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Analytic solution to the generalized delay
di�usion equation with uncertain inputs in
the random Lebesgue sense

Juan Carlos Cort�esa, Marc Jorneta;�

In this paper we deal with the randomized generalized di�usion equation with delay: ut(t; x) = a2uxx(t; x) + b2uxx(t � �; x),

t > � , 0 � x � l ; u(t; 0) = u(t; l) = 0, t � 0; u(t; x) = '(t; x), 0 � t � � , 0 � x � l . Here � > 0 and l > 0 are constant.

The coe�cients a2 and b2 are non-negative random variables, and the initial condition '(t; x) and the solution u(t; x) are

random �elds. The separation of variables method develops a formal series solution. We prove that the series satis�es the

delay di�usion problem in the random Lebesgue sense rigorously. By truncating the series, the expectation and the variance

of the random �eld solution can be approximated.

Keywords: random generalized di�usion equation with delay; random Lebesgue calculus; series solution;

expectation and variance approximation; uncertainty quanti�cation

1. Introduction

Given a physical system, if its future state is independent of the past states, a mathematical model based on ordinary or

partial di�erential equations may be formulated. Under this principle, many phenomena from Physics, Epidemiology, Ecology,

Engineering, Finance, etc., have been successfully modeled. However, when the future state of a system explicitly depends on

past states due to hereditary characteristics, such as aftere�ects or time lags, a time-delay term must be included into the

di�erential equation. The delay may be discrete, when a speci�c past information is used, or continuous, when complete past

history is relevant for the future. From a theoretical viewpoint, the analysis of delay di�erential equations requires alternative

techniques to those for classical di�erential equations, see general references [1, 2, 3, 4, 5, 6, 7, 8]. In practice, delay di�erential

equations allow for more complex modeling and more realistic description of the phenomenon under study. They play a key role

in di�erent scienti�c and technical �elds [9, 10, 11, 12, 13, 14, 15].

Given a mathematical model, the input coe�cients are usually set from data, by employing their modeling interpretation or

optimization techniques. But uncertainty is inherent to data: limited knowledge of the process, lack of information, bad calibration

machines, variability of the system, etc. Hence the coe�cients should be regarded as random quantities on a probability space.

The uncertainty is thus propagated from the data to the system output, which becomes a stochastic process or a random

�eld. Its speci�c realizations are not the main concern; uncertainty quanti�cation must be conducted to clearly understand its

statistical content (mean, variance, or any other statistic) [16, 17, 18].

From a theoretical point of view, di�erential equations with random parameters may be studied in a Lebesgue sense

[19, 20, 21], [8, Ch. 8]. Given a stochastic process, its continuity, di�erentiability, Riemann integrability, etc., may be de�ned

by considering the limits in Lebesgue spaces. Recall that the random Lebesgue spaces are the Banach spaces (Lp; k�kp), where

kUkp = (E[jUjp])1=p <1 (�nite p-th absolute moment), for 1 � p <1, and kUk1 = inffC � 0 : jUj � C almost surelyg <1

(essential boundedness), for any random variable U. In particular, (L2; h�; �i) is the Hilbert space of random variables with �nite

variance, endowed with the inner product hU; V i = E[UV ]. Here E[�] is the expectation operator. A key aspect of (Lp; k�kp) is

that convergence preserves the convergence of statistical moments up to order p. When p � 2, the convergence of the mean

and the variance is preserved. This is important for uncertainty quanti�cation [22, 23, 24, 25, 26].

Recently, random di�erential equations with discrete delay have been studied by employing random Lebesgue calculus. In [27],

general delay random di�erential equations in Lp were analyzed, with the goal of extending some of the existing results on
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random ordinary di�erential equations with no delay from the book [19]. In [28], the study on delay random di�erential equations

was started with the basic autonomous and homogeneous linear equation, by proving the existence and uniqueness of Lp-solution

under certain conditions.

