Fn = ces(qn) and T = ip,c(q), we can conclude that ip,c(q) exists
and is continuous.

(iii) If p ≤ q, then ces(pn) ⊂ ces(qn) with a continuous inclusion for
each n ∈ N, [4, Proposition 3.2(iii)]. Again we can apply Lemma 4.1(i) to
conclude that the inclusion map ic(p),c(q) : ces(p+) −→ ces(q+) exists and
is continuous.

In case p > q, we have `p+ * ces(q+) by part (ii). But, `p+ ⊆ ces(p+)
and so ces(p+) * ces(q+).

(iv) This is a direct consequence of [4, Proposition 3.2(iv)]. �

Proposition 4.3. Let 1 ≤ p ≤ q <∞ be arbitrary.
(i) The inclusion map ip,q : `p+ −→ `q+ is bounded if and only if p < q.

Moreover, ip,q is never compact.
(ii) The inclusion map ic(p),c(q) : ces(p+) −→ ces(q+) is bounded if and

only if p < q. In this case, ic(p),c(q) is also compact.
(iii) The inclusion map ip,c(q) : `p+ −→ ces(q+) is bounded and compact

whenever p < q.
(iv) The inclusion map ip,c(p) : `p+ −→ ces(p+) is not bounded.

Proof. (i) The inclusion map ip,p is precisely the identity operator on `p+.
Since `p+ is not normable, it follows that ip,p cannot be a bounded map.
On the other hand, if p < q, then we have the factorization ip,q = B ◦ A,
for the continuous inclusion maps A : `p+ −→ `r and B : `r −→ `q+, with
r := (p+q)

2
∈ (p, q). But, A is a bounded map as x 7→ ‖x‖r is a continuous

norm on `p+ and so A−1(Br) is a neighbourhood of 0 in `p+ which is mapped
into the bounded set Br := {x ∈ `r : ‖x‖ ≤ 1} ⊆ `r. Hence, ip,q is also
bounded. On the other hand, still for p < q, if ip,q were compact, then the
inclusion `p ⊆ `2q would also be compact as it is the composition of the
continuous inclusions

`p ⊆ `p+
ip,q−→ `q+ ⊆ `2q.

But, it is known that the inclusion `p ⊆ `2q is not compact, [4, Proposition
3.4(i)].

(ii) The inclusion ic(p),c(p) is not bounded (hence, not compact) since
ces(p+) is an infinite dimensional Fréchet-Montel space. However, if p < q,
then the inclusion map ic(p),c(q) is bounded (hence, compact as ces(p+) is
Montel) because it has the factorization (via the continuous natural inclu-
sions)

ces(p+) ⊆ ces(r) ⊆ ces(q+),

with r := p+q
2
∈ (p, q) and the inclusion ces(p+) ⊆ ces(r) is bounded.

For p > q there is no inclusion of ces(p+) into ces(q+); see Proposition
4.2(iii).

(iii) This follows from part (ii) because of the continuous inclusions `p+ ⊆
ces(p+) ⊆ ces(q+).

(iv) Proceeding by contradiction, assume that the inclusion ip,c(p) : `p+ −→
ces(p+) is bounded. By Lemma 4.1(ii), with Em = `pm and Fn = ces(pn)
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for m,n ∈ N, there exists m0 ∈ N such that for all n ∈ N the natural
inclusion `pm0

⊆ ces(pn) is continuous. However, for n := m0 + 1 we have
pm0 > pn which yields a contradiction to [4, Proposition 3.2(ii)]. �

Now that the relevant properties of the inclusion operators are completely
determined we can do the same for the Cesàro operators C : X −→ Y where
X, Y ∈ {`p+, ces(q+) : p, q ∈ [1,∞)}. We begin with continuity.

