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Abstract

With the development of Cloud Computing, the delivery of virtualized
resources over the Internet has greatly grown in recent years. Functions as
a Service (FaaS), one of the newest service models within Cloud Computing,
allows the development and implementation of event-based applications that
cover managed services in public and on-premises Clouds. Public Cloud
Computing providers adopt the FaaS model within their catalog to provide
event-driven highly-scalable computing for applications.

On the one hand, developers specialized in this technology focus on creating
open-source serverless frameworks to avoid the lock-in with public Cloud
providers. Despite the development achieved by serverless computing, there
are currently fields related to data processing and execution performance

optimization where the full potential has not been explored.

In this doctoral thesis three serverless computing strategies are defined that
allow to demonstrate the benefits of this technology for data processing. The
implemented strategies allow the analysis of data with the integration of
accelerated devices for the efficient execution of scientific applications on public

and on-premises Cloud platforms.




Firstly, the CloudTrail-Tracker platform was developed to extract and process
learning analytics in the Cloud. CloudTrail-Tracker is an event-driven
open-source platform for serverless data processing that can automatically
scale up and down, featuring the ability to scale to zero for minimizing the
operational costs.

Next, the integration of GPUs in an event-driven on-premises serverless
platform for scalable data processing is discussed. The platform supports
the execution of applications as severless functions in response to the loading
of a file in a file storage system, which allows the parallel execution of
applications according to available resources. This processing is managed by
an elastic Kubernetes cluster that automatically grows and shrinks according
to the processing needs. Certain approaches based on GPU virtualization
technologies such as rCUDA and NVIDIA-Docker are evaluated to speed up

the execution time of the functions.

Finally, another solution based on the serverless model is implemented to
run the inference phase of previously trained machine learning models on the
Amazon Web Services platform and in a private platform with the OSCAR
framework. The system grows elastically according to demand and is scaled
to zero to minimize costs. On the other hand, the front-end provides the user
with a simplified experience in obtaining the prediction of machine learning
models.

To demonstrate the functionalities and advantages of the solutions proposed
during this thesis, several case studies are collected covering different fields of
knowledge such as learning analytics and Artificial Intelligence. This shows
the wide range of applications where serverless computing can bring great
benefits. The results obtained endorse the use of the serverless model in
simplifying the design of architectures for the intensive data processing in
complex applications.
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Resumen

Con el desarrollo de la Computacion en la Nube, la entrega de recursos
virtualizados a través de Internet ha crecido enormemente en los tltimos afios.
Las Funciones como servicio (FaaS), uno de los modelos de servicio méas nuevos
dentro de la Computacion en la Nube, permite el desarrollo e implementacion
de aplicaciones basadas en eventos que cubren servicios administrados en Nubes
publicas y locales. Los proveedores piiblicos de Computacién en la Nube
adoptan el modelo FaaS dentro de su catélogo para proporcionar computacion
basada en eventos altamente escalable para las aplicaciones.

Por un lado, los desarrolladores especializados en esta tecnologia se centran
en crear marcos de codigo abierto serverless para evitar el bloqueo con
los proveedores de la Nube publica. A pesar del desarrollo logrado
por la informatica serverless, actualmente hay campos relacionados con el
procesamiento de datos y la optimizacién del rendimiento en la ejecucién en

los que no se ha explorado todo el potencial.

En esta tesis doctoral se definen tres estrategias de computacion serverless que
permiten evidenciar los beneficios de esta tecnologia para el procesamiento
de datos. Las estrategias implementadas permiten el analisis de datos con
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la integraciéon de dispositivos de aceleracidén para la ejecucion eficiente de
aplicaciones cientificas en plataformas cloud publicas y locales.

En primer lugar, se desarrolld la plataforma CloudTrail-Tracker.
CloudTrail-Tracker es una plataforma serverless de cédigo abierto basada en
eventos para el procesamiento de datos que puede escalar automaticamente
hacia arriba y hacia abajo, con la capacidad de escalar a cero para minimizar
los costos operativos.

Seguidamente, se plantea la integracion de GPUs en una plataforma serverless
local impulsada por eventos para el procesamiento de datos escalables. La
plataforma admite la ejecucién de aplicaciones como funciones severless en
respuesta a la carga de un archivo en un sistema de almacenamiento de ficheros,
lo que permite la ejecucién en paralelo de las aplicaciones segin los recursos
disponibles. Este procesamiento es administrado por un claster Kubernetes
elastico que crece y decrece autométicamamente segtin las necesidades de
procesamiento. Ciertos enfoques basados en tecnologias de virtualizacion de
GPU como rCUDA y NVIDIA-Docker se evalian para acelerar el tiempo de

ejecucion de las funciones.

Finalmente, se implementa otra solucién basada en el modelo serverless
para ejecutar la fase de inferencia de modelos de aprendizaje automaético
previamente entrenados, en la plataforma de Amazon Web Services y en una
plataforma privada con el framework OSCAR. El sistema crece elasticamente
de acuerdo con la demanda y presenta una escalado a cero para minimizar los
costes. Por otra parte, el front-end proporciona al usuario una experiencia
simplificada en la obtenciéon de la prediccion de modelos de aprendizaje

automatico.

Para demostrar las funcionalidades y ventajas de las soluciones propuestas
durante esta tesis se recogen varios casos de estudio que abarcan diferentes
campos del conocimiento como la analitica de aprendizaje y la Inteligencia
Artificial. Esto demuestra que la gama de aplicaciones donde la computacion

serverless puede aportar grandes beneficios es muy amplia. Los resultados
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obtenidos avalan el uso del modelo serverless en la simplificacién del diseno de

arquitecturas para el uso intensivo de datos en aplicaciones complejas.
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Resum

Amb el desenvolupament de la Computacié en el Nuvol, el lliurament de
recursos virtualitzats a través d’Internet ha crescut granment en els dltims
anys. Les Funcions com a Servei (FaaS), un dels models de servei més nous
dins de la Computacié en el Nuvol, permet el desenvolupament i implementaci6
d’aplicacions basades en esdeveniments que cobreixen serveis administrats en
Nuvols publics i locals. Els proveidors de computacié en el Nuavol piiblic
adopten el model FaaS dins del seu cataleg per a proporcionar a les aplicacions
computacié altament escalable basada en esdeveniments.

D’una banda, els desenvolupadors especialitzats en aquesta tecnologia se
centren en crear marcs de codi obert serverless per a evitar el bloqueig amb
els proveidors del Nuvol public. Malgrat el desenvolupament alcancat per la
informatica serverless, actualment hi ha camps relacionats amb el processament
de dades i 'optimitzacié del rendiment d’execucié en els quals no s’ha explorat
tot el potencial.