In this paper, we study the randomized generalized di�usion equation with delay:
ut(t; x) = a2uxx(t; x) + b2uxx(t � �; x); t > �; 0 � x � l ;

u(t; 0) = u(t; l) = 0; t � 0;

u(t; x) = '(t; x); 0 � t � �; 0 � x � l :

(1)

A complete probability space (
;F ;P) is implicitly assumed. The coe�cients a2 and b2 are non-negative random variables, and

the initial condition '(t; x) and the solution u(t; x) are random �elds. All these terms depend on the random outcomes ! 2 
.

The delay term � and l are positive constants.

The deterministic version of (1) was studied in [29]. When b = 0, the randomized problem was solved in [30], in the mean

square (Lebesgue with exponent p = 2) sense. These two references used the method of separation of variables (also called

Fourier method) to derive the candidate series solution. The latter reference achieved approximations to the expectation and

the variance of the series solution.

In this work, we aim at solving (1) in the random Lebesgue Lp sense, by employing the method of separation of variables. In

the separate equation for the time variable, a particular linear random di�erential equation with delay arises, which is explicitly

solved by utilizing [28]. Once the Lp-convergence of the series solution is established, statistical moments up to order p can be

approximated by truncating the series. In particular, when p � 2, the expectation and the variance of the solution are estimated.

The organization of the present paper is as follows. In Section 2, we show the main de�nitions and results on random Lebesgue

calculus that will be required to solve (1). In Section 3, we summarize the main �ndings obtained in [28] for the linear random

di�erential equation with delay. After these preliminaries, Section 4 is devoted to solving (1) in the random Lp sense, by employing

the method of separation of variables and addressing the Lp-convergence of the series solution. In Section 5, the series solution

is truncated to approximate the �rst statistical moments. Some numerical computations are included. Finally, Section 6 draws

the main conclusions of the paper and discusses potential avenues of research.

2. Preliminaries on random Lebesgue calculus

Fixed 1 � p <1, we work on the Lebesgue space (Lp; k�kp) of random variables from 
 to R with �nite p-th absolute moment.

Given a stochastic process u(t) or a random �eld u(t; x), their continuity, di�erentiability, Riemann integrability, etc., may be

de�ned in Lp. For instance, u(t) is Lp-continuous at t0 if limt!t0 ku(t)� u(t0)kp = 0; u(t) is Lp-di�erentiable at t0 if the limit

of u(t0+h)�u(t0)
h

exists in Lp when h ! 0; and u(t) is Lp-Riemann integrable on a time domain [t1; t2] if there exists a random

variable A and a sequence of partitions fPng
1

n=1 with mesh tending to 0, Pn = ft1 = tn0 < tn1 < : : : < tnrn = t2g, such that, for any

choice of points sni 2 [tni�1; t
n
i ], i = 1; : : : ; rn, limn!1

∑rn
i=1 u(s

n
i )(t

n
i � tni�1) = A in Lp, where A is then denoted as

∫ t2
t1
u(t) dt.

According to [8, Th. 8-20], if u(t) is continuously di�erentiable on I � R in the Lp sense with derivative u0, then there exists

an equivalent stochastic process '(t; !) on I �
 (i.e., P['(t) = u(t)] = 1 for all t), product measurable, such that its sample

paths are absolutely continuous, '0(t; !) exists almost everywhere on I �
, and '0(t; �) = u0(t) almost surely for almost all

t 2 I.

By [8, p. 441], if u(t) is Lp-continuous on I = [t1; t2], then there exists an equivalent stochastic process '(t; !) on I �
,

product measurable, such that [
∫ t2
t1
u(s) ds](!) =

∫ t2
t1
'(s; !) ds, where the integral on the right is an ordinary Lebesgue integral

for sample paths.

If u(t) is Lp-bounded and Lp-almost everywhere continuous on I, then u is Lp-Riemann integrable on I. The converse is not

true, since Lp does not have the Lebesgue Property [31].

Apart from these concepts and results, we will need the following �ndings related to random Lp operational calculus.

Lemma 2.1 [30, Th. 3.1] Let fun(t)g
1

n=1 be a sequence of stochastic processes. Suppose that each un(t) is continuously

di�erentiable on an interval I in the Lp sense, u(t) =
∑

1

n=1 un(t) exists in Lp for each t 2 I, and
∑

1

n=1 u
0

n(t) is uniformly

convergent on I in the Lp sense. Then u is Lp-di�erentiable on I and u0(t) =
∑

1

n=1 u
0

n(t) in Lp, t 2 I.

