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GLOBAL PSEUDODIFFERENTIAL OPERATORS OF INFINITE ORDER IN

CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS

VICENTE ASENSIO AND DAVID JORNET

Abstract. We develop a theory of pseudodifferential operators of infinite order for the global classes Sω
of ultradifferentiable functions in the sense of Björck, following the previous ideas given by Prangoski for
ultradifferentiable classes in the sense of Komatsu. We study the composition and the transpose of such
operators with symbolic calculus and provide several examples.

1. Introduction

The local theory of pseudodifferential operators grew out of the study of singular integral operators, and
developed after 1965 with the systematic studies of Kohn-Nirenberg [14], Hörmander [13], and others.
Since then, several authors have studied pseudodifferential operators of finite or infinite order in Gevrey
classes in the local sense; we mention, for instance, [12, 21]. We refer to Rodino [19] for an excellent
introduction to this topic, and the references therein.

Gevrey classes are spaces of (non-quasianalytic) ultradifferentiable functions in between real analytic
and C∞ functions. The study of several problems in general classes of ultradifferentiable functions has
received much attention in the last 60 years. Here, we will work with ultradifferentiable functions as
defined by Braun, Meise and Taylor [5], which define the classes in terms of the growth of the derivatives
of the functions, or in terms of the growth of their Fourier transforms (see, for example, Komatsu [15]
and Björck [2], or [5], for two different points of view to define spaces of ultradifferentiable functions and
ultradistributions; and [4] for a comparison between the classes defined in [5] and [15]).

In [10], a full theory of pseudodifferential operators in the local sense is developed for ultradifferentiable
classes of Beurling type as in [5], and it is proved that the corresponding operators are ω-pseudo-local,
and the product of two operators is given in terms of a suitable symbolic calculus. In [9, 11] the same
authors construct a parametrix for such operators and study the action of the wave front set on them
(see also [1] for a different point of view). On the other hand, very recently, Prangoski [18] studies
pseudodifferential operators of global type and infinite order for ultradifferentiable classes of Beurling and
Roumieu type in the sense of Komatsu, and later, in [8], a parametrix is constructed for such operators.
See [18, 17] and the references therein for more examples of pseudodifferential operators in global classes
(e.g., in Gelfand-Shilov classes).

Our aim is to study pseudodifferential operators of global type and infinite order in classes of ultra-
differentiable functions of Beurling type as introduced in [5]. Hence, the right setting is the class Sω as
introduced by Björck [2]. We follow the lines of Prangoski [18] and Shubin [20], but from the point of
view of [10], in such a way that our proofs simplify the ones of [18]. Moreover, we clarify the role of some
kind of entire functions [6, 16] that become crucial throughout the text.

The paper is organized as follows. First, in Section 2, we introduce our setting, we give some useful
results about the class Sω and we recall from [6, 16] the existence of some kind of ω-ultradifferential
operators very useful in the next sections. In Section 3 we introduce our symbol (amplitude) classes and
define the corresponding pseudodifferential operators. We give in Proposition 3.11 a characterization in
terms of the kernel of an ω-regularizing (pseudodifferential) operator, which are very important in the
construction of parametrices of hypoelliptic operators. We see in Example 3.13 that many operators
are pseudodifferential operators according to our definition. In particular, we show that our classes of
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2 ASENSIO AND JORNET

symbols are different from the ones of [18]. In Section 4 we develop the symbolic calculus and we state
some previous results needed to compose two pseudodifferential operators. In Section 5, we study the
composition of two of our operators. To this aim, we analyse carefully the behaviour of the kernel of a
pseudodifferential operator outside the diagonal in Theorem 5.2. This result is an improvement of [17,
Theorem 6.3.3] and [18, Proposition 5]. The results that we obtain let the study of parametrices for
hypoelliptic differential operators in this setting.

2. Preliminaries

We begin with some notation on multi-indices. Throughout the text we will denote by α = (α1, . . . , αd) ∈
Nd0 a multi-index of dimension d. We denote the length of α by

|α| = α1 + . . .+ αd.

For two multi-indices α and β we write β ≤ α for βj ≤ αj , when j = 1, . . . , d. Moreover, α! = α1! · · ·αd!
and if β ≤ α, then (

α

β

)
:=

(
α1

β1

)
· · ·
(
αd
βd

)
=

α!

β!(α− β)!
.

We also write

∂α =
( ∂

∂x1

)α1 · · ·
( ∂

∂xd

)αd ,
and using the notation Dxj = −i ∂

∂xj
, j = 1, . . . , d, where i is the imaginary unit, we set

Dα = Dα1
x1 · · ·D

αd
xd
.

For x = (x1, . . . , xd) ∈ Rd, let
xα = xα1

1 · · ·x
αd
d .

We denote 〈x〉 = (1 + |x|2)
1
2 for every x ∈ Rd, where |x| is the Euclidean norm of x. Our setting requires

weight functions as defined by Braun, Meise and Taylor [5].

Definition 2.1. A non-quasianalytic weight function ω : [0,+∞[→ [0,+∞[ is a continuous and increas-
ing function which satisfies:

(α) ∃ L ≥ 1 s.t. ω(2t) ≤ L(ω(t) + 1), ∀t ≥ 0,

(β)

∫ +∞

1

ω(t)

t2
dt < +∞,

(γ) log(t) = o(ω(t)) as t→∞,

(δ) ϕ : t 7→ ω(et) is convex.

Throughout the text, if necessary, we will denote ϕ by ϕω in some cases.

Example 2.2. The following functions are, after a change in some interval [0,M ], examples of weight
functions:

(i) ω(t) = td for 0 < d < 1.
(ii) ω(t) = (log(1 + t))s, s > 1.
(iii) ω(t) = td(log(e+ t))s, 0 < d < 1, s 6= 0.

By definition, we extend the weight function in a radial way to Cd, i.e.

ω(ξ) = ω(|ξ|), ξ = (ξ1, . . . , ξd) ∈ Cd.
We observe that there exists L′ > 0 depending on the constant L > 0 of Definition 2.1 (α) and the
dimension d such that for any x = (x1, . . . , xd) ∈ Cd:

ω(x) ≤ L′ω(|x|∞) + L′ ≤ L′ω(x) + L′, (2.1)

where |x|∞ := max(|x1|, . . . , |xd|). Moreover, as in [5, Lemma 1.2], if x, y ∈ Cd, then

ω(x+ y) ≤ L
(
ω(x) + ω(y) + 1

)
. (2.2)
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We will assume without loss of generality that ω|[0,1] ≡ 0, which gives some useful properties (see [5]).
For instance, we have

ω(〈x〉) = ω
(√

1 + |x|2
)
≤ ω(1 + |x|) ≤ L(ω(x) + 1). (2.3)

We consider now property (δ) of Definition 2.1 and define:

Definition 2.3. The Young conjugate ϕ∗ : [0,∞[→ [0,∞[ of ϕ is given by

ϕ∗(t) := sup
s≥0
{st− ϕ(s)}.

Since ω|[0,1] ≡ 0, we have ϕ∗(0) = 0. Moreover, ϕ∗ is convex, the function ϕ∗(t)/t is increasing and
ϕ∗∗ = ϕ.

It is not difficult to prove the next two results; see, for instance, [10, Lemma 1.4, Remark 1.7].

Lemma 2.4. For each n, k ∈ N and t ≥ 1, we have

tk ≤ enϕ
∗( k
n
)enω(t); (2.4)

inf
j∈N0

t−jekϕ
∗( j
k
) ≤ e−kω(t)+log(t). (2.5)

Proposition 2.5. If a weight function ω satisfies ω(t) = o(ta) as t→ +∞ for some constant 0 < a ≤ 1,
for every B > 0 and λ > 0, there exists a constant C > 0 such that

Bnn! ≤ Ceaλϕ∗(
n
λ
), n ∈ N0.

It is an exercise to see that:

Lemma 2.6. For every (x, y) ∈ R2d we have

〈x− y〉 ≤
√

2〈(x, y)〉.

From the convexity of ϕ∗ and the fact that ϕ∗(0) = 0 we have (see, for instance, [10, Lemma 1.3])

Lemma 2.7. (1) Let L > 0 be such that ω(et) ≤ L(ω(t)+1) (this is possible from Definition 2.1(α)).
We have

λLnϕ∗
( y

λLn
)

+ ny ≤ λϕ∗
(y
λ

)
+ λ

n∑
j=1

Lj , (2.6)

for every y ≥ 0, λ > 0 and n ∈ N.
(2) For all s, t, λ > 0, we have

2λϕ∗
(s+ t

2λ

)
≤ λϕ∗

( s
λ

)
+ λϕ∗

( t
λ

)
≤ λϕ∗

(s+ t

λ

)
.

The following lemma is taken from [10, Lemma 1.5 (2)]:

Lemma 2.8. If k
Nϕ
∗(N

k

)
≤ log(t) ≤ k

N+1ϕ
∗(N+1

k

)
, then

t−Ne2kϕ
∗
(
N
2k

)
≤ e−kω(t)+log(t).

It is not difficult to see the following

Lemma 2.9. Let 0 < a ≤ 1 be a constant and let ω and σ be weight functions. Then:

(1) If ω
(
t
1
a

)
= o
(
σ(t)

)
as t→∞, for all λ, µ > 0 there exists C := Cλ,µ > 0 such that

λϕ∗σ
( j
λ

)
≤ C + µaϕ∗ω

( j
µ

)
, j ∈ N0.

(2) If ω
(
t
1
a

)
= O

(
σ(t)

)
as t→∞, there is C > 0 such that for each λ > 0,

λϕ∗σ
( j
λ

)
≤ λ+ aλCϕ∗ω

( j

λC

)
, j ∈ N0.
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We consider also the Fourier transform of u ∈ L1(Rd) denoted by

F(u)(ξ) = û(ξ) :=

∫
Rd
u(x)e−i〈x,ξ〉dx, ξ ∈ Rd,

with standard extensions to more general spaces of functions and distributions. We will work in the
global spaces of ultradifferentiable functions and ultradistributions as defined by Björck [2]:

Definition 2.10. For a weight ω as in Definition 2.1 we define Sω(Rd) as the set of all u ∈ L1(Rd) such
that u and its Fourier transform û belong to C∞(Rd) and

(i) for each λ > 0 and α ∈ Nd0, sup
x∈Rd

eλω(x)|Dαu(x)| < +∞,

(ii) for each λ > 0 and α ∈ Nd0, sup
ξ∈Rd

eλω(ξ)|Dαû(ξ)| < +∞.

As usual, the corresponding dual space is denoted by S ′ω(Rd) and is the set of all the linear and continuous
functionals u : Sω(Rd)→ C. We say that an element of S ′ω(Rd) is an ω-temperate ultradistribution.

Now, we give a useful characterization of Sω(Rd). See [3] for an exhaustive characterization of the
space Sω(Rd) in terms of seminorms.

Lemma 2.11. If f ∈ S(Rd), then f ∈ Sω(Rd) if and only if for every λ, µ > 0 there is Dλ,µ > 0 such

that for all α ∈ Nd0 and x ∈ Rd, we have

|Dαf(x)| ≤ Dλ,µe
λϕ∗
(
|α|
λ

)
e−µω(x). (2.7)

Proof. If f ∈ Sω(Rd), by [3, Theorem 4.8] we have that for all λ, µ > 0 there exists Cλ,µ > 0 such that

sup
x∈Rd

|xβDαf(x)| ≤ Cλ,µeλϕ
∗
(
|α|
λ

)
e
µϕ∗
(
|β|
µ

)
, α, β ∈ Nd0. (2.8)

We fix β = (β1, . . . , βd) ∈ Nd0 and x = (x1, . . . , xd) ∈ Rd. Assume w.l.o.g. that |x1| = |x|∞ ≥ 1. We have

|xβDαf(x)| = |x1|β1 . . . |xd|βd |Dαf(x)| ≤ |x1|β1+...+βd |Dαf(x)| = |xβ̃Dαf(x)|,

where β̃ =
(
β1 + . . . + βd, 0, . . . , 0

)
∈ Nd0 and, obviously, |β̃| = |β|. We apply our hypothesis (2.8) to α

and β̃ to obtain

|x1|β1+...+βd |Dαf(x)| = |xβ̃Dαf(x)| ≤ Cλ,µeλϕ
∗
(
|α|
λ

)
e
(µL′+1)ϕ∗

(
|β|

µL′+1

)
(2.9)

for a positive constant Cλ,µ where L′ > 0 is the constant of (2.1). Now, we put j := β1+. . .+βd = |β| ∈ N0

in formula (2.9) to obtain, by (2.5) and (2.1),

|Dαf(x)| ≤ Cλ,µe
λϕ∗
(
|α|
λ

)(
inf
j∈N0

|x1|−je
(µL′+1)ϕ∗

(
j

µL′+1

))
≤ Cλ,µe

λϕ∗
(
|α|
λ

)
e−(µL

′+1)ω(|x1|)+log |x1|

≤ C ′λ,µe
λϕ∗
(
|α|
λ

)
e−µL

′ω(|x1|) ≤ eµL′C ′λ,µe
λϕ∗
(
|α|
λ

)
e−µω(x), (2.10)

for some new constant C ′λ,µ > 0.

Conversely, by (2.4), for |x| ≥ 1 and any µ > 0, we have |xβ| ≤ |x||β| ≤ e
µϕ∗
(
|β|
µ

)
eµω(x). Thus, by our

hypothesis (2.7), for each α, β ∈ Nd0 and x ∈ Rd, we get

|xβDαf(x)| ≤ |x||β||Dαf(x)| ≤ Dλ,µe
λϕ∗
(
|α|
λ

)
e
µϕ∗
(
|β|
µ

)
,

which concludes the proof. �

Remark 2.12. For λ > 0, we denote for f ∈ Sω(Rd),

|f |λ := sup
α∈Nd0

sup
x∈Rd

|Dαf(x)|e−λϕ
∗
(
|α|
λ

)
eλω(x) ,
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which is a seminorm. Observe that for any x ∈ Rd, λ > 0 and α ∈ Nd0, we have

|Dαf(x)| = |Dαf(x)|e−λϕ
∗
(
|α|
λ

)
eλω(x)eλϕ

∗
(
|α|
λ

)
e−λω(x)

≤ |f |λeλϕ
∗
(
|α|
λ

)
e−λω(x).