En aquesta tesi doctoral es defineixen tres estratégies informéatiques serverless
que permeten demostrar els beneficis d’aquesta tecnologia per al processament
de dades. Les estratégies implementades permeten l'analisi de dades amb
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la integracié de dispositius accelerats per a l’execucié eficient d’aplicacions

cientifiques en plataformes de Nuvol pibliques i locals.

En primer lloc, es va desenvolupar la plataforma CloudTrail-Tracker.
CloudTrail-Tracker és una plataforma de codi obert basada en esdeveniments
per al processament de dades serverless que pot escalar automaticament cap
amunt i cap avall, amb la capacitat d’escalar a zero per a minimitzar els costos

operatius.

A continuaci6 es planteja la integraci6 de GPUs en una plataforma serverless
local impulsada per esdeveniments per al processament de dades escalables.
La plataforma admet l’execuci6 d’aplicacions com funcions severless en
resposta a la carrega d’'un arxiu en un sistema d’emmagatzemaments de
fitxers, la qual cosa permet ’execucié en paral-lel de les aplicacions segons
els recursos disponibles. Este processament és administrat per un cluster
Kubernetes elastic que creix i decreix automaticament segons les necessitats
de processament. Certs enfocaments basats en tecnologies de virtualitzacio
de GPU com rCUDA i NVIDIA-Docker s’avaluen per a accelerar el temps

d’execucio de les funcions.

Finalment s’implementa una altra solucié basada en el model serverless per a
executar la fase d’inferéncia de models d’aprenentatge automatic préviament
entrenats en la plataforma de Amazon Web Services i en una plataforma
privada amb el framework OSCAR. El sistema creix elasticament d’acord
amb la demanda i presenta una escalada a zero per a minimitzar els costos.
D’altra banda el front-end proporciona a I'usuari una experiéncia simplificada

en 'obtenci6 de la prediccié de models d’aprenentatge automatic.

Per a demostrar les funcionalitats i avantatges de les solucions proposades
durant esta tesi s’arrepleguen diversos casos d’estudi que comprenen diferents
camps del coneixement com l'analitica d’aprenentatge i la Intel-ligéncia
Artificial.  Aixo demostra que la gamma d’aplicacions on la computacio

serverless pot aportar grans beneficis és molt amplia. Els resultats obtinguts
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avalen 1'ts del model serverless en la simplificacié del disseny d’arquitectures

per a I'ts intensiu de dades en aplicacions complexes.
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Chapter 1

Introduction

The development of technologies that have emerged in recent times have
allowed us to face and solve many scientific challenges, fundamentally those
related to Big Data and Artificial Intelligence, two of the most popular
innovative technologies in recent times. For this, it is extremely important to
have data centers with great computing capacity and original problem-solving

approaches.

The last few years have witnessed unprecedented advances in the field of
Cloud Computing. This model refers to ubiquitous, convenient and on-demand
network access to a shared group of computing resources. These resources can
be networks, servers, storage, applications and services, and can be provisioned
and launched quickly with minimal administrative effort or the interaction of

the service provider [89].

The open range of possibilities of access to computing, storage and network
resources in the Cloud, established a wide range of service models such as [aaS

(Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software
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as a Service). The IaaS model (lowest level) basically constitutes a virtual
provisioning of computing infrastructures such as storage, servers, networks,
maintenance and support through the Cloud. The PaaS model (intermediate
level) is a framework where the Cloud provider provides the client with a
development environment with the necessary tools for the implementation of
applications through a secure connection. On the other hand, the SaaS model

(highest level) allows quick access to cloud-based web applications.

The investment in the use of resources in the Cloud is going up remarkably, with
the forecast that by 2023 more than half of all the infrastructure spending of
the IT (Information Technology) buyers will be in IaaS, and the computation
[aaS in the public Cloud accounts for more than 25% of the computation
in an average company [64]. Therefore, reducing costs in all fields of Cloud

Computing will be a priority.

Virtualization is the combination of hardware and software that creates virtual
machines (VM) and allows multiple operating systems to run on the same
physical machine [80]. Virtual machines are an emulation of a physical
computer and are considered the foundation of Cloud Computing. Each virtual
machine includes an operating system, a virtual copy of the hardware required
to run an application, as well as associated libraries and dependencies. This
causes that the main limitations of virtual machines are aimed at their large size
and the boot time of the operating system. This deployment system ensures
greater security benefits by executing the processes inside the virtual machine
with greater isolation from the processes running on the host system.

Containers are an abstraction of the application layer that packages all the
code and dependencies required to run the application instead of creating
a full virtual machine. Containers virtualize the operating system kernel
that can be shared among multiple containers, each running as isolated
processes in user space [141]. Containers have provided a better way for
application delivery, as they are lighter and by being encapsulated processes
that use the Linux kernel primitive, they provide a faster startup time than

virtual machines [5]. When it comes to managing complex infrastructures,



the microservices approach, in which an application can be decomposed
into smaller, loosely coupled, and independent services, allows systems to
be scaled and deployed with greater ease and flexibility through the use of
containers. In microservices-oriented architectures, containers allow a certain
degree of isolation in terms of dependencies and configurations as each service

is embedded in a custom environment.

Containers as an emerging technology in the Cloud, are presented as the
most suitable solution to serve as a runtime environment where virtualization
processes run quickly and lightly [83]. Most commercial Cloud Computing
systems make use of containers to manage applications in isolated environments
so that the effort and time required to scale the deployment is significantly
reduced. The arrival of Linux containers together with the increase in
process automation led to the emergence of other service models such as FaaS

(Functions as a Service).

Serverless computing can be seen as the latest emerging Cloud execution
model, where the Cloud provider dynamically manages resource allocation.
One of the fundamental challenges in the transition to serverless computing
is that applications must be designed in the form of functions, which
requires the adoption of a microservices-based architecture, where processes
are independent of each other. Microservices architecture became the main
candidate to maximize the performance of Cloud applications [144].

Serverless computing, and in particular the FaaS model, have become a
convincing paradigm for the deployment of applications in the Cloud, largely
due to the recent change of architectures from enterprise applications to

containers and microservices [49)].

In the changing world of Cloud Computing, serverless computing and the FaaS
model are presented as two new categories that, among other advantages,
save money on infrastructure and, above all, reduce developer time. Although
these terms are often used interchangeably, they are not the same. Serverless

computing includes applications that use services from other providers, for
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example, database management systems or API services [46]. These services
are commonly known as BaaS (Backend as a Service) and are hosted in the
Cloud where the provider is in charge of managing the servers and logic.

