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Improvement of random coe�cient
di�erential models of growth of anaerobic
photosynthetic bacteria by combining
Bayesian inference and gPC

J. Calatayuda, J.-C. Cort�esa, M. Jorneta;�

The time evolution of microorganisms, such as bacteria, is of great interest in biology. In the article by D. Stanescu et al.

[Electronic Transactions on Numerical Analysis, 34, 44{58 (2009)], a logistic model was proposed to model the growth of

anaerobic photosynthetic bacteria. In the laboratory experiment, actual data for two species of bacteria were considered:

R. capsulatus and C. vibrioforme. In this paper, we suggest a new nonlinear model by assuming that the population growth

rate is not proportional to the size of the bacteria population, but to the number of interactions between the microorganisms,

and by taking into account the beginning of the death phase in the kinetic curve. Stanescu et al. evaluated the e�ect

of randomness into the model coe�cients by using generalized Polynomial Chaos (gPC) expansions, by setting arbitrary

distributions without taking into account the likelihood of the data. By contrast, we utilize a Bayesian inverse approach

for parameter estimation to obtain reliable posterior distributions for the random input coe�cients in both the logistic

and our new model. Since our new model does not possess an explicit solution, we use gPC expansions to construct the

Bayesian model and to accelerate the Markov Chain Monte Carlo algorithm for the Bayesian inference. Copyright c 2018

John Wiley & Sons, Ltd.

Keywords: Bacterial growth model; Population dynamics; Nonlinear biological model; Bayesian inverse problem;

Generalized Polynomial Chaos

1. Introduction

The time evolution of microorganisms, such as bacteria, has been of great interest in biology for decades [1{3]. In this regard,

mathematical models are important to understand and generalize laboratory experiments and to make predictions [4{10]. These

models are usually continuous systems that involve ordinary or partial di�erential equations, which depend on input parameters

(initial conditions, forcing term and/or coe�cients, etc.) often with a biological interpretation (carrying capacity, growth rate,

birth or death rate, concentration of nutrients, etc.). If experimental values are available for the model coe�cients, we have

a forward model to describe and forecast the main features of the biological system. But in general, to determine the model

parameters, experimental data needs to be used. The process of adjusting the coe�cients in virtue of collected data is called an

inverse problem.

Deterministic di�erential equations have been widely studied from a theoretical and numerical point of view. To solve the

inverse problem in this setting, one usually turns to optimization algorithms, for instance a least squares �tting.

However, deterministic models do not take into account the inherent uncertainty associated to biological processes.

Inaccuracies in the measurements often arise due to errors in the laboratory experiments (human, mechanical, etc.), lack

of information, missed data, etc. It thus becomes necessary to treat the input parameters in a random sense. This gives rise to

random ordinary and partial di�erential equations [11{13].
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The primary objective when dealing with random models is uncertainty quanti�cation, i.e., understanding the main statistical

features of the forward random model predictions. There are di�erent techniques in the extant literature to handle stochastic

systems: Monte Carlo simulations [14], method of moments [12], Random Variable Transformation technique [15{21], generalized

Polynomial Chaos (gPC) [22{32], etc. When a closed form solution of the random model is not available, one of the best and

computationally cheapest methods for uncertainty quanti�cation is the gPC technique: the solution stochastic process is expressed

as a mean square limit of Galerkin projections onto subspaces of orthogonal polynomials [22,23].

To solve an inverse problem in a random setting, gPC by itself cannot determine suitable model coe�cients. The Bayesian

approach allows making statistical inference from prior probabilistic information of the parameters and the likelihood associated

to the data. The output of Bayesian inference is a posterior probability distribution for each of the parameters, which permits

quantifying uncertainty via the posterior predictive distribution [33{35].

When the solution of the random di�erential equation does not have a closed form expression, each sampling point of the

Markov Chain Monte Carlo algorithm requires a numerical solution of the di�erential equation, which might be time consuming.

The gPC and Galerkin projection techniques give approximations of the solution stochastic process, which may be used in the

Bayesian model to accelerate the numerical simulations [22,36,37].

In this paper, we apply this technique to model the growth of anaerobic photosynthetic bacteria. The population of bacteria

increases in size by using light energy to reduce CO2. In the laboratory experiment, two species of bacteria were considered:

Rhodobacter capsulatus (R. capsulatus) and Chlorobium vibrioforme (C. vibrioforme). Direct cell counts were made every two

or three days until a stationary phase was achieved. This measurements give two sets of data for each one of the two populations

under study. In [26], the authors considered a logistic model to explain bacterial growth in both populations, based on Malthusian

exponential growth model and competitiveness when there is scarcity of nutrients (mainly light and CO2). We suggest a new

nonlinear model equation by assuming that the population growth rate is not proportional to the size of the bacteria population,

but to the number of interactions between the microorganisms (the squared abundance), and by taking into account the start

of the decline phase. In [26], uncertainty is put into the model by using arbitrary distributions for the coe�cients. By contrast,

we have utilized a Bayesian inverse approach for parameter estimation. Since our model does not have an explicit solution, we

have combined gPC expansions together with the stochastic Galerkin projection technique to accelerate the Bayesian inference.

Thus, we assess the e�ect of randomness and quantify the uncertainty in a rigorous way.

The structure of the paper is the following. In Section 2, we show and explain the experimental data, and we analyze empirically

which should be a good di�erential equation model. In Section 3, we provide a comprehensive analysis of the logistic model and

show its associated Bayesian model. In Section 4, we expose the main theoretical features of the combination of gPC expansions

and Bayesian inference. We extend its applicability to models with random variance of the errors, and we use the logistic model

as a test example. In Section 5, we expose the theoretical ideas to improve the modeling from [26]. Section 6 is devoted to

numerical experiments for deterministic �ttings and uncertainty quanti�cation. Finally, Section 7 draws the conclusions.

2. Data on anaerobic photosynthetic bacterial growth

We will use experimental data from the growth of anaerobic photosynthetic bacteria under infrared lightning conditions. The

population of bacteria increases in size by using light energy to reduce CO2 (photosynthesis). In the laboratory experiment,

two species of bacteria were considered: Rhodobacter capsulatus (R. capsulatus) and Chlorobium vibrioforme (C. vibrioforme).

For further details about the experiment, we refer the reader to [26]. Table 1 shows laboratory data on the population sizes of

R. capsulatus and C. vibrioforme under infrared lightning conditions in di�erent mediums. The number of cells/mL has been

rescaled by dividing by 106. Figure 1 plots the cell counts from Table 1.

