Document downloaded from:

http://hdl.handle.net/10251/160314

This paper must be cited as:
Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2019). Multiplier and averaging operators in the Banach spaces ces(p), $1<\mathrm{p}<$ infty. Positivity. 23(1):177-193.
https://doi.org/10.1007/s11117-018-0601-6

The final publication is available at
https://doi.org/10.1007/s11117-018-0601-6

Copyright
Springer-Verlag

Additional Information

MULTIPLIER AND AVERAGING OPERATORS IN THE BANACH SPACES $\operatorname{ces}(\mathbf{p}), 1<\mathbf{p}<\infty$

ANGELA A. ALBANESE, JOSÉ BONET, WERNER J. RICKER

Abstract

The Banach sequence spaces $\operatorname{ces}(p)$ are generated in a specified way via the classical spaces $\ell_{p}, 1<p<\infty$. For each pair $1<p, q<\infty$ the (p, q)-multiplier operators from $\operatorname{ces}(p)$ into $\operatorname{ces}(q)$ are known. We determine precisely which of these multipliers is a compact operator. Moreover, for the case of $p=q$ a complete description is presented of those (p, p)-multiplier operators which are mean (resp. uniform mean) ergodic. A study is also made of the linear operator C which maps a numerical sequence to the sequence of its averages. All pairs $1<p, q<\infty$ are identified for which C maps $\operatorname{ces}(p)$ into ces (q) and, amongst this collection, those which are compact. For $p=q$, the mean ergodic properties of C are also treated.

1. Introduction.

For each element $x=\left(x_{n}\right)_{n}=\left(x_{1}, x_{2}, \ldots\right)$ of $\mathbb{C}^{\mathbb{N}}$ let $|x|:=\left(\left|x_{n}\right|\right)_{n}$ and write $x \geq 0$ if $x=|x|$. Of course, $x \leq y$ means that $(y-x) \geq 0$. The Cesàro operator $C: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$, defined by

$$
C(x):=\left(x_{1}, \frac{x_{1}+x_{2}}{2}, \frac{x_{1}+x_{2}+x_{3}}{3}, \ldots\right), \quad x \in \mathbb{C}^{\mathbb{N}}
$$

satisfies $|C(x)| \leq C(|x|)$ for $x \in \mathbb{C}^{\mathbb{N}}$ and is a vector space isomorphism of $\mathbb{C}^{\mathbb{N}}$ onto itself. It is also a topological isomorphism when $\mathbb{C}^{\mathbb{N}}$ is considered as a (locally convex) Fréchet space with respect to the coordinatewise convergence. For each $1<p<\infty$ define

$$
\begin{equation*}
\operatorname{ces}(p):=\left\{x \in \mathbb{C}^{\mathbb{N}}:\|x\|_{\operatorname{ces}(p)}:=\left\|\left(\frac{1}{n} \sum_{k=1}^{n}\left|x_{k}\right|\right)_{n}\right\|_{p}=\|C(|x|)\|_{p}<\infty\right\} \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|_{p}$ denotes the standard norm in ℓ_{p}. An intensive study of the Banach spaces $\operatorname{ces}(p), 1<p<\infty$, was undertaken in [3]; see also the references therein. In particular, they are reflexive, p-concave Banach lattices (for the order induced by $\mathbb{C}^{\mathbb{N}}$) and the canonical vectors $e_{k}:=\left(\delta_{n k}\right)_{n}$, for $k \in \mathbb{N}$, form an unconditional basis, [3], [6]. For any pair $1<p, q<\infty$ the space $\operatorname{ces}(p)$ is known not to be isomorphic to $\ell_{q},[3$, Proposition 15.13]. It is shown in Proposition 3.3 (for all $p \neq q)$ that $\operatorname{ces}(p)$ is also not isomorphic to $\operatorname{ces}(q)$. It is important to note that the inequality

$$
\begin{equation*}
\frac{A_{p}}{k^{1 / p^{\prime}}} \leq\left\|e_{k}\right\|_{\operatorname{ces}(p)} \leq \frac{B_{p}}{k^{1 / p^{\prime}}}, \quad k \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

[^0]is valid for strictly positive constants A_{p}, B_{p} and with $\frac{1}{p}+\frac{1}{p^{\prime}}=1,[3$, Lemma 4.7]. It is known, [3, p.26], that $\operatorname{ces}(p)=\operatorname{cop}(p)$ with equivalent norms, where
$$
\operatorname{cop}(p):=\left\{x \in \mathbb{C}^{\mathbb{N}}:\|x\|_{\operatorname{cop}(p)}:=\left\|\left(\sum_{k=n}^{\infty} \frac{\left|x_{k}\right|}{k}\right)_{n}\right\|_{p}<\infty\right\}, \quad 1<p<\infty
$$

The dual Banach spaces $(\operatorname{ces}(p))^{\prime}, 1<p<\infty$, are described in Section 12 of [3]. Yet another equivalent norm in $\operatorname{ces}(p)$, via the dyadic decomposition of \mathbb{N}, is available, [11, Theorem 4.1]. Namely, $x \in \mathbb{C}^{\mathbb{N}}$ belongs to $\operatorname{ces}(p)$ if and only if

$$
\begin{equation*}
\|x\|_{[p]}:=\left(\sum_{j=0}^{\infty} 2^{j(1-p)}\left(\sum_{k=2^{j}}^{2^{j+1}-1}\left|x_{k}\right|\right)^{p}\right)^{1 / p}<\infty \tag{1.3}
\end{equation*}
$$

The spaces $\operatorname{ces}(p), 1<p<\infty$, also arise in a very different way. Fix $1<p<\infty$. Since the Cesàro operator $C_{p, p}: \ell_{p} \longrightarrow \ell_{p}$, i.e., C restricted to ℓ_{p}, is a positive operator between Banach lattices, it is natural to look for continuous $\ell_{p^{-}}$valued extensions of $C_{p, p}$ to Banach lattices $X \subseteq \mathbb{C}^{\mathbb{N}}$ which are larger than ℓ_{p} and solid (i.e., $y \in \mathbb{C}^{\mathbb{N}}$ and $|y| \leq|x|$ with $x \in X$ implies that $y \in X$). The largest of all those solid Banach lattices in $\mathbb{C}^{\mathbb{N}}$ for which such a continuous, ℓ_{p}-valued extension of $C_{p, p}: \ell_{p} \longrightarrow \ell_{p}$ is possible is precisely $\operatorname{ces}(p)$, [6, p.62]. Of course, this "largest extension" $C_{c(p), p}: \operatorname{ces}(p) \longrightarrow \ell_{p}$ is the restriction of C from $\mathbb{C}^{\mathbb{N}}$ to $\operatorname{ces}(p)$. Somewhat surprisingly, $C_{c(p), p}$ also possesses an integral representation. That is, $\operatorname{ces}(p)$ coincides with the L^{1}-space of an ℓ_{p}-valued vector measure m_{p} and $C_{c(p), p}$ is given by

$$
C_{c(p), p}(x)=\int_{\mathbb{N}} x(n) d m_{p}(n), \quad x \in L^{1}\left(m_{p}\right)=\operatorname{ces}(p)
$$

Here $m_{p}: \mathcal{R} \longrightarrow \ell_{p}$ is the σ-additive vector measure defined on the δ-ring \mathcal{R} of all finite subsets of \mathbb{N} by

$$
\begin{equation*}
m_{p}(A):=C_{p, p}\left(\chi_{A}\right), \quad A \in \mathcal{R} \tag{1.4}
\end{equation*}
$$

where $\chi_{A}: \mathbb{N} \longrightarrow \mathbb{C}$ is the element of $\mathbb{C}^{\mathbb{N}}$ given by $\chi_{A}=\sum_{k \in A} e_{k}$ for each $A \subseteq \mathbb{N}$. This claim certainly requires a proof. First, the space $L^{1}\left(m_{p}\right)$ of all m_{p}-integrable functions on \mathbb{N}, as defined in [8], [9], is the optimal domain for the operator $C_{p, p}$ (in the sense of [9, Corollaries 2.4 and 2.6]) within the class of all Banach function spaces (briefly, B.f.s) over ($\mathbb{N}, \mathcal{R}, \mu$) which have absolutely continuous norm (briefly, a.c.); here μ denotes counting measure. More precisely, $L^{1}\left(m_{p}\right) \subseteq$ $\mathbb{C}^{\mathbb{N}}$ contains the domain space ℓ_{p} of $C_{p, p}$, the integration map $I_{m_{p}}: L^{1}\left(m_{p}\right) \longrightarrow \ell_{p}$ (given by $x \longmapsto \int_{\mathbb{N}} x d m_{p}$ for $x \in L^{1}\left(m_{p}\right)$) satisfies $I_{m_{p}}(x)=C_{p, p}(x)$ for each $x \in \ell_{p} \subseteq L^{1}\left(m_{p}\right)$, and $L^{1}\left(m_{p}\right)$ is the largest of all B.f.s.' over ($\mathbb{N}, \mathcal{R}, \mu$) having a.c.-norm to which $C_{p, p}$ can be extended while still maintaining its values in ℓ_{p}. To verify this, we observe that an equivalent norm in $L^{1}\left(m_{p}\right)$ is given by

$$
\|x\|_{L^{1}\left(m_{p}\right)}:=\sup \left\{\left\|\int_{A} x d m_{p}\right\|_{p}: A \in \mathcal{R}\right\}, \quad x \in L^{1}\left(m_{p}\right)
$$

see (3) on p. 434 of [8]. But, for $x \in L^{1}\left(m_{p}\right)$ and each $A \in \mathcal{R}$, the function $x_{\chi_{A}}$ is an \mathcal{R}-simple function and so it follows from (1.4) that $\int_{A} x d m_{p}=C_{p, p}\left(x \chi_{A}\right)$.

