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Abstract 

Spinal cord injuries (SCI) result in the loss of sensory and motor functions with massive cell 

death and axon degeneration. We have previously shown that transplantation of spinal cord-

derived ependymal progenitor cells (epSPC) significantly improve the functional recovery 

after acute and chronic SCI in experimental models, contributing by delivering neurons 

through their differentiation as well as supporting glial cells with trophic capacity. Here we 

propose an improved procedure for cell transplantation increasing the effectiveness on the 

surgical approach, based on transplantation of epSPC in a tubular conduit of hyaluronic acid 

(HA) containing poly(lactic acid) (PLLA) fibers creating a biohybrid scaffold. In vitro 

analysis showed that the PLLA fibers included in the conduit induce a preferential neuronal 

fate of the epSPC rather than glial differentiation, favoring elongation of cellular processes. 

The safety and efficacy of the biohybrid implantation was evaluated in a complete SCI rat 

model.  The conduits allowed efficient epSPC transfer into the spinal cord, improving the 

preservation of the neuronal tissue by increasing the presence of neuronal fibers at the injury 

site and  by reducing cavities and cysts formation. The biohybrid-implanted animals presented 

diminished astrocytic reactivity surrounding the scar area, higher number of preserved 

neuronal fibers with a horizontal directional pattern, and enhanced co-expression of the 

growth cone marker GAP43. The biohybrids offer an improved method for cell 

transplantation with potential capabilities for neuronal tissue regeneration, opening a 

promising avenue for cell therapies and SCI treatment. 

  



  

3 

 

Introduction 

Spinal cord injury (SCI) is a devastating and so far incurable disorder. New therapeutic 

strategies for SCI are required to overcome the complex and progressive degenerative 

process. Implantation of biomaterial scaffolds, alone, enriched with stem cells or with 

bioactive molecules, has already shown satisfactory results on several SCI models, evidencing 

to be promising strategies (Li et al., 2016; Li & Dai, 2018; Wen et al., 2016) . The anatomical 

impediments to access the spinal cord as well as the surgical complexity with their related 

risks during spinal cord interventions constitute, in fact, a major challenge for scaffolds 

implantation (Song et. al, 2015). To mimic the shape and mechanical behaviour of the soft 

tissue and to achieve medium or long-term biodegradability properties are additional  

challenges not yet overcome by most of the so far described biomaterials employed in SCI 

(Assunção-Silva et al., 2015). Hyaluronic acid (HA) injectable hydrogels have shown to 

protect transplanted cells resulting in improved cell engraftments. However, the integrity of 

the HA gel has a short lifetime, since it is soluble. This short durability is detrimental for the 

slow reconstruction of the neural tissue, since it does not match the slow pace of 

reconstruction of the neural tissue (Liang et al., 2013). When HA is cross-linked to form 3D 

scaffolds longer lifetimes of the biomaterial can be obtained, retaining the good 

biocompatibility and therapeutic benefits for neuronal regeneration (Liang et al., 2013). HA 

can be manufactured as tubular conduits with excellent biocompatibility and with desired 

controlled degradation (Vilariño-Feltrer et al., 2016). HA constructs can incorporate fibrillary 

structures of different polyesters such as poly(glycolic acid) (PGA), poly(lactic acid-co-

glycolic acid) (PLGA) and poly(lactide-co-caprolactone) (PLCL) (Raspa et al., 2015) or 

poly(lactic acid) (PLLA) (Vilariño-Feltrer et al., 2016) with proven supporting properties for 

axonal growth stimulation and other beneficial paracrine effects alone or in combination with 

cells (Liu et al., 2015). Tubular complex conduits can contain among other structures artificial 

channels and are thought to protect the cell transplants and/or to contribute of  guiding the 
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growing axonal processes (Simitzi et al., 2017). It is thought that these structures reduce 

infiltration of fibrotic tissue, provide a substrate for the diffusion of neurotrophic factors, and 

allow the diffusion of macromolecules (Ortuño et al, 2016). 

Cell transplantation is based on the general hypothesis of the beneficial effects of the 

additional contribution of cells and its released factors on the regeneration of damaged or 

degenerated neural structures. Indeed, cell replacement therapies provide the opportunity to 

reconstitute a tissue bridge containing relay neurons (Bonner & Steward, 2015) by generating 

a more permissive environment for endogenous axonal sprouting. In recent years different cell 

therapies have been developed with success in animal models (Ahuja & Fehlings, 2016; Kjell 

& Olson, 2016) however few ones have already been translated into the clinic (Vismara et al., 

2017; Curtis et al., 2018; Theodore et al., 2016) . Both, adult and neuronal neural progenitor 

cells offer a suitable niche, comprising neurons and glial cells, compatible with the neural 

microenvironment, avoiding the undesired potential tumorigenic effect of embryonic tissues 

(Steward et al., 2014). We recently showed that the spinal cord-derived ependymal progenitor 

cells (epSPC) transplanted immediately after SCI or in chronic injuries, migrated long 

distances from the rostral and caudal regions to reach the neurofilament-labeled axons in and 

around the lesion zone, reducing cavity formation and scar area (Alastrue-Agudo et al., 2014; 

Gómez-Villafuertes et al., 2015; Requejo-Aguilar et al., 2017). However, a poor survival rate 

and limited neuronal differentiation after cell engraftment limit the cell transplantation 

potential, especially in chronic injuries which demand additional anatomic reorganization for 

axon regeneration over long distances (Ahuja CS et al., 2016).  