R. capsulatus C. vibrioforme

Time

(days)

Population

(cells/mL, scale 106)

Time

(days)

Population

(cells/mL, scale 106)

0 0:583 0 0:986

2 0:635 14 2:41

4 1:08 16 2:24

7 3:20 18 4:21

9 5:23 21 5:72

11 5:28 23 5:99

14 5:30 25 7:86

28 6:52

Table 1. Bacteria population sizes [26].

At the �rst days, when there is no competition between bacteria and no limitation of resources (light and CO2), the population

seems to increase with exponential growth. This was the model proposed by Thomas Malthus in 1798 in his essay [38]. A more
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Figure 1. Population size of R. capsulatus (left) and C. vibrioforme (right).

modern formulation of the Malthusian growth model can be read at the introductory text [5]. The importance of the Malthusian

model is evident as in the �eld of population ecology it is considered as the �rst law of population dynamics [39]. In his written

essay, Malthus already described how non-abundance of sustenance would a�ect the growth of species. This contribution was

developed by Verhulst in 1838 [40]: as time passes and the number of microorganisms augments, there is more competition for

the limited food, so that the growth rate decreases with the size of the population. This fact is the basis of the so-called logistic

model. Its modern formulation can be consulted in [5], for instance. In principle, the logistic model corresponds to the observed

s-shape in Figure 1. This applies especially for R. capsulatus. By contrast, C. vibrioforme presents a drop of the amount of

bacteria at the end, so the logistic model may not �t as expected. This descent might come from the commence of the death

phase.

We will see that, in both groups of R. capsulatus and C. vibrioforme, better results are obtained if we consider that, for the

�rst days, the rate of change is not proportional to the population size, but to the total number of interactions between the

microorganisms, i.e., to the squared abundance. Also, the introduction of the death rate in the modeling will play a key role.

Taking into account the competition for the limited resources as time goes on, we will obtain a variation of the logistic model

that will allow a better modeling for the data from Figure 1. This sort of model formulation has not been widely used in the

biological modeling literature, and the unique reference on utilizing squared abundance for the modeling of the growth rate that

we have found has been [41, pp. 17{18]. Its justi�cation from a dynamics standpoint is not as clear as the exponential or logistic

growth models. However, in our particular database and from a mathematical point of view, this idea of employing squared

abundance works better than the logistic model.

3. Logistic model

Let y(t) be the total population at time t measured in days. If there is no competition or there is sustenance for life, and the

rate of change is proportional to the total abundance, the Malthusian exponential model describes the population growth [5,38]:

y 0(t) = ry(t). Given an initial condition y(t0) = y0, the unique solution of this model is given by y(t) = y0e
r t . In Figure 1, this

model seems suitable for the �rst 9 days in the R. capsulatus group and for the �rst 21 days in the C. vibrioforme population.

However, at the 9th and 21st days, respectively, an inection point in the bacterial growth is observed, due to the limited

abundance of resources (light and CO2). If we take into account this scarcity of substances as time passes, then we obtain the

logistic model [5, 40]:

y 0(t) = ry(t)

(
1�

y(t)

K

)
: (1)

The term K is the carrying capacity. In the logistic equation, it is assumed that the growth rate lags linearly with the population

size. Under the initial condition y(t0) = y0, the ordinary di�erential equation (1) has a unique solution:

y(t) =
y0K

y0 + (K � y0)e�r t
: (2)

In the following subsections, we will review the �t of model (1){(2) to the data from Table 1 done in [26]. Later, the

coe�cients in (1) will be randomized. In [26], a gPC approach was used to evaluate the e�ect of randomness in the coe�cients.

Math. Meth. Appl. Sci. 2018, 00 1{19 Copyright c 2018 John Wiley & Sons, Ltd. 3
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Distributions for the coe�cients were set by the authors just from an empirical point of view, without using the information

given by the data, i.e., the likelihood. By contrast, we will determine appropriate posterior distributions for the input coe�cients

of (1), by utilizing Bayesian inference.

3.1. Deterministic curve �tting

Given the data from Table 1, the authors in [26] calculated deterministic coe�cients r , y0 and K in (2) such that the squared

error is minimized. This method is usually called least squares �tting. Given a set of collected data d1; : : : ; dN at times t1; : : : ; tN
and given the output of a model M(�; t), where � are the input parameters and t is the time, the squared error is expressed as

N∑
i=1

(di �M(�; ti))
2:

A least squares �tting consists in �nding the set of parameters �0 such that

min
�

N∑
i=1

(di �M(�; ti))
2 =

N∑
i=1

(di �M(�0; ti))
2: (3)

This last expression (3) is called residual squared error. The best model should minimize the residual squared error. In Table 2,

the estimates for the coe�cients and the residual squared error are shown. In Figure 2, we plot the least squares �tting together

with the measured data. These computations have been already done in [26]. We observe that the deterministic logistic model

approximates well the data, although the last data from C. vibrioforme presents problems due to its unexpected decreasing

behavior.

Parameters for R. capsulatus

r y0 K residual

0:6157 0:1244 5:5623 0:600

Parameters for C. vibrioforme

r y0 K residual

0:3184 0:0292 7:4242 3:3127

Table 2. Parameters for R. capsulatus (left) and C. vibrioforme (right) under the logistic model.
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Figure 2. Least squares �tting of R. capsulatus (left) and C. vibrioforme (right) under the logistic model. The real data is denoted by � and the �tting is given

by the black continuous line.

3.2. Random coe�cients and Bayesian inference

Due to the variability involved in the measurements (errors in the collection of data, lack of information, etc.) and the inherent

uncertainty associated to population dynamics phenomena, it would be better to treat the input coe�cients in a random sense.

That is, we suppose that the parameters r , y0 and K from the logistic model (1) depend on an experiment !: r = r(!),

y0 = y0(!) and K = K(!). We denote by 
 the set of all experiments !, equipped with a �-algebra F and a probability measure

P, so that we have an underlying probability space (
;F ;P) [22, Def. 2.4]. In this context, the solution y(t) given by (2)

becomes a stochastic process y(t; !). The main objective thus becomes to quantify the uncertainty of y(t; !), for example, with

the computation of its mean and variance. When no analytical expression can be obtained, a computational approach needs to

be used.

4 Copyright c 2018 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 00 1{19
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In [26], some probability distributions are given to r , y0 and K, to assess the e�ect of randomness into the input parameters.