Lemma 2.2 (Leibniz's integral rule) [28, Prop. 2.2] Let u(t; s) be a stochastic process on [a; b]� [c; d ]. Suppose that u(t; �)

is Lp-continuous on [c; d ], for each t 2 [a; b], and that there exists the Lp-partial derivative @u
@t
(t; s) for all (t; s) 2 [a; b]� [c; d ],

which is Lp-continuous on [a; b]� [c; d ]. Let v(t) =
∫ d

c
u(t; s) ds (the integral is understood as an Lp-Riemann integral). Then

v is Lp-di�erentiable on [a; b] and v 0(t) =
∫ d

c
@u
@t
(t; s) ds.

Lemma 2.3 (Integration by parts formula) [19, p. 104] Let u(t) be a stochastic process on [a; b] and let f (t) be a deterministic

real function on [a; b]. Suppose that u is continuously di�erentiable in the Lp sense and that f is continuously di�erentiable.

Then
∫ b

a
f (t)u0(t) dt = f (b)u(b)� f (a)u(a)�

∫ b

a
f 0(t)u(t) dt, where the Riemann integrals are considered in the Lp sense.

2
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3. On the linear random di�erential equation with delay

In this section we show some results from [28]. The autonomous and homogeneous linear random di�erential equation with

delay is {
u0(t) = au(t) + bu(t � �); t � 0;

u(t) = g(t); �� � t � 0;
(2)

where a and b are random variables, and g(t) and u(t) are stochastic process. By randomizing the deterministic solution obtained

with the method of steps [32, Th. 1], the formal solution to (2) is

u(t) = ea(t+�)eb1;t� g(��) +

∫ 0

��

ea(t�s)eb1;t���s� (g0(s)� ag(s)) ds; (3)

where b1 = e�a�b,

ec;t� = exp� (c; t) =



0; �1 < t < ��;

1; �� � t < 0;

1 + c
t

1!
; 0 � t < �;

1 + c
t

1!
+ c

2 (t � �)2

2!
; � � t < 2�;

.

.

.
.
.
.

n∑
k=0

c
k (t � (k � 1)�)k

k!
; (n � 1)� � t < n�;

is the delayed exponential function [32, Def. 1], c; t 2 R, � > 0 and n = bt=�c+ 1 (here b�c denotes the integer part de�ned by

the so-called oor function). The integral from (3) is considered as an Lp-Riemann integral.

In [28], two results for existence and uniqueness of Lp-solution to (2) were stated and proved. In this paper we will only need

the second result.

Lemma 3.1 (Existence and uniqueness) [28, Th. 3.2] Fix 1 � p <1. Suppose that E[ea�] <1 for all � 2 R, b has absolute

moments of any order, and g belongs to C1([��; 0]) in the Lp+� sense, for certain � > 0. Then the stochastic process u(t)

de�ned by (3) is the unique Lp-solution to (2).

Lemma 3.2 (Existence and uniqueness) [28, Th. 3.4] Fix 1 � p <1. Suppose that a and b are bounded random variables,

and g belongs to C1([��; 0]) in the Lp sense. Then the stochastic process u(t) de�ned by (3) is the unique Lp-solution to (2).

4. Solution to the random partial di�erential equation problem with delay

In this section, we solve (1) in the random Lp sense rigorously, for non-negative random variables a2 and b2 and random �eld

'(t; x). We consider the formal series solution obtained by linear superposition via the method of separation of variables, and we

prove that it converges in Lp and that it satis�es the delay partial di�erential equation from (1) by taking Lp-partial derivatives.

Theorem 4.1 Fix 1 � p <1. Suppose that a2 and b2 are non-negative and bounded random variables: ka2k1 <1, kb2k1 <1.