Here we present a new biohybrid construct for epSPC transplantation consisting in a tubular 

scaffold of cross-linked HA containing aligned (PLLA) fibers, to cover the injured area after 

SCI and to support reconstruction of the anatomical structure of the neural tissue. Both 

synthetic components are biodegradable and offer different advantages; while the highly 
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hydrophilic HA tubular scaffold is intended to protect and to allow the transfer of the  cells, 

the PLLA microfibers represent a cell-friendly substrate onto which the epSPC adhere and 

differentiate. Moreover, PLLA microfibers are highly aligned and provide a guidance support 

for axonal, sprouting elongation and facilitating tissue re-organization. Beside all additional 

benefits supported by the biohybrid, the main hypothesis underlying this experimentation was 

the demonstration that the epSPC transplanted to the spinal cord within the biohybrid scaffold 

would survive and integrate at the transplant site, helping to regenerate the damaged tissue 

structures after complete SCI. 

 

Material and Methods 

Preparation and morphological characterization of HA, HA-PLLA conduits: HA 

conduits were fabricated as previously described (Vilariño-Feltrer et al., 2016). Briefly, 5% 

(w/v) HA sodium salt (Sigma-Aldrich, 1.5-1.8 MDa) solutions in sodium hydroxide (0.2 M 

NaOH) were introduced in a polytetrafluoroethylene (PTFE) mould, with a poly-ε-

caprolactone (PCL) fiber of 400 µm diameter acting as channel template (miniextruder, 

HAAKE MiniLab II). The HA was crosslinked with divinyl sulfone (90% of DVS). After 11 

min the mold was frozen at -80ºC and the whole structure was lyophilized for 24 h (Lyoquest-

85, Telstar) to generate HA microporous matrices. Finally, the PCL fiber was extracted and 

the conduits were hydrated in distilled water for 2 h and cut 6 mm length. For HA-PLLA 

conduits generation, 20 PLLA fibers (30 μm diameter each fiber, purchase from Aitex, Spain) 

were placed inside the channel. Prior to the seeding stage the conduits were sanitized with 

70% ethanol for 2 h, and consecutively immersed in 50%, 30% and distilled water previously 

to be conditioned with culture medium for overnight incubation. 

Ependymal progenitor cell isolation and culture: EpSPC or GFP-epSPC were harvested 

from neonatal (P4-6) female Sprague Dawley-Tg (GFP) 2BalRrrc rats; eGFP+/+ homozygote 
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rats were used for in vivo experiments and eGFP−/− rats for in vitro assays. The spinal cords 

were dissected after complete laminectomy and the overlying meninges and blood vessels 

removed. The dissected tissue was cut into 1-mm3 pieces and mechanically homogenize 

without enzymatic treatment. EpSPCs were isolated and cultured as neurospheres-like form 

(Figure S1A) with NeuroCult™ Proliferation Medium supplemented with NeuroCult™ 

Proliferation Supplement (STEMCELL Technologies, USA) including 40 ng/ml epidermal 

growth factor (EGF, Invitrogen), 40 ng/ml basic fibroblast growth factor (bFGF, Invitrogen), 

1X P/S, and 2 µg/ml heparin (Sigma). The epSPC cultures in proliferative medium was 

characterized to test whether express the neural precursor cell markers PDGFR, NG2, Olig1 

and 2, NCAM-1, Nkx2.2, Dlx2 and Sox2 assayed by semi-quantitive PCR analysis at the 

mRNA level (Figure S1B). Glast, Sox2, Doublecortin (DLX) and Nestin progenitor markers 

were also detected by immunostaining in proliferative cell medium (Figure S1C). 

EpSPC were seeded as dissociated cells in the lumen of the conduits using a Hamilton syringe 

(SGE Analytical Science) with a density of 105 cells/sample suspended in 3 µL of growth 

medium, placed in a 48-well plate and incubated for 60 min in order to optimize the initial 

cell adhesion at 37°C and 5% CO2. The culture environment was maintained for 14 days, 

changing the proliferation medium every 48 h. For spontaneous differentiation process in 2D 

dimension, the epSPC were seeded on Matrigel® (BD Bioscience, San Jose, CA, USA) 

coated plates. The heparin and the mitogen factors, epidermal (EGF) and fibroblast growth 

factors (FGF), were removed from growth medium and bovine serum albumin was replaced 

by 2% FBS. Forced spontaneous differentiation of epSPC was maintained for 24 h and 

afterwards the cells were fixed with 2% paraformaldehyde (PFA) and processed for 

immunostaining evaluation. 
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Cell viability assay: Indirect cytotoxic analysis was performed according to ISO 10993-5. 