By Lemma 2.11,
{
| · |λ

}
λ>0

is a fundamental system of seminorms in the class Sω(Rd).

We write P (ξ, r) for the polydisc of center ξ = (ξ1, . . . , ξd) ∈ Cd and polyradius r = (r1, . . . , rd), where
each rj is positive, j = 1, . . . , d. That is,

P (ξ, r) = D(ξ1, r1)× . . .×D(ξd, rd) =
{
ζ = (ζ1, . . . , ζd) ∈ Cd : |ζj − ξj | < rj , 1 ≤ j ≤ d

}
.

And, also,

∂P (ξ, r) := {z ∈ Cd : |zj − ξj | = rj , j = 1, . . . , d}.
Let us recall the following results on several complex variables.

Theorem 2.13 (Cauchy’s integral formula for the derivatives). Let Ω ⊂ Cd be an open set, a ∈ Ω and

r = (r1, . . . , rd) ∈ Rd, rj > 0 for every j = 1, . . . , d so that P (a, r) ⊂ Ω. Let f : Ω→ C be continuous and

partially holomorphic. Then for all α ∈ Nd0 and all z ∈ P (a, r):

Dαf(z) =
α!

(2πi)d

∫
∂P (a,r)

f(ξ)

(ξ − z)α+(1,...,1)
dξ.

Proposition 2.14 (Cauchy’s inequalities). Under the assumptions of Theorem 2.13, for every multi-
index β ∈ Nd0, the following formula holds:∣∣Dβf(a)

∣∣ ≤ sup
ζ∈∂P (a,r)

{|f(ζ)|}β!

rβ
.

Now, we need to introduce the following space of functions (see [5], [10]). Let ω be a weight function.
For an open set Ω ⊂ Rd, we define the space of ultradifferentiable functions of Beurling type in Ω as

E(ω)(Ω) :=
{
f ∈ C∞(Ω) : |f |K,λ <∞ for every λ > 0, and every K ⊂ Ω compact

}
,

where

|f |K,λ := sup
α∈Nd0

sup
x∈K
|Dαf(x)|e−λϕ

∗
(
|α|
λ

)
.

We endow such space with the Fréchet topology given by the sequence of seminorms |f |Kn,n, where
(Kn)n is any compact exhaustion of Ω and n ∈ N. The strong dual of E(ω)(Ω) is the space of compactly
supported ultradistributions of Beurling type and is denoted by E ′(ω)(Ω).

The space of ultradifferentiable functions of Beurling type with compact support in Ω is denoted by
D(ω)(Ω), and it is the space of those functions f ∈ E(ω)(Ω) such that its support, denoted by supp f ,
is compact in Ω. Its corresponding dual space is denoted by D′(ω)(Ω) and it is called the space of

ultradistributions of Beurling type in Ω.
We also need the notion of (ω)-ultradifferential operator with constant coefficients, which plays an

important role in structure theorems for ultradistributions [6, 15]. Let G be an entire function in Cd with
log |G| = O(ω). For ϕ ∈ E(ω)

(
Rd
)
, the map TG : E(ω)

(
Rd
)
→ C given by

TG(ϕ) :=
∑
α∈Nd0

DαG(0)

α!
Dαϕ(0)

defines an ultradistribution TG ∈ E ′(ω)
(
Rd
)

with support equal to {0}. The convolution operator G(D) :

D′(ω)
(
Rd
)
→ D′(ω)

(
Rd
)

defined by G(D)(µ) = TG ∗µ is said to be an ultradifferential operator of (ω)-class.

The following result is due to Langenbruch [16, Corollary 1.4]. It shows the existence of entire functions
with prescribed exponential growth (cf. [6, Theorem 7]).
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Theorem 2.15. Let ω : [0,∞[→ [0,∞[ be a continuous and increasing function satisfying the conditions
(α),(γ) and (δ) of Definition 2.1. Then there exist an even function f ∈ H(C) and C1, C2, C3 > 0 such
that

i) log |f(z)| ≤ ω(z) + C1, z ∈ C;
ii) log |f(z)| ≥ C2ω(z), for z ∈ U :=

{
z ∈ C : |Im(z)| ≤ C3(|Re(z)|+ 1)

}
.

From this result we deduce the analogous statement for several variables.

Theorem 2.16. Let ω satisfy the hypotheses of Theorem 2.15. Then there are a function G ∈ H
(
Cd
)

and some constants C1, C2, C3, C4 > 0 such that

i’) log |G(z)| ≤ ω(z) + C1, z ∈ Cd;
ii’) log |G(z)| ≥ C2ω(z)− C4, for z ∈ Ũ :=

{
z ∈ Cd : |Im(z)| ≤ C3(|Re(z)|+ 1)

}
.

Proof. By Theorem 2.15, there exist an even function f ∈ H(C) and strictly positive constants C1, C̃2, C̃3

such that

log |f(z)| ≤ ω(z) + C1, z ∈ C; (2.11)

log |f(z)| ≥ C̃2ω(z), for z ∈ U :=
{
z ∈ C : |Im(z)| ≤ C̃3(|Re(z)|+ 1)

}
. (2.12)

Since f is even,

f(z) =
∞∑
n=0

anz
2n

for some {an}∞n=0 ⊆ C. We observe that log |f(0)| ≥ 0 by formula (2.12), and then, a0 is not zero. Now,

for a fixed z = (z1, . . . , zd) ∈ Cd \ {0}, we set w =
√
z21 + . . .+ z2d (here we consider a square root for

which w is well defined) and define

G(z) =
∞∑
n=0

an(z21 + . . .+ z2d)n = f(w).

G is well defined and entire, according to the properties of f . Observe that, since w =
√
z21 + . . .+ z2d ∈ C,

we have, by (2.11),

log |G(z)| = log |f(w)| ≤ ω(w) + C1.

This proves condition i′), since

ω(w) = ω(|w|) ≤ ω
(√
|z21 |+ . . .+ |z2d|

)
= ω(z).

On the other hand, to prove ii′), first we observe that for a small enough 0 < ε < 1, |Im(z)| < ε|Re(z)|
implies that w ∈ U . Therefore, by (2.12), we deduce

log |G(z)| = log |f(w)| ≥ C̃2ω
(∣∣√z21 + . . .+ z2d

∣∣) = C̃2ω
(√∣∣z21 + . . .+ z2d

∣∣), (2.13)

if |Im(z)| < ε|Re(z)|. Now, from Definition 2.1(α) and by the continuity of G, it is easy to see that there
are constants C2, C3, C4 > 0 such that

log |G(z)| ≥ C2ω(z)− C4, (2.14)

for |Im(z)| ≤ C3

(
|Re(z)|+ 1

)
. �

Proposition 2.17. Let G ∈ H
(
Cd
)

be the function obtained in Theorem 2.16. Then the function

q(ξ) :=
1

G(ξ)
, ξ ∈ Rd, satisfies ∣∣Dβq(ξ)

∣∣ ≤ Cβ!R−|β|e−Kω(ξ), (2.15)

for some constants C,K,R > 0 and every multi-index β ∈ Nd0 and every ξ ∈ Rd.
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Proof. First, we observe that if we take the polyradius r = (R, . . . , R) ∈ Rd+, with R ≤ 1√
d
C3 then the

polydisc P (ξ, r) satisfies

P (ξ, r) ⊆ Ũ :=
{
z ∈ Cd : |Im(z)| ≤ C3(|Re(z)|+ 1)

}
,

where Ũ and C3 > 0 are taken from Theorem 2.16 ii’).

Now, we fix a multi-index β ∈ Nd0. By taking C̃ = exp{C4}, where C4 > 0 comes from Theorem 2.16,
and Cauchy’s inequalities, we have

|Dβq(ξ)| ≤ β!

rβ
sup

ζ∈∂P (ξ,r)
|q(ζ)| ≤ C̃ β!

rβ
sup

ζ∈∂P (ξ,r)
e−C2ω(ζ).

Now, since the weight ω is increasing and satisfies (α), it is not difficult to see that

−C2ω(ζ) ≤ −Kω(ξ) +A,

where K,A > 0 only depend on C2, C3, the weight ω and the dimension d. Moreover, rβ = R|β|, so we
obtain (2.15) for ξ ∈ Rd, which finishes the proof. �

In what follows, we will consider a suitable power of the function of Proposition 2.17. The following
result can be proved in the same way.

Corollary 2.18. For n ∈ N, let Gn denote the n-th power of the entire function G of Proposition 2.17.
Then qn = G−n satisfies

|Dβqn(ξ)| ≤ Cnβ!R−|β|e−nKω(ξ), (2.16)

for the same constants C,K,R > 0 from Proposition 2.17 and for every β ∈ Nd0 and ξ ∈ Rd.

Moreover, we see that there is a constant C > 0 such that∣∣DαG(0)
∣∣ ≤ α!eCe−Cϕ

∗
(
|α|
C

)
, (2.17)

for all α ∈ Nd0. To prove this, we fix r = (R, . . . , R) ∈ Rd+ with R > 0 and α ∈ Nd0. By Cauchy’s integral
formula we obtain

DαG(0) =
α!

(2πi)d

∫
∂P (0,r)

G(ξ)

ξα+(1,...,1)
dξ.

Hence, ∣∣DαG(0)
∣∣ ≤ α!

(2π)d
(2π)dRd

R|α|+d
max

ζ∈∂P (0,r)
|G(ζ)| ≤ α!

R|α|
eω(R)+C1 ,

where C1 > 0 comes from i′) of Theorem 2.16. Besides, we have

inf
R>0

{
R−|α|eω(R)

}
=

(
sup
R>0

{
R|α|e−ω(R)

})−1 ≤ ( sup
s>0

{
es|α|e−ϕ(s)

})−1
=

(
esups>0{s|α|−ϕ(s)}

)−1
= e−ϕ

∗(|α|).

This implies ∣∣DαG(0)
∣∣ ≤ α!eC1−ϕ∗(|α|).

Then, we can take C := max{C1, 1} to obtain (2.17).
Since G is entire, we can write G(z) =

∑
α∈Nd0

aαz
α, z ∈ Cd, for some sequence (aα)α∈Nd0

⊆ C. Hence,

we also have

|aα| ≤ eCe−Cϕ
∗
(
|α|
C

)
, α ∈ Nd0. (2.18)

If n ∈ N and we consider the n-th power of G, Gn, we also have Gn(z) =
∑

α∈Nd0
bαz

α, z ∈ Cd, for

some sequence (bα)α∈Nd0
⊆ C; proceeding as before we can see that

|bα| ≤ enCe−nCϕ
∗
(
|α|
nC

)
, α ∈ Nd0. (2.19)
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3. Pseudodifferential operators

Following Prangoski [18] and Shubin [20] we state our definition of global symbol and global amplitude.
In what follows, m ∈ R and 0 < ρ ≤ 1.

Definition 3.1. A symbol in GSm,ωρ is a function p(x, ξ) ∈ C∞
(
R2d
)

such that for all n ∈ N, there exists
Cn > 0 with ∣∣Dα

xD
β
ξ p(x, ξ)

∣∣ ≤ Cn 1

〈(x, ξ)〉ρ|α+β|
enρϕ

∗
(
|α+β|
n

)
emω(x)emω(ξ),

for all (x, ξ) ∈ R2d and (α, β) ∈ N2d
0 .

Definition 3.2. An amplitude in GAm,ω
ρ is a function a(x, y, ξ) ∈ C∞

(
R3d
)

such that for all n ∈ N there
exists Cn > 0 with

∣∣Dα
xD

β
yD

γ
ξ a(x, y, ξ)

∣∣ ≤ Cn 〈x− y〉ρ|α+β+γ|〈(x, y, ξ)〉ρ|α+β+γ|
enρϕ

∗
(
|α+β+γ|

n

)
em(ω(x)+ω(y)+ω(ξ)),

for all (x, y, ξ) ∈ R3d and (α, β, γ) ∈ N3d
0 .

We define the pseudodifferential operators for amplitudes as in Definition 3.2 using oscillatory integrals.
Let χ ∈ Sω

(
R2d
)

be such that χ(0, 0) = 1. We consider for f ∈ Sω(Rd) the double integral

Aδ,χ(f)(x) :=

∫
Rd

∫
Rd
ei(x−y)ξa(x, y, ξ)χ(δx, δξ)f(y)dydξ. (3.1)

We will see that Aδ,χ(f) converges for every f ∈ Sω(Rd) when δ → 0, defining a linear and continuous

operator A : Sω(Rd)→ Sω(Rd) given by the iterated integral

A(f) =

∫
Rd

(∫
Rd
ei(x−y)ξa(x, y, ξ)f(y)dy

)
dξ, f ∈ Sω(Rd).

Proposition 3.3. Let χ ∈ Sω
(
R2d
)
. Then, for any function f ∈ Sω(Rd), the sequence

(
A 1
n
,χ(f)

)
n∈N as

in (3.1) is a Cauchy sequence in Sω(Rd).

Proof. We consider the family of seminorms of Remark 2.12. We show that, for any f ∈ Sω(Rd) and
λ > 0,

|(A 1
k
,χ −A 1

l
,χ)(f)|λ

goes to zero when l, k tend to infinity.
To this aim, we fix β ∈ Nd0 and x ∈ Rd, and calculate

Dβ
x

∫
Rd

∫
Rd
ei(x−y)ξa(x, y, ξ)

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))
f(y)dydξ

=
∑

β1+β2+β3=β

β!

β1!β2!β3!

∫∫
R2d

ei(x−y)ξξβ1Dβ2
x a(x, y, ξ)Dβ3

x

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))
f(y)dydξ. (3.2)

For the ultradifferential operator G(D) and its corresponding symbol G(ξ) given in Theorem 2.16, the
following formula holds for each n ∈ N:

ei(x−y)ξ =
1

Gn(y − x)
Gn(−Dξ)

( 1

Gn(ξ)
Gn(−Dy)e

i(x−y)ξ
)
. (3.3)
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Now, we use the notation of (2.19) and formula (3.3), and integrate by parts to obtain the following
expression for the integrand of (3.2):

ei(x−y)ξ
1

Gn(ξ)
Gn(Dy)

( 1

Gn(y − x)
Gn(Dξ)

(
ξβ1Dβ2

x a(x, y, ξ)×

×Dβ3
x

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))
f(y)

))
= ei(x−y)ξ

1

Gn(ξ)
Gn(Dy)

( 1

Gn(y − x)

∑
τ∈Nd0

bτ
∑

τ1+τ2+τ3=τ, τ1≤β1

τ !