Now the FaaS model is considered the most recent category of serverless Cloud
Computing services. In this model, application programming remains with
the developer, but the server logic is run in stateless execution environment
called functions. These functions are event triggered and fully managed by
the Cloud service provider. These types of platforms allow developers to
focus on the application logic and not on back-end management. One of
the more attractive potentials is that the underlying provisioned computing
infrastructure, allocated for the execution of the multiple invocations of the

function, is dynamically resized by the Cloud provider.

An important element in the adoption of serverless computing by I'T companies
was their pay-as-you-go model of short-term computing resources as needed
[74] [36]. This paradigm gives the customer the possibility of paying only
for leased resources to the public Cloud provider, without worrying about
the excessive provisioning of a service, whose popularity does not meet its
original predictions [12]. The improved scalability in serverless computing is
a fundamental element that has allowed its wide adoption. The applications
created on these platforms are automatically scaled adapting to the demand,
that is, it is not necessary to provision an approximate amount of resources

since the resources are flexible and managed by the service provider.

Figure 1.1 shows the growing popularity of the search term serverless
computing in the last 5 years reported by Google Trends'. Also, Figure 1.2
shows the publications per year with the search keyword “serverless computing”
in Google Scholar? and the Web of Science® (WOS). These are indicators that
demonstrate the increasing attention that serverless computing has generated
lately in trade shows, meetings and in the research community in general.

1Google Trends - https://trends.google.es/
2Google Scholar - https://scholar.google.com/
3WOS - www.webofknowledge.com
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Figure 1.1: Popularity of the term “serverless computing" reported by Google Trends.
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Figure 1.2: Number of publications per year in Google Scholar and Web of Science (WOS)
with the keyword “serverless computing”.

Serverless computing offers the ability to define applications as a workflow of
event-triggered functions that run without requiring the user to manage the
necessary resources. Serverless platforms provide developers with a simplified
programming model for their applications, where cost is reduced by charging

for runtime rather than resource allocation.

When discussing about Cloud Computing and serverless computing, it is
inevitable to cover the major public Cloud providers such as: AWS (Amazon
Web Services) [7], GCP (Google Cloud Platform) [125] and Microsoft Azure
[126]. These providers are able to offer users a large computing capacity along
with storage, network resources and databases, among other features, through

pay-per-use services. In addition, open-source CMP (Cloud Management
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Platforms) such as OpenNebula [103] and OpenStack [26] adopt the main
benefits of the Cloud in on-premises infrastructures.

Major public Cloud providers have included support for FaaS services for
defining and executing functions. This is the case of AWS with AWS Lambda?,
GCP with Google Functions® and Microsoft Azure with Azure Functions®.
Functions must be coded in a supported programming language and can be
executed in response to certain events, such as uploading a file to a storage
service such as Amazon S3 [6] (an object-based data store) or an HTTP request

to an API Gateway [124].

When using the services of public Cloud providers there is a risk of becoming
dependent on the services and products of that provider, a term known as
“vendor lock-in”, since changing a technology or provider is costly. This
phenomenon, together with the need to design new application architectures
that embrace good practices in serverless computing, constitutes one of the
greatest challenges that has slowed down the adoption of serverless technology
[36]. With this aim, several open-source solutions have emerged, as is the case
of OpenFaa$S [45] and Knative [57].

In this sense, COPs (Container Orchestration Platforms) play a fundamental
role as they make container management easier. Nowadays, it is possible to
find several offers such as the case of Docker Swarm [134], Apache Mesos [10]
and Kubernetes [79] to name a few. According to previous research [127] [90]
where different container orchestration technologies are compared, Kubernetes
is the main option to consider, if you have a large and complex deployment of
infrastructures, since it has a large community of support and recognition. On
the other hand, for small implementations it is recommended to use Docker
Swarm for its simplicity and integration with Docker containers.

A link should be established between Cloud Computing, the development of

serverless architectures and the analyses of large volumes of data. For example,

4AWS Lambda - https://aws.amazon.com/lambda
5Google Functions - https://cloud.google.com/functions
6 Azure Functions - https://azure.microsoft.com/services/functions
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1.1 Motivation

in recent years, ML (Machine Learning) and AI (Artificial Intelligence)
applications have been making their way into the world of Cloud Computing
[32] [52] [60]. Cloud providers focus their efforts on including these types
of services within their catalog, due to the high demand for these types of

applications.

To meet the challenges posed by serverless technologies, this thesis aims
to implement different serverless computing strategies that allow users to
run scientific applications in public and private Clouds. This is coupled
with the usage of accelerated computing devices that maximize performance
in execution through the use of GPUs. This thesis focuses on proposing
means to deploy Cloud applications transparently to the user, abstracting
the configuration, management, and scaling details of the underlying

infrastructure.

This chapter presents the scope of this doctoral thesis and the main lines
of action. First, a brief motivation and description of the objectives to be
achieved is explained. Finally, the methodology and the work plan followed

are commented, to achieve the proposed objectives.

1.1 Motivation

As mentioned above, the rise of Cloud infrastructures and serverless
technologies allows accessing large amounts of computing resources. These
technologies are already being used in the enterprise, but their use is still
limited in many areas of the scientific field where they could obtain great
benefits.

The current computing landscape includes a large number of existing public
Cloud providers as well as various on-premises CMP that can support
containers and VMs. Because of this, it is necessary to identify serverless
patterns for efficient data processing and provide support for accelerated
hardware devices for efficient computing. In fact, there is a great challenge
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in providing serverless computing with efficient and cost-effective capabilities
of TaaS Cloud Computing.

The needs of computing resources for processing scientific applications [37]
[21] have been covered by small local clusters that need to be installed and
managed. With the emergence of vitualization technologies, the transition
from local to virtual workloads was facilitated without substantial change.
These clusters have limitations in terms of overheads in scalability and even
in the maximum capacity itself, which is why public Cloud infrastructures are
often used to mitigate these limitations. Virtual clusters implemented in a
public Cloud achieve competitive price performance relationships, providing
important benefits for organizations such as reducing management costs.

The balance between performance and cost is the fundamental factor to
consider in the design of any architecture. There is a great challenge in
providing flexible and cost-effective computing capabilities, so the architectures
developed in this thesis are based on public and on-premises Cloud, for the
implementation of systems and platforms capable of accelerating the execution
of scientific applications and addressing larger problems. This computational
strategy will be applied to two fields: learning analytics for educational Cloud

Computing and intensive processing in complex ML models.