The distributions are set empirically, without utilizing the information given by the data, that is to say, the likelihood. Thus, in

order to improve the methodology from [26], we propose a Bayesian model to determine reliable (posterior) distributions for

r , y0 and K. Let (t1; : : : ; tN) be the times of interest: for R. capsulatus (t1; t2; t3; t4; t5; t6; t7) = (0; 2; 4; 7; 9; 11; 14), and for

C. vibrioforme (t1; t2; t3; t4; t5; t6; t7) = (0; 14; 16; 18; 21; 23; 25; 28), respectively (see Table 1). Let yi be the random variable

that models the size of the population at time ti . The Bayesian model takes the following form:

(y1; : : : ; yN)j(r; y0; K; �) � �(y1; : : : ; yN jr; y0; K; �) =

N∏
i=1

�(yi jr; y0; K; �); (4)

�(r; y0; K; �) = �(r)�(y0)�(K)�(�); (5)

r � �(r); y0 � �(y0); K � �(K); � � �(�): (6)

Here, � denotes the corresponding probability density function. In (4), it is assumed that the errors caused by the logistic model

for t1; : : : ; tN are independent random variables, with zero expectation and variance �2. In fact, bearing in mind expression (2)

for the solution of the logistic equation, we will set

�(yi jr; y0; K; �) � Normal

(
y0K

y0 + (K � y0)e�r ti

; �

)
;

i.e., the errors are taken Gaussian. In (5), we reect the fact that the parameters are independent a priori. We have set this

prior independence because we do not have any prior information about the covariances, and the forthcoming gPC theory will be

exposed for independent random inputs. When computing the joint posterior distribution, the values of the posterior covariances

will adapt to the data, so there will possibly be no independence. Finally, in (6), we set the prior distributions for r , y0, K and �.

The distributions for y0 and K must be positive, as they measure bacteria abundance. The distribution for � is also positive by

de�nition of variance. Concerning r , looking at Figure 1 we deduce that r should be positive as well. Nonetheless, in practice, it

could be possible to set prior probability distributions with support intersecting negative numbers, provided that we put a positive

mean value and a very small variance.

On the other hand, the distributions of r , y0 and K should have as mean value the deterministic estimates from Table 2. From

an intuitive point of view, these deterministic estimates are the unique information available to set the prior distributions �(r),

�(y0) and �(K). While from a mathematical standpoint, we know that, when the sample size N is large, the posterior distribution

follows approximately a normal law with mean value given by the maximum likelihood estimator (combine [42, Th. 3.10] for the

asymptotic behavior of the maximum likelihood estimator and [42, Th. 8.3] for the asymptotic limit of the Bayesian estimator).

In this case, as the errors are supposed to be Gaussian and independent, the maximum likelihood estimator coincides with the

least squares �tting performed in Table 2. Notice that, taking the deterministic estimates from Table 2 as the mean values for

the prior distributions, we are employing the collected data to set the priors, so that we are actually using the so-called empirical

Bayes method [33, Ch. 9], [43, 44].

The formula for the joint posterior density function of the parameters is given by

�(r; y0; K; �jy1; : : : ; yN) =
�(y1; : : : ; yN jr; y0; K; �)�(r; y0; K; �)∫∫∫∫

�(y1; : : : ; yN jr; y0; K; �)�(r; y0; K; �)dr dy0 dK d�
:

To compute the posterior density function of a subset of the random vector (r; y0; K; �), just marginalize by integrating. The
posterior predictive distribution is expressed as

�(~y1; : : : ; ~yN jy1; : : : ; yN) =

∫∫∫∫
�(~y1; : : : ; ~yN jr; y0; K; �)�(r; y0; K; �jy1; : : : ; yN)dr dy0 dK d�:

These formulas and more information on Bayesian inference are available in the standard reference book [33]. Usually, the

posterior distribution of the model parameters is not analytically tractable, therefore simulation algorithms must be carried out

to sample from the posterior distribution. This class of algorithms is encompassed under the name Markov Chain Monte Carlo

simulation [33, Ch. 6{7], [45]. An algorithm for Bayesian simulation has been implemented in WinBUGS [33, Ch. 8], [46]. Other

possible software are JAGS [33, p. 214], [47{49]; SAS (SAS Institute, Cary NC) [33, Ch. 8], [50]; etc.

In Section 6, we will specify prior distributions for the parameters r , y0 and K. We will thus assess the e�ect of randomness

into the inputs of the random logistic model.

4. Combining Bayesian inference and gPC

In this section we will show how gPC expansions can be used to perform Bayesian inference when the solution of the

di�erential equation model does not have an explicit expression. There are results in the extant literature that combine Bayesian

inference and gPC expansions when the error from the model is assumed to be Gaussian, with zero expectation and constant

Math. Meth. Appl. Sci. 2018, 00 1{19 Copyright c 2018 John Wiley & Sons, Ltd. 5
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variance [36, 37], [22, Ch. 8]. We will extend these results to a random variance, so that one does not have to make point

estimate guesses on the variability of the model error. We will show how these theoretical results work with the random logistic

model. This will be a test example, since we saw in the previous section that the logistic equation has a closed form solution, to

which Bayesian inference can be directly applied. By contrast, in Section 5, in which we improve the logistic equation to a more

suitable model, we will need gPC expansions to carry out accelerated Bayesian inference, since the solution of the new model

equation will not be explicitly known.

4.1. Theoretical results

Consider an ordinary di�erential equation model y 0(t) = F (t; y(t)). Suppose that both F and the solution y(t) depend on some

random input parameters �1; : : : ; �s (the initial condition is among these inputs). The probabilistic properties of these random

inputs are: mutual independence, absolute continuity and �niteness of all moments. Let � = (�1; : : : ; �s) be the joint vector of

coe�cients. Suppose that we have times of interest, t1; : : : ; tN , in which we have collected data d1; : : : ; dN . We suppose that

y 0(t) = F (t; y(t)) is the suitable deterministic model to explain d1; : : : ; dN , and from it we construct the following Bayesian

model: if we denote by yi the random variable that models di , then

(y1; : : : ; yN)j� �

N∏
i=1

Normal(y(ti); �); (7)

� � �(�) =

N∏
i=1

�(�i); � � �(�): (8)

We are assuming that � is either absolutely continuous with density function �(�) or a constant. In the case of being a constant,

the subsequent development is applicable by considering a Dirac delta function as its density function. Let

�(�; �jd1; : : : ; dN) =
�(d1; : : : ; dN j�; �)�(�; �)∫∫

�(d1; : : : ; dN j�; �)�(�; �) d� d�

be the joint posterior density function of the parameters. This Bayesian model was proposed in the previous section for the

random logistic model, and it makes sense when the explicit solution y(t) of the di�erential equation model is available.