τ1!τ2!τ3!

β1!

(β1 − τ1)!
(−i)|τ1|ξβ1−τ1 ×

×Dβ2
x D

τ2
ξ a(x, y, ξ)Dβ3

x D
τ3
ξ

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))
f(y)

)
= ei(x−y)ξ

1

Gn(ξ)

∑
ε,τ∈Nd0

bεbτ
∑

ε1+ε2+ε3=ε
τ1+τ2+τ3=τ, τ1≤β1

ε!

ε1!ε2!ε3!

τ !

τ1!τ2!τ3!

β1!

(β1 − τ1)!
(−i)|τ1|ξβ1−τ1 ×

×Dε1
y

1

Gn(y − x)
Dβ2
x D

ε2
y D

τ2
ξ a(x, y, ξ)Dβ3

x D
τ3
ξ

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))
Dε3
y f(y).

Hence, Dβ
x

(
A 1
k
,χ −A 1

l
,χ

)
(f) is equal to

∑
ε,τ∈Nd0

bεbτ
∑

ε1+ε2+ε3=ε
τ1+τ2+τ3=τ, τ1≤β1

β1+β2+β3=β

ε!

ε1!ε2!ε3!

τ !

τ1!τ2!τ3!

β!

β1!β2!β3!

β1!

(β1 − τ1)!

∫
Rd

∫
Rd
ei(x−y)ξ

(−i)|τ1|

Gn(ξ)
ξβ1−τ1 ×

×Dε1
y

1

Gn(y − x)
Dβ2
x D

ε2
y D

τ2
ξ a(x, y, ξ)Dβ3

x D
τ3
ξ

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))
Dε3
y f(y)dydξ.

Now, we fix λ > 0 and take s ≥ λ and n ∈ N to be determined. Since f ∈ Sω(Rd), for the constant
L > 0 of Lemma 2.7 (1) we have

|Dε3
y f(y)| ≤ E′se

sL3ϕ∗
(
|ε3|
sL3

)
e−sL

3ω(y).

Moreover, by the definition of amplitude and according to Lemma 2.6 and formula (2.6), we have that
there is a constant Es > 0 depending on s such that

|Dβ2
x D

ε2
y D

τ2
ξ a(x, y, ξ)| ≤ Es

( 〈x− y〉
〈(x, y, ξ)〉

)ρ|β2+ε2+τ2|
e4L

4sρϕ∗
(
|β2+ε2+τ2|

4L4s

)
emω(x)emω(y)emω(ξ)

≤ Es
√

2
|β2+ε2+τ2|

e4L
4sϕ∗

(
|β2+ε2+τ2|

4L4s

)
emω(x)emω(y)emω(ξ)

≤ Ese
4L4se4L

3sϕ∗
(
|β2+ε2+τ2|

4L3s

)
emω(x)emω(y)emω(ξ).

By (2.4) and (2.3), we also obtain

|ξ||β1−τ1| ≤ 〈ξ〉|β1−τ1| ≤ eλL
3ϕ∗
(
|β1−τ1|
λL3

)
eλL

3ω(〈ξ〉) ≤ eλL
3ϕ∗
(
|β1|
λL3

)
eλL

4
eλL

4ω(ξ).

By (2.19), there is C1 > 0 that depends only on G such that

|bε| ≤ enC1e
−nC1ϕ∗

(
|ε|
nC1

)
, |bτ | ≤ enC1e

−nC1ϕ∗
(
|τ |
nC1

)
,

and, by Corollary 2.18 and Proposition 2.5, there are constants C2, C3, C4 > 0 which depend only on G
such that ∣∣∣ 1

Gn(ξ)

∣∣∣ ≤ Cn4 e
−nC2ω(ξ), and∣∣∣Dε1

y

1

Gn(y − x)

∣∣∣ ≤ Cn4 ε1!C
−|ε1|
3 e−nC2ω(y−x) ≤ Cn4Cse

sL3ϕ∗
(
|ε1|
sL3

)
e−nC2ω(y−x),
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where Cs > 0 depends on C3 and s. Finally, since ω(x) ≤ Lω(y − x) + Lω(y) + L, and (again by
Proposition 2.5),

β1!

(β1 − τ1)!
≤ 2|β1|τ1! ≤ 2|β1|C ′se

sL3ϕ∗
(
|τ1|
sL3

)
,

for some constant C ′s > 0 depending on s, we get∣∣Dβ
x

(
(A 1

k
,χ −A 1

l
,χ)(f)

)
(x)
∣∣

≤
∑
ε,τ∈Nd0

e2nC1e
−nC1ϕ∗

(
|ε|
nC1

)
e
−nC1ϕ∗

(
|τ |
nC1

) ∑
ε1+ε2+ε3=ε

τ1+τ2+τ3=τ, τ1≤β1
β1+β2+β3=β

ε!

ε1!ε2!ε3!

τ !

τ1!τ2!τ3!

β!

β1!β2!β3!
2|β1|C ′s ×

×esL
3ϕ∗
(
|τ1|
sL3

) ∫ ∣∣∣Dβ3
x D

τ3
ξ

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))∣∣∣ [∫ C2n

4 e−nC2ω(ξ)eλL
3ϕ∗
(
|β1|
λL3

)
eλL

4 ×

×eλL4ω(ξ)Cse
sL3ϕ∗

(
|ε1|
sL3

)
e−nC2ω(y−x)Ese

4L4se4L
3sϕ∗

(
|β2+ε2+τ2|

4L3s

)
×

×emω(y)emLω(y−x)emLω(y)emLemω(ξ)E′se
sL3ϕ∗

(
|ε3|
sL3

)
e−sL

3ω(y)dy

]
dξ.

We set

n ≥ max
{ 1

C2
(1 + λL4 +m),

1

C2
(m+ λ)L

}
.

The first one is stated in order to get

e(m+λL4−nC2)ω(ξ) ≤ e−ω(ξ),
and the other one to obtain

e(mL−nC2)ω(y−x) ≤ e−λLω(y−x).
Moreover, we put

s ≥ max
{ 1

L3
(1 + λL+m+mL), nC1}.

In this case, by the first inequality we obtain

e(m+mL−sL3)ω(y) ≤ e−ω(y)e−λLω(y).
According to ω(x) ≤ Lω(y − x) + Lω(y) + L, we get

e−λLω(y−x)e−λLω(y) ≤ eλLe−λω(x).
By the mean value theorem, there exists c in the line segment between (1l x,

1
l ξ) and ( 1kx,

1
kξ) such that∣∣Dβ3

x D
τ3
ξ

(
χ
(1

k
x,

1

k
ξ
)
− χ

(1

l
x,

1

l
ξ
))∣∣ = |∇Dβ3

x D
τ3
ξ χ(c)|

∣∣1
k
− 1

l

∣∣|(x, ξ)|
≤ D′λ,se

λϕ∗
(

1
λ

)
+2sL3λϕ∗

(
|β3+τ3|
2sL3λ

)∣∣1
k
− 1

l

∣∣|x||ξ|,
for some constant D′λ,s > 0. Now, by Lemma 2.7, since s ≥ λ, we have

2|β1|esL
3ϕ∗
(
|τ1|
sL3

)
eλL

3ϕ∗
(
|β1|
λL3

)
esL

3ϕ∗
(
|ε1|
sL3

)
e4sL

3ϕ∗
(
|β2+ε2+τ2|

4sL3

)
esL

3ϕ∗
(
|ε3|
sL3

)
e2sL

3ϕ∗
(
|β3+τ3|
2sL3

)
≤ eλL3

eλL
2ϕ∗
(
|β|
λL2

)
esL

3ϕ∗
(
|τ |
sL3

)
esL

3ϕ∗
(
|ε|
sL3

)
.

Since the selection of n and s depends on λ, we get this new estimate, for a constant C ′λ > 0:∣∣Dβ
x

(
(A 1

k
,χ −A 1

l
,χ)(f)

)
(x)
∣∣ (3.4)

≤ C ′λ
∣∣∣1
k
− 1

l

∣∣∣ ∑
ε,τ∈Nd0

e
−nC1ϕ∗

(
|ε|
nC1

)
e
−nC1ϕ∗

(
|τ |
nC1

) ∑
ε1+ε2+ε3=ε

τ1+τ2+τ3=τ, τ1≤β1
β1+β2+β3=β

ε!

ε1!ε2!ε3!

τ !

τ1!τ2!τ3!

β!

β1!β2!β3!
×

×eλL
2ϕ∗
(
|β|
λL2

)
esL

3ϕ∗
(
|τ |
sL3

)
esL

3ϕ∗
(
|ε|
sL3

)
|x|e−λω(x)

(∫
e−ω(y)dy

)(∫
|ξ|e−ω(ξ)dξ

)
.
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Again by Lemma 2.7, using multinomial coefficients, we obtain∑
ε1+ε2+ε3=ε

τ1+τ2+τ3=τ, τ1≤β1
β1+β2+β3=β

ε!

ε1!ε2!ε3!

τ !

τ1!τ2!τ3!

β!

β1!β2!β3!
eλL

2ϕ∗
(
|β|
λL2

)
esL

3ϕ∗
(
|τ |
sL3

)
esL

3ϕ∗
(
|ε|
sL3

)

= 3|ε+τ+β|eλL
2ϕ∗
(
|β|
λL2

)
esL

3ϕ∗
(
|τ |
sL3

)
esL

3ϕ∗
(
|ε|
sL3

)
≤ e(λ+2sL)(L+L2)eλϕ

∗
(
|β|
λ

)
esLϕ

∗
(
|τ |
sL

)
esLϕ

∗
(
|ε|
sL

)
.

Now, we see that the series in (3.4) converge. We treat the sum in ε. Since s ≥ nC1, we have, for each
ε ∈ Nd0, by (2.6),

e
−nC1ϕ∗

(
|ε|
nC1

)
esLϕ

∗
(
|ε|
sL

)
=

(1

e

)|ε|
e
−nC1ϕ∗

(
|ε|
nC1

)
e|ε|+sLϕ

∗
(
|ε|
sL

)
(3.5)

≤ esL
(1

e

)|ε|
e
−nC1ϕ∗

(
|ε|
nC1

)
esϕ
∗
(
|ε|
s

)
≤ esL

(1

e

)|ε|
.

By formula [17, (0.3.16)], we have

#{ε ∈ Nd0 : |ε| = j} =

(
j + d− 1

d− 1

)
.

Then, we deduce ∑
ε∈Nd0

(1

e

)|ε|
=

∞∑
j=0

∑
|ε|=j

(1

e

)j
=

∞∑
j=0

(1

e

)j(j + d− 1

d− 1

)
(3.6)

≤ 2d−1
∞∑
j=0

(2

e

)j
< +∞.

The convergence of the series in τ follows in the same way.
Finally, we get∣∣Dβ

x

(
(A 1

k
,χ −A 1

l
,χ)(f)

)
(x)
∣∣ ≤ Cλ

∣∣1
k
− 1

l

∣∣( ∞∑
j=0

(2

e

)j)2
eλϕ

∗
(
|β|
λ

)
× (3.7)

×|x|e−λω(x)
(∫

e−ω(y)dy
)(∫

|ξ|e−ω(ξ)dξ
)
,

for some constant Cλ > 0 depending on λ.
From (3.7) we conclude that∣∣∣(A 1

k
,χ −A 1

l
,χ

)
(f)
∣∣∣
λ
−→ 0, as k, l→ +∞,

for each λ > 0 and, hence, {A 1
n
,χ(f)}n∈N is a Cauchy sequence in Sω(Rd). �

Lemma 3.4. Given an amplitude a(x, y, ξ) ∈ GAm,ω
ρ and f ∈ Sω(Rd), for each λ > 0 there is Cλ > 0

such that for all x, ξ ∈ Rd, we have∣∣ ∫
Rd
ei(x−y)ξa(x, y, ξ)f(y)dy

∣∣ ≤ Cλe−λω(ξ)emω(x).
Proof. We follow the ideas of the proof of Proposition 3.3 and use a suitable integration by parts in the
integral ∫

ei(x−y)ξa(x, y, ξ)f(y)dy. (3.8)

Here, we consider the formula

ei(x−y)ξ =
1

G(ξ)
G(−Dy)e

i(x−y)ξ,
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which is also true for a suitable power of G(D), say Gn(D), with n ∈ N to be determined. Integration
by parts yields that the integrand in (3.8) is equal to

ei(x−y)ξ
1

Gn(ξ)
Gn(Dy)

(
a(x, y, ξ)f(y)

)
= ei(x−y)ξ

1

Gn(ξ)

∑
τ∈Nd0

bτ
∑

τ1+τ2=τ

τ !

τ1!τ2!
Dτ1
y a(x, y, ξ)Dτ2

y f(y).

Now, proceeding in a similar way to that of Proposition 3.3 we get the conclusion. �

Applying the definition of amplitude we show the following

Lemma 3.5. Given an amplitude a(x, y, ξ) ∈ GAm,ω
ρ and χ ∈ Sω

(
R2d
)
, we denote

K(x, y) :=

∫
Rd
ei(x−y)ξa(x, y, ξ)χ(x, ξ)dξ.

We have

a) K(x, y) ∈ Sω
(
R2d
)
.

b) The linear operator T : Sω(Rd)→ Sω(Rd) given by T (f)(x) =
∫
K(x, y)f(y)dy is continuous.

Remark 3.6. If the function χ ∈ Sω(Rd) only depends on ξ, we do not obtain a) K ∈ Sω
(
R2d
)

in the

lemma above, but this weaker condition: For every λ > 0 there is Cλ > 0 such that for every α, β ∈ Nd0
and every x, y ∈ Rd, the function K ∈ C∞

(
R2d
)

and satisfies

|Dα
xD

β
yK(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
emω(y).

However, this is also sufficient to have that the integral operator T (f)(x) =
∫
K(x, y)f(y)dy is continuous.

Proof of Lemma 3.5. a) We fix α, β ∈ Nd0 and calculate

Dα
xD

β
yK(x, y) =

∑
α1+α2+α3=α
β1+β2=β

α!

α1!α2!α3!

β!

β1!β2!
(−1)β1

∫
ei(x−y)ξξα1+β1Dα2

x Dβ2
y a(x, y, ξ)Dα3

x χ(x, ξ)dξ.