First, learning analytics studies the data generated by students in order to
understand and optimize the learning process and the environment in which
it occurs. In this sense, learning analytics is presented as an indispensable
element in online learning with an impact in regulated learning [121]. In these
learning environments we can identify two fundamental challenges that drive
the development of this academic field: optimizing the analysis of the set of
data related to learning, and the development of tools that allow visualizing in
a simple way the data generated when carrying out the educational activities.

Second, Machine Learning is the area of artificial intelligence dedicated
primarily to giving a computer the ability to learn without having been

specifically programmed for each of the situations [25|. Years ago, this was
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an unreachable challenge, but the development of new Artificial Intelligence
paradigms and the availability of intensive computational solutions has allowed
us to begin to face the challenge. Despite all the advances made in the
field of artificial intelligence, much remains to be investigated. The limits
of contemporary machine learning technology go through the complexity in
the use of this type of model, where it is necessary to make it accessible
to all types of users with and without experience, and in the computing
infrastructure necessary for the training and the inference phases of the neural
network systems, that make up this scientific application. Therefore, as
part of this thesis, architectures have been designed to overcome these limits
by integrating different machine learning models as use cases, executed on
serverless platforms.

In ML applications, two types of computational models can be distinguished,
one for training and the other for the inference phase. In the training
of machine learning and artificial intelligence applications, fast response
times are needed, making use of the most efficient hardware with parallel
and heterogeneous computing techniques such as MPI and the use of fast
interconnection technologies such as PCle and InfiniBand [13| [132]. This
computational model fits perfectly with the HPC paradigm.

In the inference phase of machine learning and artificial intelligence
applications where high-volume and highly complex data processing is required,
a winning solution is the combination of the FaaS model with the HTC (High
Throughput Computing) [84]. Basically, the platform dynamically provisions
the resources necessary for the execution of the applications, effectively
exploiting all those available resources. Once the processing is finished, the
platform is in charge of managing the resources if they are no longer needed. In
terms of public Cloud providers, this translates into an economically profitable
system and, in the case of on-premises Cloud, into a most efficient usage of
resources, potentially leading to economical and energy savings.

For ML and Al applications where maximizing performance is required, using

an execution strategy based on event-driven serverless computing to accelerate
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times executions provides a cost-effective means of data processing. Integrating

acceleration devices like GPUs (Graphics Processing Unit) into on-premises

serverless platform can address these performance issues required in processing

scientific applications.

1.2 Objectives

The main objective of this thesis is the design of different serverless computing

strategies both in public and on-premises Cloud platforms, combined with the

usage of accelerated computing devices, to efficiently tackle challenging data

processing problems.

This general objective is broken down into several goals addressed in this thesis:
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e First, conduct a study of container-based virtualization tools for HPC

platforms. There are a wide variety of tools for container virtualization,
and Docker stands out as one of the most widely used. In HPC
environments the use of Docker has difficulties due to the need to run
it with administrator privileges. Therefore, it is important to carry
out a comparative analysis among other tools, taking into account
certain metrics, to determine the behavior and limitations of different
technologies in the context of HPC centers. This will allow to determine
the appropriateness of the different container tools to be adopted as the
execution runtime of the serverless plataforms defined.

Second, design a serverless application to perform real-time data
processing of the activities taking place in an AWS shared account. This
will allow to easily view the resources provisioned by the multiple users.
It will also obtain aggregated information to control the resources used
by users and the activities carried out by students who use the platform
when carrying out educational activities in the Cloud.
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e Third, integrate the use of specific accelerated devices like GPUs into
a platform that supports serverless computing for scalable event-driven
data processing that presents a multi-level elasticity approach.

e Fourth, integrate already trained ML models with a serverless platform
to easily run predictions, based on these models, in a private and public

Cloud, while featuring dynamic elasticity based on execution needs.

To this end, case studies made up of real scientific applications, will be carried

out on public and on-premises Cloud platforms.

1.3 Methodology

Due to the highly changing nature of technologies related to Cloud Computing
and its different service models, a work methodology based on identifying
serverless computing challenges in technological development projects has been
proposed. This will allow obtaining results in a timely manner and producing
software to solve the identified challenges. This methodology proposes to
divide the workload into small units that lead to the production of functional,

documented and tested prototypes, whose functionality is increased iteratively.

Figure 1.3 shows a summary diagram of the methodology followed in the
investigation. Firstly, it is necessary to carry out a bibliographic search and
learn tools in the field of Cloud Computing and the orchestration of Cloud
services, a key element for serverless computing. Once the basic knowledge
is acquired, the key elements in the research on serverless computing in
public and on-premises Clouds are identified. In this sense, it is important
to find strategies to improve the performance of these platforms in scientific
applications for intensive data analysis. Later, it is important to design
solutions that solve those key points, where performance improvement can be
obtained, resulting in proof-of-concept implementations. The results of these
developments are evaluated in terms of cost and performance. Subsequently,

the results are published in high impact scientific journals and conferences to

11
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Figure 1.3: Summary diagram of the methodology to follow in the development of the
research.

assess their acceptance and relevance, obtaining open-source software that can

be used by other researchers.

1.3.1 Computing infrastructures

During the development of the thesis, different types of infrastructure will be
used: computer clusters, private and public Clouds. The research group in
which the thesis is carried out, GRyCAP7, contributes with three on-premises
Cloud platforms that are currently used in production environments. The

characteristics of these platforms are detailed below:

"GRyCAP - https://www.grycap.upv.es/
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e The first infrastructure, called Ramses, has 11 nodes with a total of 22
Intel Xeon processors (for a total of 308 cores) and 896 GB of RAM,
spread over 8 nodes with 64GB and 3 nodes with 128 GB. All nodes have
10GbE connectivity and are connected to a SAN (Storage Array Network)
with 16 TB in RAIDG.

e The second infrastructure, called OneCloud, has 6 biprocessor nodes
(Intel Xeon) with a total of 112 cores, 192 GB of RAM and Gigabit
Ethernet connectivity. They are also connected to the previously
mentioned SAN.

e The third infrastructure, called Horsemen, has 2 nodes. The first one
features two 2.1 GHz Skylake Gold 6130s, 16 cores each, 768 GB of DDR4
@ 2666, 10 GbE and includes an Arria 10 GX115 8GB FPGA, a RADEON
Instinct MI25, 16GB, a Tesla P40 24GB and a Tesla V100 32GB. The
second node features the same processor and memory along with 4 Tesla
V100 32GB.