Briefly, L929 mouse fibroblasts (Sigma Aldrich, Spain) and epSPCs seeded at a density of 

104 cells into 96-well plates for 24 hours were exposed to a liquid extract obtained after 

incubating 0.1 g of HA-PLLA into 1 ml of proliferative medium in order to study the possible 

toxic substances leached from the biomaterial. The MTS (CellTiter 96® AQueous One Solution 

Cell Proliferation Assay, Promega) assay was performed 24, 48 and 72 h after cell stimulation 

with the conditioned media or in control conditioned, non-exposed to the biomaterial. Three 

replicates of three independent experiments were performed. Cell viability was expressed as 

% of change versus control condition (considered as the 100% viability) for both cell types. 

Immunostaining: Samples, epSPC from in vitro 2D cultures alone or seeded into HA or HA-

PLLA or fixed spinal cord sections from in vivo experimentation were washed with 0.1M 

Phosphate Buffered Saline (PBS, pH 7.4) and fixed for 20 min in 4% PFA at room 

temperature. Permeabilization and blocking steps were performed using PBS 0.1M containing 

0.1% triton-X and 10% FBS or 5% of normal goat serum respectively for 1 h at room 

temperature, and then incubated overnight with mouse monoclonal for neural class III-beta-

tubulin (TUJ-1; 1:250, MO15013, Neuromics),  mouse neural precursor cell markers such as 

mouse monoclonal antibody anti-A2B5 (1:400, A8229, Sigma) and mouse monoclonal 

antibody anti-Nestin (1:400, AB6142, Abcam), the guinea pig polyclonal antibody anti-

GLAST (Glutamate transporter) (1:500, AB1783, Chemicon), rabbit polyclonal antibody anti-

glial fibrillary acidic protein (GFAP; 1:400, Z0334, Dako Cytomation), guinea pig polyclonal 

antibody anti-doublecortin (DCX; 1:400, AB5910, EDM Millipore),  rabbit polyclonal 

antibody anti-Sox2 (1:200, AB97959, Abcam), rabbit polyclonal antibody anti-GAP43 

(1:250, ab128005, Abcam), rabbit polyclonal antibody anti-Olig2 (1:250, AB9610, Millipore) 

or the mouse monoclonal antibody anti-ED1/CD68 (1:250, MAB1435, Millipore) overnight at 

4ºC in the dark. After washing in 0.1M PBS, cells were incubated with goat anti-mouse Alexa 
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555 or goat anti-rabbit Alexa 647 (1:200, Jackson Immunoresearch, West Grove, PA for 1 h 

at room temperature). Finally, nuclei were visualized with 4',6-Diamidine-2'-phenylindole 

dihydrochloride (DAPI; 1:5000, Sigma). After additional washes, immune-reactivity cell 

images were obtained and analyzed using the Leica IM 500 4.0 image-processing program 

(Leica, Bensheim, Germany) and confocal microscopy (Leica). For cell quantification 

analysis 15 random fields covering the entire scaffolds (0.003 cm2) per group in the in vitro 

analysis (n=3 samples for each substrate) and one complete series for each spinal cord of all 

samples of each experimental group were quantified and normalized to the total counted area.  

The expression of TUJ1, GFAP, GAP43, ED-1 and Olig2 proteins, was evaluated at the entire 

spinal cord thickness, from dorsal to ventral side, normalized to the total analyzed area (~2,5 

cm) using Image J software. The TUJ 1 directionality analysis was performed using 

ImageJ/Fiji software and Directionality plugin. 

RNA isolation and semi-quantitative RT-PCR: Total RNA was extracted by using Rneasy 

Mini-kit (Qiagen, Germany) accordingly to manufacturer’s instructions. One microgram of 

total RNA was reverse transcribed (RT) in a total reaction volume of 50 l through incubation 

at 42°C during 30 min using random hexamer primers. The sequence of specific primers for 

semiquantitative PCR are described in the Supplementary Table 1. The semi-quantitative PCR 

was performed in a thermal cycler (Eppendorf, Germany) following the PCR amplification 

program: 3 min of denaturation at 94°C followed by 30 PCR cycles consisted of 1 min at 

94°C, 1 min at each corresponding annealing temperature (indicated in the Supplementary 

Table 1) and 1 min at 72°C. A negative (without a prior reverse transcription reaction) control 

was always included. After amplification, 25 l of each PCR mix was electrophoresed 

through a 2% (w/v) agarose gel with ethidium bromide (0.5 mg/ml) to be visualized under a 

uv trans-illuminator (BioRad).  
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Scanning electron microscopy (SEM): SEM was used as a tool for the observation of the 

cell morphology on conduits. HA and HA-PLLA conduits scaffold were fixed with 2.5 % 

(w/v) glutaraldehyde for 1 h at 37ºC after 14 days in culture. Thereafter, samples were post-

fixed by immersion in 2% osmium tetroxide in phosphate buffer (PB) 0.1 M for 90 min in 

dark, washed with distilled water at 4ºC and then dehydrated in gradient concentrations of 

ethanol (30, 50, 70, 96, and 100 %) at 4°C for 10 min per concentration. After being freeze-

dried in vacuum for 2 h, the cellular constructs were coated with silver sputter and observed 

under the SEm (Hitachi S4800, Japan) at a voltage of 10 kV.  