Suppose also that '(t; 0) = '(t; l) = 0 almost surely, '(t; �) 2 C1[0; l ] in Lp for each t 2 [0; � ], @'
@t

exists in the Lp sense and

is Lp-continuous on [0; � ]� [0; l ]. Let the series

u(t; x) =

1∑
n=1

Tn(t) sin
(n�x

l

)
; t � 0; x 2 [0; l ]; (4)

where

Tn(t) = exp

(
�
(n�

l

)2
a2t

)
exp�

(
�e(

n�

l )
2
a2�
(n�

l

)2
b2; t � �

)
Bn(0)

+

∫ �

0

exp

(
�
(n�

l

)2
a2(t � s)

)
exp�

(
�e(

n�

l )
2
a2�
(n�

l

)2
b2; t � s � �

)
�

(
B0

n(s) +
(n�

l

)2
a2Bn(s)

)
ds; (5)

Bn(t) =
2

l

∫ l

0

'(t; x) sin
(n�x

l

)
dx: (6)

All the integrals and the derivatives here are considered in the Lp sense. Then (4) converges in Lp for all t � 0 and x 2 [0; l ],

u(t; x) is Lp-continuous on [0;1)� [0; l ], and it satis�es (1) with random Lp calculus. Moreover, it is the unique Lp-solution

to the problem.

3
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Proof. First, notice that '(t; x) =
∑

1

n=1 Bn(t) sin(n�x=l) on [0; � ]� [0; l ] in Lp. Indeed, given Bn(t), integration by parts in Lp

(Lemma 2.3) and the condition '(t; 0) = '(t; l) = 0 almost surely give

Bn(t) = �
2l

n2�2

∫ l

0

'xx(t; x) sin
(n�x

l

)
dx:

Then

kBn(t)kp �
2l

n2�2

∫ l

0

k'xx(t; x)kp dx �
2l2

n2�2
max

[0;� ]�[0;l ]
k'xxkp:

By Weierstrass M-test,
∑

1

n=1 Bn(t) sin(n�x=l) converges uniformly on [0; � ]� [0; l ] in Lp. On the other hand, the regularity of

'(t; �) in the Lp sense implies that the sample paths of '(t; �) are absolutely continuous real functions on [0; l ], see Section 2.

Therefore, for each t 2 [0; � ], the Fourier series of '(t; �) converges pointwise: '(t; x) =
∑

1

n=1 Bn(t) sin(n�x=l) on [0; l ] almost

surely. Since the series converges in the random space Lp for each t and x , necessarily the equality holds in Lp, as wanted.

As shown in [29], the method of separation of variables provides a candidate solution of the form (4), where{
T 0n(t) = �

(
n�
l

)2
a2Tn(t)�

(
n�
l

)2
b2Tn(t � �); t > �;

Tn(t) = Bn(t); 0 � t � �:
(7)

This problem (7) may be translated into{
Y 0n(t) = �

(
n�
l

)2
a2Yn(t)�

(
n�
l

)2
b2Yn(t � �); t > 0;

Yn(t) = Bn(t + �); �� � t � 0;

where Yn(t) = Tn(t + �), t � �� . Let us apply Lemma 3.2. First, a2 and b2 are bounded by assumption, so �(n�=l)2a2

and �(n�=l)b2 are bounded. Second, Bn(t) is continuously di�erentiable on [0; � ] in the Lp sense, by Lemma 2.2: B0

n(t) =
2
l

∫ l

0
't(t; x) sin(n�x=l) dx . Thus,

Yn(t) = exp

(
�
(n�

l

)2
a2(t + �)

)
exp�

(
�e(

n�

l )
2
a2�
(n�

l

)2
b2; t

)
Bn(0)

+

∫ 0

��

exp

(
�
(n�

l

)2
a2(t � s)

)
exp�

(
�e(

n�

l )
2
a2�
(n�

l

)2
b2; t � s � �

)
�

(
B0

n(s + �) +
(n�

l

)2
a2Bn(s + �)

)
ds:

By using the relation Tn(t) = Yn(t � �) and by translating the Lp integral from [��; 0] to [0; � ], we arrive at the required

formula (5) for Tn(t). With Tn(t) given by (5), problem (7) is solved in the Lebesgue Lp sense rigorously.