In the first two platforms, OpenNebula 5.2 is used to manage the entire system,
which in turn will use KVM (Kernel-based Virtual Machine) as hypervisor and
the third platform uses OpenStack Rocky.

Regarding public Cloud providers, it is proposed to use the services of AWS.
This decision was based on AWS being considered the leading public Cloud
provider in the development and implementation of Cloud services. Today,
AWS is the clear dominator of the Cloud market and is a pioneer in supporting
serverless computing. For the development of the different environments,
commercial range computers and open-source development frameworks were

used.

Considering the objectives of the project and taking into account its duration,
the work plan was organized in the following stages. Figure 1.4 shows a
summary of the development of these stages over the duration of the research.

13
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e A first stage was dedicated to studying 16 credits as prerequisites for

admission to the Doctorate program in Computer Science. The subjects
taken served as a basis to consolidate the knowledge, that would be put
into practice in the development of the thesis.

In a second stage, an exploration of solutions and external components
was carried out. This step has been developed since the beginning of
the research in December 2017 and culminates in the defense of the
thesis. It is fundamentally based on being updated on the latest trends
in the technologies developed for the purpose of the thesis, and thus
using the most current technologies available in the development and
implementation of the environments to be developed.

Design of the environments. This stage is developed once basic knowledge
is achieved and aims to propose novel designs that allow the initial
objectives to be met.

Prototype development. Once the architectures have been designed, the
objective is to put them into practice, using the latest technologies and
with practical use cases, that reflect the importance of the elements that
make up the proposed architectures.

During the months of May, June and July 2019, a research stay was
carried out at the LIP® (Laboratory of Instrumentation and Particle
Physics) in Lisbon. The objective of the stay was to study udocker [55],
a tool developed by LIP researchers to create containers in user space.

Validation of the results. In this stage the main results obtained from the
previous phases are analyzed and discussed taking into account the use
cases implemented in the development of the prototypes.

Dissemination of the results obtained. The dissemination of the results
is carried out throughout the research process and consists of publishing

14
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the results obtained in scientific journals and national and international

conferences.

e Writing of the manuscript and defense of the thesis. At this stage, the
preparation of a final report is carried out, setting out the results obtained
during the duration of the research. It concludes with the oral defense of
the results in front of a committee of experts on the subject.

December 2017 June 2018  September 2018 January 2019 May 2019 July 2019 January 2020 October 2020
1 |

Obtaining credits
for the doctorate

Exploration of solutions and external components

Architecture design

Prototype development ]
Research|
Stay LIP

Dissemination of the results obtained

Validation of results ]
T

Thesis (writing and

defense)

Figure 1.4: Stages of development of the thesis.

To cover all the proposed objectives, this thesis is based on inter-related
chapters. First, Chapter 2 reviews the most recent research related to the
context of the thesis. Possible solutions to problems related to container
computing, serverless computing, and the use of GPUs in Cloud applications
are discussed. In the following chapters, a reference is made to the proposed
serverless computing strategies that enable the execution of scientific and
educational applications. In Chapter 3, the general architecture of the FaaS
model is first discussed, followed by the introduction of CloudTrail-Tracker, an
AWS cloud-based serverless platform to process learning analytics. Chapter 4
refers to integrating acceleration devices into a serverless on-premises platform.
Chapter 5 introduces a serverless platform to run the inference phase of
machine learning and artificial intelligence models, also on AWS and in a

15
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private Cloud. Finally, Chapter 6 summarizes the main contributions of the
thesis, highlighting the future lines in which it can be improved and citing the
scientific articles and publications produced as outcome of this research.

1.4 Chapter Conclusions

The elements that mark the beginning of the research were introduced in
this chapter. The elements that motivated the development of the thesis
are explained. Subsequently, the objectives that allow the orientation of the
topic were analyzed and the procedures carried out for the development of
the research were clearly and detailed described. The main phases through
which the research passed since its inception were also analyzed and, finally, a
summary of the structure presented by the thesis was made.

The work has produced a total of 6 contributions on international publications
and conferences, including 2 articles in journals indexed in Q1 and Q2 of the
Journal Citation Reports (JCR), and 1 communication listed in the CORE
B, Class 2 category in the GII-GRIN-SCIE index. Section 6.3 develops more
extensively all the scientific production generated in the development of the
research.
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Chapter 2

Background and State of the
Art

The wide adoption of Internet-based Information Technologies has made it
possible to develop of the anything-as-a-service (XaaS) paradigm. In the
development of this chapter, the background that has allowed the adoption
of this paradigm in the Cloud is addressed, emphasizing the technologies that
represent the basis of serverless computing strategies that are part of this
research. In addition, a study of previous research related to the scope of the
thesis is carried out. The study of the information collected in this chapter
allows identifying the advantages of the technologies used, as well as the main

limitations that are the object of study of this research.
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2.1 Cloud Computing

In the world of computing, the most widespread definition of the Cloud is
provided by the National Institute of Standards and Technology (NIST) [99]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

teraction.”

In addition to the concept of Cloud Computing in [99], essential features,

service models and deployment models are defined.

The basic characteristics defined are:

18

On-demand self-service: A consumer can automatically provision
resources when needed and with minimal human interaction from the

service provider.

Broad network access: Computing capabilities are available over the
network and access is via standard mechanisms such as mobile phones,

tablets, laptops, etc.

Resource pooling: The computing resources will be available to all users
through a multi-tenant platform, dynamically reassigned according to
consumer demand. The client has no control over the exact location
of the resources (e.g., storage, processing, bandwidth, and active user
accounts), but can specify it at a higher level of abstraction such as

country or region.

Rapid elasticity: Provisioning of computing capabilities is done quickly
and elastically according to demand.

Measured service: The use of resources is automatically controlled and

monitored transparently for the user and the service provider.
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The service models identified by NIST are:

o Software as a Service (SaaS): This model allows the user to use the
applications that are hosted by the Cloud service provider. Access to
applications is done through a client interface such as the web browser,
and the consumer can only change some configuration parameters, but
does not manage the virtual or physical infrastructure.

e Platform as a Service (PaaS): This model is based on implementing
within the Cloud infrastructure the applications created or acquired by
the user, using programming languages and tools compatible with the
provider. The user does not control or manage the infrastructure but
has control over its applications and some configuration variables of the

computing environment.

o Infrastructure as a Service (IaaS): In this model the user can provision
computing resources such as storage, processing, networks and other
computing elements to deploy and execute arbitrary software. The
service provider controls the physical infrastructure, granting the user
very limited access to network components. The user controls the
virtual infrastructure where he manages the operating system, storage
and implemented applications.