Spinal Cord complete section, HA-PLLA with or without epSPC implantation and 

functional locomotor analysis: SCI was induced in female Sprague Dawley rats of ~ 200 g 

as previously described (Erceg et al., 2010). Briefly, a complete section of the spinal cord at 

thoracic segment T8 was performed by completely cutting the spinal cord with an iridectomy 

scissor by using an instrumental hook to elevate the cord. In all cases it was checked that both 

stumps were completely separated by passing the hook thought the cut segment (a 

representative image before and after complete section is shown in Figure 4A, left). Six 

animals per group were randomly assigned and distributed into control (without conduits); 

HA-PLLA or HA-PLLA + epSPC (1x105 dissociated epSPC were seeded onto the HA-PLLA 

lumen 5 days before implantation). Immediately after complete section the conduits were 

opened at the base with a scalpel and placed covering the spinal cord at the injured area (a 

representation is shown in Figure 4A, right). The rats were pre-medicated with subcutaneous 

morphine (2.5 mg/kg) and Baytril (enrofloxacine, 5 mg/kg, Bayer, Germany) and anesthetized 

with 2% isofluorane in a continuous oxygen flow of 1 L/minute. Animals were daily treated 

with 10mg/kg (intraperitoneal) of body weight of cyclosporine. Open-field locomotion was 

evaluated by two blinded observers by using the 21-point BBB locomotion scale after blind 

visualization of a minimum of 5 minutes of free walking in an open space once a week. Three 
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weeks after injury and conduits implantation all animals were sacrificed for histological 

analysis.  

Eosin-Hematoxylin histological analysis of neuronal tissue degeneration after SCI: The 

animals were transcardially perfused with a 0.9% saline solution followed by 4% PFA in 

PBS, and 2 days incubation time in 30% sucrose before inclusion in Tissue-Teck OCT 

(Sakura Finetek U.S.A). Sagittal cryosections of 10 μm thickness were used for histology and 

immunoassays. Every fifth section was collected for eosin-hematoxylin (E&H) staining, 

scanned in a Pannoramic 250 Flash II scanner (3DHISTECH Ltd.; HUNGARY) and images 

of approximately 20 mm2 of  the spinal cord (including the epicenter of the lesion) were 

acquired with the Pannoramic viewer software. To determine the anatomical structure and 

tissue degeneration, quantification of the area with lost white/grey matter physiological 

distribution was performed in the injured area of the entire spinal cord thickness, from dorsal 

to ventral side, normalized to the total analyzed area (~2,5 cm) using Image J software.  

Ethical Statement Regarding the Use of Animals: Sprague Dawley rats (weighing ~200 g) 

from Charles River and SD-Tg (GFP)2BalRrrc from Rrrc (University of Missouri Columbia, 

Columbia, MO, USA) were bred at the Animal Experimentation Unit of the Research Institute 

Príncipe Felipe (Valencia, Spain). The experimental protocol was previously approved by the 

Animal Care Committee of the Research Institute Principe Felipe (Valencia, Spain) in 

accordance with the National Guide to the Care and Use of Experimental Animals (Real 

Decreto 1201/2005). 

Statistical analysis: All experimental data was collected from at least three independent 

experiments and results were reported as the mean ± the standard error of the mean (S.E.M.) 

as indicated at each set of data. For the comparisons between two groups of values, the 

statistical analysis of the results was performed by the Student’s t test in a normal distribution 

data. For the comparison between groups one-way ANOVA, with appropriate corrections 

http://www.3dhistech.com/pannoramic_250_flash
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such as Tukey’s post hoc tests was used. Statistical analyses were performed using GraphPad 

software. Differences were considered significant at *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 

Results  

HA and HA-PLLA conduits show a highly porous morphology 

HA and HA-PLLA soft but stable conduits were obtained as previously described (Vilariño-

Feltrer et al., 2016) with external dimensions of 6 mm long,1 mm width and an internal 

cylindrical channel of 400 µm diameter in the fully hydrated stage. A macroscopic view of 

both conduits in aqueous solution is shown in Figure 1 (Figure1A and D). SEM images of 

longitudinal (Figure 1B) and transversal (Figure 1C) cuts of the HA conduits revealed a 

highly porous structure of the scaffold’s walls, with an interconnected honeycomb-like pore 

structure. However, a compact and continuous layer with a very limited porosity is created at 

the internal wall (Figure 1B).  In the central channel, or lumen, of the conduit 20 PLLA 

microfibers are laid out parallel to the conduit’s axis (Figure 1E). An extensive and thorough 

description of conduit’s morphology as well as the water uptake, degradability and  

mechanical properties were previously reported for homologous structures (Vilariño-Feltrer et 

al., 2016). 