When y(t) does not have a closed form expression and one has to use Markov Chain Monte Carlo algorithms [33, Ch. 6{

7], [45], the main computational drawback is that each sampling point requires a solution of the underlying stochastic system

y 0(t) = F (t; y(t)). The idea to speed up the Bayesian inference is to approximate y(t) via another function in an L2(
) sense,

and then to put the approximation in the mean of the normal distribution from (7).

To approximate y(t), we use the gPC technique. We work in the Hilbert space (L2(
); h; i) of random variables with �nite

variance, where the inner product is de�ned as hX; Y i = E[XY ]. Suppose that the random inputs �1; : : : ; �s are independent and

absolutely continuous random variables with �nite moments and density functions �(�1); : : : ; �(�s) (the prior density functions

de�ned in (8)). There are di�erent gPC approaches, which are kept to a minimum below:

(i) (Classical) gPC: Suppose that �1; : : : ; �s are functions of random variables with distributions that belong to the Askey-

Wiener scheme. That is, � = h(�), where h : Rr ! R
s is a Borel measurable function and � = (�1; : : : ; �r ) is a random

vector with independent components, such that �i is Gaussian, Gamma, Beta or uniform distributed. Take the univariate

orthogonal polynomials from the Askey-Wiener scheme associated to the distribution of �i , 1 � i � r , and compute a

simple tensor product to obtain multivariate orthogonal polynomials in �. Let f�i(�)g
1

i=1 be the sequence of orthogonal

polynomials with respect to h; i. As y(t) is a function of �, we can expand y(t) =
∑

1

i=1 ~yi(t)�i(�) in L2(
), where

~yi(t) = E[y(t)�i(�)]=E[�i(�)
2] is the i-th Fourier coe�cient. This approach is based on [22,23].

(ii) Adaptive gPC: In this case, the distributions of �1; : : : ; �s do not necessarily belong to the Askey-Wiener scheme. Let

Cp
i = f1; �i ; : : : ; �

p
i g be the canonical basis of polynomials in �i up to degree p. We orthonormalize this basis with respect

to h; i and thus get �p
i = f�i

0(�i); : : : ; �
i
p(�i)g. Using a simple tensor product, we de�ne an orthonormal basis with respect

to h; i in the space of multivariate polynomials in � up to degree p: � = f�1(�); : : : ; �P (�)g, where P = (p + s)!=p!s!.

If we let p; P !1, we obtain an orthonormal sequence f�i(�)g
1

i=1. We expand y(t) as y(t) =
∑

1

i=1 ~yi(t)�i(�), where

~yi(t) = E[y(t)�i(�)] is the i-th Fourier coe�cient. This approach is based on [24,25] and is referred to as adaptive gPC.

An advantage of this strategy is that we are not restricted to standard probability distributions, because of the Random

Variable Transformation technique [18]. However, using the Gram-Schmidt procedure may lead to a loss of orthogonality for

large p [51], which may ruin the computations. Nonetheless, adaptive gPC usually converges in an algebraic or exponential

rate (spectral convergence), so a small p usually su�ces and no loss of orthogonality problems appear.

For convergence issues on the (classical) gPC and adaptive gPC expansions, we refer the reader to [52, Th. 3.6], which

completely determines the problem of convergence: (i) if y(t) 2 L2(
), then y(t) =
∑

1

i=1 ~yi(t)�i(�) if the moment problem is

uniquely solvable for each random variable �1; : : : ; �r ; (ii) if y(t) 2 L2(
), then y(t) =
∑

1

i=1 ~yi(t)�i(�) if the moment problem

is uniquely solvable for each random variable �1; : : : ; �s .

We will adopt the adaptive gPC approach (ii), as it allows more general probability distributions for �1; : : : ; �s for the

stochastic Galerkin projection technique, without having to compute the inverse of their cumulative distribution functions,
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see [22, expr. (5.15) (5.16)], [26, expr. (4.8) (4.9)]. The stochastic Galerkin projection technique is based on approximating

y(t) �
∑P

i=1 ŷ
P
i (t)�i(�) = ŷP (t), by imposing ŷP (t) to be a solution of the di�erential equation. Using the orthonormality of

�1(�); : : : ; �P (�), we obtain a deterministic system of di�erential equations for the coe�cients ŷP
1 (t); : : : ; ŷ

P
P (t):

d

dt
ŷP
k (t) = hF

(
t;

P∑
i=1

ŷP
i (t)�i(�)

)
; �k(�)i;

ŷP
k (0) = E[y0�k(�)];

for k = 1; : : : ; P . Under certain conditions, the Galerkin projection ŷP (t) tends in L2(
) as P !1 to y(t), see [53].

Consider the Bayesian model

(y1; : : : ; yN)j� �

N∏
i=1

Normal(ŷP (ti); �); (9)

� � �(�) =

N∏
i=1

�(�i); � � �(�): (10)

Let

�P (�; �jd1; : : : ; dN) =
�P (d1; : : : ; dN j�; �)�(�; �)∫∫

�P (d1; : : : ; dN j�; �)�(�; �) d� d�

be the joint posterior density of the parameters, where �P (d1; : : : ; dN j�; �) is the likelihood from (9) and �(�; �) is the prior

from (10) which coincides with (8). In [37], the authors proved that, if ŷP (t)! y(t) in L2(
) as P !1 and � is constant,

then �P (�jd1; : : : ; dN) tends to �(�jd1; : : : ; dN) as P !1 in the sense of the Kullback-Leibler divergence:

D(�P jj�) =

∫
�P (�jd1; : : : ; dN) log

�P (�jd1; : : : ; dN)

�(�jd1; : : : ; dN)
d�

P!1
�! 0:

Moreover, if ŷP (t)! y(t) in L2(
) algebraically/exponentially, then D(�P jj�)! 0 algebraically/exponentially.