Finally, the following deployment models are defined:

e Private Cloud (also known as on-premises): The Cloud infrastructure is
provisioned for the use of a single organization. It can be managed and
operated by the organization, by a third party, or a combination of both.

o Community Cloud: This type of infrastructure is shared by several
organizations within the same community that have common concerns
such as: mission, security requirements, policies and compliance
considerations. It can be managed by one or more organizations in the
same community by a third party or by a combination of both.
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o Public Cloud: These infrastructures are openly provisioned for the general
public. They can be managed by a business, academic or government
organization or a combination of both.

o Hybrid Cloud: This infrastructure is made up of two or more different
Cloud (private, community, public) that have their own entities
but coexist through a standardized technology that allows data and
applications to be shared between them.

With the expansion of Cloud technologies, there are many providers within the
service models described above. Currently, three providers stand out: AWS,
GCP and Microsoft Azure. AWS is the pioneer in the development of Cloud
infrastructures and was named in 2019 for the 9th consecutive year as a leader
in Gartner’s Infrastructure as a Service (IaaS) Magic Quadrant [16] [87]. GCP
and Microsoft Azure, originally focused on providing services that could be
labeled as PaaS, although they have now incorporated services of all kinds into
their catalog. In previous studies [76] [12] [62] [40], the main specifications of
each of these providers are discussed and compared. In addition to these three
major Cloud providers, other companies have been included in the world of
Cloud Computing, as is the case of IBM! , Salesforce.com?, Linode®, Alibab
Cloud*, Oracle® and others. All these platforms offer access to infrastructure
in public Clouds and charging services through the pay-as-you-go model.

Cloud Computing has the potential to transform a large part of the IT
industry by facilitating the deployment of applications through service models.
Developers with innovative ideas for new Internet services no longer require
capital investments in hardware or human expenses in maintaining the
physical infrastructure. The development of Cloud Computing has meant that
developers do not have to worry about wasting resources on a service whose
popularity does not meet expected predictions, or insufficient provisioning of

one that is becoming very popular. For this, Cloud infrastructures have the

'IBM - https://www.ibm.com/es-es/products/category/technology/cloud-computing
2Salesforce - http://wuw.salesforce.com/

3Linode - http://www.linode.com/

4 Alibaba Cloud- https://eu.alibabacloud.com/

50racle- https://www.oracle.com/es/index.html
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capacity to grow the resources according to the needs of the application and
reduce it when they are no longer required, this is what is defined as elasticity
in the Cloud.

With the development of Cloud Computing, access to users of computing,
storage and network resources has been provided with great flexibility in both
public Cloud providers and on-premises Cloud infrastructure [30]. Many of the
features that Cloud Computing presents justify its growth and popularity in
the last decade.

Virtualization technologies are the key element in Cloud Computing.
Virtualization is a technique that allows to abstract a computing resource
(CPU, storage, network, memory) from the physical layer of that service, which
allows the execution of multiple operating systems and applications on the
same machine and with the same hardware, thus increasing its flexibility and
use. These features make it one of the leading technologies in the efficient

delivery of infrastructure solutions in Cloud Computing. [145].

Cloud platforms are based on the use of virtualization software (also known
as hypervisors) for the execution of virtual machines on physical resources.
Examples of these software are: KVM, XEN, VMWare, Hyper-V, etc.
Virtualization can be implemented at different levels and, indeed, those
mentioned above refer to hardware based virtualization. However, in recent
years a technology that has caused great expectation is virtualization at the
level of the operating system, also known as virtualization based on containers,

to which we will refer later.

Virtualization technologies have enabled the development of scalable and
multi-tenant Cloud infrastructures. Cloud Computing applications have
reached virtually every technology sector from event driven conversational
agents [18], to IoT (Internet of Things) [65], Artificial Intelligence [17] even
Big Data processing [1| and education [38].
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2.2 Containerized computing

The widespread adoption of containers has enabled to distribute and run
services widely with a lightweight virtualization approach. Containers are
software units that pack applications and all their dependencies, allowing them
to run quickly and reliably from one computer environment to another [141].
The main reason for the success of containers is the flexibility and efficiency
they offer to pack and run specific software, which has boosted the development

of architectures based on microservices virtualization.

To achieve multi-tenant isolation, Linux containers can be run on VMs,
this being the security boundary and additional resource allocation limit for
applications. The main benefits of containers arise when they are used on
bare metal, in order to obtain higher performance than VMs [2|. Containers
are actually encapsulated kernel processes that use a layered storage system
and do not pre-reserve memory space beyond active processes, requiring much
less memory and disk space. Containers facilitate application development
and distribution, hence the rapid growth of this technology and the interest of
developers [11].

Among the different existing container platforms, Docker® stands out as one of
the most used solutions. It allows developers to encapsulate a software along
with all the necessary dependencies to run, ensuring portability and execution
regardless of the environment. This is possible through the use of advanced

Linux features, namely control groups and namespaces isolation [122].

While it is true that Docker is the most widely used container technology,
its model does not fit well with HPC platforms. HPC clusters are multi-user
systems in which users should only have access to their own data and computing
resources. The problem is that the Docker daemon runs with administrator
privileges, so it would be possible for a Docker daemon vulnerability to be

exploited by a container to escalate privileges.

SDocker - https://www.docker.com
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Docker cannot safely use the host network stack and requires a separate
network namespace, an inconvenience when using parallel applications that
require network communication efficiently. The host network mode is not
appropriate in Docker, as it does not cause isolation and adds to the risks
of running in supervisor mode. Due to these limitations the use of Docker on

multi-user systems is very restricted [55].

As a consequence of this, alternative solutions have been developed to mitigate
the limitations of Docker in HPC environments. Some of these alternatives
are: udocker™ |55|, Singularity® |81, CharlieCloud® [113], Shifter'® [69] and
Podman*'. As part of the research in the section 5.1.2 an analysis of these
tools is performed, presenting a comparative table (Table: 5.1) of the main

functionalities.

In the research conducted by Arango et al. [11| four environments are
tested: LXC (Linux Containers), Docker, Singularity and bare metal, using
different metrics such as MPI support, network traffic, GPU support and RAM
performance. As a result, Singularity was determined to be more suitable for
HPC application deployment than Docker or LXC.

A recent study by Canon and Younge [34] describes the current challenges and
approaches in using containers for HPC applications. For the identified gaps
in container integration in HPC environments the authors propose solutions
such as implementing a container runtime library that manages specific devices
and libraries between host and container images, plus dual-virtualization
methods to avoid incompatibilities with previous and later versions of
libraries. Although the authors demonstrate that these approaches enable
the high-performance execution of containers at scale with adequate execution
times, they report that there are still many gaps in research in this field.