In order to test a potential cytotoxic effect of the HA- PLLA conduits based-materials, 

epSPCs (Figure S2) and mouse fibroblasts (data not shown) were exposed to conditioned 

medium obtained by 24h incubation of HA or HA-PLLA into culture medium or to non-

conditioned medium (control group) for 24, 48 or 72 hours. MTS assay showed that neither 

HA or HA-PLLA extracts affected cell viability (Figure S2).  
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The neural precursor cells colonized the HA and the HA-PLLA conduits  

Due to the highly hydrophilic nature of high molecular weight (1.5-1.8 MDa) HA  the cells 

seeded in contact with the HA scaffold showed a low or null cell adhesion  (Vilariño-Feltrer 

et al., 2016). When epSPC were seeded into the lumen of the scaffolds, the low cell adherence 

of the HA potentiates preferentially cell-cell interactions, which lead to the generation of a 

continuous monolayer of the seeded cells not attached to the biomaterial’s channel inner 

surface (Figure 2), similarly to what previously found with Schwann cells (Vilariño-Feltrer et 

al., 2016). A cross section of the hollow HA conduit shows that no cells protrude across the 

scaffold’s walls (Figure 2A, *), while at the internal surface of the lumen a continuous layer 

of epSPC is formed (Figure 2A-B, **). The scaffold tube thus acts as an efficient cell 

containment biohybrid structure. The epSPC seem to arrange within the HA conduit 

mimicking the ependymal aligned organization of the spinal cord central canal (Alfaro-

Cervello et al., 2012). DAPI nuclear staining showed a compact cell distribution at the 

channel inner surface (Figure 2C). When the epSPC were seeded into HA-PLLA conduits the 

cells also attached to the PLLA fibers (Figure 2D-F). Morphological differences were evident 

between the epSPC covering the lumen and those attached to the PLLA fibers. The epSPC on 

the PLLA fibers showed prominent projections from a voluminous cell body (Figure 2E, #) in 

comparison with the flat, compact and homogeneous organization pattern found close to the 

HA internal surface of the lumen (Figure 2B).  

 

PLLA fibers induce neuronal differentiation of epSPC in HA-PLLA biohybrids  

The multipotency of epSPC in vitro and in vivo has already been demonstrated, showing the 

directly induced or spontaneous differentiation capability of epSPC to generate neurons, 

astrocytes and oligodendrocytes (Rodriguez-Jimenez et al., 2016). To test whether the   HA-

PLLA conduit maintains this multipotency capacity in spontaneous differentiation, 

immunostaining of NeuN, GFAP and Olig2 were used to identify neurons, astrocytes and 
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oligodendrocytes respectively (Figure 3A). On the other hand, the proliferative or self-

renewal capacity of the epSPC in the conduits was evaluated by the detection and 

quantification of Ki67 expression (cell proliferation marker; green) (Figure 3B). Confocal 

images showed that epSPC growing on the lumen of the HA conduits showed a higher 

proliferative activity than the epSPC attached to the PLLA fibers in the HA-PLLA (Figure 

3B) indicating a potential differentiation stimulus. To evaluate a preferential differentiation 

into neuronal or glial cell fate of the epSPC, the astrocyte cell marker GFAP (red) and -

tubulin III (TUJ-1, green), for neuronal cells were used (Figure 3C). The epSPC monolayer 

coating the inner surface of the HA conduit had a glial preferential differentiation pattern, 

showing significant higher amount of GFAP positive cells and lower number of TUJ-1 

positive cells (Figure 3C, E). Contrarily, the quantification of positive cells for the neuronal 

marker showed a significant increased number of TUJ-1 positive epSPC seeded on the HA-

PLLA conduits when compared with epSPC seeded either on the HA conduit or in a 2D 

monolayer using Matrigel® as a substrate (Figure 3C, D, E).  Indeed, the 3D cultures of 

epSPC on both, HA and HA-PLLA structures, significantly favor neuronal differentiation in 

comparison with Matrigel® 2D culture (Figure 3D, E). 

Importantly, on the HA conduits the GFAP-positive astroglial cells (red) showed long but 

non-orientated projections and the TUJ-1 positive cells showed poor and non-organized cell 

expansions with rare interactions between each other (Figure 3C, *). In contrast, the TUJ-1 

positive cells (green) in the PLLA fibers showed longer projections, even reaching contiguous 

fibers (Figure 3C, #) and often guided by the astrocyte projections (Figure 3C, arrow). 

Remarkably, the HA-PLLA biohybrids thus generated a niche mimicking the in vivo neuronal 

cell network with neuronal projections accompanied by the glial extension in a guided 

architectural organization.  
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HA-PLLA scaffold allows cell transplantation with improved neuronal tissue 

preservation in a model of complete SCI   

The HA-PLLA conduits or the biohybrids, HA-PLLA + epSPC, were longitudinally open 

with a scalpel and placed covering both stumps immediately after sectioning the spinal cord 

(Figure 4A, right). A transversal section view of the biohybrid organization is illustrated in 

Figure 4A, left. Animals with spinal cord complete sections without the implant were 

included as the control group. All animals were individually videotaped and locomotor 

functional recovery was studied by using the BBB scale (Basso et al., 1995) during three 

weeks after injury, however, the analysis did not show any significant difference between 

groups. All rats showed scores between 0-1 out of a 21 scale due to the severity of the 

complete lesion (Figure S3). The rats were sacrificed and perfused three weeks after injury 

and the spinal cords were subjected to histological analysis. The E&H anatomical staining of 

the spinal cord longitudinal sections as is shown in a representative spinal cord tissue form 

one animal per each group (Figure 4B; sections from dorsal to ventral side) allows a 

comparison between groups of the cavities or cyst formation (Figure 4C) and tissue 

degeneration at the injured area (Figure 4D). The control group showed the higher number of 

cavities and percentage of tissue degenerated area in comparison with the HA-PLLA or HA-