As in Proposition 3.3, we perform a suitable integration by parts with the formula

ei(x−y)ξ =
1

Gn(y − x)
Gn(−Dξ)e

i(x−y)ξ,

for some power n ∈ N, to be determined, of the ultradifferential operator given in Theorem 2.16. From
now on, the proof follows the lines of that of Proposition 3.3.

b) First, we observe that for f ∈ Sω(Rd), since ϕ∗(0) = 0, we have, for any µ > 0,

sup
y∈Rd

|f(y)| ≤ sup
y∈Rd

|f(y)|eµω(y) ≤ sup
β∈Nd0

sup
y∈Rd

|f (β)(y)|e−µϕ
∗
(
|β|
µ

)
eµω(y) = |f |µ,

being | · |µ the seminorm defined in Remark 2.12. Now, to prove that the operator T is continuous, we
differentiate under the integral sign the function T (f)(x) to obtain that for all λ > 0, there exists Cλ > 0
such that

|Dα
xT (f)(x)| ≤

∫
|Dα

xK(x, y)||f(y)|dy

≤ Cλeλϕ
∗
(
|α|
λ

)
e−λω(x)

∫
e−λω(y)|f(y)|dy ≤ Cλeλϕ

∗
(
|α|
λ

)
e−λω(x)|f |µ

∫
e−λω(y)dy,

for any µ > 0, which gives the conclusion. �

Theorem 3.7. The operator A : Sω(Rd)→ Sω(Rd) given by the iterated integral

A(f)(x) :=

∫
Rd

(∫
Rd
ei(x−y)ξa(x, y, ξ)f(y)dy

)
dξ (3.9)

is well defined, linear and continuous.
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Proof. As in (3.1), we fix χ ∈ Sω(R2d) such that χ(0, 0) = 1. Since Sω(Rd) is a Fréchet space, for every
f ∈ Sω(Rd) the sequence {A 1

n
,χ(f)}n∈N converges in Sω(Rd) by Proposition 3.3. Moreover, the operator

A 1
n
,χ : Sω(Rd)→ Sω(Rd) is linear and, by Lemma 3.5, well defined and continuous for every n ∈ N. We

denote by Aχ the operator given by the limit:

Aχ(f) := lim
n→∞

∫
Rd

∫
Rd
ei(x−y)ξa(x, y, ξ)f(y)χ

( 1

n
(x, ξ)

)
dydξ, f ∈ Sω(Rd).

This operator is well defined and linear from Sω(Rd) to Sω(Rd) by Proposition 3.3. Moreover, it is
continuous by Banach-Steinhaus theorem.

Now, we prove formula (3.9) and, hence, that Iχ does not depend on the selection of χ ∈ Sω(R2d) with
χ(0, 0) = 1. By Lemma 3.4 we have, for all n ∈ N,∣∣∣ ∫ ei(x−y)ξa(x, y, ξ)f(y)χ

( 1

n
x,

1

n
ξ
)
dy
∣∣∣ =

∣∣χ( 1

n
x,

1

n
ξ
)∣∣∣∣∣ ∫ ei(x−y)ξa(x, y, ξ)f(y)dy

∣∣∣
≤ Cλe

−λω(ξ)emω(x)
(

sup
η∈R2d

|χ(η)|
)
,

which is integrable in ξ. Moreover,∫
ei(x−y)ξa(x, y, ξ)f(y)χ

( 1

n
x,

1

n
ξ
)
dy −→

∫
ei(x−y)ξa(x, y, ξ)f(y)dy

pointwise on x, ξ ∈ Rd when n goes to infinity. An application of Lebesgue theorem gives the conclusion.
�

Definition 3.8. The operator A given in Theorem 3.7 is called global ω-pseudodifferential operator
associated to the amplitude a(x, y, ξ).

Remark 3.9. In the hypothesis of Proposition 3.3 we can also use a function χ ∈ Sω(Rd) which only
depends on the variable ξ. In the same manner, Theorem 3.7 is also true if we consider χ ∈ Sω(Rd)
depending only on ξ that satisfies χ(0) = 1. The proofs of both results follow in the same way.

The use of amplitudes permits to extend the operator to the space of ultradistributions in an easy way
by duality, as we can see in the next result. We omit its proof since is similar to the one of [10, Theorem
2.5].

Proposition 3.10. The pseudodifferential operator A : Sω(Rd) → Sω(Rd) extends to a linear and con-

tinuous operator Ã : S ′ω(Rd)→ S ′ω(Rd).

As in [10, Theorem 2.5], we observe that for any pseudodifferential operator A : Sω(Rd) → Sω(Rd)
with amplitude a(x, y, ξ), we have that the transpose operator when restricted to Sω(Rd), At|Sω(Rd) :

Sω(Rd)→ Sω(Rd), is a pseudodifferential operator with amplitude a(y, x,−ξ).
The proof of the next result is standard.

Proposition 3.11. Let T : Sω(Rd)→ Sω(Rd) be a pseudodifferential operator. The following assertions
are equivalent:

(1) T has a linear and continuous extension T̃ : S ′ω(Rd)→ Sω(Rd);
(2) There exists K(x, y) ∈ Sω

(
R2d
)

such that

(Tϕ)(x) =

∫
K(x, y)ϕ(y)dy, ϕ ∈ Sω(Rd).

Definition 3.12. A pseudodifferential operator T : Sω(Rd)→ Sω(Rd) that satisfies (1) or (2) of Propo-
sition 3.11 is called ω-regularizing.

Example 3.13. (a) As in [10, Example 2.11], particular cases of weight functions give known definitions
of symbol classes and pseudodifferential operators. For instance, in the limit case, that we do not consider
here, of ω(t) = log(1 + t), we have Sω(Rd) = S(Rd). In this case, with a similar argument to the one
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of [10, Example 2.11 (1)], by (2.3), we obtain that a ∈ GAm,ω
ρ if and only if for all α, β, γ ∈ Nd0 there is

C > 0 such that ∣∣Dα
xD

β
yD

γ
ξ a(x, y, ξ)

∣∣ ≤ C〈x− y〉ρ|α+β+γ|〈(x, y, ξ)〉m−ρ|α+β+γ|,
for all x, y, ξ ∈ Rd. This characterization gives precisely [20, Definition 23.3] for m′ = 0.

In the same way, using [10, Example 2.11 (2)], if ω(t) = td for 0 < d < 1 is a Gevrey weight function
then a ∈ GAm,ω

ρ if and only if for every λ > 0 there is C > 0 such that∣∣Dα
xD

β
yD

γ
ξ a(x, y, ξ)

∣∣ ≤ C 〈x− y〉ρ|α+β+γ|
〈(x, y, ξ)〉ρ|α+β+γ|

(α!β!γ!)ρ/dλ|α+β+γ|em〈(x,y,ξ)〉
d
,

for all (x, y, ξ) ∈ R3d and (α, β, γ) ∈ N3d
0 . This definition of amplitude could be compared with [7,

Definition 2.1], which is the corresponding definition for the Roumieu case.
Finally, it is worth to mention also that in the case when the weight function satisfies [4, Corollary

16 (3)], the classes of ultradifferentiable functions defined by weights (as in [5]) and the ones defined by
sequences (as in [15]) coincide. In this situation, the definition given by Prangoski for the Beurling case
in [18, Definition 1] is expected to be the same as our Definition 3.2. But, if the weight sequence (Mp)p
satisfies only condition (M2) of Komatsu, as is assumed by Prangoski [18], our classes of amplitudes could
differ in general from the ones given by Prangoski (see [4, Example 17]). Hence, we are treating, even
only in the Beurling setting, different cases.

(b) Let σ be a weight function and let ω be another weight function satisfying ω
(
t
1+ρ
ρ
)

= O(σ(t)) as

t → ∞, where 0 < ρ ≤ 1. If a(x, ξ) ∈ Sσ
(
R2d
)
, then a(x, ξ) ∈ ∩m∈R GSm,ωρ . It is enough to prove it for

m < 0. Indeed, for every λ,m′ > 0, there exists Cλ,m′ > 0 such that

|Dα
xD

β
ξ a(x, ξ)| ≤ Cλ,m′e(λ+m

′)ϕ∗σ

(
|α+β|
λ+m′

)
e(−λ−m

′)σ(〈(x,ξ)〉) ≤ Cλ,m′eλϕ
∗
σ

(
|α+β|
λ

)
e(−λ−m

′)σ(〈(x,ξ)〉),

for each (x, ξ) ∈ R2d and (α, β) ∈ N2d
0 (in the last inequality we use that x 7→ ϕ∗(x)/x is increasing). By

assumption and Lemma 2.9 (2), there is C > 0 such that for all λ > 0 and j ∈ N0,

λϕ∗σ
( j
λ

)
≤ λ+ λC

ρ

1 + ρ
ϕ∗ω
( j

λC

)
. (3.10)

By (2.4), we have

eλϕ
∗
σ

(
|α+β|
λ

)
e−(λ+m

′)σ(〈(x,ξ)〉) ≤ eλ(1+ρ)ϕ
∗
σ

(
|α+β|
λ

)
e−λρϕ

∗
σ

(
|α+β|
λ

)
e−λρσ(〈(x,ξ)〉)e−m

′σ(〈(x,ξ)〉)

≤ eλ(1+ρ)ϕ
∗
σ

(
|α+β|
λ

)
〈(x, ξ)〉−ρ|α+β|e−m′σ(〈(x,ξ)〉).

Now, formula (3.10) shows that a ∈ GSm,ωρ for m = −m′/2 < 0.

On the other hand, it is easy to see also that
⋂
m∈R GSm,ωρ ⊆ Sω

(
R2d
)
. So, we have

Sσ
(
R2d
)
⊆
⋂
m∈R

GSm,ωρ ⊆ Sω
(
R2d
)
,

for every pair of weights ω and σ that satisfies the relation at the beginning of this example.
We observe that for weights of the type ω(t) = logs(1 + t), with s ≥ 1 (remember that here we do not

consider the limit case s = 1), we have ω
(
t(1+ρ)/ρ

)
= O(ω(t)) as t → ∞ and, hence, in this particular

case, we obtain

Sω
(
R2d
)

=
⋂
m∈R

GSm,ωρ .

(c) We consider the differential operator P (x,D) =
∑
|γ|≤m aγ(x)Dγ , where aγ ∈ Sσ(Rd) and σ(t) =

o(t) as t tends to infinity. If ω is another weight function such that ω
(
t(1+ρ)/ρ

)
= O(σ(t)) as t tends to

infinity, by (b) it is easy to see that the corresponding symbol p(x, ξ) = (2π)−d
∑
|γ|≤m aγ(x)ξγ ∈ GSm,ωρ

is of finite order, i.e, we have polynomial growth in all the variables instead of exponential growth.
On the other hand, a linear partial differential operator with polynomial coefficients defines a global

symbol of finite order in GSm,ωρ provided ω(t1/ρ) = o(t) as t tends to infinity.
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(d) Following [10, Example 2.11 (5)], we can consider ultradifferential operators with variable coeffi-
cients and infinite order G(x,D) :=

∑
α∈Nd0

aα(x)Dα with aα ∈ C∞(Rd) satisfying the following condition:

there exists m ∈ N0 such that for all λ > 0, there is Cλ > 0 with

|Dβaα(x)| ≤ Cλeλρϕ
∗
(
|β|
λ

)
e−mρϕ

∗
(
|β|
m

)
e−mϕ

∗
(
|α|
m

)
emω(x),

for each α, β ∈ Nd0 and x ∈ Rd.
It is not difficult to show that its corresponding symbol p(x, ξ) := (2π)−d

∑
α aα(x)ξα is a global symbol

in GSk,ωρ for some k ≥ m.
In particular, by (2.18), the ultradifferential operators G(D) with constant coefficients defined in

Section 2 are pseudodifferential operators with symbol G ∈ GSk,ωρ for some k > 0.

4. Symbolic calculus

In order to compose two pseudodifferential operators, we need to develop a symbolic calculus in this
setting. We follow the lines of [10].

Definition 4.1. We define FGSm,ωρ to be the set of all formal sums
∑

j∈N0
aj(x, ξ) such that aj(x, ξ) ∈

C∞
(
R2d
)

and there is R ≥ 1 such that for every n > 0, there exists Dn > 0 with∣∣Dα
xD

β
ξ aj(x, ξ)

∣∣ ≤ Dn

( 1

〈(x, ξ)〉

)ρ(|α+β|+j)
enρϕ

∗
(
|α+β|+j

n

)
emω(x)emω(ξ), (4.1)

for each j ∈ N0, (α, β) ∈ N2d
0 and log

( 〈(x,ξ)〉
R

)
≥ n

j ϕ
∗( j
n

)
.

We can assume that a0(x, ξ) satisfies formula (4.1) when log
( 〈(x,ξ)〉

R

)
≥ 0, i.e., when 〈(x, ξ)〉 ≥ R.

Let a be a symbol in GSm,ωρ and set a0 := a and aj = 0 for j 6= 0. Then, we can regard a as the formal
sum

∑
aj .

Definition 4.2. Two formal sums
∑
aj and

∑
bj in FGSm,ωρ are said to be equivalent, which is denoted

by
∑
aj ∼

∑
bj, if there is R ≥ 1 such that for each natural number n, there exist Dn > 0, Nn ∈ N with∣∣∣Dα

xD
β
ξ

∑
j<N

(aj − bj)
∣∣∣ ≤ Dn

( 1

〈(x, ξ)〉

)ρ(|α+β|+N)
enρϕ

∗
(
|α+β|+N

n

)
emω(x)emω(ξ), (4.2)

for every N ≥ Nn, (α, β) ∈ N2d
0 and log

( 〈(x,ξ)〉
R

)
≥ n

Nϕ
∗(N

n

)
.

We understand that a symbol a ∈ GSm,ωρ regarded as a formal sum satisfies a ∼ 0 when
∣∣Dα

xD
β
ξ a(x, ξ)

∣∣
is estimated by the right-hand side of (4.2) for every N ≥ Nn, (α, β) ∈ N2d

0 and log
( 〈(x,ξ)〉

R

)
≥ n

Nϕ
∗(N

n

)
.

The following proposition gives a sufficient condition for a pseudodifferential operator to be ω-regularizing
in terms of formal sums (see Definition 3.12):

Proposition 4.3. If A is a pseudodifferential operator defined by a symbol a(x, ξ) which is equivalent to
zero, then A is an ω-regularizing operator.