Now, for $x \in \operatorname{ces}(p)$ fixed, note that
$\left\|\int_{A} x d m_{p}\right\|_{p}=\left\|C_{p, p}\left(x \chi_{A}\right)\right\|_{p}=\left\|C_{c(p), p}\left(x \chi_{A}\right)\right\|_{p} \leq\left\|C_{c(p), p}(|x|)\right\|_{p}=\|x\|_{\text {ces }(p)}<\infty$
for every $A \in \mathcal{R}$. If we define $\int_{A} x d m_{p}:=C_{c(p), p}\left(x \chi_{A}\right) \in \ell_{p}$ for an arbitrary subset $A \subseteq \mathbb{N}$, then x is m_{p}-integrable in the sense of [8, p.434], [9, p.133], with $\|x\|_{L^{1}\left(m_{p}\right)} \leq\|x\|_{\operatorname{ces}(p)}$. Since $\operatorname{ces}(p)$ itself is a B.f.s. over $(\mathbb{N}, \mathcal{R}, \mu)$ having an a.c.-norm and containing ℓ_{p}, we can conclude from the optimality of $L^{1}\left(m_{p}\right)$ that $\operatorname{ces}(p) \subseteq L^{1}\left(m_{p}\right)$ with a continuous inclusion. On the other hand, recall that $\operatorname{ces}(p)$ is the largest solid Banach lattice in $\mathbb{C}^{\mathbb{N}}$ which contains ℓ_{p} and C maps into ℓ_{p}. But, the B.f.s. $L^{1}\left(m_{p}\right)$ is such a solid Banach lattice which C maps into ℓ_{p}. Indeed, since $L^{1}\left(m_{p}\right) \subseteq \mathbb{C}^{\mathbb{N}}$ with ℓ_{p} dense in $L^{1}\left(m_{p}\right)$ (as ℓ_{p} contains the \mathcal{R}-simple functions which are known to be dense in $L^{1}\left(m_{p}\right)$, [8, p.434]) and C acts in all of $\mathbb{C}^{\mathbb{N}}$, it follows from the fact that norm convergence of a sequence in $L^{1}\left(m_{p}\right)$ implies the pointwise convergence μ-a.e. of a subsequence, [9, p.134] (in this case meaning coordinatewise convergence in $\mathbb{C}^{\mathbb{N}}$), that the extended operator $I_{m_{p}}$ is necessarily given by $I_{m_{p}}(x)=C(x)$ for all $x \in L^{1}\left(m_{p}\right)$. Accordingly $L^{1}\left(m_{p}\right) \subseteq \operatorname{ces}(p)$ and hence, $L^{1}\left(m_{p}\right)=\operatorname{ces}(p)$ with equivalence of the norms $\|\cdot\|_{L^{1}\left(m_{p}\right)}$ and $\|\cdot\|_{\operatorname{ces}(p)}$. It is an important feature that m_{p} cannot be extended to a more traditional σ-additive, ℓ_{p}-valued vector measure defined on the σ-algebra $2^{\mathbb{N}}$ generated by \mathcal{R}. This is because its range $m_{p}(\mathcal{R})$ is an unbounded subset of ℓ_{p}. Indeed, for $A_{n}:=\{1,2, \ldots, N\} \in \mathcal{R}$ we have $m_{p}\left(A_{N}\right)=\sum_{j=1}^{N} e_{j}+N \sum_{j=N+1}^{\infty} \frac{1}{j} e_{j}$ and hence, $\left\|m_{p}\left(A_{N}\right)\right\|_{p} \geq N^{1 / p}$ for all $N \in \mathbb{N}$.

Having presented several equivalent and varied descriptions of the spaces ces (p), $1<p<\infty$, we now formulate the aim of this note, namely to make a detailed analysis of certain linear operators defined on these spaces. Let us be more precise.

Given a pair $1<p, q<\infty$, an element $a \in \mathbb{C}^{\mathbb{N}}$ is called a (p, q)-multiplier if it multiplies $\operatorname{ces}(p)$ into $\operatorname{ces}(q)$, that is, if $a x \in \operatorname{ces}(q)$ for every $x \in \operatorname{ces}(p)$, where the product $a x:=\left(a_{n} x_{n}\right)_{n}$ is defined coordinatewise. The closed graph theorem ensures that the corresponding linear (p, q)-multiplier operator $M_{p, q}^{a}: x \longmapsto a x$ is then necessarily continuous from $\operatorname{ces}(p)$ into $\operatorname{ces}(q)$. If $p=q$, then we denote $M_{p, p}^{a}$ simply by M_{p}^{a} and note that M_{p}^{a} is the diagonal operator acting in $\operatorname{ces}(p)$ via the matrix having the scalars $\left\{a_{n}: n \in \mathbb{N}\right\}$ in its diagonal. The vector space of all (p, q)-multipliers, denoted by $\mathcal{M}_{p, q}$ (or \mathcal{M}_{p} if $p=q$), has been completely determined by G. Bennett; see [3, pp.69-70], after recalling that $\operatorname{cop}(p)=\operatorname{ces}(p)$ for all $1<p<\infty$.

In Section 2 we investigate various properties of the multiplier operators $M_{p, q}^{a}$ for all pairs $1<p, q<\infty$ and $a \in \mathcal{M}_{p, q}$. For instance, those multipliers $a \in \mathcal{M}_{p, q}$ for which $M_{p, q}^{a}$ is a compact operator are characterized; see Propositions 2.2 and 2.5. Also, given $a \in \mathcal{M}_{p}=\ell_{\infty}$ it is shown that the spectrum of M_{p}^{a} is the set

$$
\sigma\left(M_{p}^{a}\right)=\overline{a(\mathbb{N})}, \quad 1<p<\infty
$$

where $a(\mathbb{N}):=\left\{a_{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{C}$, and that $\left\|M_{p}^{a}\right\|_{o p}=\|a\|_{\infty}$ with $\|\cdot\|_{o p}$ denoting the operator norm of $M_{p}^{a}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(p)$; see Lemma 2.6 and Proposition 2.7. Furthermore, those $a \in \mathcal{M}_{p}$ are identified for which the operator M_{p}^{a} is mean
ergodic (cf. Proposition 2.8) as well as those for which M_{p}^{a} is uniformly mean ergodic (cf. Proposition 2.10).

It is clear from (1.1) and the discussions above that the Cesàro operator C is intimately connected to the Banach spaces $\operatorname{ces}(p), 1<p<\infty$. Indeed, Hardy's classical inequality states, for $1<p<\infty$, that

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} b_{k}\right)^{p} \leq K_{p} \sum_{n=1}^{\infty} b_{n}^{p}
$$

for all choices of non-negative numbers $\left\{b_{n}\right\}_{n=1}^{\infty}$ and some constant $K_{p}>0,[12]$. Setting $b_{n}:=\left|x_{n}\right|$, for $n \in \mathbb{N}$ and each $x \in \ell_{p}$, it is immediate that $\left\|C_{p, p}(|x|)\right\|_{p} \leq$ $K_{p}^{1 / p}\|x\|_{p}$, that is, $\ell_{p} \subseteq \operatorname{ces}(p)$ with a continuous inclusion; Remark 2.2 of [6] shows that this containment is strict. Moreover, the Cesàro operator $C_{c(p), p}$: $\operatorname{ces}(p) \longrightarrow \ell_{p}$ is continuous; this was already implicitly used above. To see this fix $x \in \operatorname{ces}(p)$. Using the fact that $\|\cdot\|_{p}$ is a Banach lattice norm yields

$$
\left\|C_{c(p), p}(x)\right\|_{p}=\||C(x)|\|_{p} \leq\|C(|x|)\|_{p}=\|x\|_{c e s(p)}
$$

The connection between C and $\operatorname{ces}(p)$ is further exemplified by the following remarkable result of Bennett, [3, Theorem 20.31].
Proposition 1.1. Let $1<p<\infty$ and $x \in \mathbb{C}^{\mathbb{N}}$. Then

$$
\begin{equation*}
x \in \operatorname{ces}(p) \text { if and only if } C(|x|) \in \operatorname{ces}(p) . \tag{1.5}
\end{equation*}
$$

Further examples of Banach spaces $X \subseteq \mathbb{C}^{\mathbb{N}}$ such that $C(X) \subseteq X$ and for which Proposition 1.1 is valid (with X in place of $\operatorname{ces}(p)$) are identified in [5], [6], [7].

In Section 3 it is shown that C maps $\operatorname{ces}(p)$ into $\operatorname{ces}(q)$, necessarily continuously, if and only if $1<p \leq q<\infty$; see Proposition 3.5. Furthermore, all pairs $1<p, q<\infty$ are identified for which C maps ℓ_{p} into $\operatorname{ces}(q)$ and for which C maps $\operatorname{ces}(p)$ into ℓ_{q}, as well as the subclass of these continuous operators which are actually compact. Two important facts in this regard are that the Cesàro operator $C_{c(p), c(p)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(p)$ has spectrum

$$
\begin{equation*}
\sigma\left(C_{c(p), c(p)}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{p^{\prime}}{2}\right| \leq \frac{p^{\prime}}{2}\right\}, \quad 1<p<\infty \tag{1.6}
\end{equation*}
$$

[6, Theorem 5.1], and that the natural inclusion map $\operatorname{ces}(p) \hookrightarrow \operatorname{ces}(q)$ is compact whenever $1<p<q$; see Proposition 3.4. A consequence of (1.6) is that $C_{c(p), c(p)}$ and $C_{p, p}$ are never mean ergodic.