PLLA + epSPC implanted groups (Figure 4C and D). epSPC-GFP (green) were efficiently 

transferred to the spinal cord, as soon as 3 days after injury and biohybrid implantation, as is 

shown in Figure 4E. However, few alive GFP positive cells were detected at the injured area 

three weeks after injury and implantation (Figure 4E). Infiltrated macrophages and 

endogenous microglia contribute to the inflammatory response and secondary damage 

contributing to tissue degeneration and remodeling (Donnelly & Popovich, 2008). Three 

weeks after injury we did not find significant differences among groups on macrophages and 

activated microglia positive for ED1/CD68 at the injury site (Representative images are 

shown in Figure S4). It is also well established that after SCI, surviving oligodendrocyte 
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progenitor cells (OPC) are the major source for oligodendrocyte replacement and 

remyelination (Hesp et al., 2015) after massive oligodendrocyte cell death. We then explored 

the influence of the conduits on induction OPC at the injury, by the detection of Olig2 

positive cells; however, no significant differences were found in comparison with the control 

groups (Representative images are shown in Figure S4).  

 

HA-PLLA conduits reduce astrogliosis and the biohybrid increase the number of re-

growing neuronal fibers at the epicenter of the injury  

Three weeks after complete section and treatments, the analysis of the astrogliosis by the 

quantification of the astrocytes surrounding the scar, positive for GFAP (green), showed a 

significant decrease when the lesion was covered by the HA-PLLA conduits, with or without 

epSPC (Figure 5A, B). However, only the HA-PLLA + epSPC biohybrid significantly 

increased the number of preserved neuronal fibers, TUJ-1 positive fibers at the injury site 

(red; Figure 5A, C). Importantly, a significant preservation of the longitudinal axis orientation 

of the surviving neuronal fibers was found in all animals with the HA-PLLA conduits (Figure 

6A, B) with higher number of fibers showing an inclination degree close to 0 (horizontal 

plane) in comparison with the control condition.  However, only the HA-PLLA + epSPC 

conduit significantly enhanced the percentage of neuronal fibers expressing GAP43, a growth 

cone marker (Morita & Miyata, 2013) (green; Figure 6C, D), indicating an activated process 

for axonal re-growth. 

 

Discussion 

 

SCI is a multi-factorial disorder determined by a combination of both extrinsic and intrinsic 

processes that inhibit  neural regeneration and repair (Kumar et al., 2015). Any effective SCI 

therapy should then attempt a highly minacious intervention including multidisciplinary and 

combinatorial approaches to overcome the limited regeneration capacities of the spinal 
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neurons. Immediately after SCI, a rapid and massive necrotic cell death, local ischemia, 

vascular network loss with edema and disruption of the blood-spinal cord barrier (Wilson & 

Fehlings, 2011) make mandatory a local and fast direct intervention. The design and selection 

of new biomaterials for SCI applications should be based on this necessity to maximize the 

chances to preserve the neuronal function with minimal and efficient intervention.  

HA has been used in tissue engineering of the central nervous system showing important 

benefits based on its biodegradability, biocompatibility and good integration with the host 

tissue ( Collins et al., 2012). Here we employed a tubular scaffold made of cross-linked HA 

offering a stable moldable structure. The conduit can host seeded cells, allowing in vitro self-

renewal and cell differentiation. The porosity of the conduit´s matrix permits exchange of 

oxygen and nutrients as well as the disposal of waste products, but impedes cell migration 

across the conduit’s walls. Thus, the scaffold acts as a protecting barrier against 

environmental inflammatory cell infiltration, as well as against the invasion of endogenous 

astrocytes, pericytes or microglia.  Guidance concepts have been implemented in a variety of 

matrices (Straley et al., 2010 Simitzi et al., 2017). Longitudinally oriented channels and fibers 

are thought to provide appropriate guiding platforms to bridge the scar and repulsive areas 

(Lim et al., 2010; Stokols & Tuszynski, 2006). Besides, it is believed that channels and fibers 

promote regeneration by providing increased surface area to which cells and regenerating 

axons can attach ( Simitzi et al., 2017; Xie et al., 2014), PLLA fibers have been described as a 

positive environmental stimulus for nerve fiber regrowth (Tian et al., 2015). Here, a set of 

PLLA fibers placed in the HA conduit lumen also serve to enhanced the adhesion and 

differentiation of in vitro seeded epSPC. On PLLA epSPCs showed a preferential neuronal 

cell fate and a reduced percentage of astroglial features, by spontaneous differentiation in 

comparison with the HA conduits or Matrigel® cultures. This phenomenon occurred without 

modifying the regular growth medium conditions, thus representing a very attractive 

alternative to the complex direct differentiation protocols, reducing the need of extra growth 
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factors or morphogen stimuli, to induce the neuronal preferential differentiation. Moreover, 

the reduction of the astroglial population prior to transplantation would reduce the 

contribution to the fibrotic astrocytic dependent processes, while maintaining a percentage of 

glial cells needed for further nutritional support and blood spinal cord barrier neuronal 

network reconstruction (Lu et al., 2012). 