Proof. It is enough to show that a ∈ Sω(Rd), because [17, Proposition 1.2.1] states that operators with
symbols in Sω(Rd) correspond to kernels in Sω(R2d) and, by Proposition 3.11, those operators are ω-
regularizing. Since a ∼ 0, there is R ≥ 1 such that for every n > 0, there exist Cn > 0, Nn ∈ N
with

|Dα
xD

β
ξ a(x, ξ)| ≤ C8n

( 1

〈(x, ξ)〉

)ρ(|α+β|+N)
e8nρϕ

∗
(
|α+β|+N

8n

)
emω(x)emω(ξ),

for all N ≥ N8n, log
( 〈(x,ξ)〉

R

)
≥ 8n

N ϕ
∗( N

8n

)
, (α, β) ∈ N2d

0 . We take 0 < ε < 1 and l ∈ N so that

ω
(
t
R

)
≥ εω(t) − 1

ε and log(〈(x, ξ)〉) ≤ lω(x) + lω(ξ). Observe that there exists N ≥ N8n depending on
x, ξ and R such that(

8n

N
ϕ∗
(N

8n

)
≤
)

2n

N
ϕ∗
(N

2n

)
≤ log

(〈(x, ξ)〉
R

)
≤ 2n

N + 1
ϕ∗
(N + 1

2n

)
.
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Now, by Lemma 2.8,[(〈(x, ξ)〉
R

)−N
e4nϕ

∗
(
N
4n

)]ρ
≤

[
e−2nω

(
〈(x,ξ)〉
R

)
elog

(
〈(x,ξ)〉
R

)]ρ
≤
[
e−2nεω(〈(x,ξ)〉)+

2n
ε
+lω(x)+lω(ξ)

]ρ
≤ e−nρεω(x)−nρεω(ξ)+

2nρ
ε

+ρlω(x)+ρlω(ξ).

Therefore we obtain, since R and 〈(x, ξ)〉 are greater than or equal to 1, by the convexity of ϕ∗,∣∣Dα
xD

β
ξ a(x, ξ)

∣∣ ≤ C8n〈(x, ξ)〉−ρ|α+β|R−ρN
(
〈(x, ξ)〉
R

)−ρN
e4nρϕ

∗
(
N
4n

)
e4nρϕ

∗
(
|α+β|
4n

)
emω(x)emω(ξ)

≤ C8ne
2nρ
ε e4nϕ

∗
(
|α+β|
4n

)
e(m+ρl−nρε)ω(x)e(m+ρl−nρε)ω(ξ).

Now, it suffices to select n large enough. �

We can also obtain the opposite of Proposition 4.3 for weight functions of the type ω(t) = logs(1 + t)
for s ≥ 1. Despite we do not consider in this paper s = 1, the same argument in this case works, too. We
need the following lemma, which holds for any weight function ω.

Lemma 4.4. Suppose that a ∈
⋂
m∈R GSm,ωρ . Then a ∼ 0 in FGSm,ωρ for all m ∈ R.

Proof. First, we observe that there is C > 0, which only depends on ω, such that

ω(〈(x, ξ)〉) ≤ C + Cω(x) + Cω(ξ), (4.3)

for all x, ξ ∈ Rd.
Now, we fix m ∈ R. By assumption, for all n ∈ N there is En > 0 (which also depends on m) such that

∣∣Dα
xD

β
ξ a(x, ξ)

∣∣ ≤ En eρnϕ∗
(
|α+β|
n

)
〈(x, ξ)〉ρ|α+β|

e−nC(ω(x)+ω(ξ))em(ω(x)+ω(ξ))

= En
eρnϕ

∗
(
|α+β|
n

)
〈(x, ξ)〉ρ|α+β|+ρN

〈(x, ξ)〉ρNe−nC(ω(x)+ω(ξ))em(ω(x)+ω(ξ)),

for all x, ξ ∈ Rd, α, β ∈ Nd0 and N ∈ N. By (4.3), we have

−nCω(x)− nCω(ξ) ≤ −nω(〈(x, ξ)〉) + nC ≤ −nρω(〈(x, ξ)〉) + nC.

Moreover, by (2.4),

〈(x, ξ)〉Ne−nω(〈(x,ξ)〉) ≤ enϕ
∗
(
N
n

)
.

Therefore, we obtain that for each n ∈ N there is Cn > 0 such that

∣∣Dα
xD

β
ξ a(x, ξ)

∣∣ ≤ Cn eρnϕ
∗
(
|α+β|+N

n

)
〈(x, ξ)〉ρ|α+β|+ρN

em(ω(x)+ω(ξ)),

for all x, ξ ∈ Rd, α, β ∈ Nd0 and N ∈ N. Since the argument does not depend on m ∈ R, we have a ∼ 0
in FGSm,ωρ for each m ∈ R. �

Proposition 4.5. Let ω(t) = logs(1 + t), for s ≥ 1. If A is an ω-regularizing operator with symbol a, we
have a ∼ 0 in FGSm,ωρ for all m ∈ R.

Proof. Since A is ω-regularizing, the symbol a ∈ Sω(R2d) by Propostion 3.11 and [17, Proposition 1.2.1].
By the argument given in Example 3.13 (b) for weights ω(t) = logs(1 + t), for s ≥ 1, we obtain a ∈⋂
m∈R GSm,ωρ . Hence, Lemma 4.4 gives the conclusion. �

Now, we construct a symbol from a formal sum, and to do so we need some kind of partition of unity.
Here, we cannot use the estimates as in [10, Lemma 3.6] for some technical difficulties, but we consider
the usual estimates for ultradifferentiable functions instead. This is due to the fact that our symbols
are defined in the whole Rd for all the variables. However, we observe that this consideration is not so
restrictive (cf. [10, Remark 1.7 (1)]).



GLOBAL PSEUDODIFFERENTIAL OPERATORS OF INFINITE ORDER... 17

We consider Φ(x, ξ) ∈ D(σ)

(
R2d
)
, where σ and ω are weight functions which satisfy ω(t1/ρ) = O(σ(t))

when t→ +∞ (Lemma 2.9(2)) and, in addition,

|Φ(x, ξ)| ≤ 1, Φ(x, ξ) = 1 if |(x, ξ)| ≤ 2, Φ(x, ξ) = 0 if |(x, ξ)| ≥ 3.

Let (jn)n be an increasing sequence of natural numbers such that jn/n→∞ as n tends to infinity. For
each jn ≤ j < jn+1, we set

Ψj,n(x, ξ) := 1− Φ
((x, ξ)

An,j

)
, An,j = Re

n
j
ϕ∗ω(

j
n
)
, (4.4)

where R ≥ 1 is the constant which appears in Definition 4.1. It is clear that Aρn,j ≤ An,j . We observe

that (x, ξ) ∈ supp Ψj,n implies
∣∣ (x,ξ)
An,j

∣∣ > 2 and so

〈(x, ξ)〉 > 2An,j . (4.5)

Since Φ ∈ D(σ)

(
R2d
)
, for each k ∈ N there is a constant Ck > 0 such that |Dα

xD
β
ξ Φ(x, ξ)| ≤ Ckekϕ

∗
σ

(
|α+β|
k

)
.

Now, by Lemma 2.9(2), for all k ∈ N there is Ck > 0 with

|Dα
xD

β
ξ Ψj,n(x, ξ)| =

∣∣∣Dα
xD

β
ξ Φ
((x, ξ)

An,j

)∣∣∣A−|α+β|n,j ≤ Ckekρϕ
∗
ω

(
|α+β|
k

)
A
−ρ|α+β|
n,j , (4.6)

for each (α, β) ∈ N2d
0 and all k ∈ N. If additionally we assume that (x, ξ) is in the support of any

derivative of Ψj,n(x, ξ), we have 2 ≤
∣∣ (x,ξ)
An,j

∣∣ ≤ 3. This implies

2An,j ≤ 〈(x, ξ)〉 ≤
√

10An,j . (4.7)

We obtain, from (4.6), that for all k ∈ N,

|Dα
xD

β
ξ Ψj,n(x, ξ)| ≤ Ck

( √10

〈(x, ξ)〉

)ρ|α+β|
ekρϕ

∗
(
|α+β|
k

)
. (4.8)

Hence Ψj,n ∈ GS0,ω
ρ (here, we apply Lemma 2.7 (1) to get rid of the constant (

√
10)ρ|α+β|). The proof of

the next results follow the lines of the one of [10, Theorem 3.7]:

Theorem 4.6. Let
∑
aj be a formal sum in FGSm,ωρ . Then there exists a global symbol a ∈ GSm,ωρ such

that a ∼
∑
aj.

Proof. We consider the functions Ψj,n defined in (4.4). Since Ψj,n 6= 0 implies that formula (4.5) holds,
we also have

〈(x, ξ)〉−ρjenρϕ
∗
(
j
n

)
< (2R)−ρj . (4.9)

If we suppose that (x, ξ) belongs to the support of any derivative of Ψj,n, then formula (4.7) is satisfied.
In particular, we have

log
(〈(x, ξ)〉√

10R

)
≤ n

j
ϕ∗
( j
n

)
.

It is not difficult to see that, by formula (4.9),∣∣Dα
xD

β
ξ

(
aj(x, ξ)Ψj,n(x, ξ)

)∣∣
≤ Dn〈(x, ξ)〉−ρ(|α+β|+j)e2nρϕ

∗
(
|α+β|+j

2n

)
emω(x)emω(ξ)

≤ Dn〈(x, ξ)〉−ρ|α+β|enρϕ
∗
(
|α+β|
n

)
emω(x)emω(ξ)(2R)−ρj , (4.10)

for some constant Dn > 0, for all j ∈ N0, (α, β) ∈ N2d
0 and log

( 〈(x,ξ)〉
2R

)
≥ n

j ϕ
∗( j
n

)
. This shows that

aj(x, ξ)Ψj,n(x, ξ) is a global symbol, since log
( 〈(x,ξ)〉

2R

)
≤ n

j ϕ
∗( j
n

)
implies that Ψj,n(x, ξ) = 0, by (4.5).



18 ASENSIO AND JORNET

We observe that
∑∞

j=1(2R)−ρj is convergent, because R ≥ 1. Let (jn)n be the sequence which defines

the functions Ψj,n. By induction, we can take the elements of (jn)n so that j1 := 1, jn < jn+1,
jn
n →∞

and

Dn+1

∞∑
j=jn+1

1

(2R)ρj
≤ Dn

2

jn+1−1∑
j=jn

1

(2R)ρj
.

Then it is easy to check that

Dn := Dn

jn+1−1∑
j=jn

1

(2R)ρj

satisfies that Dn+1 ≤ Dn
2 .

On the other hand, it is not difficult to see that

a(x, ξ) = a0(x, ξ) +
∞∑
n=1

jn+1−1∑
j=jn

Ψj,n(x, ξ)aj(x, ξ)

is a global symbol in GSm,ωρ .

Now, we claim that a ∼
∑
aj . Assume log

( 〈(x,ξ)〉√
10R

)
≥ n

Nϕ
∗(N

n

)
. We consider only the case N ≥ njn

(which is coherent with Defintion 4.2). For all j ∈ N there is k ∈ N with jk ≤ j < jk+1. If k < n, we
have j ≤ jn(< N) and therefore

log
(〈(x, ξ)〉√

10R

)
≥ n

N
ϕ∗
(N
n

)
≥ 1

jn
ϕ∗(jn) ≥ k

j
ϕ∗
( j
k

)
.

In this case Ψj,k ≡ 1. If k ≥ n and N > j we have

log
(〈(x, ξ)〉√

10R

)
≥ n

N
ϕ∗
(N
n

)
≥ k

j
ϕ∗
( j
k

)
,

and also Ψj,k ≡ 1. Hence, we only have to analyse the case when j ≥ N and k ≥ n.

So, we are looking for an estimate for
∣∣Dα

xD
β
ξ Ψj,k(x, ξ)a(x, ξ)

∣∣ with j ≥ N and k ≥ n. We assume that

log
( 〈(x,ξ)〉

2R

)
≥ k

jϕ
∗( j
k

)
(since, otherwise, Ψj,k = 0). Now, we have, by the convexity of ϕ∗ and Leibniz’s

rule, ∣∣Dα
xD

β
ξ

(
Ψj,k(x, ξ)aj(x, ξ)

)∣∣
≤ Dk〈(x, ξ)〉−ρ(|α+β|+N)ekρϕ

∗
(
|α+β|+N

k

)
〈(x, ξ)〉−ρ(j−N)ekρϕ

∗
(
j−N
k

)
emω(x)emω(ξ).

We obtain (
〈(x, ξ)〉−(j−N)ekLϕ

∗
(
j−N
kL

)
≤
)
〈(x, ξ)〉−(j−N)ekϕ

∗
(
j−N
k

)
≤ (2R)−(j−N),

and thus, for its ρ-power also. Therefore, for k ≥ n, j ≥ N and the constants (Dk)k≥n as in (4.10) we
have ∣∣Dα

xD
β
ξ

(
Ψj,k(x, ξ)aj(x, ξ)

)∣∣
≤ Dk〈(x, ξ)〉−ρ(|α+β|+N)ekρϕ

∗
(
|α+β|+N

k

)
(2R)−ρ(j−N)emω(x)emω(ξ). (4.11)

Since k ≥ n and j ≥ N , we get∣∣∣Dα
xD

β
ξ

(
a−

∑
j<N

aj

)∣∣∣ ≤∑
k≥n

jk+1−1∑
j=jk
j≥N

|Dα
xD

β
ξ (Ψj,kaj)|. (4.12)
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Now, k ≥ n also implies kρϕ∗
( |α+β|+N

k

)
≤ nρϕ∗

( |α+β|+N
n

)
. Therefore, using (4.11), we can estimate

(4.12) by

(2R)ρN 〈(x, ξ)〉−ρ(|α+β|+N)emω(x)emω(ξ)
∑
k≥n

Dke
kρϕ∗

(
|α+β|+N

k

) jk+1−1∑
j=jk
j≥N

(2R)−ρj

≤ (2R)ρN 〈(x, ξ)〉−ρ(|α+β|+N)enρϕ
∗
(
|α+β|+N

n

)
emω(x)emω(ξ)

∑
k≥n

Dk,

where
∑

k≥nDk is a constant depending on n, which finishes the proof. �

From now on, we assume that n
j ϕ
∗( j
n

)
≥ n for every j ≥ jn. For every n ∈ N, we define, for

jn ≤ j < jn+1,

ϕj := Ψj,n, ϕ0 = 1. (4.13)

A simple computation gives An,j ≤ An,j+1. Since ϕj , ϕj+1 ∈ D(σ)

(
R2d
)
, we observe that the difference

ϕj − ϕj+1 belongs to D(σ)

(
R2d
)
. Therefore, by (4.8), ϕj − ϕj+1 ∈ GS0,ω

ρ .