2. Multiplier operators from $\operatorname{ces}(p)$ into $\operatorname{ces}(q)$.

According to table 16 on p. 69 of [3], given $1<p \leq q<\infty$ an element $a=$ $\left(a_{n}\right)_{n} \in \mathbb{C}^{\mathbb{N}}$ belongs to $\mathcal{M}_{p, q}$ if and only if the element $\left(a_{n} n^{\frac{1}{q}-\frac{1}{p}}\right)_{n} \in \ell_{\infty}$. Observe that $\left(\frac{1}{q}-\frac{1}{p}\right) \leq 0$. In particular, $\ell_{\infty} \subseteq \mathcal{M}_{p, q}$ and, if $p=q$, then $\mathcal{M}_{p}=\ell_{\infty}$. For fixed $a \in \ell_{\infty}$, it follows via the inequality $C(|a u|) \leq\|a\|_{\infty} C(|u|)$, for $u \in \mathbb{C}^{\mathbb{N}}$, that $\left\|M_{p}^{a}(x)\right\|_{\operatorname{ces}(p)}=\|C(|a x|)\|_{p} \leq\|a\|_{\infty}\|C(|x|)\|_{p}=\|a\|_{\infty}\|x\|_{\operatorname{ces}(p)}$, for all $x \in$ $\operatorname{ces}(p)$. Hence, $M_{p}^{a}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(p)$ satisfies

$$
\begin{equation*}
\left\|M_{p}^{a}\right\|_{o p} \leq\|a\|_{\infty}, \quad a \in \ell_{\infty}, \quad 1<p<\infty \tag{2.1}
\end{equation*}
$$

Here $\|.\|_{o p}$ denotes the operator norm. We begin with a result which is probably known; due to the lack of a reference we include a proof. Let φ be the vector subspace of $\mathbb{C}^{\mathbb{N}}$ consisting of all elements with only finitely many non-zero
coordinates. The space φ coincides with the continuous dual space $\left(\mathbb{C}^{\mathbb{N}}\right)^{\prime}$ of the Fréchet space $\mathbb{C}^{\mathbb{N}}$.
Lemma 2.1. Let $T: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ be a continuous linear operator and X, Y be a Banach sequence spaces satisfying $\varphi \subseteq X \subset \mathbb{C}^{\mathbb{N}}$ and $\varphi \subseteq Y \subseteq \mathbb{C}^{\mathbb{N}}$ with continuous inclusions such that $T(X) \subseteq Y$. Then the restriction $T: X \longrightarrow Y$ is a compact operator if and only if it satisfies the following property (K), namely:
(K) If a norm bounded sequence $\left\{x_{m}\right\}_{m=1}^{\infty} \subseteq X$ satisfies $\lim _{m \rightarrow \infty} x_{m}=0$ in the Fréchet space $\mathbb{C}^{\mathbb{N}}$, then $\lim _{m \rightarrow \infty} T\left(x_{m}\right)=0$ in the Banach space Y.

Proof. By the closed graph theorem $T: X \longrightarrow Y$ is continuous.
Suppose first that $T: X \longrightarrow Y$ is compact. Let $\left\{x_{m}\right\}_{m=1}^{\infty} \subseteq X$ be any sequence in X satisfying $\lim _{m \rightarrow \infty} x_{m}=0$ in $\mathbb{C}^{\mathbb{N}}$. Assume that the sequence $\left\{T\left(x_{m}\right)\right\}_{m=1}^{\infty}$ does not converge to 0 in Y. Select a subsequence $\left\{x_{m_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{m}\right\}_{m=1}^{\infty}$ and $r>0$ such that

$$
\begin{equation*}
\left\|T\left(x_{m_{k}}\right)\right\|_{Y} \geq r, \quad k \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

By compactness of T there exists $y \in Y$ and a subsequence $\left\{x_{m_{k(l)}}\right\}_{l=1}^{\infty}$ of $\left\{x_{m_{k}}\right\}_{k=1}^{\infty}$ such that $\lim _{l \rightarrow \infty}\left\|T\left(x_{m_{k(l)}}\right)-y\right\|_{Y}=0$. Continuity of the inclusion $Y \subseteq \mathbb{C}^{\mathbb{N}}$ implies that also $\lim _{l \rightarrow \infty} T\left(x_{m_{k(l)}}\right)=y$ in $\mathbb{C}^{\mathbb{N}}$. But, $\lim _{l \rightarrow \infty} x_{m_{k(l)}}=0$ in $\mathbb{C}^{\mathbb{N}}$ and $T: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ is continuous. Accordingly, $\lim _{l \rightarrow \infty} T\left(x_{m_{k(l)}}\right)=0$ in $\mathbb{C}^{\mathbb{N}}$ and so $y=0$; contradiction to (2.2). Hence, necessarily $T\left(x_{m}\right) \longrightarrow 0$ in Y for $m \longrightarrow \infty$. This establishes that T has property (K).

Conversely, suppose that T has property (K). Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be any bounded sequence in X. To show that T is compact we need to argue that $\left\{T\left(x_{i}\right)\right\}_{i=1}^{\infty}$ has a convergent subsequence in Y. Since the inclusion $X \subseteq \mathbb{C}^{\mathbb{N}}$ is continuous, the sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ is also bounded in the Fréchet-Montel space $\mathbb{C}^{\mathbb{N}}$. Hence, there is a subsequence $u_{j}:=x_{i_{j}}$, for $j \in \mathbb{N}$, of $\left\{x_{i}\right\}_{i=1}^{\infty}$ and $x \in \mathbb{C}^{\mathbb{N}}$ such that $\lim _{j \rightarrow \infty} u_{j}=x$ in $\mathbb{C}^{\mathbb{N}}$. Suppose that $\left\{T\left(u_{j}\right)\right\}_{j=1}^{\infty}$ is not convergent in Y. Then $\left\{T\left(u_{j}\right)\right\}_{j=1}^{\infty}$ cannot be a Cauchy sequence in Y and hence, there exists $a>0$ such that, for every $j \in \mathbb{N}$, there exist $k_{j}, l_{j} \in \mathbb{N}$ with $j<k_{j}<l_{j}$ such that $\left\|T\left(u_{k_{j}}\right)-T\left(u_{l_{j}}\right)\right\|_{Y} \geq a$. Via this inequality we can choose for $j=1$ natural numbers $1<k_{1}<l_{1}$, then for $j:=1+l_{1}$ natural numbers $1+l_{1}<k_{2}<l_{2}$ and so on, such that $1<k_{1}<l_{1}<k_{2}<l_{2}<k_{3}<l_{3} \ldots$ and, for these natural numbers $\left\{k_{n}, l_{n}\right\}_{n=1}^{\infty}$, we have

$$
\begin{equation*}
\left\|T\left(u_{k_{n}}\right)-T\left(u_{l_{n}}\right)\right\|_{Y} \geq a, \quad n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Then $z_{n}:=u_{k_{n}}-u_{l_{n}}$, for $n \in \mathbb{N}$, is a bounded sequence in X. Since $\lim _{j \rightarrow \infty} u_{j}=x$ in $\mathbb{C}^{\mathbb{N}}$, it follows that $\lim _{n \rightarrow \infty} z_{n}=0$ in $\mathbb{C}^{\mathbb{N}}$. By property $(K), \lim _{n \rightarrow \infty} T\left(z_{n}\right)=$ 0 in Y, that is, $\lim _{n \rightarrow \infty}\left(T\left(u_{k_{n}}\right)-T\left(u_{l_{n}}\right)\right)=0$ in Y which contradicts (2.3). Hence, $\left\{T\left(u_{j}\right)\right\}_{j=1}^{\infty}$ does converge in Y and is a subsequence of $\left\{T\left(x_{i}\right)\right\}_{i=1}^{\infty}$. The compactness of T is thereby verified.

Proposition 2.2. Let $1<p \leq q<\infty$ and $a \in \mathcal{M}_{p, q}$. Then the continuous multiplier operator $M_{p, q}^{a}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is compact if and only if $\left(a_{n} n^{\frac{1}{q}-\frac{1}{p}}\right)_{n} \in$ c_{0}.
Proof. Suppose first that $w=\left(w_{n}\right)_{n}:=\left(a_{n} n^{\frac{1}{q}-\frac{1}{p}}\right)_{n} \in c_{0}$. Define the element $w_{N}:=\left(w_{1}, \ldots, w_{N}, 0,0, \ldots\right)$ for each $N \in \mathbb{N}$ in which case $\left(w-w_{N}\right) \in \ell_{\infty}$. So,
by (2.1), $\left\|M_{p}^{w}-M_{p}^{w_{N}}\right\|_{o p}=\left\|M_{p}^{w-w_{N}}\right\|_{o p} \leq\left\|w-w_{N}\right\|_{\infty}$. Since $w \in c_{0}$, it follows that $\lim _{N \rightarrow \infty}\left\|w-w_{N}\right\|_{\infty}=0$ and hence, $M_{p}^{w}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(p)$ is compact as each $M_{p}^{w_{N}}$, for $N \in \mathbb{N}$, is a finite rank operator. Define $v_{n}:=n^{\frac{1}{p}-\frac{1}{q}}$, for $n \in \mathbb{N}$, in which case $v:=\left(v_{n}\right)_{n} \in \mathcal{M}_{p, q}$ by Bennett's multiplier criterion mentioned above, that is, $M_{p, q}^{v}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is continuous. Since $M_{p, q}^{a}=M_{p, q}^{v} M_{p}^{w}$, it follows that $M_{p, q}^{a}$ is compact.

Conversely, suppose that $M_{p, q}^{a}$ is a compact operator. According to (1.2), the sequence $f_{j}:=j^{1 / p^{\prime}} e_{j}$, for $j \in \mathbb{N}$, is bounded in $\operatorname{ces}(p)$. Clearly $\left\{f_{j}\right\}_{j=1}^{\infty}$ converges to 0 in the Fréchet space $\mathbb{C}^{\mathbb{N}}$. Moreover, $M_{p, q}^{a}\left(f_{j}\right)=j^{1 / p^{\prime}} a_{j} e_{j}$, for $j \in \mathbb{N}$, and $M_{p, q}^{a}\left(f_{j}\right) \longrightarrow 0$ in $\mathbb{C}^{\mathbb{N}}$ for $j \longrightarrow \infty$ (as the multiplier operator $M^{a}: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ given by $x \longmapsto a x$ is continuous). Applying Lemma 2.1 to the setting $X:=$ $\operatorname{ces}(p), Y:=\operatorname{ces}(q)$ and the continuous multiplier operator $T=M^{a}: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ (whose restriction to X is $M_{p, q}^{a}$), it follows that $\left\{M_{p, q}^{a}\left(f_{j}\right)\right\}_{j=1}^{\infty}$ actually converges to 0 in $\operatorname{ces}(q)$, that is, $\lim _{j \rightarrow \infty} j^{1 / p^{\prime}}\left|a_{j}\right| \cdot\left\|e_{j}\right\|_{\operatorname{ces}(q)}=\lim _{j \rightarrow \infty}\left\|j^{1 / p^{\prime}} a_{j} e_{j}\right\|_{\operatorname{ces}(q)}=0$. On the other hand, (1.2) implies that $A_{q} \leq j^{1 / p^{\prime}}\left\|e_{j}\right\|_{\text {ces }(q)} \leq B_{q}$ for $j \in \mathbb{N}$. It follows that $\lim _{j \rightarrow \infty} j^{1 / p^{\prime}}\left|a_{j}\right| / j^{1 / q^{\prime}}=0$. Since $\frac{1}{p^{\prime}}-\frac{1}{q^{\prime}}=\frac{1}{q}-\frac{1}{p}$ we can conclude that $\left(a_{n} n^{\frac{1}{q}-\frac{1}{p}}\right)_{n} \in c_{0}$.