Tudocker - https://github.com/indigo-dc/udocker
8Singularity - https://sylabs.io/singularity/
9CharlieCloud - https://github.com/hpc/charliecloud
10Shifter - https://github.com/NERSC/shifter
1 Podman - https://podman.io/
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In the work carried out by Jha et al. [70] an evaluation of the performance of
Docker containers running heterogeneous HPC microservices is made, focusing
mainly on how inter-container interference influences performance. Taking into
account the results obtained, the authors plan to carry out the same analysis
using other container technologies such as udocker, Singularity or Socker'? [19].

Some research has focused on studying the advantages of using HPC containers,
mainly analysing the performance when using the different virtualization
technologies.  As an example, the article Rudyy et al. [123] analyses
the performance overhead induced by the use of three different container
technologies (Docker, Singularity and Shifter) by comparing it with native
execution. Another example is the work done by Hu, Zhang, and Chen
[61] where the CPU performance, memory and network bandwidth between
Singularity and bare metal are evaluated in detail by means of different
benchmarks. In both articles the results showed that with Singularity almost

native performances are obtained.

The use of containers in computing offers significant benefits including a
lightweight, consistent execution environment and low overhead to maintain
and scale applications with high efficiency. This provides the landscape
for simple and efficient implementation of scientific applications in HPC

environments.

2.3 Learning Analytics in Cloud Computing

The last few years have seen unprecedented progress in the use of online
educational platforms and MOOC (Massive Open Online Courses) with great
success. This means that education is not exempt from the use of information
technologies, and certainly not from the use of Cloud Computing.

For the analysis of the large amounts of data generated in online courses, a
new research field called learning analytics emerges. Learning analytics is a

12Socker - https://github.com/unioslo/socker
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technique that enables learning to be understood and optimized through the
collection and analysis of general data [44].

The rise of automated data collection and processing techniques along with
the rise of MOOCs have led to the development of learning analytics. As
an example, the authors of [135] have designed LASyM, a learning analytics
system that automatically detects students at risk of dropping out, based on
the large amount of data generated by MOOC platforms.

Learning analytics has cleared the way for the use of learning dashboards
to provide visual interpretation of student progress. The work of Verbert et
al. [138] presents a review of dashboard applications to support students and

teachers in online and classroom environments.

One of the most recent works developed in the field of visual learning analytics
is that of Vieira et al. [139]. In this article the authors refer to the lack
of studies that employ sophisticated visualizations and engage deeply with
educational theories, a statement also supported by the authors of [72], who
analyze learning panels from the students’ point of view. However, although
there are several learning panels in the literature, none address the field of
Cloud Computing studies.

Shorfuzzaman et al. [130]| presents a cloud-based mobile learning framework
that utilizes Big Data analytics technique to extract values from huge volume
of mobile learners’ data. As a result, it is shown that learning analytics can
greatly benefit from the analysis of large amounts of data using computing and
storage resources provided by the Cloud.

In the work developed by Wong et al. [143], a review is made of the analytical
intervention of learning in higher education from 2011 to 2018. In this study
it is concluded that intervention practices have been more often focused on
increasing student study performance, providing personalized feedback and

improving student retention.
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2.4 Serverless Computing

The growth in recent years of serverless computing is largely due to the
dynamic allocation of computing resources managed by the Cloud provider,
along with the fine-grained pay-as-you-go billing model. Serverless computing
encompasses two different areas that overlap at the same time: BaaS and FaaS.
Serverless since its inception was used to describe third-party applications
and services hosted in the Cloud to handle server state and logic. In the
literature this branch is known as Backend as a Service (BaaS) and is based
on applications that use, for example, database systems accessible in the
Cloud (Amazon DynamoDB!3, Cloud Datastore!®, Azure SQL Database!®)

or authentication services like AWS Cognito!S.

The other branch of serverless computing is functions as a service, FaaS. This
architecture allows the execution of applications through ephemeral execution
environments triggered by events. These environments are created on the spot
so that developers focus on the functionality of their application, and not worry
about managing the infrastructure on which the function is executed.

Most major Cloud providers offer the FaaS model as part as their serveless
infrastructure package such as AWS Lambda [8], Google Cloud Functions [56],
Microsoft Azure Functions [91], Alibaba Cloud Function Compute [4], and
IBM Cloud functions [63].

Some of the benefits of adopting the FaaS model for multiple scientific domains
(e.g. computer graphics, cryptology, mathematics, and meteorology) are
presented by Spillner et al. [131]. Considering some of the intrinsic features
of the FaaS model like predefined function environments and short-lived
executions, there are many scientific applications that can benefit from
migrating to this model. Another study by Baldini et al. [20] analyses the

13 Amazon DynamoDB - https://aws.amazon.com/dynamodb

14Cloud Datastore - https://cloud.google.com/datastore

15 Azure SQL Database - https://azure.microsoft.com/es-es/services/sql-database/
16 AWS Cognito - https://aws.amazon.com/
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challenges, use cases and key characteristics of serverless platforms in the

industry, including open-source projects.

There are works in the literature that successfully use the paradigm of function
as a service. Onme of the pioneers in this field is the article published by
Jonas et al. [73] who introduce the PyWren framework in order to perform
Python-based distributed computing on AWS Lambda. Stateless features
running in the Cloud represent a viable platform for users by eliminating
the overhead of cluster management. Shortly afterwards, this study was
expanded in the contribution made by Shankar et al. [128]. This article presents
numpywren a system for linear algebra built on a serverless architecture.
In addition, LambdaPACK is introduced, a domain-specific language to
implement linear algebra algorithms that are highly parallel, evaluating the
higher computational efficiency achieved and highlighting the limitations of
the Cloud provider.

A recent study by Eismann et al. [42] compiles 89 use cases, from different
sources, related to serverless platforms. Use cases are analyzed taking into
account characteristics such as: workload, application, requirements and other
general characteristics. The objective of this study is to establish a guide for
the design of serverless applications that allow a better understanding of this
paradigm. The authors refer to the usefulness of the study in academia and
industry to stimulate the design of new architectures based on the comparative
evaluation of these use cases.