Let us see that this result can be extended to a random � that possesses a prior distribution �(�). In [37, Lemma 4.2,

expr. (4.11)], we need to add an integration with respect to �(�). If we impose

E�(�)

[
1

�3N

]
=

∫
1

0

�(�)

�3N
d� <1;

then the same conclusion from [37, Lemma 4.2] holds:

D(�P jj�) =

∫∫
�P (�; �jd1; : : : ; dN) log

�P (�; �jd1; : : : ; dN)

�(�; �jd1; : : : ; dN)
d� d�

P!1
�! 0:

Thus, under general assumptions, �P (�; �jd1; : : : ; dN)! �(�; �jd1; : : : ; dN) in the sense of the Kullback-Leibler divergence.

Formally, the posterior predictive distribution computed from the Galerkin projection (9){(10) tends to the posterior predictive

distribution from (7){(8):

�P ( ~d1; : : : ; ~dN jd1; : : : ; dN) =

∫∫
�P ( ~d1; : : : ; ~dN j�; �)�P (�; �jd1; : : : ; dN) d� d�

P!1
�! �( ~d1; : : : ; ~dN jd1; : : : ; dN) =

∫∫
�( ~d1; : : : ; ~dN j�; �)�(�; �jd1; : : : ; dN) d� d�:

4.2. Application to the random logistic model

Consider the Bayesian model (4){(6). Instead of using the solution (2) from the logistic di�erential equation (1), we approximate

it via a stochastic Galerkin procedure as a test of the previous theory. Let � = (r; y0; K) and ŷP (t) =
∑P

i=1 ŷ
P
i (t)�i(�). The

system of di�erential equations for the coe�cients ŷP
1 (t); : : : ; ŷ

P
P (t) is

d

dt
ŷP
k (t) =

P∑
i=1

ŷP
i (t)E[r�i(�)�k(�)]�

P∑
i ;j=1

ŷP
i (t)ŷ

P
j (t)E

[ r
K
�i(�)�j(�)�k(�)

]
;

ŷP
k (0) = E[y0�k(�)]; k = 1; : : : ; P:

By means of standard numerical techniques, the Galerkin coe�cients ŷP
1 (t); : : : ; ŷ

P
P (t) can be computed at the times of interest

t1; : : : ; tN . To do statistical inference, we use the model (9){(10). In Section 6, we show numerical experiments. We will see

that the posterior distribution �P (�; �jd1; : : : ; dN) is similar to the true posterior �(�; �jd1; : : : ; dN) from (4){(6), even for small

p and P , due to the spectral convergence.
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5. Improvement of the logistic model

Suppose that, under non-scarcity of nourishment, the growth rate y 0(t) is not proportional to the population size y(t), but

to the total number of interactions, i.e., to the squared abundance y(t)2. In this case, the model becomes a variation of the

Malthusian growth model: y 0(t) = ry(t)2. If we take into account competition inside the test tubes because of limited resources,

mainly light and CO2, then the growth rate constant decays linearly with the population size:

y 0(t) = ry(t)2
(
1�

y(t)

K

)
: (11)

The coe�cient K is the carrying capacity. Unlike the logistic di�erential equation, given an initial condition y(t0) = y0, the

ordinary di�erential equation (11) does not have an explicit form for the solution.

This model formulation (11) has not been extensively used in the biological modeling literature, and the unique reference on

squared abundance for the modeling of the growth rate that we have found has been [41, pp. 17{18]. Its biological justi�cation

is debatable, nonetheless, in our particular database and from a mathematical standpoint, (11) works better than the logistic

model.

Model (11) may be improved if we take into account the death rate:

y 0(t) = ry(t)2
(
1�

y(t)

K

)
� �y(t): (12)

After the stationary phase, bacteria population enters into the so-called death phase. Due to the lack of nutrients, the population

size starts to decline. In this model, K is interpreted as the carrying capacity under no mortality.

At this point, we can compare models (1), (11) and (12) from the following mathematical point of view. Consider a

general model y 0(t) = f (y(t)). If we assume that f is su�ciently smooth, then we can express f as a Taylor power series:

f (x) = a0 + a1x + a2x
2 + a3x

3 + : : :. If we suppose that there is no spontaneous generation in the population, then a0 = 0.

Therefore, the model equation becomes y 0(t) = a1y(t) + a2y(t)
2 + a3y(t)

3 + : : :. If we truncate at the �rst term, then we

obtain Malthus model. If we keep the �rst and second term, the logistic equation appears. If we put a1 = 0 and keep a2 and a3,

we get model (11). Finally, if we take the �rst three terms, the di�erential equation becomes (12). This provides an intuition on

why (12) should make the most signi�cant improvement. Indeed, we will see that model (12) improves the �tting of both the

logistic equation (1) and model (11).

5.1. Deterministic curve �tting

Given the data from Table 1, we get deterministic estimates for r , y0, K and � in (11) and (12) via a least squares procedure

(3). In this case, the least squares �tting has to be performed without an explicit solution of the di�erential equation model. In

Section 6, we will show the least squares �tting and the residual squared error. We will observe that the error is much smaller

for (11) and (12) than for the logistic model (1), especially for the R. capsulatus population. Therefore, from a deterministic

point of view, taking into account interactions instead of total population allows a better modeling. The best modeling will be

achieved with (12). This highlights the importance of adding the e�ect of mortality in the equation.

5.2. Random coe�cients and combination of Bayesian inference and gPC

To randomize both (11) and (12), we consider that the output depends on an experiment !, which belongs to the sample space


 of an underlying probability space (
;F ;P). Thereby, the parameters are random variables: r = r(!), y0 = y0(!), K = K(!),

� = �(!); and the solution y(t) becomes a stochastic process y(t; !). The goal is to quantify its uncertainty computationally,

by approximating its mean and variance statistics.

We model the bacterial growth with Bayesian model (7){(8). As no explicit solution of (11) is available, we approximate

y(t) in L2(
) using the stochastic Galerkin projection technique. Let f�i(�)g
P
i=1 be the orthonormal sequence from the adaptive

gPC approach, where � = (r; y0; K). Let ŷP (t) =
∑P

i=1 ŷ
P
i (t)�i(�) be the Galerkin projection. The deterministic coe�cients are

computed by solving numerically the following system of deterministic di�erential equations:

d

dt
ŷP
k (t) =

P∑
i ;j=1

ŷP
i (t)ŷ

P
j (t)E[r�i(�)�j(�)�k(�)]

�

P∑
i ;j;l=1

ŷP
i (t)ŷ

P
j (t)ŷ

P
l (t)E

[ r
K
�i(�)�j(�)�l(�)�k(�)

]
;

ŷP
k (0) = E[y0�k(�)]; k = 1; : : : ; P:
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In the case of model (12), letting � = (r; y0; K; �) and using a similar reasoning, we get the following system of deterministic

di�erential equations:

d

dt
ŷP
k (t) =

P∑
i ;j=1

ŷP
i (t)ŷ

P
j (t)E[r�i(�)�j(�)�k(�)]

�

P∑
i ;j;l=1

ŷP
i (t)ŷ

P
j (t)ŷ

P
l (t)E

[ r
K
�i(�)�j(�)�l(�)�k(�)

]
�

P∑
i=1

ŷP
i (t)E[��i(�)�k(�)];

ŷP
k (0) = E[y0�k(�)]; k = 1; : : : ; P:

Bayesian model (9){(10) permits assessing the e�ect of randomness in (11) and (12) using the likelihood of the data.