For the case when $p=q$ and $a \in \mathcal{M}_{p}=\ell_{\infty}$, Proposition 2.2 implies that the multiplier operator $M_{a}^{p}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(p)$ is compact if and only if $a \in c_{0}$.

To treat the cases when $p>q$ we recall, for each $r>1$, the Banach space

$$
d(r):=\left\{x \in \mathbb{C}^{\mathbb{N}}:\|x\|_{d(r)}:=\|\widehat{x}\|_{r}<\infty\right\}
$$

where $\widehat{x}=\left(\widehat{x}_{n}\right)_{n}:=\left(\sup _{k \geq n}\left|x_{k}\right|\right)_{n}$ and $\|\widehat{x}\|_{r}$ is its norm in $\ell_{r},[3$, pp.3-4].
Lemma 2.3. Let $1<r<\infty$ and $x \in d(r)$. Then $\lim _{N \rightarrow \infty}\left\|x-x^{(N)}\right\|_{d(r)}=0$, where $x^{(N)}:=\left(x_{1}, \ldots, x_{N}, 0,0, \ldots\right)$ for each $N \in \mathbb{N}$.
Proof. Given $N \in \mathbb{N}$ observe that $x-x^{(N)}=\left(0, \ldots, 0, x_{N+1}, x_{N+2}, \ldots\right)$ and hence, $\left(x-x^{(N)}\right)^{\wedge}=\left(\widehat{x}_{N+1}, \ldots, \widehat{x}_{N+1}, \widehat{x}_{N+2}, \ldots\right)$ where the first $(N+1)$-coordinates are constantly \widehat{x}_{N+1}. It follows that

$$
\begin{equation*}
\left\|x-x^{(N)}\right\|_{d(r)}^{r}=(N+1)\left(\widehat{x}_{N+1}\right)^{r}+\sum_{n=N+2}^{\infty}\left(\widehat{x}_{n}\right)^{r}, \quad N \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

Since $\left(\left(\widehat{x}_{n}\right)^{r}\right)_{n}$ is a decreasing sequence of non-negative terms which belongs to ℓ_{1}, it is classical that $\lim _{n \rightarrow \infty} n\left(\widehat{x}_{n}\right)^{r}=0,[14, \S 3.3$ Theorem 1]. Let $\epsilon>0$. Choose $K \in \mathbb{N}$ such that $n\left(\widehat{x}_{n}\right)^{r}<\frac{\epsilon^{r}}{2}$ and $\sum_{n=K}^{\infty}\left(\widehat{x}_{n}\right)^{r}<\frac{\epsilon^{r}}{2}$ for all $n \geq K$. It follows from (2.4) that $\left\|x-x^{(N)}\right\|_{d(r)}^{r}<\epsilon^{r}$ for all $N \geq K$. The proof is thereby complete.

Let $1<q<p<\infty$ and choose r according to $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}$. Then it follows from table 32 on p. 70 of [3] that

$$
\begin{equation*}
\mathcal{M}_{p, q}=d(r) \tag{2.5}
\end{equation*}
$$

Lemma 2.4. Let $1<q<p<\infty$ and r satisfy $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}$. Then there exists a constant $D_{p, q}>0$ such that

$$
\left\|M_{p, q}^{a}\right\|_{o p} \leq D_{p, q}\|a\|_{d(r)}, \quad a \in \mathcal{M}_{p, q}=d(r)
$$

Proof. For Banach spaces X, Y let $\mathcal{L}(X, Y)$ denote the Banach space of all continuous linear operators from X into Y, equipped with the operator norm $\|\cdot\|_{o p}$. According to (2.5) the linear map $\Phi: d(r) \longrightarrow \mathcal{L}(\operatorname{ces}(p), \operatorname{ces}(q))$ specified by $\Phi(a):=M_{p, q}^{a}$ is well defined. To establish the existence of $D_{p, q}$ it suffices to show that Φ has closed graph. This is a standard argument after noting that convergence of a sequence in $d(r)$ implies its coordinatewise convergence.

The following result shows, for $p>q>1$, that every multiplier operator $M_{p, q}^{a}$ for $a \in \mathcal{M}_{p, q}$ is compact.
Proposition 2.5. Let $p>q>1$. For $a \in \mathbb{C}^{\mathbb{N}}$ the following assertions are equivalent.
(i) $a \in \mathcal{M}_{p, q}$, that is, $M_{p, q}^{a}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is continuous.
(ii) $M_{p, q}^{a}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is compact.
(iii) $a \in d(r)$ where $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}$.

Proof. (i) \Longleftrightarrow (iii) is precisely the characterization (2.5) of Bennett.
(ii) \Longrightarrow (i) is clear as every compact linear operator is continuous.
(iii) \Longrightarrow (ii). Let $a^{(N)}:=\left(a_{1}, \ldots, a_{N}, 0,0, \ldots\right)$ for $N \in \mathbb{N}$. Then $a-a^{(N)} \in d(r)$ for $N \in \mathbb{N}$ and $\lim _{N \rightarrow \infty}\left\|a-a^{(N)}\right\|_{d(r)}=0$; see Lemma 2.3. By (2.5) the operators $M_{p, q}^{a}, M_{p, q}^{a^{(N)}}$ and $M_{p, q}^{a-a^{(N)}}=M_{p, q}^{a}-M_{p, q}^{a^{(N)}}$ all belong to $\mathcal{L}(\operatorname{ces}(p), \operatorname{ces}(q))$. Lemma 2.4 yields that $\left\|M_{p, q}^{a}-M_{p, q}^{a^{(N)}}\right\|_{o p} \leq D_{p, q}\left\|a-a^{(N)}\right\|_{d(r)}$, for $N \in \mathbb{N}$. Hence, $M_{p, q}^{a}$ is compact as each operator $M_{p, q}^{a^{(N)}}$ has finite rank.

We now consider further properties of multiplier operators for the case when $p=q$. The space $\mathcal{L}(\operatorname{ces}(p), \operatorname{ces}(p))$ is simply denoted by $\mathcal{L}(\operatorname{ces}(p))$.
Lemma 2.6. Let $1<p<\infty$. Then

$$
\begin{equation*}
\left\|M_{p}^{a}\right\|_{o p}=\|a\|_{\infty}, \quad a \in \ell_{\infty}=\mathcal{M}_{p} \tag{2.6}
\end{equation*}
$$

Proof. Just prior to Proposition 2.2 it was noted that $\left\|M_{p}^{a}\right\|_{o p} \leq\|a\|_{\infty}$. On the other hand, since $M_{p}^{a}\left(e_{j}\right)=a_{j} e_{j}$ for $j \in \mathbb{N}$, it is clear that the point spectrum $\sigma_{p t}\left(M_{p}^{a}\right)$, consisting of all the eigenvalues of M_{p}^{a}, satisfies

$$
a(\mathbb{N}):=\left\{a_{j}: j \in \mathbb{N}\right\} \subseteq \sigma_{p t}\left(M_{p}^{a}\right) \subseteq \sigma\left(M_{p}^{a}\right)
$$

Then the spectral radius inequality for operators, [10, Ch. VII, Lemma 3.4], yields

$$
\left\|M_{p}^{a}\right\|_{o p} \geq r\left(M_{p}^{a}\right):=\sup \left\{|\lambda|: \lambda \in \sigma\left(M_{p}^{a}\right)\right\} \geq \sup _{j \in \mathbb{N}}\left|a_{j}\right|=\|a\|_{\infty}
$$

The spectrum of multiplier operators in $\mathcal{L}(\operatorname{ces}(p))$ can now be determined.
Proposition 2.7. Let $1<p<\infty$. Then

$$
\begin{equation*}
\sigma\left(M_{p}^{a}\right)=\overline{a(\mathbb{N})}=\overline{\left\{a_{j}: j \in \mathbb{N}\right\}}, \quad a \in \mathcal{M}_{p} \tag{2.7}
\end{equation*}
$$

Proof. From the proof of Lemma 2.6 we have $a(\mathbb{N}) \subseteq \sigma_{p t}\left(M_{p}^{a}\right) \subseteq \sigma\left(M_{p}^{a}\right)$. Since $\sigma\left(M_{p}^{a}\right)$ is a closed set in \mathbb{C}, it follows that $\overline{a(\mathbb{N})} \subseteq \sigma\left(M_{p}^{a}\right)$.

Suppose that $\lambda \notin \overline{a(\mathbb{N})}$. Then $b=\left(b_{n}\right)_{n}$ with $b_{n}:=\frac{1}{\lambda-a_{n}}$ for $n \in \mathbb{N}$ belongs to $\ell_{\infty}=\mathcal{M}_{p}$. Using the formula $\lambda I-M_{p}^{a}=M_{p}^{\lambda 1-a}$ (with I the identity operator
on $\operatorname{ces}(p)$ and $1:=(1,1,1, \ldots))$ it is routine to check that $\left(\lambda I-M_{p}^{a}\right) M_{p}^{b}=I=$ $M_{p}^{b}\left(\lambda I-M_{p}^{a}\right)$. Hence, $\lambda I-M_{p}^{a}$ is invertible in $\mathcal{L}(\operatorname{ces}(p))$ and so λ lies in the resolvent set of M_{p}^{a}. This establishes the inclusion $\sigma\left(M_{p}^{a}\right) \subseteq \overline{a(\mathbb{N})}$.

For a Banach space X, an operator $T \in \mathcal{L}(X):=\mathcal{L}(X, X)$ is mean ergodic (resp. uniformly mean ergodic) if its sequence of Cesàro averages

$$
\begin{equation*}
T_{[n]}:=\frac{1}{n} \sum_{m=1}^{n} T^{m}, \quad n \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

converges to some operator $P \in \mathcal{L}(X)$ in the strong operator topology τ_{s}, i.e., $\lim _{n \rightarrow \infty} T_{[n]}(x)=P(x)$ for each $x \in X,[10$, Ch. VIII] (resp. in the operator norm topology τ_{b}). According to [10, Ch. VIII, Corollary 5.2] there then exists the direct sum decomposition

$$
\begin{equation*}
X=\operatorname{Ker}(I-T) \oplus \overline{(I-T)(X)} \tag{2.9}
\end{equation*}
$$

Moreover, we have the identities $(I-T) T_{[n]}=T_{[n]}(I-T)=\frac{1}{n}\left(T-T^{n+1}\right)$, for $n \in$ \mathbb{N}, and, setting $T_{[0]}:=I$, that

$$
\begin{equation*}
\frac{1}{n} T^{n}=T_{[n]}-\frac{(n-1)}{n} T_{[n-1]}, \quad n \in \mathbb{N} . \tag{2.10}
\end{equation*}
$$

An operator $T \in \mathcal{L}(X)$ is called power bounded if $\sup _{n \in \mathbb{N}}\left\|T^{n}\right\|_{o p}<\infty$. In this case it is clear that necessarily $\lim _{n \rightarrow \infty} \frac{\left\|T^{n}\right\|_{o p}}{n}=0$. A standard reference for mean ergodic operators is [15]. Finally, define $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$.

