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Abstract Conservation of pineapple (Ananas comosus L. Merr.) genetic resources – including 

cryopreservation in liquid N2 at -196°C – is essential for future breeding programmes to 

develop new varieties with improved agronomic performance. However, the potentially 

deleterious effects of cryopreservation on subsequent plant regrowth should be evaluated 

before large-scale development of cryobanks is implemented. This paper describes the 

histological analysis of pineapple plantlets regenerated from cryopreserved shoot tips. 

Two controls were included in the study: i) conventional micropropagation-derived plantlets, 

and ii) plants from shoot tips subjected to pre-cryostorage conditioning treatments but never 

exposed to liquid N2. Histological studies of roots, leaves and stems were conducted after  

45 days of hardening. No statistically significant differences with the controls were observed 

in any of the histological parameters evaluated, which supports the practical value of 

cryopreservation of pineapple germplasm. 
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Introduction 

Considering their commercial importance, pineapples 

are some of the most valuable tropical fruits (CHEN et al, 

2019; NATH et al, 2019), grown in more than 106 hectares 

worldwide, with a production of about 24.8 x 106 metric 

tons of fruit per year, and generating a gross market value 

of almost 9 x 109 US$ (FAOSTAT, 2015; MING et al, 

2015; WALI, 2019). However, different stressful conditions, 

both biotic and abiotic – such as, for example, microbial 

pathogens and sunburn – are increasingly threatening 

pineapple production. There is, therefore, a strong interest 

to develop new pineapple varieties with improved pathogen 

resistance or abiotic stress tolerance, as a strategy to 

enhance the agronomic performance of this fruit crop and 

thus guarantee its future production (OGATA et al., 2016; 

RATTANATHAWORNKITI et al, 2016; PAULL et al., 

2017; PRIYADARSHANI et al, 2018). In this context, 

conservation of pineapple genetic resources is essential for 

the future development of specific breeding programmes. 

A large number of plant species have been cryo-

preserved and regenerated using shoot tips as the starting 

material (CHMIELARZ, 2009; ENGELMANN and 

RAMANATHA, 2012; GONZALEZ-ARNAO et al, 2014). 

In general, the regenerated plants have been shown to be 

genetically and phenotypically stable (e.g., AGRAWAL et 

al, 2014; WANG et al, 2014), but there are also some 

reports claiming that storage in liquid N2 can cause genetic 

and epigenetic modifications in the recovered plants 

(e.g., KAITY et al, 2008; JOHNSTON et al, 2009). 

Therefore, the potentially deleterious effects of storage in 

liquid N2 on the subsequent growth and development of the 

regenerated plants should be assessed before the large-scale 

establishment of cryobanks is attempted. We considered, as 

a working hypothesis, that putative cryopreservation-induced 

modifications of the regenerated plants could be reflected 

in phenotypic changes affecting histological parameters. 

Recently, some histological studies of cryopreserved 

materials have been conducted in several plant species, 

including Spermacoce hispida L. (DEEPAK et al, 2019), 

Passiflora pohlii Mast (SIMÃO et al, 2018) or a relatively 

large number (32) of citrus taxa (VOLK et al, 2017). This 

short communication describes an extensive histological 

analysis of 45-day old pineapple plantlets regenerated from 

shoot tips after short-term storage at ultra-low temperatures 

in liquid N2, in comparison with appropriate controls not 

subjected to cryostorage.  

 

Materials and Methods 

Plant material  

In vitro culture of pineapple (cv. MD-2) buds was 

initiated from field-grown plants as previously described 

(DAQUINTA and BENEGAS, 1997). Three groups of 

plant materials were identified and used for the histo-

logical evaluation of plantlet growth after 45 days of 

acclimatization: i) conventional micropropagation-derived 

plants (control 1) (DAQUINTA and BENEGAS, 1997);  

ii) plants regenerated from shoot tips that had been 

subjected to pre-cryostorage conditioning treatments (see 

below), but were never exposed to liquid N2 (control 2), 

and iii) plants from shoot tips exposed to liquid N2 

(cryopreserved plants). 

 

Pre-cryostorage treatments, storage in liquid N2 

and recovery of shoot tips 

The droplet-vitrification method was performed as 

described by SOUZA et al (2016), except that vitrification 

solution PVS3 (MARTÍNEZ-MONTERO et al, 2012; see 

below) was used instead of PVS2. Shoot tips (1 mm long, 

ca. 5 mg) were incubated for 24 h in Petri dishes on semi-

solid MS medium (MURASHIGE and SKOOG, 1962), 

with 2.0 M glycerol and 0.4 M sucrose. Shoot tips were 

then placed in 2 ml polypropylene cryovials (10 tips per 

vial) containing 1 ml of loading solution (1 ml of 2.0 M 

glycerol and 0.4 M sucrose in MS medium) and were 

incubated at 25°C for 20 min. Shoot tips, and the loading 

solution were transferred to Petri dishes, each containing 

filter paper wetted with 5 ml of PVS3 solution: 50% (w/v) 

