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Abstract. New paradigms in aviation, as the expected shortage of qual-
ified pilots and the increasing number of flights worldwide, present big
challenges to aeronautic enterprises and regulators. In this sense, a con-
cept known as Single Pilot Operations arises in the task of dealing with
these challenges, for which, automation becomes necessary, especially
in Air Traffic Management. In this regard, this paper presents a deep
learning-based approach to leveraging the job of both ground controllers
and pilots. Making use of Meteorological Terminal Air Reports, obtained
regularly from every aerodrome worldwide, we created a model based on
a multi-layer perceptron capable of determining the approach trajectory
of an aircraft thirty minutes prior to the expected landing time. Experi-
ments on aircraft trajectories from Toulouse to Seville, show an accuracy,
recall and F1-score higher than 0.9 for the resultant predictive model.

Keywords: Air Traffic Management ·Weather reports · METAR · Tra-
jectory prediction · Deep learning.

1 Introduction

Since the 1950s, technological advances in engines, voice communication and
navigation equipment have resulted in a decreasing number of cockpit members
from 5 to 2 persons. In the last years, further automation and technological
developments, added to an expected exacerbation of the existing global shortage
of qualified pilots [1] have propitiated an arising interest in a concept known as
Single Pilot Operations (SPO), with the aim of reducing the current commercial
cockpit crew from 2 to a single pilot, favouring research within this topic [2, 3].
In this sense, it is argued that re-conceptualising the flight-deck and the role of
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the pilot [3] along with an increasing support from a ground-operator [4], are
necessary conditions for SPO.

There is great consensus that, in order to implement SPO, several co-pilot
functions will have to migrate to ground control stations [2, 5] or be automated
in the aircraft. In both cases, it is accepted that the use of automation, through
digital assistants, will need to be increased both on-deck and on the ground in
order for SPO to be successful [2, 6].

In this regard, decision-support systems have become a necessity with the
aim of easing the increasing workload of both pilots and ground operators. In
particular, artificial intelligence algorithms could be a great asset in solving diffi-
cult, non-trivial tasks such as air traffic conflict resolution, flight delay prediction
and trajectory prediction.

With respect to air traffic conflict resolution, Deep Learning (DL) techniques
have been proved to be useful to prevent conflicts between two aircraft by using
neural networks and genetic algorithms while being time-efficient [7].

With the aim of predicting flight delays, different approaches have been stud-
ied based on weather data usage. In this sense, [8] proposed a Machine Learning
(ML) based model able to classify airline delays induced by varying weather
condition, comparing the efficiency of different algorithms, including Random
Forest, AdaBoost, k-Nearest-Neighbours and Decision Trees. From a different
perspective, [9] proposed a Long Short-Term Memory (LSTM) architecture to
predict flight delays including airport and weather data, among other features.

With regard to trajectory prediction, literature shows that the number of
studies applying ML or DL techniques to trajectory prediction and classifica-
tion, based on weather data, is limited compared to that of delay prediction and
conflict resolution. In this regard, in [10] an Encoder-Decoder Recurrent Neural
Network (RNN) was used to predict a flight trajectory using the flight plan as
input and incorporating weather data of areas close to the planned trajectory. In
[11], a LSTM network was used to predict the trajectory of the flight using posi-
tion data such as altitude, longitude and latitude, as input to the model, stating
that not including weather data and its fluctuating features makes the model
prone to sharp turns in the predicted trajectory and, in consequence inaccurate
predictions. More extensively, [12] presented a wider comparison of multiple ML
and DL supervised algorithms in the task of landing runway trajectory clas-
sification of arriving aircraft, based on trajectory features (latitude, longitude,
speed, altitude and course angle), and specific characteristics of the aircraft and
airport.

In this sense, our work proposes a Multi Layer Perceptron (MLP) algorithm
trained to predict the approach trajectory of an aircraft thirty minutes prior to
its landing, using solely weather reports generated by the destination airport.
For our work, the trajectory between the airports of Toulouse (TLS) and Seville
(SVQ) was considered.
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2 Materials and Methods

For this study, two types of data were necessary: flight trajectory data, including
position (latitude and longitude), altitude, speed and direction of each flight at
every given moment; and weather data at the destination airport, encoded as
Meteorological Terminal Air Reports (METAR). For each flight, two METAR
reports were gathered previous to the expected landing time following the criteria
in table 1 and being X ∈ {0 − 24}. In total, a set of 237 samples of flights
travelling from Toulouse to Seville between the 4th of November, 2017, and the
14th of January, 2020. were included into the experiments.