Proposition 2.8. Let $1<p<\infty$ and $a \in \mathcal{M}_{p}=\ell_{\infty}$. The following statements are equivalent.
(i) $\|a\|_{\infty} \leq 1$.
(ii) The multiplier operator $M_{p}^{a} \in \mathcal{L}(\operatorname{ces}(p))$ is power bounded.
(iii) The multiplier operator $M_{p}^{a} \in \mathcal{L}(\operatorname{ces}(p))$ is mean ergodic.
(iv) The spectrum $\sigma\left(M_{p}^{a}\right) \subseteq \overline{\mathbb{D}}$.
(v) $\lim _{n \rightarrow \infty} \frac{\left(M_{p}^{a}\right)^{n}}{n}=0$ relative to τ_{s} in $\mathcal{L}(\operatorname{ces}(p))$.

Proof. (i) \Longrightarrow (ii). Since \mathcal{M}_{p} is an algebra under coordinatewise multiplication in $\mathbb{C}^{\mathbb{N}}$ we have $\left(M_{p}^{a}\right)^{n}=M_{p}^{a^{n}}$ (where $a^{n}:=\left(a_{j}^{n}\right)_{j}$ for $\left.a=\left(a_{j}\right)_{j}\right)$ and so, via Lemma 2.6, $\left\|\left(M_{p}^{a}\right)^{n}\right\|_{o p}=\left\|M_{p}^{a^{n}}\right\|_{o p}=\left\|a^{n}\right\|_{\infty} \leq 1, \quad n \in \mathbb{N}$.
(ii) \Longrightarrow (iii). Power bounded operators in reflexive Banach spaces are always mean ergodic, [19].
(i) \Longrightarrow (iv). Since $\|a\|_{\infty}=\sup \{|\lambda|: \lambda \in a(\mathbb{N})\} \leq 1,(2.7)$ implies $\sigma\left(M_{p}^{a}\right) \subseteq \overline{\mathbb{D}}$.
(iv) \Longrightarrow (i). Clear from (2.7).
(iii) \Longrightarrow (i). Suppose that $\|a\|_{\infty}>1$. Then there exists $k \in \mathbb{N}$ such that $\left|a_{k}\right|>1$. Since $\left(M_{p}^{a}\right)^{n}\left(e_{k}\right)=a_{k}^{n} e_{k}$ for $n \in \mathbb{N}$, it follows that

$$
\frac{\left\|\left(M_{p}^{a}\right)^{n}\left(e_{k}\right)\right\|_{\operatorname{ces}(p)}}{n}=\frac{\left|a_{k}\right|^{n}}{n}\left\|e_{k}\right\|_{\operatorname{ces}(p)}, \quad n \in \mathbb{N}
$$

with $\left|a_{k}\right|>1$. Hence, the sequence $\left\{\frac{\left(M_{p}^{a}\right)^{n}}{n}\right\}_{n=1}^{\infty}$ cannot converge to $0 \in \mathcal{L}(\operatorname{ces}(p))$ in the topology τ_{s}, thereby violating a necessary condition for M_{p}^{a} to be mean ergodic (see (2.10)); contradiction! So, $\|a\|_{\infty} \leq 1$.
(iii) $\Longrightarrow(\mathrm{v})$. This follows from (2.10).
$(\mathrm{v}) \Longrightarrow$ (i). See the proof of (iii) \Longrightarrow (i).
In view of Proposition 2.8 we may assume that $\|a\|_{\infty} \leq 1$ and M_{p}^{a} is power bounded whenever it is mean ergodic. Then $\lim _{n \rightarrow \infty} \frac{\left\|\left(M_{p}^{a}\right)^{n}\right\|_{o p}}{n}=0$ and so, by a well known result of Lin, [17], the uniform mean ergodicity of M_{p}^{a} is equivalent to the range $\left(I-M_{p}^{a}\right)(\operatorname{ces}(p))=\left(M_{p}^{1-a}\right)(\operatorname{ces}(p))$ of $I-M_{p}^{a}$ being a closed subspace of $\operatorname{ces}(p)$.

Given $w \in \mathbb{C}^{\mathbb{N}}$ define its support by $S(w):=\left\{n \in \mathbb{N}: w_{n} \neq 0\right\}$ in which case $w \chi_{S(w)}=w$ as elements of $\mathbb{C}^{\mathbb{N}}$. If $w \in \ell_{\infty}$, then for each $1<p<\infty$ we have

$$
\begin{equation*}
M_{p}^{w}(\operatorname{ces}(p)):=\{w x: x \in \operatorname{ces}(p)\}=\left\{w \chi_{S(w)} x: x \in \operatorname{ces}(p)\right\} \tag{2.11}
\end{equation*}
$$

We will also require the closed subspace of $\operatorname{ces}(p)$ which is the range of the continuous projection operator $M_{p}^{\chi_{S(w)}}$, i.e.,

$$
\begin{equation*}
X_{w, p}:=\left\{\chi_{S(w)} x: x \in \operatorname{ces}(p)\right\}=M_{p}^{\chi_{S(w)}}(\operatorname{ces}(p)) \tag{2.12}
\end{equation*}
$$

It is routine to check that $X_{w, p}$ is M_{p}^{w}-invariant. Let $\tilde{M}_{p}^{w}: X_{w, p} \longrightarrow X_{w, p}$ be the restriction of M_{p}^{w} so that $\tilde{M}_{p}^{w} \in \mathcal{L}\left(X_{w, p}\right)$. Since $w_{n} \neq 0$ for each $n \in S(w)$, it follows that \tilde{M}_{p}^{w} is injective. Hence, \tilde{M}_{p}^{w} is a vector space isomorphism of $X_{w, p}$ onto its range $\tilde{M}_{p}^{w}\left(X_{w, p}\right)$ in $X_{w, p}$. By (2.11) and (2.12) it is clear that $\tilde{M}_{p}^{w}\left(X_{w, p}\right)=M_{p}^{w}(\operatorname{ces}(p))$ whenever $M_{p}^{w}(\operatorname{ces}(p))$ is closed in $\operatorname{ces}(p)$.
Lemma 2.9. Let $w \in \ell_{\infty}$ and $1<p<\infty$. If the range $M_{p}^{w}(\operatorname{ces}(p))$ is closed in $\operatorname{ces}(p)$, then $0 \notin \overline{\left(w \chi_{S(w)}\right)(\mathbb{N})}$.
Proof. By the discussion prior to Lemma 2.9, $\tilde{M}_{p}^{w}\left(X_{w, p}\right)$ is a Banach space for the norm $\|\cdot\|_{\operatorname{ces}(p)}$ restricted to the closed subspace $M_{p}^{w}(\operatorname{ces}(p))=\tilde{M}_{p}^{w}\left(X_{w, p}\right)$ of $\operatorname{ces}(p)$. Via the open mapping theorem $\tilde{M}_{p}^{w}: X_{w, p} \longrightarrow X_{w, p}$ is then a Banach space isomorphism. So, there exists $T \in \mathcal{L}\left(X_{w, p}\right)$ satisfying

$$
\begin{equation*}
\tilde{M}_{p}^{w} T=I=T \tilde{M}_{p}^{w} \tag{2.13}
\end{equation*}
$$

For each $n \in S(w)$ the basis vector $e_{n} \in X_{w, p}$. Define $y^{(n)}:=T\left(e_{n}\right)$ for $n \in S(w)$. It follows from (2.13) that $e_{n}=w y^{(n)}$. Since the k-th coordinate of e_{n} is 0 for $k \in \mathbb{N} \backslash\{n\}$, the same is true of $w y^{(n)}$. Accordingly, $e_{n}=w_{n} y^{(n)}$ and so $T\left(e_{n}\right)=y^{(n)}=\frac{1}{w_{n}} e_{n}$ for each $n \in S(w)$. But, $\left\{e_{n}: n \in S(w)\right\}$ is a basis for $X_{w, p}$ and $T \in \mathcal{L}\left(X_{w, p}\right)$ from which we can deduce that $T(x)=w^{-1} x$ for all $x \in X_{w, p}$ (with $\left.w^{-1}:=\left(\frac{1}{w_{n}}\right)_{n \in S(w)}\right)$. Setting $v:=w^{-1} \chi_{S(w)} \in \mathbb{C}^{\mathbb{N}}$, it follows that

$$
\begin{equation*}
v x=T\left(\chi_{S(w)} x\right)=T M_{p}^{\chi_{S(w)}}(x)=\left(j T M_{p}^{\chi_{S(w)}}\right)(x) \tag{2.14}
\end{equation*}
$$

for each $x \in \operatorname{ces}(p)$, with $j: X_{w, p} \longrightarrow \operatorname{ces}(p)$ being the natural inclusion map and (2.14) holding as equalities in $\mathbb{C}^{\mathbb{N}}$. But, $j T M_{p}^{\chi_{S(w)}} \in \mathcal{L}(\operatorname{ces}(p))$ if we interpret $M_{p}^{\chi(w)}: \operatorname{ces}(p) \longrightarrow X_{w, p}$ and hence, (2.14) actually holds in $\operatorname{ces}(p)$. That is, $M_{v}=j T M_{p}^{\chi_{S(w)}}$ belongs to $\mathcal{L}(\operatorname{ces}(p))$ which means that $v \in \mathcal{M}_{p}$ or, equivalently, that $v \in \ell_{\infty}$. This implies the desired conclusion.

Proposition 2.10. Let $1<p<\infty$ and $a \in \mathcal{M}_{p}=\ell_{\infty}$. The following assertions are equivalent.
(i) M_{p}^{a} is uniformly mean ergodic.
(ii) $\|a\|_{\infty} \leq 1$ and $1 \notin \overline{a(\mathbb{N}) \backslash\{1\}}$.