glycerol; 50% (w/v) sucrose, pre-cooled at 0°C. Petri dishes 

were placed on ice for 60 min, and then the shoot tips were 

transferred to pieces of aluminium foil (40 mm x 5 mm x 

0.05 mm; 5 tips per piece) each containing micro-drops  

(0.1 ml) of PVS3 solution. Aluminium foil pieces were kept 

on ice until transfer to 2-ml cryovials, which were then 

immersed in liquid N2 and stored under these conditions for 

15 h. Shoot tips were recovered at room temperature by 

replacing the PVS3 solution with 1 ml of modified MS 

medium, containing 1 M sucrose, and incubating the 

samples at 25°C, 20 min. The medium used to recover 

plantlets from shoot tips contained MS (MURASHIGE and 

SKOOG 1962) minerals, 100 mg l-1 myo-inositol, 0.1 mg l-1 

thiamine-HCl, 30 g l-1 sucrose, 4.4 µM 6-benzyladenine (BA), 

and 5.3 µM naphthaleneacetic acid (NAA) (DAQUINTA 

and BENEGAS, 1997). The complete procedure described 

above was used to obtain the ‘cryopreserved’ plantlets; as 
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mentioned before, ‘control 2’ material was subjected to the 

same treatments except for freezing and storage in liquid N2. 

 

Plant hardening and histological analysis 

Plantlets were transferred for hardening after the in 

vitro treatments (YANES-PAZ et al, 2000). The acclima-

tisation trial, in a completely randomised design, included 

four replications (15 plants each) per treatment. After  

45 days of hardening, histological studies were conducted 

in middle-aged roots and leaves and the stem base.  

Ten plantlets were randomly selected per treatment. 

Anatomical studies were performed according to Johansen 

(1940), using a Zeizz® microscope and a Canon® Power 

Shot A 630 digital camera. The statistical analysis of  

the experimental data (One-Way ANOVA and Tukey test, 

p < 0.05) was carried out using SPSS software (Version 8.0 

for Windows, SPSS Inc., New York, NY). 

 

Results  

Photos of the histological samples of pineapple 

plantlets derived from cryopreserved shoot tips and the two 

controls (not shown) were used to determine a series of 

anatomic parameters in roots, stems and leaves. Thus, pith 

diameter, central cylinder diameter, parenchyma thickness, 

cortex thickness, epidermis thickness, and thickness of 

transversal root radios, were measured in roots (Table 1). 

Pith diameter, central cylinder diameter, epidermis 

thickness, and transversal radio of the stem base were 

determined in stems (Table 2). Similarly, the transversal 

thickness of leaf at the middle, adaxial epidermis thickness, 

abaxial epidermis thickness, adaxial cuticle thickness, 

abaxial cuticle thickness, the thickness of the leaf photo-

synthetic parenchyma, and thickness of the leaf aquiferous 

parenchyma were measured in leaves (Table 3). As shown 

in Tables 1, 2 and 3, no statistically significant differences 

were observed in any the histological phenotype indicators 

evaluated (ANOVA, p < 0.05), when comparing plantlets 

recovered from shoot tips frozen and stored in liquid N2 and 

those of the controls, which were never subjected to 

ultra-low temperatures. Just to highlight a few examples, it 

can be mentioned that roots of 45-day old ‘cryopreserved’ 

pineapple plantlets averaged 53.47 μm pith diameter, 

whereas mean values of 52.70 μm and 51.77 μm were 

determined for controls 1 and 2, respectively (Table 1). 

The mean central cylinder diameter at the base of the 

stem was 409.25 μm in cryopreserved plantlets, and no 

significant differences were observed with the same 

measurements performed in micropropagation-derived 

plantlets (409.57 μm ) or in those of control 2 (406.86) 

(Table 2). Regarding the transversal thickness of leaf at 

the middle, 771.86 μm, 774.40 μm and 772.03 μm were 

measured for cryopreserved, control 1 and control  

2 plantlets, respectively (Table 3). Little variability was 

observed between replicated samples, as indicated by the 

calculated SE values, which were relatively low for all 

samples (Tables 1, 2 and 3).  

 

Discussion 

Most studies on cryopreservation of plant material 

have shown genetic and phenotypic stability of the 

regenerated plants, as in the work presented here. Several 

authors have reported stability in cryopreserved apices, for 

example, in plantain (AGRAWAL et al, 2014) or potato 

(WANG et al, 2014). Cryopreservation has also been 

used to break the dormancy of recalcitrant species, without 

showing genetic or phenotypic variations of the regene-

rated plants (Matsumoto et al., 2015). Moreover, liquid N2 

has been employed in cryo-therapy, to eliminate pathogens 

from plant material, without any effect of the treatment on 

its stability (WANG et al, 2014). 