Lemma 4.7. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ , and let A be the corresponding pseudodifferential

operator. For each u ∈ Sω(Rd),

A(u) =
∞∑
j=0

Aj(u)

in the topology of Sω(Rd), where Aj, j ≥ 0, is the pseudodifferential operator given by the amplitude
(ϕj − ϕj+1)(x, ξ)a(x, y, ξ).

Proof. For jn ≤ j < jn+1, it is not difficult to see that
(
ϕj −ϕj+1

)
(x, ξ)a(x, y, ξ) ∈ GAm,ω

ρ . We have, for

u ∈ Sω(Rd),
∞∑
j=0

Aj(u) = lim
N→∞

∫
Rd

∫
Rd
ei(x−y)ξ

(
1− ϕN+1(x, ξ)

)
a(x, y, ξ)u(y)dydξ.

Now, we observe that, for each (x, ξ) ∈ R2d,

(1− ϕN+1)(x, ξ) = Φ
( (x, ξ)

An,N+1

)
,

where Φ ∈ D(σ)(R2d) ⊂ Sω(R2d) is like in formula (4.4). Hence, Φ(0, 0) = 1. Moreover, An,N+1 → ∞ as
N →∞. Therefore, proceeding as in the proof of Theorem 3.7 we have

A(u)(x) = lim
N→∞

∫ (∫ (
1− ϕN+1

)
(x, ξ)ei(x−y)ξa(x, y, ξ)u(y)dy

)
dξ,

and the result follows. �

Below, we denote sometimes Sω(Rd) by Sω.

Proposition 4.8. Let
∑∞

j=0 pj(x, ξ) be a formal sum in FGSm,ωρ and (Cn)n be the corresponding sequence

which appears in (4.1). Let (jn)n be a sequence as in Theorem 4.6 which also satisfies that n
j ϕ
∗( j
n

)
≥

max{n, logCn} for j ≥ jn, n ∈ N. We set

p(x, ξ) :=
∞∑
j=0

ϕj(x, ξ)pj(x, ξ),

which is a symbol, where ϕj is the function in (4.13). Then, its corresponding pseudodifferential operator
P (x,D) is the limit in L

(
Sω,S ′ω

)
of the sequence of operators

SN : Sω(Rd)→ Sω(Rd), N ∈ N,
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where each SN is a pseudodifferential operator with symbol

N∑
j=0

(
ϕj − ϕj+1

)
(x, ξ)

( j∑
l=0

pl(x, ξ)
)
, N ∈ N.

Proof. By Theorem 4.6, the function p(x, ξ) is a symbol. Moreover, for each j ∈ N0, one can show that

(
ϕj − ϕj+1

)
(x, ξ)

( j∑
l=0

pl(x, ξ)
)

=

j∑
l=0

(
ϕj − ϕj+1

)
(x, ξ)pl(x, ξ)

is also a global symbol in GSm,ωρ . Hence, the function

N∑
j=0

(
ϕj − ϕj+1

)
(x, ξ)

( j∑
l=0

pl(x, ξ)
)

=

N∑
j=0

ϕj(x, ξ)pj(x, ξ)− ϕN+1(x, ξ)

N∑
l=0

pl(x, ξ)

is a global symbol in GSm,ωρ since it is a finite sum of global symbols.

Now, we prove that SN → P in L
(
Sω,S ′ω

)
as N → +∞. Since Sω is a Fréchet-Montel space, it is

enough to show that, for any f, u ∈ Sω,

〈(SN − P )f, u〉 → 0 as N → +∞.

The operators P and SN , N = 1, 2, . . ., act continuously from Sω into itself. So, we have (SN −P )f ∈ Sω
and

〈(SN − P )f, u〉 =

∫
(SN − P )f(x)u(x)dx

=

∫ (∫
eixξ
( N∑
j=0

ϕj(x, ξ)pj(x, ξ)− ϕN+1(x, ξ)
N∑
l=0

pl(x, ξ)− p(x, ξ)
)
f̂(ξ)dξ

)
u(x)dx

for each f, u ∈ Sω. We will see that for each f, u ∈ Sω:

a)
∫ ( ∫

eixξ
(∑∞

j=N+1 ϕj(x, ξ)pj(x, ξ)
)
f̂(ξ)dξ

)
u(x)dx→ 0, and

b)
∫ ( ∫

eixξ
(
ϕN+1(x, ξ)

∑N
l=0 pl(x, ξ)

)
f̂(ξ)dξ

)
u(x)dx→ 0

when N →∞.
First, since f, u ∈ Sω, there exists a constant D > 0 depending on m and L (the constant of (2.2))

such that (Definition 2.10)

|f̂(ξ)| ≤ De−(m+L+1)ω(ξ),

|u(x)| ≤ De−(m+L+1)ω(x).

Now, when ϕj(x, ξ) 6= 0 and jn ≤ j < jn+1, we have log
( 〈(x,ξ)〉

2R

)
≥ n

j ϕ
∗( j
n

)
, and for the selected

sequence (Cn)n, we obtain the estimate

|pj(x, ξ)| ≤ Cnemω(x)emω(ξ)〈(x, ξ)〉−ρjenρϕ
∗
(
j
n

)
≤ Cnemω(x)emω(ξ)(2R)−ρj .

Hence (since |ϕj(x, ξ)| ≤ 2), we have

|u(x)ϕj(x, ξ)pj(x, ξ)f̂(ξ)| ≤ 2D2Cn(2R)−ρje−(L+1)(ω(x)+ω(ξ)).

Moreover, we observe that ω(x, ξ) ≤ Lω(x) +Lω(ξ) +L (by (2.2)), and since log(t) = o(ω(t)) for t→∞,
for (x, ξ) ∈ suppϕj , we can assume (for j big enough)

e−Le−Lω(x)e−Lω(ξ) ≤ e−ω(x,ξ) ≤ 1

〈(x, ξ)〉
≤ 1

2Re
n
j
ϕ∗
(
j
n

) .
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By these estimates, and taking into account that logCn ≤ n
j ϕ
∗( j
n

)
for n ∈ N and jn ≤ j < jn+1, we get

for jl ≤ N + 1 < jl+1,

∞∑
j=N+1

|u(x)ϕj(x, ξ)pj(x, ξ)f̂(ξ)| ≤ 2D2eLe−(ω(x)+ω(ξ))
∞∑
n=l

jn+1−1∑
j=jn

Cn

(2R)ρje
n
j
ϕ∗( j

n
)
,

which proves a) since the integral
∫∫

e−(ω(x)+ω(ξ))dξdx is convergent.
To see b), given N we take n with jn ≤ N + 1 < jn+1 and observe that ϕN+1(x, ξ) 6= 0 implies

log
( 〈(x,ξ)〉

2R

)
≥ n

N+1ϕ
∗(N+1

n

)
. As before, |ϕj(x, ξ)| ≤ 2 and (for N big enough)

e−ω(x,ξ) ≤ 1

〈(x, ξ)〉
≤ 1

2Re
n

N+1
ϕ∗
(
N+1
n

) ,
so we obtain∣∣u(x)ϕN+1(x, ξ)

( N∑
j=0

pj(x, ξ)
)
f̂(ξ)

∣∣ ≤ 2D2Cne
Le−(ω(x)+ω(ξ))e−

n
N+1

ϕ∗
(
N+1
n

) N∑
j=0

1

(2R)ρj

≤ Ce−(ω(x)+ω(ξ))e−
n

N+1
ϕ∗
(
N+1
n

)
,

where C := 2D2Cne
L
∑∞

j=0
1

(2R)ρj
. This concludes the proof, since jn ≤ N + 1 < jn+1 implies

n

N + 1
ϕ∗
(N + 1

n

)
≥ n.

�

4.1. Properties of formal sums. The following results are easy to check:

Example 4.9. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ and let pj(x, ξ) :=

∑
|α|=j

1
α!D

α
ξ ∂

α
y a(x, y, ξ) |y=x.

Then the series
∑∞

j=0 pj(x, ξ) is a formal sum in FGS2m,ω
ρ .

Proposition 4.10. Let
∑
pj ∈ FGSm,ωρ be a formal sum. Then, the sequence (qj)j given by qj(x, ξ) :=∑

|α|+h=j
1
α!∂

α
ξ D

α
x

(
ph(x,−ξ)

)
is a formal sum for each j ∈ N.

Definition 4.11. For
∑
pj ∈ FGSm,ωρ , we define (

∑
pj)

t as the formal sum
∑

j qj, where

qj(x, ξ) :=
∑
|α|+h=j

1

α!
∂αξ D

α
x

(
ph(x,−ξ)

)
.

In particular, if p(x, ξ) is a symbol, pt(x, ξ) denotes the formal sum
∑

j qj defined by

qj(x, ξ) :=
∑
|α|=j

1

α!
∂αξ D

α
x

(
p(x,−ξ)

)
.

Proposition 4.12. Let
∑
pj ∈ FGSm1,ω

ρ and
∑
qj ∈ FGSm2,ω

ρ be two formal sums. The sequence (rj),

defined by rj(x, ξ) =
∑
|α|+k+h=j

1
α!∂

α
ξ ph(x, ξ)Dα

x qk(x, ξ) is a formal sum in FGSm1+m2,ω
ρ .

Definition 4.13. For
∑
pj ∈ FGSm1,ω

ρ ,
∑
qj ∈ FGSm2,ω

ρ , we define (
∑
pj) ◦ (

∑
qj) =

∑
rj, where

rj(x, ξ) =
∑

|α|+h+k=j

1

α!
∂αξ ph(x, ξ)Dα

x qk(x, ξ).

Proposition 4.14. If
∑
pj ∼

∑
p′j and

∑
qj ∼

∑
q′j, then (

∑
pj) ◦ (

∑
qj) ∼ (

∑
p′j) ◦ (

∑
q′j).

5. Composition of operators and the transpose operator

First, we study the kernel of a pseudodifferential operator and we show that it behaves like a Sω-function
outside of an arbitrary strip around the diagonal, similarly to the local case; see [10, 17].
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5.1. The behaviour of the kernel of a pseudodifferential operator outside the diagonal. For
any r > 0, we denote

∆r :=
{

(x, y) ∈ R2d : |x− y| < r
}
.

Lemma 5.1. Given r > 0, there exists χ ∈ E(ω)
(
R2d
)

such that 0 ≤ χ ≤ 1, χ(x, y) = 1 if (x, y) ∈ R2d\∆r

and χ(x, y) = 0 if (x, y) ∈ ∆ r
2
, which satisfies that for every λ > 0 there exists Cλ > 0 with

|Dα
xD

β
yχ(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
, α, β ∈ Nd0, x, y ∈ Rd.

Proof. Let ϕ ∈ E(ω)(Rd) such that ϕ(ξ) = 0 if |ξ| < r
2 , ϕ(ξ) = 1 if |ξ| ≥ r, and 0 ≤ ϕ ≤ 1. The desired

function is χ(x, y) = ϕ(x− y). �

The next result is crucial for the proof of Theorem 5.4. We observe that it is stronger than the ones
given in [17, Theorem 6.3.3] and [18, Proposition 5].

Theorem 5.2. Given r > 0 and an amplitude a(x, y, ξ) ∈ GAm,ω
ρ , we have that the formal kernel

K(x, y) :=

∫
Rd
ei(x−y)ξa(x, y, ξ)dξ

satisfies:

(1) K(x, y) ∈ C∞
(
R2d \∆r

)
,

(2) For every λ > 0 there exists Cλ > 0 (which depends on r > 0) such that for all (x, y) ∈ R2d \∆r

and all α, β ∈ Nd0, we have

|Dα
xD

β
yK(x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
e−λω(x)e−λω(y).

Proof. Let σ be a weight function as in Lemma 2.9(2) with a = ρ. We consider Ψ ∈ D(σ)

(
R2d
)

such that
Ψ(x, ξ) = 1 if 〈(x, ξ)〉 ≤ 2 and Ψ(x, ξ) = 0 if 〈(x, ξ)〉 ≥ 3. We write

Kn(x, y) =

∫
Rd
ei(x−y)ξa(x, y, ξ)Ψ

( x
2n
,
ξ

2n
)
dξ.

We denote by An the operator associated to the kernel Kn. By Theorem 3.7, it is easy to see that
Kn → K in S ′ω

(
R2d
)
.

Given (x, y) ∈ R2d \∆r, there is c0 > 0 independent of (x, y) /∈ ∆r such that |x − y|∞ ≥ c0. We can
assume that for a given point (x, y) /∈ ∆r, |x − y|∞ = |xl − yl| for some 1 ≤ l ≤ d. We will proceed
similarly to the proof of [10, Theorem 2.17], but here we need to apply a further integration by parts.
We have

Dα
xD

γ
y

(
Kn(x, y)−Kn+1(x, y)

)
=

∑
α1+α2+α3=α

∑
µ≤γ

α!

α1!α2!α3!

(
γ

µ

)
(−1)|µ|×

×
∫
Rd
ei(x−y)ξξα1+µDα2

x Dγ−µ
y a(x, y, ξ)Dα3

x

(
Ψ
((x, ξ)

2n
)
−Ψ

((x, ξ)

2n+1

))
dξ.

We fix λ ∈ N and take k > λ to determine later. We integrate by parts N times, N ∈ N, to get

Dα
xD

γ
y

(
Kn(x, y)−Kn+1(x, y)

)
=

∑
α1+α2+α3=α

∑
µ≤γ

α!

α1!α2!α3!

(
γ

µ

)
(−1)N+|µ|

|xl − yl|N
×

×
∫
Rd
ei(x−y)ξDN

ξl

[
ξα1+µDα2

x Dγ−µ
y a(x, y, ξ)Dα3

x

(
Ψ
((x, ξ)

2n
)
−Ψ

((x, ξ)

2n+1

))]
dξ

=
∑

α1+α2+α3=α
µ≤γ

∑
N1+N2+N3=N
N1≤(α1)l+µl

α!

α1!α2!α3!