Proof. (i) \Longrightarrow (ii). By the discussion immediately after Proposition 2.8 we know that (i) implies $\|a\|_{\infty} \leq 1$ and the range of $I-M_{p}^{a}=M_{p}^{1-a}$ is closed in $\operatorname{ces}(p)$. Then $w:=\mathbf{1}-a$ satisfies the hypothesis of Lemma 2.9. Accordingly, $0 \notin \overline{\left((\mathbf{1}-a) \chi_{S(1-a}\right)(\mathbb{N})}$ which is equivalent to $1 \notin \overline{a(\mathbb{N}) \backslash\{1\}}$.
(ii) \Longrightarrow (i). The condition $1 \notin \overline{a(\mathbb{N}) \backslash\{1\}}$ implies that $u:=(\mathbf{1}-a)^{-1} \chi_{S(\mathbf{1}-a)}$ belongs to ℓ_{∞}. In particular, $M_{p}^{u} \in \mathcal{L}(\operatorname{ces}(p))$. Moreover, $w:=(\mathbf{1}-a) \in \ell_{\infty}$ satisfies (in $\mathcal{L}(\operatorname{ces}(p)))$ the identity $M_{p}^{w} M_{p}^{u}=M_{p}^{\chi_{S(w)}}$. It follows from (2.11) that $M_{p}^{w}(\operatorname{ces}(p)) \subseteq M_{p}^{\chi S(w)}(\operatorname{ces}(p))=X_{w, p}$ (see (2.12)). It is routine to verify the reverse inclusion and so actually $M_{p}^{w}(\operatorname{ces}(p))=X_{w, p}$. In particular, the range of $M_{p}^{1-a}=I-M_{p}^{a}$ is closed in $\operatorname{ces}(p)$. Since $\|a\|_{\infty} \leq 1$ implies that M_{p}^{a} is power bounded (cf. Proposition 2.8), it follows that $\lim _{n \rightarrow \infty} \frac{\left\|\left(M_{p}^{a}\right)^{n}\right\|_{o p}}{n}=0$. Hence, the criterion of Lin can be applied to conclude that M_{p}^{a} is uniformly mean ergodic.

An example of a multiplier operator which is mean ergodic but not uniformly ergodic is M_{p}^{a} with $a:=\left(1-\frac{1}{n}\right)_{n}$.

In (2.9), with $X:=\operatorname{ces}(p)$ and $T:=M_{p}^{a}\left(\right.$ for $\left.\|a\|_{\infty} \leq 1\right)$, note that

$$
\operatorname{Ker}\left(I-M_{p}^{a}\right)=\left\{x \in \operatorname{ces}(p): x_{n}=0 \text { for all } n \in \mathbb{N} \text { with } a_{n} \neq 1\right\}
$$

Concerning the linear dynamics of a continuous linear operator $T: X \longrightarrow$ X defined on a separable, locally convex Hausdorff space X, recall that T is hypercyclic if there exists $x \in X$ whose orbit $\left\{T^{n} x: n \in \mathbb{N}_{0}:=\{0\} \cup \mathbb{N}\right\}$ is dense in X. If, for some $x \in X$, the projective orbit $\left\{\lambda T^{n} x: \lambda \in \mathbb{C}, n \in \mathbb{N}_{0}\right\}$ is dense in X, then T is called supercyclic. Since this projective orbit coincides with $\cup_{n=0}^{\infty} T^{n}(\operatorname{span}\{x\})$, we see that supercyclic is the same as 1 -supercyclic as defined in [4]. Hypercyclicity always implies supercyclicity but not conversely.
Lemma 2.11. Let $a=\left(a_{n}\right)_{n} \in \mathbb{C}^{\mathbb{N}}$ and define the multiplier operator M^{a} : $\mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ by $M^{a}(x):=$ ax for $x \in \mathbb{C}^{\mathbb{N}}$. Then M^{a} is not supercyclic in the Fréchet space $\mathbb{C}^{\mathbb{N}}$.
Proof. Recall that the continuous dual space $\left(\mathbb{C}^{\mathbb{N}}\right)^{\prime}$ of $\mathbb{C}^{\mathbb{N}}$ is the space φ. Clearly M^{a} is continuous on $\mathbb{C}^{\mathbb{N}}$ and its dual operator $\left(M^{a}\right)^{\prime}: \varphi \longrightarrow \varphi$ is given by $\left(M^{a}\right)^{\prime}(y)=a y$ for $y \in \varphi$. Moreover, it follows from $\left(M^{a}\right)^{\prime}\left(e_{j}\right)=a_{j} e_{j}$ for $j \in \mathbb{N}$ that each canonical basis vector $e_{j} \in \varphi$ is an eigenvector of $\left(M^{a}\right)^{\prime}$. According to Theorem 2.1 of [4] the operator $M^{a} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$ cannot be supercyclic.

Given $1<p<\infty$ and $a \in \mathbb{C}^{\mathbb{N}}$ the multiplier operator $M^{a}: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ maps ℓ_{p} into ℓ_{p} if and only if $a \in \ell_{\infty},[3$, table 1, p.69]. Denote this restricted operator by $M_{\{p\}}^{a}: \ell_{p} \longrightarrow \ell_{p}$.

Proposition 2.12. Let $1<p<\infty$ and $a \in \ell_{\infty}$.
(i) The multiplier operator $M_{\{p\}}^{a} \in \mathcal{L}\left(\ell_{p}\right)$ is not supercyclic.
(ii) The multiplier operator $M_{p}^{a} \in \mathcal{L}(\operatorname{ces}(p))$ is not supercyclic.

Proof. (i) Since ℓ_{p} is dense in $\mathbb{C}^{\mathbb{N}}$ (as it contains φ) and the natural inclusion $\ell_{p} \hookrightarrow \mathbb{C}^{\mathbb{N}}$ is continuous, the supercyclicity of $M_{\{p\}}^{a} \in \mathcal{L}\left(\ell_{p}\right)$ would imply the
supercyclicity of $M^{a} \in \mathcal{L}\left(\mathbb{C}^{\mathbb{N}}\right)$, which is not the case (cf. Lemma 2.11). Hence, $M_{\{p\}}^{a}$ is not supercyclic.
(ii) Since $\operatorname{ces}(p)$ is dense in $\mathbb{C}^{\mathbb{N}}$ and the inclusion $\operatorname{ces}(p) \hookrightarrow \mathbb{C}^{\mathbb{N}}$ is continuous, the analogous argument to that of part (i) applies.

3. The cesìro operators

Consider a pair $1<p, q<\infty$. Denote by $C_{c(p), c(q)}\left(\operatorname{resp} . C_{c(p), q} ; C_{p, c(q)} ; C_{p, q}\right)$ the Cesàro operator C when it acts from $\operatorname{ces}(p)$ into $\operatorname{ces}(q)$ (resp. ces (p) into $\ell_{q} ; \ell_{p}$ into $\operatorname{ces}(q) ; \ell_{p}$ into $\left.\ell_{q}\right)$, whenever this operator exists. The closed graph theorem then ensures that this operator is continuous. We use the analogous notation for the natural inclusion maps $i_{c(p), c(q)} ; i_{c(p), q} ; i_{p, c(q)} ; i_{p, q}$ whenever they exist. The main aim of this section is to identify all pairs p, q for which these inclusion operators and Cesàro operators do exist and, for such pairs, to determine whether or not the operator is compact. For each $1<p<\infty$, the spectrum of $C_{p, p} \in \mathcal{L}\left(\ell_{p}\right)$ is well known, $[16$, Theorem 2], [20, Theorem 4], and coincides with the spectrum of $C_{c(p), c(p)} \in \mathcal{L}(\operatorname{ces}(p))$; see (1.6).

We begin with a preliminary result.
Lemma 3.1. Let $1<p<\infty$.
(i) The operator $C_{c(p), p}: \operatorname{ces}(p) \longrightarrow \ell_{p}$ exists and satisfies $\left\|C_{c(p), p}\right\|_{o p} \leq 1$.
(ii) The largest amongst the class of spaces ℓ_{r}, for $1 \leq r<\infty$, which satisfy $\ell_{r} \subseteq \operatorname{ces}(p)$ is the space ℓ_{p}.
Proof. (i) Follows from the discussion immediately prior to Proposition 1.1.
(ii) See Remark 2.2(iii) of [6].

Proposition 3.2. Let $1<p, q<\infty$ be an arbitrary pair.
(i) The inclusion map $i_{p, q}: \ell_{p} \longrightarrow \ell_{q}$ exists if and only if $p \leq q$, in which case $\left\|i_{p, q}\right\|_{o p}=1$.
(ii) The inclusion map $i_{p, c(q)}: \ell_{p} \longrightarrow \operatorname{ces}(q)$ exists if and only if $p \leq q$, in which case $\left\|i_{p, c(q)}\right\|_{o p} \leq q^{\prime}$.
(iii) The inclusion map $i_{c(p), c(q)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ exists if and only if $p \leq q$, in which case $\left\|i_{c(p), c(q)}\right\|_{o p} \leq 1$.
(iv) $\operatorname{ces}(p) \nsubseteq \ell_{q}$ for all choices of $1<p, q<\infty$.

Proof. (i) This is well known.
(ii) Lemma 3.1(ii) shows that $\ell_{p} \nsubseteq c e s(q)$ if $p>q$.

Let $p \leq q$. For $x \in \ell_{p}$ we have $\left\|i_{p, c(q)}(x)\right\|_{\operatorname{ces(q)}}=\|x\|_{\operatorname{ces}(q)}$ with

$$
\|x\|_{c e s(q)}:=\|C(|x|)\|_{q} \leq\left\|C_{q, q}\right\|_{o p}\|x\|_{q} \leq\left\|C_{q, q}\right\|_{o p}\|x\|_{p}
$$

where the last inequality follows via part (i). Since $\left\|C_{q, q}\right\|_{o p}=p^{\prime}$, $[13$, Theorem 326], the desired conclusion is clear.
(iii) If $p>q$, then $\operatorname{ces}(p) \nsubseteq \operatorname{ces}(q)$. Indeed, by Lemma 3.1(ii) there exists $y \in \ell_{p}$ with $y \notin \operatorname{ces}(q)$. By part (ii), $y \in \operatorname{ces}(p)$.