Let us study the growth of kTn(t)kp. From '(t; �) 2 C1[0; l ] in Lp, we deduce kBn(t)kp � Ck=n
k , k � 1, for constant Ck > 0

independent of t 2 [0; � ] and n (use integration by parts with Lemma 2.3). We prove by induction on the intervals (�; 2� ],

(2�; 3� ], etc. that, for any t,

kTn(t)kp �
Rk

nk
; (8)

k � 1, where Rk > 0 is a constant, independent of n and t within the interval of length � but dependent on the interval. Suppose

that (8) holds on ((m � 1)�;m� ] (induction hypothesis). Then, for t 2 (m�; (m + 1)� ], by (7)

Tn(t) = Tn(m�)exp

(
�
(n�

l

)2
a2(t �m�)

)
�

∫ t

m�

exp

(
�
(n�

l

)2
a2(t � s)

)(n�
l

)2
b2Tn(s � �) ds;

so, by bounding the exponential functions by 1 (because of their negative exponents),

kTn(t)kp � kTn(m�)kp + (t �m�)
(n�

l

)2
kbk21 max

((m�1)�;m� ]
kTnkp:

By the induction hypothesis, (8) holds on (m�; (m + 1)� ]. This completes the proof of (8) by induction.

By Weierstrass M-test, the series that de�nes u(t; x) in (4) converges in Lp, uniformly on [0; t�]� [0; l ], for all t� > 0.

It remains proving that (4) may be di�erentiated in Lp term-by-term so that the delay partial di�erential equation from (1)

is satis�ed. We apply Lemma 2.1. To di�erentiate (4) in Lp with respect to t, notice that, from (7) and (8),

kT 0n(t)kp �
(n�

l

)2
ka2k1kTn(t)kp +

(n�
l

)2
kb2k1kTn(t � �)kp �

S

n2
;

4
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where S > 0, t 2 [0; t�]. By Weierstrass M-test,
∑

1

n=1 T
0

n(t) sin(n�x=l) converges uniformly on [0; t�]� [0; l ] in Lp, so that

ut(t; x) =
∑

1

n=1 T
0

n(t) sin(n�x=l) by Lemma 2.1. For di�erentiating twice with respect to x , we use (8), n2kTn(t)kp � R4=n
2, t 2

[0; t�], so that
∑

1

n=1 Tn(t)@
2
xx sin(n�x=l) converges uniformly on [0; t�]� [0; l ] in Lp, and uxx(t; x) =

∑
1

n=1 Tn(t)@
2
xx sin(n�x=l)

by Lemma 2.1 again. Thus, (4) may be di�erentiated in Lp term-by-term, so we are done with the existence of Lp-solution.

For the uniqueness of Lp-solution, suppose that u1(t; x) and u2(t; x) are two Lp-solutions to (1). Let v(t; x) = u1(t; x)�

u2(t; x), which satis�es (1) in the Lp sense with ' = 0. Since v(t; �) is continuously di�erentiable in the Lp sense, its sample

paths are absolutely continuous (see Section 2). Then v(t; x) =
∑

1

n=1 Rn(t) sin(n�x=l) in the sense of square integrable real

functions with respect to the Lebesgue measure dx (the classical Fourier series), for each t > � . The Fourier coe�cient is

given by Rn(t) = (2=l)
∫ l

0
v(t; x) sin(n�x=l) dx , where this integral is an ordinary Lebesgue integral for sample paths. Now, since

v(t; �) is Lp-Riemann integrable, that integral can also be considered in the Lp sense. Apply Lemma 2.2 to di�erentiate in the Lp

sense: R0n(t) = (2=l)
∫ l

0
vt(t; x) sin(n�x=l) dx = (2=l)

∫ l

0
(a2vxx(t; x) + b2vxx(t � �; x)) sin(n�x=l) dx . By applying Lemma 2.3,

we derive that Rn(t) satis�es (7) in Lp, with Bn = 0. By Section 3, Rn(t) = 0 almost surely, so v(t; x) = 0 almost surely.

2

Remark 4.2 When p � 2, there is another proof of uniqueness. Notice that, by the method of steps, we just need uniqueness for

ut(t; x) = a2uxx(t; x), t 2 (�; 2�); u(t; 0) = u(t; l) = 0, t 2 [�; 2�); u(�; x) = 0. When p � 2, uniqueness of Lp-solution may

be established by using an adapted energy method [33, Th. 3.1].