We remark that the prior distributions for r , y0, K, � and � must be positive, although in practice it could be possible to set

prior distributions taking negative values as long as we put a positive mean value and a very small variance.

In the numerical experiments, the prior distributions will be strongly centered around the deterministic value obtained in

the least squares �tting. As we already explained, this is because for a large sample size N, the posterior distribution follows

approximately a normal law with mean value given by the maximum likelihood estimator. In Section 6, we show the simulation

results from WinBUGS.

6. Numerical experiments

In this section, we perform numerical experiments of the models presented before. First, we will specify prior distributions for r ,

y0 and K to carry out Bayesian inference in the logistic model (1). As a checking performance, we will see that expressing the

solution (2) of the logistic equation (1) via gPC expansions gives good approximations of the posterior and posterior predictive

distributions. On the other hand, we will �t the new models proposed, (11) and (12), in a deterministic manner to compare

the results with those achieved in [26]. Finally, we will combine Bayesian inference and gPC expansions to simulate from the

posterior distributions of the random parameters with a cheap computational expense.

6.1. Random logistic model

Consider the logistic model (1) and its solution (2) in a randomized setting. To model the data from Table 1 using the Bayesian
approach (4){(6), we have set

r � Gamma(�r ; �r ); y0 � Gamma(�y0 ; �y0); K � Gamma(�K ; �K); � � Unif(a�; b�) (13)

(recall that these four parameters are positive), where we have employed the shape-rate notation for the gamma distribution.

As we want the mean of these random variables to be equal to the least square estimates (maximum likelihood estimators) from

Table 2, we impose:

R. capsulatus :
�r

�r

= 0:6157;
�y0

�y0

= 0:1244;
�K

�K

= 5:5623;

C. vibrioforme :
�r

�r

= 0:3184;
�y0

�y0

= 0:0292;
�K

�K

= 7:4242:

For the R. capsulatus group, we suppose that approximately 68% of the variability of r , y0 and K is 0:05, 0:05 and 0:2,

respectively (this is the subjective part of the modeling), and we take this as the typical deviation (by the 68-95-99.7 rule [54]).

Then

R. capsulatus :
�r

�2
r

= 0:0025;
�y0

�2
y0

= 0:0025;
�K

�2
K

= 0:04:

For the C. vibrioforme population, we take

C. vibrioforme :
�r

�2
r

= 0:0009;
�y0

�2
y0

= 0:0009;
�K

�2
K

= 0:01:

This gives, for the R. capsulatus population, the values �r = 151:6346, �r = 246:28, �y0 = 6:190144, �y0 = 49:76, �K =

773:4795 and �K = 139:0575; and for the C. vibrioforme population, the parameters �r = 112:64, �r = 353:78, �y0 = 0:947,

�y0 = 32:44, �K = 5511:87 and �K = 742:42. For �, assuming that the error in the modeling is at most 1, we set � � Unif(0; 1).

With this information, we have the prior distributions for the parameters. The posterior distribution of the model parameters is

not analytically tractable, so simulation algorithms must be carried out to sample from the posterior distribution (Markov Chain

Monte Carlo simulation) [33, Ch. 6{7], [45]. The Bayesian model has been implemented in WinBUGS [33, Ch. 8], [46]. We �xed

a burnin period of 75,000 iterations and simulated 150,000 samples of the parameters. We executed two chains with di�erent

initial values to assess convergence. The computer timing was 47 seconds for the burnin period, plus 94 seconds for the later

150,000 samples. In Table 3, we show a descriptive analysis of the posterior distributions. In Figure 3 and Figure 4, the posterior

density function is plotted for each of the parameters. Figure 5 presents the means and credible intervals from the posterior

predictive distributions at times t1; : : : ; tN . We observe that the means provide good estimations for the data. Moreover, the

credible intervals contain all data points.

Math. Meth. Appl. Sci. 2018, 00 1{19 Copyright c 2018 John Wiley & Sons, Ltd. 9
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences J. Calatayud, J.-C. Cort�es, M. Jornet

Posterior distributions for R. capsulatus

Parameter Mean sd 0:95 interval

r 0:619 0:039 (0:544; 0:699)

y0 0:126 0:034 (0:069; 0:203)

K 5:560 0:164 (5:243; 5:888)

Posterior distributions for C. vibrioforme

Parameter Mean sd 0:95 interval

r 0:321 0:025 (0:274; 0:373)

y0 0:031 0:015 (0:010; 0:069)

K 7:421 0:098 (7:229; 7:614)

Table 3. Descriptive table for the posterior distributions of the parameters for R. capsulatus (left) and C. vibrioforme (right)

under the random logistic model (1).
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Figure 3. Posterior distributions for the model parameters of R. capsulatus under the random logistic model (1).
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Figure 4. Posterior distributions for the model parameters of C. vibrioforme under the random logistic model (1).

10 Copyright c 2018 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 00 1{19

Prepared using mmaauth.cls



J. Calatayud, J.-C. Cort�es, M. Jornet

Mathematical
Methods in the
Applied Sciences

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
R capsulatus

Days

N
um

be
r 

of
 C

el
ls

/m
L

0 5 10 15 20 25

0
2

4
6

8

C vibrioforme

Days

N
um

be
r 

of
 C

el
ls

/m
L

Figure 5. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the random logistic model (1). The real data is denoted by �, the �tting is

given by the black continuous line and the 0:95 credible interval is drawn with dashed lines.