(
γ

µ

)
(−1)N+|µ|

|xl − yl|N
N !

N1!N2!N3!

(
(α1)l + µl

)
!(

(α1)l + µl −N1

)
!
×

×
∫
Rd
ei(x−y)ξξα1+µ−N1elDα2

x Dγ−µ
y DN2

ξl
a(x, y, ξ)Dα3

x DN3
ξl

(
Ψ
( (x,ξ)

2n

)
−Ψ

( (x,ξ)
2n+1

))
dξ.
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Now, we integrate by parts again using an ultradifferential operator G(D) as in the proof of Proposi-
tion 3.3. For a suitable power G(D)s of G(D), s ∈ N depending on λ to be determined, we use the
formula

ei(x−y)ξ =
1

Gs(y − x)
Gs
(
−Dξ

)
ei(x−y)ξ

to obtain

Dα
xD

γ
y

(
Kn(x, y)−Kn+1(x, y)

)
=

∑
α1+α2+α3=α

µ≤γ

α!

α1!α2!α3!

(
γ

µ

)
(−1)N+|µ|

|xl − yl|N
×

×
∑
δ∈Nd0

bδ
∑

N1+N2+N3=N
N1≤(α1)l+µl

N !

N1!N2!N3!

∑
δ1+δ2+δ3=δ

δ1≤α1+µ−N1el

δ!

δ1!δ2!δ3!

(α1 + µ−N1el)!

(α1 + µ−N1el − δ1)!
×

×
(
(α1)l + µl

)
!(

(α1)l + µl −N1

)
!

1

Gs(y − x)

∫
ei(x−y)ξξα1+µ−N1el−δ1Dα2

x Dγ−µ
y DN2el+δ2

ξ a(x, y, ξ)×

×Dα3
x DN3el+δ3

ξ

(
Ψ
((x, ξ)

2n
)
−Ψ

((x, ξ)

2n+1

))
dξ.

(5.1)

We know by the properties of Gs(D) (formulas (2.19) and (2.16)) that there exist D,C1, C2 > 0 depending
on G such that

|bδ| ≤ esDe−sDϕ
∗
(
|δ|
sD

)
,∣∣∣ 1

Gs(y − x)

∣∣∣ ≤ Cs1e
−sC2ω(y−x).

Here we set A2 = 1
c20

+ d and p̃ ∈ N so that max{
√

2A, 6} ≤ ep̃ρ. By the definition of amplitude, there

exists a constant Ck > 0 such that

|Dα2
x Dγ−µ

y DN2el+δ2
ξ a(x, y, ξ)|

≤ Ck
( 〈x− y〉
〈(x, y, ξ)〉

)ρ(|α2+γ−µ+δ2|+N2)
e
4kρL2p̃+3ϕ∗

(
|α2+γ−µ+δ2|+N2

4kL2p̃+3

)
emω(x)emω(y)emω(ξ).

Now, we observe that the support of Ψ
(
x
2n ,

ξ
2n

)
− Ψ

(
x

2n+1 ,
ξ

2n+1

)
is in the set Bn := {(x, ξ) ∈ R2d : 2n ≤

〈(x, ξ)〉 ≤ 3 · 2n+1}. Hence, we have, for k ∈ N depending on λ, s to be chosen later, and for the selection
of p̃ (Lemma 2.7 (1)), ∣∣∣Dα3

x DN3el+δ3
ξ

(
Ψ
((x, ξ)

2n
)
−Ψ

((x, ξ)

2n+1

))∣∣∣
≤ 2Dke

4kρL2p̃+4ϕ∗
(
|α3+δ3|+N3

4kL2p̃+4

)( 1

2n

)|α3+δ3|+N3

≤ 2Dke
4kρL2p̃+4

e
4kρL2p̃+3ϕ∗

(
|α3+δ3|+N3

4kL2p̃+3

)
1

〈(x, ξ)〉ρN3
.

On the other hand, we also have according to (2.4) (observe that |α1 + µ| −N1 − |δ1| ≥ 0 by (5.1)),

|ξα1+µ−N1el−δ1 | ≤ |ξ||α1+µ|−N1−|δ1| ≤ 〈(x, ξ)〉|α1+µ|−N1−|δ1| ≤ eλL
4ϕ∗
(
|α1+µ|
λL4

)
eλL

4ω(〈(x,ξ)〉)

〈(x, ξ)〉ρN1
.

Moreover, since |xl − yl| ≥ c0, we get

〈x− y〉2 ≤ 1 + d|xl − yl|2 ≤
|xl − yl|2

c20
+ d|xl − yl|2 = A2|xl − yl|2,
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with A defined previously. Thus 〈x − y〉 ≤ A|xl − yl|. Therefore, by Lemma 2.6, we obtain (remember
that µ ≤ γ from (5.1))( 〈x− y〉

〈(x, y, ξ)〉

)ρ(|α2+γ−µ+δ2|+N2) 1

|xl − yl|N
≤
√

2
|α2+γ−µ+δ2|

( 〈x− y〉
〈(x, y, ξ)〉

)ρN2 1

|xl − yl|N

≤
√

2
|α2+γ−µ+δ2| 1

〈(x, ξ)〉ρN2

〈x− y〉N

|xl − yl|N
≤ (
√

2A)|α2+γ−µ+δ2|+N 1

〈(x, ξ)〉ρN2
.

We also have, by Proposition 2.5 and Lemma 2.9,

(α1 + µ−N1el)!

(α1 + µ−N1el − δ1)!

(
(α1)l + µl

)
!(

(α1)l + µl −N1

)
!
≤ 2|α1+µ|−N12(α1)l+µlδ1!N1!

≤ 4|α1+µ|Eke
kL3ϕ∗

(
|δ1|
kL3

)
e
2kL2p̃ϕ∗σ

(
N1

2kL2p̃

)
≤ 4|α1+µ|E′ke

kL3ϕ∗
(
|δ1|
kL3

)
e
2kρL2p̃ϕ∗

(
N1

2kL2p̃

)
.

Proceeding as in previous proofs we obtain, for some constant C ′λ,k,s > 0 depending on λ, k and s, and

(x, ξ) ∈ Bn, ∣∣∣Dα
xD

γ
y

(
Kn(x, y)−Kn+1(x, y)

)∣∣∣
≤ C ′λ,k,s3|α|2|γ|e

λL2ϕ∗
(
|α+γ|
λL2

)( ∑
δ∈Nd0

e−sDϕ
∗
(
|δ|
sD

)
ekL

3ϕ∗
(
|δ|
kL3

)
3|δ|
)
e−sC2ω(y−x)×

×
∫
eλL

4ω(〈(x,ξ)〉)〈(x, ξ)〉−ρN3Ne
2kρLp̃ϕ∗

(
N

2kLp̃

)
emω(x)emω(y)emω(ξ)dξ.

(5.2)

Since the inequality (5.2) holds for every N ∈ N, we can take the infimum in N to obtain, by formula (2.5),
for some constant C > 0,

inf
N∈N0

〈(x, ξ)〉−ρNe2kρϕ
∗
(
N
2k

)
=

(
inf
N∈N0

〈(x, ξ)〉−Ne2kϕ
∗
(
N
2k

))ρ
≤ e−2kρω(〈(x,ξ)〉)+ρ log(〈(x,ξ)〉)

≤ Ce−ρ(2k−1)ω(〈(x,ξ)〉)

≤ Ce−2ρ(k−1)ω(〈(x,ξ)〉)e−ρω(2
n).

If we take s > 0 big enough and k ≥ sD, the series in (5.2) is convergent (proceeding as in (3.5) and
(3.6)) and, hence we can deduce that for each λ > 0 there is some constant Cλ > 0 such that∣∣Dα

xD
γ
y

(
Kn(x, y)−Kn+1(x, y)

)∣∣ ≤ Cλe
λϕ∗
(
|α+γ|
λ

)
e−λω(x)e−λω(y)e−ρω(2

n),

for every (x, y) /∈ ∆r.
Let χ be as in Lemma 5.1. It is clear that {χKn} is a Cauchy sequence in Sω

(
R2d
)
. Since Sω

(
R2d
)

is

complete, there exists T ∈ Sω
(
R2d
)

such that χKn → T in Sω
(
R2d
)
. On the other hand, we have seen

that Kn → K in S ′ω
(
R2d
)
. Hence, χKn → χK in S ′ω

(
R2d
)

when n → ∞. This shows that χK = T in

S ′ω
(
R2d
)
. Since K = T in R2d \∆r, we have

|Dα
xD

β
yK(x, y)| = |Dα

xD
β
yT (x, y)| ≤ Cλeλϕ

∗
(
|α+β|
λ

)
e−λω(x)e−λω(y),

for (x, y) ∈ R2d \∆r, which completes the proof. �

We observe that the constant Cλ at the end of the proof of the last result becomes larger when r > 0
becomes smaller.
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5.2. Composition of pseudodifferential operators and the transpose operator. Now, for sim-
plicity, in what follows we denote Sω for Sω(Rd). The following lemma is taken from [10, Lemma 3.11].

Lemma 5.3. Let m,n, j ∈ N and t > 0 such that m ≥ n and 1
ee

m
j
ϕ∗( j

m
) ≤ t ≤ e

n
j
ϕ∗( j

n
)
. We have

tj+1 ≥ enω(t)e2mϕ∗(
j

2m
)e−j .

In particular,

enϕ
∗( j
n
) ≥ e(n−1)ω(t)e2nϕ∗(

j
2n

),

for j large enough.

Theorem 5.4. Let a(x, y, ξ) be an amplitude in GAm,ω
ρ with associated pseudodifferential operator A.

Then there exist a pseudodifferential operator P (x,D) given by a symbol p(x, ξ) in GS2m,ω
ρ and an ω-

regularizing operator R̃ such that Au = P (x,D)u+ R̃u, for each u ∈ Sω and, moreover,

p(x, ξ) ∼
∞∑
j=0

pj(x, ξ) =
∞∑
j=0

∑
|α|=j

1

α!
Dα
ξ ∂

α
y a(x, y, ξ) |y=x .

Proof. First of all we consider χ(x, y) from Lemma 5.1. We then decompose a(x, y, ξ) as

a(x, y, ξ) = χ(x, y)a(x, y, ξ) +
(
1− χ(x, y)

)
a(x, y, ξ).

On the one hand, it follows from Theorem 5.2 and Proposition 3.11 that χ(x, y)a(x, y, ξ) ∈ GAm,ω
ρ defines

an ω-regularizing operator. Then we can suppose that the support of the amplitude is in ∆k × Rd for
some k > 0.

We have
∑

j pj ∈ FGS2m,ω
ρ , by Example 4.9. Let (jn)n be as in the proof of Theorem 4.6 with

n
j ϕ
∗( j
n

)
≥ max

{
n, log(C2n), log(Dn)

}
, where Cn and Dn are the constants, depending on n ∈ N, which

appear in Definition 3.2 (of amplitude) and the definition of formal sum for
∑∞

j=0 pj(x, ξ). We take

p(x, ξ) =

∞∑
j=0

ϕj(x, ξ)pj(x, ξ),

where ϕj is defined in (4.13). We denote P := P (x,D). By Theorem 4.6, p ∼
∑
pj . By Lemma 4.7,

we have A =
∑∞

N=0AN , where AN is the pseudodifferential operator with amplitude a(x, y, ξ)
(
ϕN −

ϕN+1

)
(x, ξ). Moreover, by Proposition 4.8, P = limN→∞ SN in L(Sω,S ′ω), where SN is the pseudodiffer-

ential operator with symbol
∑N

j=0

(
ϕj − ϕj+1

)
(x, ξ)

(∑j
l=0 pl(x, ξ)

)
.

That is, for u ∈ Sω, we have

Au(x) =

∞∑
N=0

ANu(x) =

∞∑
N=0

∫∫
ei(x−y)ξ

(
(ϕN − ϕN+1)(x, ξ)a(x, y, ξ)

)
u(y)dydξ,

and

Pu(x) = lim
N→∞

∫∫
ei(x−y)ξ

( N∑
j=0

(
ϕj − ϕj+1

)
(x, ξ)

( j∑
l=0

pl(x, ξ)
))
u(y)dydξ.

Thus, we can write A−P as the series
∑∞

N=0 PN , where PN is the pseudodifferential operator associated
to

ãN (x, y, ξ) =
(
ϕN − ϕN+1

)
(x, ξ)

(
a(x, y, ξ)−

N∑
j=0

pj(x, ξ)
)
,

which is an amplitude. Our purpose is to show that the formal kernel

K(x, y) :=
∞∑
N=0

∫
ei(x−y)ξãN (x, y, ξ)dξ

belongs to Sω(R2d). We denote Kj(x, y) =
∫
ei(x−y)ξãj(x, y, ξ)dξ.



26 ASENSIO AND JORNET

As in [10, Theorem 3.13], we can write the kernel K as the limit when N →∞ of

N∑
j=1

Kj =

N∑
j=1

Ij +

N∑
j=1

Qj −WN ,

where

Ij(x, y) =
∑
|α|=j

∑
06=β≤α

1

β!(α− β)!

∫
ei(x−y)ξDβ

ξ ϕj(x, ξ)D
α−β
ξ ∂αy a(x, x, ξ)dξ

Qj(x, y) =
∑
|α|=j+1

∑
β≤α

1

β!(α− β)!

∫
ei(x−y)ξDβ

ξ

(
ϕj(x, ξ)− ϕj+1(x, ξ)

)
Dα−β
ξ ωα(x, y, ξ)dξ

ωα(x, y, ξ) = (j + 1)

∫ 1

0
∂αy a(x, x+ t(y − x), ξ)(1− t)jdt

WN (x, y) =

N∑
|α|=1

∑
06=β≤α

1

β!(α− β)!

∫
ei(x−y)ξDβ

ξ ϕN+1(x, ξ)D
α−β
ξ ∂αy a(x, x, ξ)dξ.

We will not give a detailed proof of all the steps below, unless it was necessary.

First step. We see that
∑∞

j=1 Ij belongs to Sω(R2d). To this, we consider γ, ε ∈ Nd0. We begin by
differentiating Ij :

Dγ
xD

ε
yIj(x, y) =

∑
|α|=j

∑
0 6=β≤α

1

β!(α− β)!

∑
γ1+γ2+γ3=γ

γ!