Let $p \leq q$. Fix $x \in \operatorname{ces}(p)$. By Lemma 3.1(i) we have $C(|x|) \in \ell_{p}$ and hence, by part (i), $C(|x|) \in \ell_{q}$. Accordingly,

$$
\|x\|_{\operatorname{ces}(q)}:=\|C(|x|)\|_{q} \leq\|C(|x|)\|_{p}=\|x\|_{\operatorname{ces}(p)}
$$

This shows that $i_{c(p), c(q)}$ exists and $\left\|i_{c(p), c(q)}\right\|_{o p} \leq 1$.
(iv) For arbitrary $1<p<\infty$ there exists $x \in \operatorname{ces}(p)$ with $x \notin \ell_{\infty},[6$, Remark 2.2(ii)]. Then also $x \notin \ell_{q}$ for every $1<q<\infty$.

If $1<p<q<\infty$, then the inclusion $\operatorname{ces}(p) \subseteq \operatorname{ces}(q)$ as guaranteed by Proposition 3.2 (iii) is actually proper. Indeed, by Lemma $3.1(\mathrm{ii})$ there exists $x \in \ell_{q}$ with $x \notin \operatorname{ces}(p)$. Then $y:=C(|x|) \in \operatorname{ces}(q)$; see Proposition 3.2(ii). But, $x \notin \operatorname{ces}(p)$ implies $|x| \notin \operatorname{ces}(p)$ and so $y \notin \operatorname{ces}(p)$; see Proposition 1.1. That $\operatorname{ces}(p) \varsubsetneqq \operatorname{ces}(q)$ also follows from the next result.
Proposition 3.3. Let $1<p, q<\infty$ with $p \neq q$. Then $\operatorname{ces}(p)$ is not Banach space isomorphic to ces(q).
Proof. According to (1.3) the closed (sectional) subspace

$$
Y:=\left\{x \in \operatorname{ces}(p): x_{k}=0 \text { unless } k=2^{j} \text { for some } j=0,1,2, \ldots\right\}
$$

is isomorphic to a weighted ℓ_{p}-space (as $\|x\|_{[p]}=\left(\sum_{j=0}^{\infty} 2^{j(1-p)}\left|x_{2 j}\right|^{p}\right)^{1 / p}$ for $x \in$ Y) and hence, also isomorphic to ℓ_{p}. Suppose that $\operatorname{ces}(p)$ is isomorphic to $\operatorname{ces}(q)$. Then ℓ_{p} is isomorphic to a closed subspace of $\operatorname{ces}(q)$. Since $\operatorname{ces}(q)$ is isomorphic to a closed subspace of the infinite ℓ_{q}-sum $\left(\sum_{n=1}^{\infty} \oplus E_{n}\right)_{q}$ with each $E_{n}, n \in \mathbb{N}$, a finite dimensional space, [21, Theorem 1], it follows that ℓ_{p} is isomorphic to a closed subspace of $\left(\sum_{n=1}^{\infty} \oplus E_{n}\right)_{q}$. But, $X:=\ell_{p}$ has a shrinking basis (it is reflexive) and so is isomorphic to $\left(\sum_{k=1}^{\infty} \oplus D_{k}\right)_{q}$ with each $D_{k}, k \in \mathbb{N}$, a finite dimensional space, [18, Theorem 2.d.1]. Since ℓ_{q} is clearly isomorphic to a closed (sectional) subspace of $\left(\sum_{k=1}^{\infty} \oplus D_{k}\right)_{q}$, it follows that ℓ_{q} is isomorphic to a closed subspace of ℓ_{p} with $p \neq q$, which is not the case, [18, p.54]. So, $\operatorname{ces}(p)$ is not isomorphic to $\operatorname{ces}(q)$.

Via Proposition 3.2 we now determine which inclusion maps are compact.
Proposition 3.4. Let $1<p \leq q<\infty$ be arbitrary.
(i) The inclusion $i_{p, q}: \ell_{p} \longrightarrow \ell_{q}$ is never compact.
(ii) The inclusion $i_{c(p), c(q)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is compact if and only if $p<q$.
(iii) The inclusion $i_{p, c(q)}: \ell_{p} \longrightarrow$ ces (q) is compact if and only if $p<q$.

Proof. (i) The image under $i_{p, q}$ of the unit basis vectors $\left\{e_{n}: n \in \mathbb{N}\right\} \subseteq \ell_{p}$ has no Cauchy subsequence (hence, no convergent subsequence) in ℓ_{q} because $\left\|e_{n}-e_{m}\right\|_{q}=2^{1 / q}$ for all $n \neq m$.
(ii) Since $i_{c(p), c(p)}$ is the identity operator on $\operatorname{ces}(p)$ it is surely not compact. So, assume that $p<q$. Then the constant element $a:=\mathbf{1}$ satisfies $\left(a_{n} n^{\frac{1}{q}-\frac{1}{p}}\right)_{n}=$ $\left(n^{\frac{1}{q}-\frac{1}{p}}\right)_{n} \in c_{0}$ and hence, by Proposition 2.2 the multiplier operator $M_{p, q}^{1} \in$ $\mathcal{L}(\operatorname{ces}(p), \operatorname{ces}(q))$ is compact. But, $M_{p, q}^{1}$ is precisely the inclusion operator $i_{c(p), c(q)}$.
(iii) Since $C_{p, p}$ is not compact (by (1.6) its spectrum is an uncountable set) and $C_{p, p}=C_{c(p), p} i_{p, c(p)}$, also $i_{p, c(p)}$ fails to be compact. So, assume that $p<q$. Then the factorization $i_{p, c(q)}=i_{c(p), c(q)} i_{p, c(p)}$ together with the compactness of $i_{c(p), c(q)}$ (see part (ii)) shows that $i_{p, c(q)}$ is compact.

Now that the continuity and compactness of the various inclusion operators are completely determined we can do the same for the Cesàro operators $C: X \longrightarrow Y$ where $X, Y \in\left\{\ell_{p}, \operatorname{ces}(q): p, q \in(1, \infty)\right\}$. We begin with continuity.

Proposition 3.5. Let $1<p, q<\infty$ be an arbitrary pair.
(i) $C_{p, q}: \ell_{p} \longrightarrow \ell_{q}$ exists if and only if $p \leq q$, in which case $\left\|C_{p, q}\right\|_{o p} \leq p^{\prime}$.
(ii) $C_{p, c(q)}: \ell_{p} \longrightarrow \operatorname{ces}(q)$ exists if and only if $p \leq q$, in which case $\left\|C_{p, c(q)}\right\|_{o p} \leq$ $p^{\prime} q^{\prime}$.
(iii) $C_{c(p), c(q)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ exists if and only if $p \leq q$, in which case $\left\|C_{c(p), c(q)}\right\|_{o p} \leq q^{\prime}$.
(iv) $C_{c(p), q}: \operatorname{ces}(p) \longrightarrow \ell_{q}$ exists if and only if $p \leq q$, in which case $\left\|C_{c(p), q}\right\|_{o p} \leq$ 1.

Proof. (ii) Let $p>q$. According to Lemma 3.1(ii) there exists $x \in \ell_{p} \backslash \operatorname{ces}(q)$, in which case also $|x| \in \ell_{p} \backslash \operatorname{ces}(q)$. If $C(|x|) \in \operatorname{ces}(q)$, then Proposition 1.1 implies that also $|x| \in \operatorname{ces}(q)$; contradiction. So, $|x| \in \ell_{p}$ but $C(|x|) \notin \operatorname{ces}(q)$, i.e., " $C_{p, c(q)}$ " does not exist.

Suppose then that $p \leq q$. Then $C_{p, p} \in \mathcal{L}\left(\ell_{p}\right)$ exists with $\left\|C_{p, p}\right\|_{o p}=p^{\prime}$ and $i_{p, c(q)}: \ell_{p} \longrightarrow \operatorname{ces}(q)$ exists with $\left\|i_{p, c(q)}\right\|_{o p} \leq q^{\prime}$ (cf. Proposition 3.2(ii)). Hence, the composition $C_{p, c(q)}=i_{p, c(q)} C_{p, p}$ exists and $\left\|C_{p, c(q)}\right\|_{o p} \leq p^{\prime} q^{\prime}$.
(i) Let $p>q$. If $C_{p, q}$ exists, then by Proposition 3.2 (ii) $C_{p, c(q)}=i_{q, c(q)} C_{p, q}$ also exists. This contradicts part (ii) which was just proved.

So, assume that $p \leq q$. Then $C_{p, p} \in \mathcal{L}\left(\ell_{p}\right)$ exists with $\left\|C_{p, p}\right\|_{o p}=p^{\prime}$ and $i_{p, q}$ exists with $\left\|i_{p, q}\right\|_{o p}=1$ (cf. Proposition 3.2(i)). Hence, $C_{p, q}=i_{p, q} C_{p, p}$ exists and $\left\|C_{p, q}\right\|_{o p} \leq p^{\prime}$.
(iii) Let $p>q$. If $C_{c(p), c(q)}$ exists, then by Proposition 3.2(i) also $C_{p, c(q)}=$ $C_{c(p), c(q)} i_{p, c(p)}$ exists. This contradicts part (ii) above.

So, assume that $p \leq q$. Fix $x \in \operatorname{ces}(p)$. Then also $|x| \in \operatorname{ces}(p)$ and so $C(|x|) \in$ $\ell_{p} \subseteq \ell_{q}$; see Lemma 3.1(i) and Proposition 3.2(i). Moreover, $|C(x)| \in \ell_{q}$ as $|C(x)| \leq C(|x|)$. Hence,

$$
\begin{aligned}
& \|C(x)\|_{\operatorname{ces}(q)}:=\|C(|C(x)|)\|_{q} \leq\left\|C_{q, q}\right\|_{o p}\||C(x)|\|_{q} \leq q^{\prime}\|C(|x|)\|_{q} \\
& \quad \leq q^{\prime}\|C(|x|)\|_{p}=q^{\prime}\|x\|_{\operatorname{ces}(p)} .
\end{aligned}
$$

This shows that $C_{c(p), c(q)}$ exists and $\left\|C_{c(p), c(q)}\right\|_{o p} \leq q^{\prime}$.
(iv) Let $p>q$. If $C_{c(p), q}$ exists, then also $C_{c(p), c(q)}=i_{q, c(q)} C_{c(p), q}$ exists (cf. Proposition 3.2(ii)). This contradicts part (iii).