5. Uncertainty quanti�cation

Uncertainty quanti�cation consists in obtaining the statistical content of the solution u(t; x) to (1). By truncating the series

that de�nes u(t; x), (4), we have an approximation uN(t; x) =
∑N

n=1 Tn(t) sin(n�x=l) that converges to u(t; x) in Lp when

N !1. The integral in the de�nition of Tn(t) (5) (recall that L
p integrals are equal to sample path integrals, see Section 2)

is approximated with Gauss-Legendre quadrature on [0; � ]. The statistical moments of u(t; x) can then be approximated by

those of uN(t; x), up to order p. In particular, when p � 2, we have E[uN(t; x)]! E[u(t; x)] and V[uN(t; x)]! V[u(t; x)] when

N !1, where E[�] and V[�] are the expectation and the variance operators. These two statistics give information about the

mean value and the dispersion.

The statistics of uN(t; x) may be estimated by using Monte Carlo simulation [16, pp. 53{54]. This is necessary when the

dimension of the random space is not low, since integration via tensor quadratures becomes unfeasible. Variance reduction

strategies for the Monte Carlo simulation, such as antithetic or control variates, may be conducted [34].

The exact expectation of uN(t; x) is given by
∑N

n=1 E[Tn(t)] sin(n�x=l). Suppose that a
2 and b2 have probability densities fa2

and fb2 , and that '(t; x) depends on a single random variable c with density fc . Then

E[Tn(t)] =

∫∫∫
R3

exp

(
�
(n�

l

)2
a2t

)
exp�

(
�e(

n�

l )
2
a2�
(n�

l

)2
b2; t � �

)
Bn(0)

�fa2(a
2)fb2(b

2)fc(c) da
2 db2 dc

+

∫∫∫
R3

∫ �

0

exp

(
�
(n�

l

)2
a2(t � s)

)
exp�

(
�e(

n�

l )
2
a2�
(n�

l

)2
b2; t � s � �

)
�

(
B0

n(s) +
(n�

l

)2
a2Bn(s)

)
fa2(a

2)fb2(b
2)fc(c) ds da

2 db2 dc: (9)

So a multi-dimensional integral in four variables needs to be solved. For a second order statistic (as the variance), the formula

E[uN(t; x)
2] =

∑N
n;m=1 E[Tn(t)Tm(t)] sin(n�x=l) sin(m�x=l) may be used. Each term E[Tn(t)Tm(t)] may be computed similarly

to (9), but with a multi-dimensional integral of �ve variables. For higher order statistics, the integration dimension increases

more. Thus, it might be possible to compute the expectation, and even the variance for moderate N, via tensor quadratures,

but for higher order statistics Monte Carlo simulation on uN(t; x) may be the only feasible choice.

Example 5.1 Let us �x l = 1 and � = 0:7. Suppose that a2 has a triangular distribution with endpoints 0 and 0:2. That

is, the probability density fa2 of a2 has a triangular shape with endpoints 0 and 0:2 and peak at 0:1. Let b2 be uniformly

distributed on [0:1; 0:2]. Finally, let '(t; x) = ctx(1� x), where c is a random variable with exponential distribution of mean

0:1: fc(c) = 10e�10c , c � 0. The conditions of Theorem 4.1 hold, so we have the Lp-solution de�ned by (4), 1 � p <1.

Let us approximate the expectation of u(t; x) for di�erent time-space locations by means of E[uN(t; x)] =∑N
n=1 E[Tn(t)] sin(n�x=l), where E[Tn(t)] is calculated by means of (9) and tensor quadratures. In Table 1, the results are

tabulated up to eight signi�cant digits. Observe that, as N increases, convergence of the mean values of uN(t; x) is achieved.