6.2. Random logistic model and gPC expansions

Consider the logistic model (1) and its randomized solution (2). We use Bayesian model (9){(10) as an approximation of the

Bayesian approach (4){(6), with the same prior distributions as in (13), just as a test example of the theory exposed. As before,

the posterior distribution of the model parameters is not analytically tractable, so we have used WinBUGS to simulate samples

from the posterior distributions. We simulated 150,000 samples of the model parameters, after having removed the �rst 75,000

iterations (burnin period). We executed two chains with distinct initial iterates to evaluate convergence. The execution timing

was 47 seconds for the burnin period, plus 94 seconds for the later 150,000 samples. In Table 4, Figure 6, Figure 7 and Figure 8,

we show the results from the Bayesian inference with p = 2. Observe that the estimates are similar to those from Table 3,

Figure 3, Figure 4 and Figure 5, although p = 2 is a small order of truncation. This is due to the spectral convergence of the

stochastic Galerkin projection.

Posterior distributions for R. capsulatus

Parameter Mean sd 0:95 interval

r 0:6215 0:04073 (0:5431; 0:7028)

y0 0:1262 0:03524 (0:06632; 0:2043)

K 5:557 0:1652 (5:238; 5:888)

Posterior distributions for C. vibrioforme

Parameter Mean sd 0:95 interval

r 0:3338 0:02593 (0:2837; 0:3842)

y0 0:02825 0:01403 (0:003839; 0:05829)

K 7:418 0:0989 (7:226; 7:613)

Table 4. Descriptive table for the posterior distributions of the parameters for R. capsulatus (left) and C. vibrioforme (right)

under the random logistic model (1) with gPC expansions.

6.3. Improvement of the logistic model

Consider the new model (11), in which the Malthusian growth rate is substituted by taking into account squared abundance.

We perform a least squares �tting (3) to �nd the optimal estimates for r , y0 and K. In Table 5, we show the estimates and

the residual squared error. We observe that the error is much smaller for (11) than for the logistic model (1), especially for

the R. capsulatus population. Figure 9 shows how accurate is the approximation with model (11). Hence, from a deterministic

standpoint, taking into account interactions instead of total abundance allows a better modeling.

Concerning the new model (12), in which we take into account the death rate, we also perform a least squares �tting (3) to

get the optimal estimates for r , y0, K and �. Table 6 and Figure 10 present the results. The deterministic �tting improves that

of model (11).

Parameters for R. capsulatus

r y0 K residual

0:327079 0:479572 5:3322 0:0238877

Parameters for C. vibrioforme

r y0 K residual

0:0847533 0:690599 7:0967 1:85554

Table 5. Parameters for R. capsulatus (left) and C. vibrioforme (right) under the new model (11).

6.4. Random new model and gPC expansions

Consider the new model (11) with random input coe�cients. Using the Galerkin projection technique, we use Bayesian model

(9){(10) to quantify the uncertainty of the solution process. We have set the prior distributions (13) for the parameters,
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Figure 6. Posterior distributions for the model parameters of R. capsulatus under the random logistic model (1) with gPC expansions.
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Figure 7. Posterior distributions for the model parameters of C. vibrioforme under the random logistic model (1) with gPC expansions.

Parameters for R. capsulatus

r y0 K � residual

0:43931 0:557972 5:60822 0:126042 0:0099536

Parameters for C. vibrioforme

r y0 K � residual

0:116177 0:961639 7:6808 0:0694181 1:81952

Table 6. Parameters for R. capsulatus (left) and C. vibrioforme (right) under the new model (12).
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Figure 8. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the random logistic model (1) with gPC expansions. The real data is denoted

by �, the �tting is given by the black continuous line and the 0:95 credible interval is drawn with dashed lines.
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Figure 9. Least squares �tting of R. capsulatus (left) and C. vibrioforme (right) under the new model (11). The real data is denoted by � and the �tting is

given by the black continuous line.
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Figure 10. Least squares �tting of R. capsulatus (left) and C. vibrioforme (right) under the new model (12). The real data is denoted by � and the �tting is

given by the black continuous line.

with the values �r = 42:7927, �r = 130:8316, �y0 = 91:99572, �y0 = 191:8288, �K = 710:8089 and �K = 133:305 for the

R. capsulatus population; �r = 2:873249, �r = 33:90132, �y0 = 190:7708, �y0 = 276:2396, �K = 1259:079 and �K = 177:4175

for the C. vibrioforme population; and the error � � Unif(0; 1). These values may be calculated as in the logistic model, by

imposing the mean of the gamma distribution, �=�, to be the least squares �tting estimate from Table 5, and the variance of

the gamma distribution, �=�2, to be the desired dispersion for the parameter (this is more subjective). With a burnin period of

75,000 iterations, plus 150,000 samples for the model coe�cients, and with two chains to assess convergence, the computational

time was 47 seconds for the burnin period, plus 94 seconds for the latter 150,000 samples. In Table 7, Figure 11, Figure 12
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and Figure 13, we show the results from the Bayesian inference with p = 2. Observe that the solid lines from the �gures behave

similarly to the deterministic �ttings from Figure 9. Moreover, the credible regions contain all data points, therefore the Bayesian

model is appropriate for our data set.

Finally, consider the new model (12) with uncertainty. We combine the stochastic Galerkin projection technique and the

Bayesian model (9){(10) to quantify the uncertainty for the solution stochastic process. As prior distributions for r , y0, K, � and

�, we have set (13) for r , y0, K and �, and � � Gamma(��; ��). For the numerical experiments, we have set �r = 77:19731,

�r = 175:724, �y0 = 124:5331, �y0 = 223:1888, �K = 786:3033, �K = 140:2055, �� = 6:354634 and �� = 50:4168 for the

R. capsulatus population; �r = 5:398838, �r = 46:4708, �y0 = 369:8998, �y0 = 384:6556, �K = 1474:867, �K = 192:02,

�� = 48:18873 and �� = 694:181 for the C. vibrioforme population; and the error � � Unif(0; 1). As usual, we set a burnin

period of 75,000 iterations, plus 150,000 samples for the model parameters, and with two chains to check convergence. The

computational time was 47 seconds for the burnin period, plus 94 seconds for the latter 150,000 samples (the same time as the

previous models, despite having one more parameter). In Table 8, Figure 14, Figure 15 and Figure 16, we present the results

from the Bayesian inference with order of truncation p = 2. Observe that the credible intervals contain all data measurements.