HA-PLLA biohybrids could provide structural support for guided regrowth of axons in vivo. 

They may promote the axon extension in a fiber-guided manner. This has been shown here by 

the improved directionality orientation, better maintained in the implanted animals, of the 

more preserve neuronal fibers expressing the axon growth marker, GAP43. Our ultimate goal 

is to establish a biocompatible conduit composed of the HA scaffold and PLLA fibers 

allocating epSPC providing a permissive environment for axon regrowth for a reliable 

translational application. The manufactured conduits showed adaptive and moldable 

characteristics were able to adapt to the shape of the damaged spinal cord keeping the needed 

elasticity not to harm or stress the tissue when the vertebrae move. Here we first demonstrated 

that the HA-PLLA biohybrids allow the transfer of the epSPC into the spinal cord from 3 days 

after implantation, showing a significant viability of the transplanted cells during the acute 

stages, immediately after injury, however, the survival of grafted cells remains very limited 3 

weeks after implantation as we previously described in epSPC transplantation by 

intramedullary injections (Alastrue-Agudo et al, 2018). Although expression of neuronal 

positive marker was found in vitro on the PLLA fibers in the HA biohybrids, there was no 

detectable co-localization neither of TUJ-1 nor of GFAP in the GFP-epSPC migrating cells 

into the spinal cord tissue three weeks after SCI. This might be explained by an early cell 

death of the more differentiated cells or by a preferential undifferentiated stage of the neural 

precursor cells in vivo. The locomotor analysis, by the BBB test did not showed significant 

differences, with scores between 0-2, due to the severity of the lesion, and the short time for 
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evaluation after injury and sacrifice (3 weeks). A long-term study is required for significant 

locomotor functional improvements in such as several injuries.  However, the histological 

analysis reveals significant improvements on neuronal tissue preservation, higher number of 

neuronal fibers at the epicenter of the injury, showing higher expression of GAP43 with a 

better-guided pattern, indicating a better condition for neuronal regeneration. Therefore, in 

acute stage, the conduits could be implanted during first surgical intervention of 

decompressed approaches.  The intrathecal or subarachnoid space, the fluid-filled area, 

between the dura mater and arachnoid pia mater, constitutes an efficient local administration 

access to supply direct therapeutic support. The denticulate ligaments maintain anchorage the 

spinal cord to the meninges, keeping the sub-arachnoid space. However, after SCI this 

network is destroyed at the injured area, allowing the fibrotic newly formed tissue to create 

new focal adherences between the cord and the dura mater interrupting the dynamic of 

cerebral spinal fluid (CSF) flow and increasing the incidence of syringomyelia. Due to the 

high water content of the HA tube, cells on its outer surface are prevented to attach, and thus 

the HA-PLLA conduits did not show adherences to the neighboring tissues three weeks after 

in vivo implantation, no visible fibrotic scar nor additional endogenous cell invasion and no 

related CSF cystic accumulation.  
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Figure legends: 

 

Figure 1. Macro- and micro-views of HA and HA-PLLA conduits. Macroscopical view of 

hydrated HA (A) and HA-PLLA (D) conduits in cell culture wells. PLLA fibers are visible in 

the lumen of the translucent HA conduits (D). Scale bar: 1mm. Right panels show SEm 

images of the longitudinal section of both HA (B) and HA-PLLA conduits (E). Also it is 

shown the detail of transversal section of HA conduits (C) and the bundle of PLLA fibers 

coming out the lumen of the conduit after longitudinal sectioning of HA-PLLA conduits (F). 

Scale bar:1mm (A, D and E), 400 µm (B, C) and 300 µm (F). 

 

Figure 2. epSPC distribution in the conduits. SEm images of longitudinal sections of HA 

(A, B) and HA-PLLA conduits (D, E) are shown 14 days after 3D cell culture. * indicates the 

acellular porously wall of the conduits; **, indicates the internal lumen space populated by 

the epSPC and # when epSPC are seeded and attach to the PLLA fibers. Confocal 

fluorescence images show the internal epSPC distribution after nuclear staining with DAPI in 

the lumen of the HA (C) and HA-PLLA (F) conduits 14 days after 3D cell culture. Scale bar: 

100 m (A, C, F), 300 m (D), 20 m (B), 50 m (E). 

Figure 3. Immunofluorescence analysis of glial and neuronal spontaneous epSPC 

differentiation seeded into the HA or HA-PLLA conduits (A) Confocal representative 

images show that HA-PLLA conduits promote epSPC differentiation to all neural linages and 

provide structural support for mature neurons (NeuN positive marker), astrocytes (GFAP) and 

oligodendrocytes (Olig2). Bridge field (BF) and fluorescence immunostaining merge images 

show the differentiated cells attached to the PLLA fibers. (B) right: Confocal representative 

images show the expression of ki67 (cell proliferation marker) of the epSPCs seeded in the 

lumen of HA or HA-PLLA conduits; left: Quantification of ki67 positive cells show increase 

proliferation of epSPCs in HA. The epSPC population attached to the PLLA fibers show 

significant lower Ki67 expression due to potential induction of cell differentiation; (C) 
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Confocal representative images show the expression of TUJ-1 (green; a neuronal marker) and 

GFAP (red; an astrocytic marker) of the epSPC seeded in the lumen of the HA indicated by * 

or HA-PLLA conduits for 14 days, indicated by # ; (D) epSPC seeded on Matrigel coated 

coverslips (2D culture) were subjected to TUJ1 (red) and GFAP (green) immunostaining. 