Table 1: META Reports timestamps
Expected landing METAR 1 Timestamp METAR 2 Timestamp

Xh 00m – Xh 15m (X-1)h 30m (X-1)h 00m

Xh 15m – Xh 45m Xh 00m (X-1)h 30m

Xh 45m – Xh 59m Xh 30m Xh 00m

2.1 Data Acquisition

In order to gather the data, a web-scrapping algorithm was used using the fligh-
tradar24 website [13]. Indicating a flight reference, we automatically updated
the generated database with any new flights information in flightradar24.

2.2 Data Curation

Landing trajectory for Ground-Truth Generation Working with a retro-
spective database, the complete trajectory is known. In order to train a classi-
fication model, we labelled each flight according to its Terminal Arrival Point
(TAP) using a non-supervised clustering algorithm (k-means). The average of
the last 20 sampled points for longitude and latitude were fed to the k-means
method. As initial cluster centroids, we used the coordinates of each point of
interest (one for every TAP - in the case of the Seville airport k=2, i.e. Rotex
and Santa).

Weather Reports Standarization METAR reports encode weather informa-
tion in a semi-structured way. These reports include a combination of multiple
fields (separated by blank spaces), some of which are always present and some
of which are optional, ones with fixed length and others with variable length
depending on the weather condition, and some fields representing quantitative
features (e.g. wind speed or temperature) and others qualitative features (e.g.
cloud or rain types). A sample of a METAR report from the Airport of Seville
can be seen in Table 2:
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Table 2: A representative sample of METAR Report
LEZL 132230Z VRB01KT 0400 R27/0450D R09/0325N

FG VV003 07/07 Q1023 TEMPO 3000 NSW

To structure this data, taking advantage of its particular disposition, a regular-
expression search algorithm was used, obtaining an array of 64 features for each
report. Quantitative information is combined with one-hot-encoded categorical
information for qualitative data (see Table 3).

Table 3: Information extracted from the META Reports to build the predictive
model

Quantitative data Qualitative data

Expected landing hour Presence of variable direction wind
Expected landing minute Ceiling And Visibility OK (CAVOK)

Wind Direction (o) Weather
Maximum wind direction (o) Expected change in weather (TEMPO)
Minimum wind direction (o) Fraction of sky covered by clouds

Wind speed (Knots) Cloud type
Wind gusts (Knots)

Visibility (m)
Expected Visibility (m)

Temperature (oC)
Dew point (oC)
Pressure (hPa)

Cloud altitude (feet)

2.3 Data Segregation

With the goal of training and validating our model, we shuffled and split the data
into two subsets. The first one for training and validating the model (80% of the
complete dataset), to fit the parameters w (weights) and b (bias) of the network
and to optimise the MLP hyperparameters, respectively. The remaining 20% of
the data comprises the testing subset used to assess the model performance. Our
dataset was consequently split into 190 flights to train and validate the model
and 47 samples for testing its performance.

Moreover, each field of the input data (structured weather data) was stan-
dardised calculating its z-score as z = F−µ

σ , where F is the feature sample, and
µ and σ are the mean and standard deviation of the feature distribution, re-
spectively. It is important to note that test data was standardised using µ and
σ parameters from the training and validation set.
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2.4 Input data selection

To be useful, a predictive model should be able to classify the approach and
landing trajectory with such anticipation that the final trajectory is still un-
known. Looking at all 237 trajectories in Fig. 1, we can assume at 30 minutes
before landing the final trajectory is not yet discerned.

Consequently, input data should be taken from the last METAR report avail-
able acquired at least 30 minutes before the expected flight landing time. With
this assumption, from the two METAR reports available for each flight, we se-
lected one as input data to the model following the rules presented in Table 4
and being X ∈ {0− 24}:

Table 4: META Report selection
Expected landing Selected report

Xh 00m – Xh 15m METAR 1

Xh 15m – Xh 30m METAR 2

Xh 30m – Xh 45m METAR 1

Xh 45m – Xh 59m METAR 2

2.5 Classification Model

In this study, we used a DL model based on a MLP with descending number of
neurons. Starting with an input layer of 64 neurons (one for each input item from
the structured weather report), 4 hidden layers with 32, 16, 8 and 4 neurons,
respectively, and an output layer of 2 neurons (one for each possible class/TAP).