When t increases, the convergence rate seems penalized and larger N is required. We would like to highlight the accuracy of

the method, since it is able to determine several signi�cant �gures of the exact mean value. This level of precision cannot be

achieved by the Monte Carlo simulation, because its slow convergence rate as the reciprocal of the square root of the number

of realizations restricts its accuracy to two or three decimal digits, in general.
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(t; x) (1; 0:2) (1; 0:5) (2; 0:2) (2; 0:5)

N = 1 0:0070345207 0:011967841 �0:0036484069 �0:0062070406

N = 5 0:0068324207 0:012090423 �0:0028142115 �0:0066180353

N = 10 0:0068802825 0:012109457 �0:0031220156 �0:0067200030

N = 15 0:0068673367 0:012116829 �0:0030169121 �0:0067888327

N = 20 0:0068703977 0:012116214 �0:0030580722 �0:0067813572

N = 25 0:0068688167 0:012115582 �0:0030359888 �0:0067673909

N = 30 0:0068692174 0:012115634 �0:0030473259 �0:0067689534

N = 35 0:0068689591 0:012115730 �0:0030401608 �0:0067733800

N = 40 0:0068690382 0:012115722 �0:0030446297 �0:0067729556

N = 45 0:0068689812 0:012115686 �0:0030414851 �0:0067708973

N = 50 0:0068690209 0:012115689 �0:0030437029 �0:0067710747

N = 55 0:0068690060 0:012115699 �0:0030420247 �0:0067721237

N = 60 0:0068690171 0:012115698 �0:0030432686 �0:0067720497

N = 65 0:0068690082 0:012115692 �0:0030422893 �0:0067714280

N = 70 0:0068690151 0:012115693 �0:0030430647 �0:0067714720

N = 75 0:0068690111 0:012115697 �0:0030424301 �0:0067718831

N = 80 0:0068690134 0:012115696 �0:0030429393 �0:0067718515

Table 1. Approximations of the expectation E[u(t; x)] for di�erent time-space locations and truncation orders N as indicated. The

formula E[uN(t; x)] =
∑N

n=1 E[Tn(t)] sin(n�x=l) has been employed, where E[Tn(t)] is calculated with (9) and tensor quadratures.

Results are reported up to eight signi�cant digits.

For the variance of u(t; x) we proceed similarly. We use the formula E[uN(t; x)
2] =∑N

n;m=1 E[Tn(t)Tm(t)] sin(n�x=l) sin(m�x=l) and compute each term E[Tn(t)Tm(t)] with tensor quadratures. Compared

to E[u(t; x)], the complexity increases severely and unfortunately only moderate values of N can be tackled at reasonable CPU

time. In Table 2, the approximations to the standard deviation
√
V[u(t; x)] are reported up to eight signi�cant digits.

(t; x) (1; 0:2) (1; 0:5) (2; 0:2) (2; 0:5)

N = 1 0:0071600523 0:012181408 0:0040801184 0:0069415120

N = 5 0:0069676520 0:012289005 0:0030782602 0:0074975704

N = 10 0:0070208788 0:012309646 0:0036398075 0:0076106803

N = 15 0:0070060814 0:012319425 0:0033540365 0:0076716996

N = 20 0:0070110544 0:012318439 0:0034710237 0:0076635280

N = 25 0:0070084860 0:012316856 0:0033951073 0:0076529273

N = 30 0:0070097299 0:012317061 0:0034354854 0:0076538645

Table 2. Approximations of the standard deviation
√
V[u(t; x)] for di�erent time-space locations and truncation orders N as

indicated. The formula E[uN(t; x)
2] =

∑N
n;m=1 E[Tn(t)Tm(t)] sin(n�x=l) sin(m�x=l) has been employed, where E[Tn(t)Tm(t)] is

calculated with tensor quadratures. Results are reported up to eight signi�cant digits.

6. Conclusions

In this paper, we have dealt with the randomized generalized di�usion equation with delay. The inputs of the model, namely the

di�usion coe�cients and the initial history function, are assumed to be random quantities on a probability space. The solution

becomes a random �eld. The classical method of separation of variables provides a candidate series solution. By using random

Lebesgue calculus, the delay problem has been solved in a stochastic sense rigorously. This fact also allows for uncertainty

quanti�cation, by truncating the series solution and estimating its main statistics.

Of course, the methodology followed is not restricted to the particular problem treated here. We believe that most of the

problems that are solvable via separation of variables may be addressed in a stochastic sense with random Lebesgue calculus.

This is not only a theoretical concern, but also an important issue for uncertainty quanti�cation.
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