DAPI nuclear staining is shown in blue; (E) Graphical quantification of TUJ-1 (+) and GFAP 

(+) cells is shown, expressed in percentage, of  epSPC in HA or HA-PLLA conduits in 

comparison with epSPC seeded on Matrigel® coated plates. 

 

Three independent experiments were performed and a minimum of 100 cells per condition 

were quantified. Data is expressed as mean ± S.E.M. *p<0.05, **p<0.01, ***p<0.001). Scale 

bar: 40 m (white), 20 m (red). 

 

Figure 4. HA-PLLA conduits implantation after complete rat SCI. (A) Left: Sketch of a 

frontal view representing the HA-PLLA conduit covering the spinal cord; Right: 

Representative images showing the complete sectioned spinal cord and the conduit covering 

the injury (delimited by discontinue lines); (B) Representative images of E&H staining from 

one individual of longitudinal spinal cord sections for all three tested groups three weeks after 

injury. (C) Quantification of the cavities and cysts and (D) the neuronal degenerated tissue 

from E&H staining at the injured site expressed as mean ± S.E. M.. *p<0.05, ***p<0.001 

(Student’s t test of pair comparisons with Control condition); (E) left: Representative images 

of  TUJ-1 (orange; alexa 555) and the GFP-epSPC (green) in longitudinal sections at 3 days 

(upper images) and 3 weeks (bottom) after biohybrid implantation (HA-PLLA + epSPC); 

Scale bar: 500 m; right: higher magnification images at the indicated area (by discontinued 

line) in the panoramic image. DAPI is used for nuclear staining (blue).  Scale bar: 50 m. n=6 
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Figure 5. Astrogliosis and Neuronal fibers analysis at the injury site. (A) 

Immunohistochemically detection of TUJ-1 (Alexa-555; shown in red as a pseudo-color; 

neuronal marker) and GFAP (Alexa-647; shown in green as a pseudo-color; astroglial marker) 

in longitudinal sections, from dorsal (top) to ventral (bottom) side, rostral left side, including 

the epicenter of the lesion, of the spinal cords for each experimental group three weeks after 

complete section and conduits implantation. (B) Graphical representation of GFAP and (C) 

TUJ-1 immunostaining quantification expressed as mean ± S.E.M. *p<0.05, ***p<0.001 

(Student’s t test of pair comparisons with Control condition).n=6 

 

Figure 6. HA-PLLA biohybrid significantly guide and induces axonal growth of the 

neuronal fibers. (A) Representative images of TUJ1 staining for each group employed for 

(B) directionality analysis of the neuronal fibers at the epicenter of the injury. The graphical 

quantification shows the number of segment of fibers positive for TUJ1 showing all varieties 

of inclinations from a horizontal (0) to a perpendicular plane (90ºC or -90º (180ºC)); (C) 

Representative images of TUJ1 and GAP43 merge staining’s for each experimental group, 

right: higher magnification images from the indicated area at the panoramic images (indicated 

with discontinued lines);(D) quantification of GAP43 and TUJ1 co-expressing neuronal 

fibers. ****p<0.0001, *p<0.05 (Student’s t test of pair comparisons with Control condition); 

Scale bar 500 m. n=6 

 

Supporting Information  

Figure S1: epSPC in vitro cultures characterization: (A) morphological view in phase 

contrast microscopy of epSPC growing as neurosphere-like cultures (left) or seeded onto 

matrigel coating plates (right); (B) Semi-quantitative PCR mRNA expression analysis of the 

indicated transcripts from total RNA extracts of epSPCs growing as neurospheres-like 
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cultures; (C) Immunostainings for Sox2, Nestin, DCX and Glast detection in epSPCs 24 hours 

after seeded onto matrigel coated plates in proliferative medium.   

 

Figure S2: Cell viability assay. epSPCs as neurospheres-like , in ultra-low attach 96 well 

plates, were exposed to HA-PLLA conditioned medium or control growth medium (control 

group) for 24, 48 and 72 hours in standard cell culture conditions (5% CO2, 37 C)  and then 

subjected to MTS cell viability assay determination. Three independent experiments were 

performed in triplicates. Data are expressed as mean± S.E.M. No statistical differences were 

found among the groups. 

 

Figure S3: Functional locomotion test after SCI: Functional locomotor analysis was 

evaluated using the BBB score over the three weeks post-injury and implantation. No 

significant differences were found among the groups. 

 

Figure S4: Immunohistochemically detection of Olig2 (red; oligodendrocyte marker) 

and ED1 (green; macrophage marker) in a representative longitudinal section of the spinal 

cords of the control, HA-PLLA and HA-PLLA + epSPC experimental conditions three weeks 

after injury and implantation. Scale bar, 500 m 

 