Proposition 4.4. Let 1 ≤ p, q <∞ be an arbitrary pair.
(i) Cp,q : `p+ −→ `q+ exists if and only if p ≤ q, in which case Cp,q is

continuous.
(ii) Cp,c(q) : `p+ −→ ces(q+) exists if and only if p ≤ q, in which case

Cp,c(q) is continuous.
(iii) Cc(p),c(q) : ces(p+) −→ ces(q+) exists if and only if p ≤ q, in which

case Cc(p),c(q) is continuous.
(iv) Cc(p),q : ces(p+) −→ `q+ exists if and only if p ≤ q, in which case

Cc(p),q is continuous.

Proof. The proof of each of the four statements is similar and depends on
[4, Proposition 3.5]. We only present the details of part (i).

If p ≤ q, then pn ≤ qn for each n ∈ N. Proposition 3.7(i) of [4] implies
that C : `pn → `qn is continuous for each n ∈ N. The continuity of Cp,q now
follows from Lemma 4.1(i).

Assume now that p > q. Set r := (p+q)
2
∈ (p, q) and select n ∈ N such

that qn < r. If Cp,q : `p+ −→ `q+ exists (and is necessarily continuous by
the closed graph theorem for Fréchet spaces), then Lemma 4.1(i) ensures
the existence of m0 ∈ N such that C : `pm0

→ `qn is continuous. But, this
contradicts [4, Proposition 3.5(i)] as qn < r < p < pm0 . �

Proposition 4.5. Let 1 ≤ p ≤ q <∞ be arbitrary.
(i) The Cesàro operator Cp,q : `p+ −→ `q+ is bounded if and only if it

is compact if and only if p < q.
(ii) The Cesàro operator Cp,c(q) : `p+ −→ ces(q+) is bounded if and only

if it is compact if and only if p < q.
(iii) The Cesàro operator Cc(p),c(q) : ces(p+) −→ ces(q+) is bounded if

and only if it is compact if and only if p < q.
(iv) The Cesàro operator Cc(p),q : ces(p+) −→ `q+ is bounded if and only

if it is compact if and only if p < q.

Proof. The argument that the Cesàro operator is not bounded for the case
p = q is similar for each of the four cases. So, we only verify one of these
cases. For example, in the statement (i), assume that Cp,p : `p+ −→ `p+ is
bounded. By Lemma 4.1(ii) there is m0 ∈ N such that C : `pm0

→ `pn is
continuous for all n ∈ N. If we choose n := m0 + 1 say, then pm0 > pn and
we have a contradiction to [4, Proposition 3.5(i)].

Now assume that p < q, set r := (p+q)
2

and consider each of the four cases.
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(i) Since p < r < q, Propositions 4.2(i) and 4.4(i) imply that the Cesàro
operator Cp,q : `p+ −→ `q+ factors continuously as Cp,q = Cr,q ◦ ip,r. More-
over, the operator ip,r : `p+ −→ `r+ is bounded by Proposition 4.3(i). Hence,
Cp,q is also bounded.

The operator Cp,q is even compact. Indeed, Cp,q = C ◦ j1 with j1 the
continuous inclusion of `p+ into `r and C : `r −→ `q+ the Cesàro operator,
whose compactness follows from the fact that C : `r −→ `qn is compact for
each n ∈ N, [4, Proposition 3.6(i)].

(ii) In this case Cp,c(q) : `p+ −→ ces(q+) is bounded because it factors
continuously as Cp,c(q) = Cr,c(q) ◦ ip,r (see Propositions 4.2(i) and 4.4(ii))
and ip,r is bounded by Proposition 4.3(i). The operator Cp,c(q) is then also
compact since ces(q+) is a Montel space.

(iii) The operator Cc(p),c(q) : ces(p+) −→ ces(q+) is compact because it
factors continuously as Cc(p),c(q) = Cc(r),c(q)◦ic(p),c(r) (see Propositions 4.2(iii)
and 4.4(iii)) and ic(p),c(r) is compact by Proposition 4.3(ii).

(iv) The Cesàro operator Cc(p),q : ces(p+) −→ `q+ is compact since it
factors continuously as Cc(p),q = Cc(r),q ◦ ic(p),c(r) (see Propositions 4.2(iii)
and 4.4(iv)) and ic(p),c(r) is compact by Proposition 4.3(ii).
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