γ1!γ2!γ3!
×

×
∫

(−1)εξε+γ1ei(x−y)ξDγ2
x D

β
ξ ϕj(x, ξ)D

γ3
x ∂

α
yD

α−β
ξ a(x, x, ξ)dξ.

Here we use integration by parts with the formula

ei(x−y)ξ =
1

G(y − x)
G
(
−Dξ

)
ei(x−y)ξ, (5.3)

for a suitable power Gs(D) of G(D), being G(ξ) the function that appears in Theorem 2.16, to obtain∫
ξε+γ1ei(x−y)ξDγ2

x D
β
ξ ϕj(x, ξ)D

γ3
x ∂

α
yD

α−β
ξ a(x, x, ξ)dξ

=

∫
ei(x−y)ξ

1

Gs(y − x)
Gs(Dξ)

{
ξε+γ1Dγ2

x D
β
ξ ϕj(x, ξ)D

γ3
x ∂

α
yD

α−β
ξ a(x, x, ξ)

}
dξ

=

∫
ei(x−y)ξ

1

Gs(y − x)

∑
τ∈Nd0

bτ
∑

τ1+τ2+τ3=τ
τ1≤ε+γ1

τ !

τ1!τ2!τ3!

(ε+ γ1)!

(ε+ γ1 − τ1)!
ξε+γ1−τ1 ×

×Dγ2
x D

β+τ2
ξ ϕj(x, ξ)D

γ3
x ∂

α
yD

α−β+τ3
ξ a(x, x, ξ)dξ.

Therefore

Dγ
xD

ε
yIj(x, y)

=
∑
|α|=j

∑
06=β≤α

1

β!(α− β)!
(−1)ε

∑
τ∈Nd0

bτ
∑

γ1+γ2+γ3=γ
τ1+τ2+τ3=τ
τ1≤ε+γ1

γ!

γ1!γ2!γ3!

τ !

τ1!τ2!τ3!

(ε+ γ1)!

(ε+ γ1 − τ1)!
×

× 1

Gs(y − x)

∫
ei(x−y)ξξε+γ1−τ1Dγ2

x D
β+τ2
ξ ϕj(x, ξ)D

γ3
x ∂

α
yD

α−β+τ3
ξ a(x, x, ξ)dξ.

Now, proceeding as in [10, Theorem 3.13] (using Lemma 5.3), it follows that
∑∞

j=1 Ij ∈ Sω(R2d).
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Second step. Now, let us prove that
∑∞

j=1Qj belongs to Sω(R2d). We proceed as before, and we first

calculate, for γ, ε ∈ Nd0, the derivatives of Qj :

Dγ
xD

ε
yQj(x, y) =

∑
|α|=j+1

∑
β≤α

1

β!(α− β)!

∑
γ1+γ2+γ3=γ
ε1+ε2=ε

γ!

γ1!γ2!γ3!

ε!

ε1!ε2!
(−1)ε1 ×

×
∫
ξγ1+ε1ei(x−y)ξDγ3

x D
β
ξ

(
ϕj(x, ξ)− ϕj+1(x, ξ)

)
Dγ2
x D

ε2
y D

α−β
ξ ωα(x, y, ξ)dξ.

We use again the integration by parts given by formula (5.3) with Gs(D) for a suitable power of G(D)
in the integral above to obtain, in the integrand,

ei(x−y)ξ
1

Gs(y − x)
Gs(Dξ)

(
ξγ1+ε1Dγ3

x D
β
ξ

(
ϕj(x, ξ)− ϕj+1(x, ξ)

)
Dγ2
x D

ε2
y D

α−β
ξ ωα(x, y, ξ)

)
= ei(x−y)ξ

1

Gs(y − x)

∑
τ∈Nd0

bτ
∑

τ1+τ2+τ3=τ
τ1≤γ1+ε1

τ !

τ1!τ2!τ3!

(γ1 + ε1)!

(γ1 + ε1 − τ1)!
ξγ1+ε1−τ1 ×

×Dγ3
x D

β+τ3
ξ

(
ϕj(x, ξ)− ϕj+1(x, ξ)

)
Dγ2
x D

ε2
y D

α−β+τ2
ξ ωα(x, y, ξ).

So, we have

Dγ
xD

ε
yQj(x, y) =

∑
|α|=j+1

∑
β≤α

1

β!(α− β)!

∑
τ∈Nd0

bτ
∑

γ1+γ2+γ3=γ
ε1+ε2=ε

τ1+τ2+τ3=τ, τ1≤γ1+ε1

(−1)ε1
γ!

γ1!γ2!γ3!

ε!

ε1!ε2!

τ !

τ1!τ2!τ3!
×

× (γ1 + ε1)!

(γ1 + ε1 − τ1)!
1

Gs(y − x)

∫
ei(x−y)ξξγ1+ε1−τ1×

×Dγ3
x D

β+τ3
ξ

(
ϕj(x, ξ)− ϕj+1(x, ξ)

)
Dγ2
x D

ε2
y D

α−β+τ2
ξ ωα(x, y, ξ)dξ.

Now, fix λ > 0 and take n ≥ λ
ρ . To estimate the derivatives of ωα(x, y, ξ), we denote by p a positive

number such that 1 + k < ep, where k is the constant for the subscript of ∆k. For this n, we define
n := 16(2nL3+q + 2mρ L

q + 1)Lp where L > 0 is the constant in Lemma 2.7 (1), R > 0 is the constant in

Definition 4.1 and q ∈ N is such that 2q ≥ 3R. Then, there is Cn > 0 such that

|Dγ2
x D

ε2
y D

α−β+τ2
ξ ωα(x, y, ξ)|

≤ (j + 1)

∫ 1

0
|1− t|j |t||ε2|

∣∣Dγ2
x D

α+ε2
y Dα−β+τ2

ξ a(x, x+ t(y − x), ξ)
∣∣dt

≤ Cnenρϕ
∗
(
|2α−β+γ2+ε2+τ2|

n

)
emω(x)emω(ξ)(j + 1)×

×
∫ 1

0
|1− t|j |t||ε2|

( 〈t(x− y)〉
〈(x, x+ t(y − x), ξ)〉

)ρ|2α−β+γ2+ε2+τ2|
emω(x+t(y−x))dt.

Since |x − y| < k, we have 〈t(x − y)〉 ≤
√

1 + k2 < 1 + k < ep. Also, 〈(x, x + t(y − x), ξ)〉 ≥ 〈(x, ξ)〉.
With this, we argue as in the first step to see that

∑∞
j=1Qj belongs to Sω(R2d) for R ≥ 1 big enough.

Third step. Let TN : Sω → Sω be the operator with kernel WN . Since A − P =
∑∞

N=0 PN converges

in L(Sω,S ′ω), it follows that (TN ) converges to an operator T : Sω → Sω in L(Sω,S ′ω). In fact, we have

seen that
∑N

j=1 Ij +
∑N

j=1Qj converges in Sω(R2d) as N → +∞, hence in S ′ω(R2d). Then, by the kernel’s

theorem,
∑N

j=1 Ij +
∑N

j=1Qj is the kernel of an operator that converges in L(Sω,S ′ω) as N →∞.

We want to show T = 0 in L(Sω,S ′ω). To this aim, we fix N ∈ N, jn ≤ N + 1 < jn+1 and we set

aN := Re
n

N+1
ϕ∗
(
N+1
n

)
. We assume 2aN ≤ 〈(x, ξ)〉 ≤ 3aN since otherwise Dβ

ξ ϕN+1(x, ξ) vanishes for all
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β 6= 0. For f ∈ Sω, we have

〈TNu, f〉 =

∫
TNu(x)f(x)dx =

∫ (∫
WN (x, y)u(y)dy

)
f(x)dx

=

∫ (∫ N∑
|α|=1

∑
06=β≤α

1

β!(α− β)!

(∫
ei(x−y)ξDβ

ξ ϕN+1(x, ξ)D
α−β
ξ ∂αy a(x, x, ξ)dξ

)
u(y)dy

)
f(x)dx

=
N∑
|α|=1

∑
06=β≤α

1

β!(α− β)!

∫ (∫
eixξDβ

ξ ϕN+1(x, ξ)D
α−β
ξ ∂αy a(x, x, ξ)û(ξ)dξ

)
f(x)dx.

By definition of amplitude and ϕj , for all n ∈ N there are Cn, Dn > 0 with∣∣Dβ
ξ ϕN+1(x, ξ)

∣∣ ≤ Dn〈(x, ξ)〉−ρ|β|enρϕ
∗
(
|β|
n

)
∣∣Dα−β

ξ Dα
y a(x, x, ξ)

∣∣ ≤ C2n〈(x, ξ)〉−ρ|2α−β|e2nρϕ
∗
(
|2α−β|

2n

)
e2mω(x)emω(ξ).

Since u and f belong to Sω, by Definition 2.10, there exist C1, C2 > 0 (that only depend on m) such that∣∣û(ξ)
∣∣ ≤ C1e

−(m+1)ω(ξ) and |f(x)| ≤ C2e
−(2m+1)ω(x).

We observe that, by the convexity of ϕ∗, enρϕ
∗
(
|β|
n

)
e2nρϕ

∗
(
|2α−β|

2n

)
≤ e2nρϕ

∗
(
|α|
n

)
. On the other hand, since

ϕ∗(x)/x is increasing,

〈(x, ξ)〉−ρ|α| ≤ (2R)−ρ|α|e−ρ|α|
n

N+1
ϕ∗
(
N+1
n

)
≤ (2R)−ρ|α|e−ρnϕ

∗
(
|α|
n

)
.

These estimates give∣∣〈TNu, f〉∣∣ ≤ N∑
|α|=1

∑
06=β≤α

1

β!(α− β)!

∫∫
〈(x,ξ)〉≥2aN

C2nDnC1C2e
2nρϕ∗

(
|α|
n

)
(2R)−2ρ|α| ×

×e−2ρnϕ
∗
(
|α|
n

)
e2mω(x)emω(ξ)e−(2m+1)ω(x)e−(m+1)ω(ξ)dξdx

≤
N∑
|α|=1

∑
06=β≤α

(2R)−2ρ|α|En
β!(α− β)!

(∫
Rd×{|ξ|≥2aN}

+

∫
{|x|≥2aN}×Rd

)
e−ω(x)−ω(ξ)dxdξ. (5.4)

Here, En = C1C2C2nDn. Now, we consider in (5.4) only the integral on Rd×{|ξ| ≥ 2aN}. The argument
for the addend with the integral on {|x| ≥ 2aN}×Rd is analogous. By property (γ) of the weight function,∫
e−ω(x)dx converges and, moreover, for N big enough, for some constant C > 0, we also have∫

|ξ|≥2aN
e−ω(ξ)dξ ≤ C

(2aN )3
.

So, we obtain the estimate

CC1C2

(∫
e−ω(x)dx

) N∑
|α|=1

∑
0 6=β≤α

1

β!(α− β)!

1

(2R)ρ|α|
C2nDn

a3N
.

Finally, by the selection of (jn), we have e
−n
j
ϕ∗
(
j
n

)
≤ e−n for j ≥ jn. This finishes the proof, since

1
aN

C2n
aN

Dn
aN
≤ e−n and

N∑
|α|=1

∑
06=β≤α

1

β!(α− β)!

1

(2R)ρ|α|
≤

N∑
k=1

( d

(2R)ρ

)k
converges when N → +∞ provided R ≥ 1 be large enough. �

We want to prove that our class of pseudodifferential operators is closed when composing operators
and also when we take transpose operators.
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Proposition 5.5. Let P (x,D) be the pseudodifferential operator associated to p(x, ξ) ∈ GSm,ωρ . Then

the transpose operator, restricted to Sω, can be decomposed as P (x,D)t = Q(x,D) + R̃, where R̃ is an
ω-regularizing operator and Q(x,D) is the operator defined by q(x, ξ) ∼ pt(x, ξ).

Proof. The transpose operator P (x,D)t is the pseudodifferential operator associated to the amplitude
p(y,−ξ). So, the result follows from Theorem 5.4. �

The following result is straightforward, so we omit its proof [21].

Lemma 5.6. Let p(x, ξ), q(x, ξ) be symbols in GSm,ωρ . If b(x, ξ) is a symbol in GSm,ωρ such that b(x, ξ) ∼
qt(x,−ξ) and r(x, ξ) ∈ GS2m,ω

ρ is equivalent to
∑

j

∑
|α|=j

1
α!∂

α
ξ D

α
y (p(x, ξ)b(y, ξ)) |y=x, then r(x, ξ) ∼

p(x, ξ) ◦ q(x, ξ).

Theorem 5.7. Let p(x, ξ), q(x, ξ) be symbols in GSm1,ω
ρ , GSm2,ω

ρ respectively, and let P,Q : Sω → Sω be
the corresponding pseudodifferential operators. Then, the composition P ◦Q : Sω → Sω coincides, modulo
an ω-regularizing operator, with the pseudodifferential operator associated to (2π)d(p(x, ξ) ◦ q(x, ξ)).

Proof. We already know that Qt is given by the amplitude q(y,−ξ). Then, Qt = Q′ + T ′, where T ′ is ω-
regularizing, and Q′ is defined by a symbol q′ that is equivalent to qt. Since the class of the ω-regularizing
operators is closed by taking transposes, and by the fact that (Qt)t = Q, we observe Q = Q1 +T1, where
T1 is ω-regularizing, and Q1 is the operator associated to b(y, ξ) := q′(y,−ξ) ∼ qt(y,−ξ). Moreover,
P ◦ T1 is an ω-regularizing operator.

We consider the composition P ◦Q1 : Sω → Sω given by P (Q1f)(x) =
∫
p(x, ξ)Q̂1f(ξ)eixξdξ. It is easy

to see that Q1f(x) = Î(−x), where I(ξ) :=
∫
b(y, ξ)f(y)e−iyξdy. Thus, Q̂1f(ξ) = (2π)dI(ξ), and hence

P ◦ Q1 is a pseudodifferential operator associated to (2π)dp(x, ξ)b(y, ξ). Theorem 5.4 and Lemma 5.6
give the conclusion. �
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[4] José Bonet, Reinhold Meise, and Sergej N. Melikhov. A comparison of two different ways to define classes of ultradif-

ferentiable functions. Bull. Belg. Math. Soc. Simon Stevin, 14(3):425–444, 2007.
[5] R. W. Braun, R. Meise, and B. A. Taylor. Ultradifferentiable functions and Fourier analysis. Results Math., 17(3-4):206–

237, 1990.
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