Posterior distributions for R. capsulatus

Parameter Mean sd 0:95 interval

r 0:3468 0:03955 (0:2661; 0:3993)

y0 0:4404 0:03182 (0:4037; 0:4867)

K 5:352 0:162 (5:253; 5:733)

Posterior distributions for C. vibrioforme

Parameter Mean sd 0:95 interval

r 0:05636 0:01112 (0:03632; 0:07967)

y0 0:7038 0:05447 (0:602; 0:815)

K 7:369 0:1535 (7:008; 7:608)

Table 7. Descriptive table for the posterior distributions of the parameters for R. capsulatus (left) and C. vibrioforme (right)

under the new model (11) with gPC expansions.
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Figure 11. Posterior distributions for the model parameters of R. capsulatus under the new model (11) with gPC expansions.

7. Conclusions

Mathematical models for biological population growth are important to understand and generalize the results to other situations

and to make predictions. Due to the inherent uncertainty associated to biological phenomena (errors in the laboratory experiments,

lack of information, missed data, etc.), randomness must be introduced in the model. In this paper, we have studied a random

di�erential model of growth of anaerobic photosynthetic bacteria. In the laboratory experiment, actual measurements for two

species of bacteria were collected: R. capsulatus and C. vibrioforme. A previous article by D. Stanescu et al. [Electronic
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Figure 12. Posterior distributions for the model parameters of C. vibrioforme under the new model (11) with gPC expansions.
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Figure 13. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the new model (11) with gPC expansions. The real data is denoted by �, the

�tting is given by the black continuous line and the 0:95 credible interval is drawn with dashed lines.

Posterior distributions for R. capsulatus

Parameter Mean sd 0:95 interval

r 0:4291 0:03444 (0:3621; 0:4986)

y0 0:5322 0:05639 (0:467; 0:6763)

K 5:618 0:121 (5:339; 5:815)

� 0:1068 0:04146 (0:04051; 0:1954)

Posterior distributions for C. vibrioforme

Parameter Mean sd 0:95 interval

r 0:07133 0:01208 (0:04899; 0:09645)

y0 0:9604 0:04884 (0:8672; 1:058)

K 7:908 0:1513 (7:554; 8:152)

� 0:06487 0:008284 (0:04913; 0:08149)

Table 8. Descriptive table for the posterior distributions of the parameters for R. capsulatus (left) and C. vibrioforme (right)

under the new model (12) with gPC expansions.

Transactions on Numerical Analysis, 34, 44{58 (2009)] considered a logistic model to explain bacterial growth in both populations,

based on Malthusian exponential growth model and competitiveness when there is scarcity of nutrients (mainly light and CO2).

In our article, we have improved the �t of the deterministic logistic model by assuming that the growth rate is proportional to

the squared abundance of microorganisms, and by taking into account the start of the death phase in the kinetic curve. Instead

of introducing uncertainty into the model by using arbitrary distributions for the coe�cients, we have utilized a Bayesian inverse

approach for parameter estimation. Since our model does not have an explicit solution, one would need to solve it for each

sampling point of the Markov Chain Monte Carlo algorithm. However, gPC expansions together with the stochastic Galerkin

Math. Meth. Appl. Sci. 2018, 00 1{19 Copyright c 2018 John Wiley & Sons, Ltd. 15
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences J. Calatayud, J.-C. Cort�es, M. Jornet

0.3 0.4 0.5 0.6

0
2

4
6

8
12

R capsulatus

r

P
os

te
rio

r 
de

ns
ity

 o
f r

0.4 0.5 0.6 0.7

0
2

4
6

8
12

R capsulatus

y0

P
os

te
rio

r 
de

ns
ity

 o
f y

0
4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2

0.
0

1.
0

2.
0

3.
0

R capsulatus

K

P
os

te
rio

r 
de

ns
ity

 o
f K

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
2

4
6

8

R capsulatus

delta

P
os

te
rio

r 
de

ns
ity

 o
f d

el
ta

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

R capsulatus

sigma

P
os

te
rio

r 
de

ns
ity

 o
f s

ig
m

a

Figure 14. Posterior distributions for the model parameters of R. capsulatus under the new model (12) with gPC expansions.

projection technique have allowed accelerating the Bayesian inference. Spectral convergence of the Galerkin projection implies

exponential convergence rate for the corresponding prior distributions in the sense of the Kullback-Leibler divergence, even when

the variance of the error is supposed random with a prior distribution. This fact has permitted obtaining reliable results for

the posterior distributions of the coe�cients and the posterior predictive distribution, so that it is possible to computationally

quantify the uncertainty for the bacteria population growth.
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Figure legends.

Figure 1. Population size of R. capsulatus (left) and C. vibrioforme (right).

Figure 2. Least squares �tting of R. capsulatus (left) and C. vibrioforme (right) under the logistic model. The real data is

denoted by � and the �tting is given by the black continuous line.

Figure 3. Posterior distributions for the model parameters of R. capsulatus under the random logistic model (1).

Figure 4. Posterior distributions for the model parameters of C. vibrioforme under the random logistic model (1).

Figure 5. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the random logistic model (1). The real data

is denoted by �, the �tting is given by the black continuous line and the 0:95 credible interval is drawn with dashed lines.

Figure 6. Posterior distributions for the model parameters of R. capsulatus under the random logistic model (1) with gPC

expansions.

Figure 7. Posterior distributions for the model parameters of C. vibrioforme under the random logistic model (1) with gPC

expansions.

Figure 8. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the random logistic model (1) with gPC

expansions. The real data is denoted by �, the �tting is given by the black continuous line and the 0:95 credible interval is

drawn with dashed lines.

Figure 9. Least squares �tting of R. capsulatus (left) and C. vibrioforme (right) under the new model (11). The real data is

denoted by � and the �tting is given by the black continuous line.

Figure 10. Least squares �tting of R. capsulatus (left) and C. vibrioforme (right) under the new model (12). The real data is

denoted by � and the �tting is given by the black continuous line.

Figure 11. Posterior distributions for the model parameters of R. capsulatus under the new model (11) with gPC expansions.

Figure 12. Posterior distributions for the model parameters of C. vibrioforme under the new model (11) with gPC expansions.

Figure 13. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the new model (11) with gPC expansions.

The real data is denoted by �, the �tting is given by the black continuous line and the 0:95 credible interval is drawn with

dashed lines.

Figure 14. Posterior distributions for the model parameters of R. capsulatus under the new model (12) with gPC expansions.

Figure 15. Posterior distributions for the model parameters of C. vibrioforme under the new model (12) with gPC expansions.

Figure 16. Model �tting for R. capsulatus (left) and C. vibrioforme (right) under the new model (12) with gPC expansions.

The real data is denoted by �, the �tting is given by the black continuous line and the 0:95 credible interval is drawn with

dashed lines.
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