Nevertheless, contrasting with most published results, 

some articles claim that cryopreservation can introduce 

variations in the regenerated plant material. Among those 

reports, the works of CHANNUNTAPIPAT et al (2003) in 

Prunus dulcis Mill., DeVerno et al. (1999) in Picea glauca 

(Moench) VOSS, KAITY et al (2008) in Carica papaya L., 

and JOHNSTON et al (2009) in Ribes rubrum L., can be 

mentioned. Although these changes are probably due to 

the use of poorly organised tissues, such as callus or  

cell suspensions (HAO et al, 2002; HARDING, 2004; 

KACZMARCZYK, 2018), we considered it essential to 

evaluate the potentially deleterious effects of cryopreser-

vation on subsequent plant regeneration.  

 

Conclusions 

Our results indicate that shoot tip exposure to liquid 

N2 did not alter pineapple growth and development at  

45 days of acclimation, as a relatively large number of 

histological parameters did not differ significantly from 

those of comparable control plantlets that had not been 

subjected to ultra-low temperatures. Although these results 

should be confirmed using more extended periods of 

cryostorage of the shoot tips, they support the use  

of cryopreservation as an important tool for conservation of 

pineapple germplasm. As far as we know, this is the first 

publication on histological analysis of pineapple plantlets 

after cryopreservation. 
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Table 1. Histological effects of cryopreservation of pineapple shoot-tips  

on the roots of regenerated plantlets 

 Origin of plantlets (treatments compared) 

 

Conventional 

micropropagation-

derived plants 

(control 1) 

Plants from shoot tips never 

exposed to LN, but submitted 

to pre-cryostorage 

conditioning treatments 

(control 2) 

Plants from shoot 

tips exposed to LN 

(cryopreserved 

plants) 

Pith diameter (μm) 52.70 ± 0.75 51.77 ± 0.72 53.47 ± 0.73 

Central cylinder  

diameter (μm) 
67.67 ± 1.45 68.56 ± 1.45 69.21 ± 1.70 

Parenchyma thickness 

(μm) 
75.62 ± 0.67 75.50 ± 0.74 75.62 ± 0.76 

Cortex thickness (μm) 90.23 ± 0.92 90.46 ± 1.05 90.82 ± 1.09 

Epidermis thickness (μm) 44.54 ± 0.86 42.89 ± 1.07 42.60 ± 0.88 

Thickness of transversal 

root radios (μm) 
256.37 ± 3.02 256.22 ± 1.94 258.52 ± 2.40 
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Table 2. Histological effects of cryopreservation of pineapple shoot-tips  

on the stem base of regenerated plantlets 

 Origin of plantlets (treatments compared) 

 

Conventional 

micropropagation-

derived plants 

(control 1) 

Plants from shoot tips never 

exposed to LN, but submitted 

to pre-cryostorage conditioning 

treatments (control 2) 

Plants from shoot 

tips exposed to LN 

(cryopreserved 

plants) 

Pith diameter (μm) 287.90 ± 0.99 288.35 ± 1.52 288.93 ± 0.84 

Central cylinder diameter 

(μm) 
409.25 ± 1.91 409.57 ± 1.80 406.86 ± 2.38 

Epidermis thickness (μm) 136.92 ± 2.08 136.21 ± 1.30 137.69 ± 1.94 

Transversal radio of stem 

base (μm) 
1339.83 ± 4.16 1338.04 ± 2.44 1339.02 ± 3.71 

 
 

 

Table 3. Histological effects of cryopreservation of pineapple shoot-tips  

on the D-leaf of regenerated plantlets 

 Origin of plantlets (treatments compared) 

 Conventional 

micropropagation-

derived plants  

(control 1) 

Plants from shoot tips never 

exposed to LN but submitted to 

pre-cryostorage conditioning 

treatments (control 2) 

Plants from shoot 

tips exposed to LN 

(cryopreserved 

plants) 

Transversal thickness of 

leaf at the middle (μm) 
774.40 ± 5.90 772.03 ± 5.67 771.86 ± 6.35 

Adaxial epidermis 

thickness (μm) 
224.29 ± 2.82 223.68 ± 2.73 222.69 ± 2.52 

Abaxial epidermis 

thickness (μm) 
209.90 ± 0.27 210.39 ± 0.60 210.61 ± 0.94 

Adaxial cuticle thickness 

(μm) 
79.29 ± 2.82 78.68 ± 2.73 77.69 ± 2.52 

Abaxial cuticle thickness 

(μm) 
14.90 ± 0.27 15.39 ± 0.60 15.61 ± 0.94 

Thickness of the leaf 

photosynthetic 

parenchyma (μm) 

119.94 ± 1.86 119.17 ± 1.52 119.71 ± 1.94 

Thickness of the leaf 

aquiferous parenchyma 

(μm) 

220.27 ± 1.70 218.80 ± 1.61 218.85 ± 1.86 

 

Histological samples were analysed at 45 days of acclimatisation. Values shown are means ± SE (n = 10). 

Statistically significant differences were not observed for any of the measured parameters (One-Way 

ANOVA, Tukey, p < 0.05). 
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