We used the ReLU activation function for every fully connected layer except
for the last one, for which we used the SoftMax activation function, to calculate
the probability of each sample to belong to each class.

Fig. 1: Visualization of the 237 available trajectories (Toulouse-Seville) in our
dataset.
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After each layer, we applied Batch Normalization in order to prevent Internal
Co-variance Shift [14], and a Dropout layer (0.25) with the aim of randomly
ignoring 25% of the neurons in each layer during training stage in preventing
over-fitting [15]. We initialised the batch size to β=16 in order to update the
weight parameters of our model after forward propagating 16 samples through
the net and calculating its error using the categorical cross-entropy loss function
(1):

L(y, ŷ) = −
∑
i

yi log ŷi (1)

where y is the ground-truth label of a specific sample and ŷ is the predicted
label of such sample among the i possible classes (i.e. i = k = 2). Furthermore, we
applied the Adam optimiser [16] to update the network weights after forwarding
the inputs of each batch and calculating the error. We trained our model over 200
epochs, using a validation split of 0.2 (20% of the training dataset -38 samples-
was used to validate the model).

Note that the experimental part of this work was performed in Python 3.5,
using TensorFlow 2.0 and using the high-level Keras API [17] for building and
training the MLP.

3 Results

3.1 Ground-truth clustering stage

Regarding the ground-truth generation stage, the k-means algorithm is able to
successfully cluster each trajectory to its appropriate class. The results of the
classification algorithm are reported in Fig. 2. In green, the aircraft trajectories
whose TAP is located at west (Santa) are observed while in red the trajectories
entering by the east TAP (Rotex) of the destination aerodrome are represented.
This fact allows us to train a predictive model from a gold standard automati-
cally generated using the k-means clustering algorithm taking into advance the
longitude and latitude of the flight trajectories.

3.2 MLP training stage

This staged is performed after the ground-truth generation for each flight’s tra-
jectory and after shuffling and partitioning our METAR dataset (in which each
instance learning is composed of 64 features) in two subsets (see Table 5).

With regard to the training and validation stage, we can affirm that, after
200 epochs, no signs of over-fitting are evidenced.

3.3 Inference

When checking the performance of our trained model on new data, belonging to
the test set (the 47 data samples separated and not used to train nor validate
the model), we obtained the results reported in Table 6.
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(a) (b)

Fig. 2: Automatic ground-truth generation (clustering results). (a) Raw trajec-
tories of the training subset and (b) classified trajectories according its terminal
arrival point.

Table 5: Data distribution structure
Landing trajectory Training & Validation set Test set Total

Rotex 131 29 160

Santa 59 18 77

Total 190 47 237

Table 6: Test results: most suitable terminal arrival point for the 47 samples
Terminal Arrival Point Accuracy Recall F1-score

Rotex 0.94 0.97 0.96

Santa 0.92 0.85 0.88

Weighted average 0.94 0.94 0.94

Analysing the results, overall values show a promising modelling of the se-
lection of the most suitable TAP according to the weather information of the
destination airport. A slightly out-performance of the model when predicting the
Rotex TAP is registered. This fact may be due to the data distribution shown
in Table 5, where we can see that our dataset is not equally split between the
two target classes (160 Rotex samples and 77 Santa learning instances).

4 Conclusion

In this work, we proposed a DL-based classification model able to predict flight
approach trajectories based exclusively on meteorological reports. More partic-
ularly, this model was trained with historical weather reports of the destination
airport and trajectory data of a particular air route, making use of a MLP ar-
chitecture.

In future works, with the aim of improving the model, a bigger and more
balanced dataset should be used in the training and testing stages. In this sense,



8 N. Jiménez-Campfens et al.

more trajectories concerning the same destination airport could be added. Using
this work as a baseline, future investigations should try to apply the proposed
model to different airports with more TAPs. Furthermore, this work could be
used as a first step for trajectory regression algorithms making use of RNN
architectures to predict the entire sequential approach trajectory.
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