Assume now that $p \leq q$. Since $C_{c(p), p}$ exists with $\left\|C_{c(p), p}\right\|_{o p} \leq 1$ (cf. Lemma $3.1(\mathrm{i}))$ and $i_{p, q}$ exists with $\left\|i_{p, q}\right\|_{o p}=1$ (cf. Proposition 3.2(i)), it follows that the composition $C_{c(p), q}=i_{p, q} C_{c(p), p}$ exists and $\left\|C_{c(p), q}\right\|_{o p} \leq 1$.

Concerning the proof of part (iii) of Proposition 3.5 when $p \leq q$, it is also clear from $C_{c(p), c(q)}=i_{c(p), c(q)} C_{c(p), c(p)}$ that $C_{c(p), c(q)}$ exists. However, since $\left\|i_{c(p), c(q)}\right\|_{o p} \leq 1$ (cf. Proposition $3.2(\mathrm{iii})$) and $\left\|C_{c(p), c(p)}\right\|_{o p}=p^{\prime}$, this approach only yields $\left\|C_{c(p), c(q)}\right\|_{o p} \leq p^{\prime}$ whereas the given proof of (iii) yields $\left\|C_{c(p), c(q)}\right\|_{o p} \leq$ q^{\prime} which is a better estimate when $p<q$.

We now have all the facts needed to prove the main result of this section.
Proposition 3.6. Let $1<p \leq q<\infty$ be arbitrary.
(i) The Cesàro operator $C_{p, q}: \ell_{p} \longrightarrow \ell_{q}$ is compact if and only if $p<q$.
(ii) The Cesàro operator $C_{p, c(q)}: \ell_{p} \longrightarrow c e s(q)$ is compact if and only if $p<q$.
(iii) The Cesàro operator $C_{c(p), c(q)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is compact if and only if $p<q$.
(iv) The Cesàro operator $C_{c(p), q}: \operatorname{ces}(p) \longrightarrow \ell_{q}$ is compact if and only if $p<q$.

Proof. (i) Since $\sigma\left(C_{p, p}\right)$ is an uncountable set (see the comments prior to Lemma 3.1), it is clear that $C_{p, p}$ is not compact. So, assume that $p<q$. Since $C_{p, q}=$ $C_{c(q), q} i_{p, c(q)}$ with $C_{c(q), q}: \operatorname{ces}(q) \longrightarrow \ell_{q}$ continuous (cf. Lemma 3.1(i)) and $i_{p, c(q)}$: $\ell_{p} \longrightarrow \operatorname{ces}(q)$ compact (by Proposition 3.4(iii)), it follows that $C_{p, q}$ is compact.
(ii) For $p=q$ observe that $\left(C_{c(p), c(p)}\right)^{2}=C_{p, c(p)} C_{c(p), p}$. By (1.6) and the spectral mapping theorem, [10, Ch. VII, Theorem 3.11], we see that

$$
\sigma\left(\left(C_{c(p), c(p)}\right)^{2}\right)=\left\{\lambda^{2}:\left|\lambda-\frac{p^{\prime}}{2}\right| \leq \frac{p^{\prime}}{2}\right\}
$$

is an uncountable set and so $\left(C_{c(p), c(p)}\right)^{2}$ is not compact. Hence, also $C_{p, c(p)}$ is not compact.

Assume then that $p<q$. Since the inclusion $i_{c(p), c(q)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is compact (cf. Proposition 3.4(ii)), it is clear from the factorization $C_{p, c(q)}=$ $i_{c(p), c(q)} C_{p, c(p)}$ that also $C_{p, c(q)}$ is compact.
(iii) For $p=q$ it follows from (1.6) that $\sigma\left(C_{c(p), c(p)}\right)$ is an uncountable set and so $C_{c(p), c(p)}$ is not compact. Suppose now that $p<q$. Since the inclusion $i_{c(p), c(q)}: \operatorname{ces}(p) \longrightarrow \operatorname{ces}(q)$ is compact (by Proposition 3.4(ii)), the factorization $C_{c(p), c(q)}=i_{c(p), c(q)} C_{c(p), c(p)}$ shows that $C_{c(p), c(q)}$ is compact.
(iv) For $p=q$ we have $C_{c(p), c(p)}=i_{p, c(p)} C_{c(p), p}$. By part (iii) the operator $C_{c(p), c(p)}$ is not compact and hence, also $C_{c(p), p}$ is not compact.

Assume now that $p<q$. Select any r satisfying $p<r<q$, in which case we have $C_{c(p), q}=C_{c(r), q} i_{c(p), c(r)}$ with $C_{c(r), q}$ continuous (by Proposition 3.5(iv)) and $i_{c(p), c(r)}$ compact (via Proposition 3.4(ii)). Hence, also $C_{c(p), q}$ is compact.

Our final result concerns the mean ergodicity and linear dynamics of Cesàro operators.
Proposition 3.7. Let $1<p<\infty$.
(i) The Cesàro operator $C_{p, p}: \ell_{p} \longrightarrow \ell_{p}$ is not power bounded, not mean ergodic and not supercyclic.
(ii) The Cesàro operator $C_{c(p), c(p)}: \operatorname{ces}(p) \longrightarrow c e s(p)$ is not power bounded, not mean ergodic and not supercyclic.

Proof. (i) That $C_{p, p}$ is neither power bounded nor mean ergodic is Proposition 4.2 of [1]. It is known that the Cesàro operator $C: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ is not supercyclic, [2, Proposition 4.3]. Since ℓ_{p} is dense in $\mathbb{C}^{\mathbb{N}}$ and the natural inclusion $\ell_{p} \subseteq \mathbb{C}^{\mathbb{N}}$ is continuous, the supercyclicity of $C_{p, p}$ in ℓ_{p} would imply that $C: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ is supercyclic. Hence, $C_{p, p} \in \mathcal{L}\left(\ell_{p}\right)$ is not supercyclic.
(ii) Suppose that $C_{c(p), c(p)}$ is mean ergodic. According to (2.10) we have $\lim _{n \rightarrow \infty} \frac{\left(C_{c(p), c(p)}\right)^{n}}{n}=0$ for τ_{s} in $\mathcal{L}(\operatorname{ces}(p))$ and hence, $\sigma\left(C_{c(p), c(p)}\right) \subseteq \overline{\mathbb{D}},[10$, Ch. VIII, Lemma 8.1]. This contradicts (1.6). Hence, $C_{c(p), c(p)}$ cannot be mean ergodic. Since power bounded operators in reflexive Banach spaces are always mean ergodic, [19], it follows that $C_{c(p), c(p)}$ is not power bounded. Arguing as in part (i), since $\operatorname{ces}(p)$ is dense in $\mathbb{C}^{\mathbb{N}}$ and the inclusion $\operatorname{ces}(p) \subseteq \mathbb{C}^{\mathbb{N}}$ is continuous, it follows that $C_{c(p), c(p)}$ is not supercyclic.

Acknowledgements. The research of the first two authors was partially supported by the project MTM2016-76647-P (Spain). The second author thanks
the Mathematics Department of the Katholische Universität Eichstätt-Ingolstadt (Germany) for its support and hospitality during his research visit in the period September 2016 - July 2017.

References

[1] A.A. Albanese, J. Bonet, W.J. Ricker, Convergence of arithmetic means of operators in Fréchet spaces, J. Math. Anal. Appl. 401 (2013), 160-173.
[2] A.A. Albanese, J. Bonet, W.J. Ricker, The Cesàro operator in the Fréchet spaces ℓ^{p+} and L^{p-}, Glasg. Math. J. 59 (2017), 273-287.
[3] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 120 (1996), no. 576 , viii +130 pp.
[4] P.S. Bourdon, N.S. Feldmann, J.H. Shapiro, Some properties of N-supercyclic operators, Studia Math. 165 (2004), 135-157.
[5] G.P. Curbera, W.J. Ricker, A feature of averaging, Integral Equations Operator Theory, 76 (2013), 447-449.
[6] G.P. Curbera, W.J. Ricker, Solid extensions of the Cesàro operator on ℓ^{p} and c_{0}, Integral Equations Operator Theory, 80 (2014), 61-77.
[7] G.P. Curbera, W.J. Ricker, The Cesàro operator and unconditional Taylor series in Hardy spaces, Integral Equations Operator Theory, 83 (2015), 179-195.
[8] O. Delgado, L^{1}-spaces of vector measures defined on δ-rings, Arch. Math. 84 (2005), 432443.
[9] O. Delgado, Optimal domains for kernel operators on $[0, \infty) \times[0, \infty)$, Studia Math. 174 (2006), 131-145.
[10] N. Dunford, J.T. Schwartz, Linear Operators I: General Theory, 2nd Printing, Wiley Interscience Publ., New York, 1964.
[11] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Mathematics, 1679, Springer Verlag, Berlin Heidelberg, 1998.
[12] G.H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314-317.
[13] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.
[14] K. Knopp, Infinite Sequences and Series, Translated Ed., Dover Publ., New York, 1956.
[15] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[16] G. Leibowitz, Spectra of discrete Cesàro operators, Tamkang J. Math. 3 (1972), 123-132.
[17] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
[18] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer Verlag, Berlin Heidelberg, 1996.
[19] E.R. Lorch, Means of iterated transformations in reflexive vector spaces, Bull. Amer. Math. Soc. 45 (1939), 945-947.
[20] J.B. Reade, On the spectrum of the Cesàro operator, Bull. London Math. Soc. 17 (1985), 263-267.
[21] Satit Saejung, Another look at Cesàro sequence spaces, J. Math. Anal. Appl. 366 (2010), 530-537.

Angela A. Albanese, Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento- C.P.193, I- 73100 Lecce, Italy

E-mail address: angela.albanese@unisalento.it
José Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, E-46071 Valencia, Spain

E-mail address: jbonet@mat.upv.es
Werner J. Ricker, Math.-Geogr. Fakultät, Katholische Universität EichstättIngolstadt, D-85072 Eichstätt, Germany

E-mail address: werner.ricker@ku.de

[^0]: Key words and phrases. Banach sequence spaces $\operatorname{ces}(p)$, multiplier, compact operator, Cesàro operator, mean ergodic operator.

 Mathematics Subject Classification 2010: Primary 46B45, 47B37; Secondary 46B42, 46G10, 47A16, 47B10.