Serverless computing is also used in environments for the analysis of large
amounts of data, i.e. Big Data. The article developed by Giménez-Alventosa,
Molto, and Caballer [53] describes a high performance serverless architecture
called MARLA' to run MapReduce works on AWS Lambda using Amazon S3
as storage back-end. The SCAR!® (Serverless Container-aware ARchitectures)
framework [108] also uses AWS Lambda as a platform to run general scientific
applications based on Docker containers that are event-driven. Event Driven

ITMARLA - https://github.com/grycap/marla
18SCAR - https://github.com/grycap/scar
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Architecture (EDA) is a software model for application design based on event
generation and handling. These architectures allow to increase the versatility
of the system, hence they are my used in modern and distributed applications.

2.4.1 On-premises Serverless Frameworks

In the adoption of serverless architecture, an important element to consider is
to avoid lock-in with a public Cloud provider. This term in Cloud Computing
refers to the fact that the implementation of an application in a specific Cloud
provider depends on the technology of that provider, and cannot be easily
migrated to a different provider without substantial costs due to technical
incompatibilities. [102].

Several open-source frameworks to build an on-premise local FaaS environment
have become popular in the last years. Some of the most widely used are:
OpenFaaS [45], Knative |57, Fission [48], Nuclio [100], Apache OpenWhisk [9],
Oracle Cloud Fn [105] and Riff [112], to name a few. These platforms support
the definition and execution of functions in response to events. Generally, the
difference between them lies in the compatibility with different programming
languages, the multiple sources of events and the use of a specific container
orchestration platform, such as Kubernetes.

It is possible to find in the literature works related to these kind of frameworks.
This is the case of the work carried out by Hendrickson et al. [59], one of the
first in this field, where an open-source platform, called OpenLambda to build
applications and web services using the serverless architecture is presented.

In the work carried out by Kaviani, Kalinin, and Maximilien [75], a common
execution model is proposed. This model can bring us closer to a unified
serverless platform based on Knative. This avoids the possibility of users
being locked into a particular provider when they move their application to a
serverless platform.

A more recent work [106] evaluates four serverless open-source frameworks

such as Kubeless, Apache OpenWhisk, OpenFaaS and Knative in a
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resource-constrained edge computing environment. The investigation presents
some typical scenarios on the edge of a network IoT for the implementation
of these frameworks. As a result, it is stated that in these scenarios, Kubeless
surpasses the other frameworks in terms of response, time and performance,
on the other hand, with OpenWhisk the worst performance is obtained. In

addition, new research opportunities in this line are discussed.

In the work done by Li et al. [82], an analysis of the performance of the
most popular open-source serverless platforms is made taking into account the
design problems. The different elements that affect the performance of the
different frameworks are analyzed and the conclusion is that simple automatic
scaling based on resources or workloads is not adequate to meet the needs of

serverless platforms.

2.4.2 Machine Learning and Artificial Intelligence in Serverless
Computing

On the one hand, the use of ML and artificial intelligence applications has
led to the adoption of these models as part of the services available on Cloud
platforms. The importance of using predictive analysis to address a variety of
socially and environmentally significant problems, requires the development
of these models to be accessible to users with and without experience in
cloud-based technologies [23].

Public Cloud providers have included machine learning and artificial
intelligence applications within their services. An example of this is Amazon
SageMaker!?, a fully managed service to quickly create, train and implement
machine learning models. These fully managed solutions involve the use of

instances that are expensive for many use cases.

The article by Corral-Plaza et al. [39] offers an analysis of the main options
for ML in the Cloud, focusing on Amazon Machine Learning and the BigML?°
platform. Another study by Ishakian et al. [68] evaluates the suitability of

19 Amazon SageMaker - https://aws.amazon. com/sagemaker/
20BigML - https://bigml.com/
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a serverless computing environment for the inference of large neural network
models in the AWS Lambda environment. The work carried out by Rausch et
al. [116] proposes a serverless platform to build and operate state-of-the-art
artificial intelligence applications. Different use cases are discussed that
illustrate the challenges in building serverless applications in edge Cloud

scenarios.

In another study, conducted by Yan et al. [146], a chatbot is implemented
on a serverless on-premises platform using the OpenWhisk framework. The
solution is based on functions that are used to coordinate cognitive services.
The serverless model implemented in this research improves the extensibility of
the chatbot with the automation of the services of scalability and maintenance

of the infrastructure.

The work carried out by Rao Divate Kodandarama, Danish Shaikh, and
Patnaik [115] studies the feasibility of the machine learning model inference
phase on a serverless platform. In conclusion, it is considered that serverless
platforms can satisfy the high performance and low latency requirements

required in the inference of machine learning models.

The main limitations in the execution of machine learning models and artificial
intelligence applications are aimed at the limited size of the calculation and
memory and the execution times. Models that require GPUs are not supported
by FaaS providers at this time. These limitations and possible solutions are

studied in this investigation.

Serverless computing services enable developers and organizations to
implement machine learning models in a more cost-effective way, especially
in the inference phase where large amounts of resources are required in a
short runtime. Instead of managing operational expenses and running the
application 24 hours a day, it is possible to take advantage of fast scale-to-zero

elasticity provided by serverless computing.

30



2.5 GPUs in the Cloud

2.5 GPUs in the Cloud

In recent years, the use of acceleration devices has become popular to reduce
the runtime of computer-intensive applications. The exploitation of Cloud
Computing resources generally involves the use of VMs. Hardware such as
CPUs and hard drives are well virtualized in this regard, but other more specific
high performance devices such as network devices, FPGA or GPUs do not have
the same support and performance. The use of GPGPU (General Purpose
Computing on GPUs) is determined by the massively parallel computing power
provided by GPUs.

The work of Yu and Rossbach [148] reports that GPU virtualization is a very
active research area in which software solutions based on API remoting (or
API forwarding), PCl-passthrough, and virtualizing the access to the GPU
can be proposed. In addition, there is a review of GPUvm [133], a complete
virtualisation design based on the XEN hypervisor to support VM access to
NVIDIA discrete GPUs. With this solution, a node cannot use more GPUs
than those hosted locally, and an idle GPU cannot be shared with other nodes.
The work done by Tan et al. [136] proposes a multi-channel GPU virtualization
architecture (VMCGQG) that provides a separate virtualized channel for each VM
that competes with other VMs for the resources of the same physical GPU.
The idea of virtualizing access to the GPU is to create virtual hardware that
accesses the physical device as it does with other components such as the CPU
or network devices. In this sense, providers have built support to virtualize
GPU access, as is the particular case of NVIDIA, which has introduced vGPU
[101] for some of its devices. Most public Cloud providers support this kind of

virtualization.

PClI-passthrough is a technique that provides single VMs with exclusive access
to a PCI device. Several common hypervisors support GPU passthrough and
these have been used in production to obtain a high efficiency rate in virtual
machines, close to native performance [140]. In this paper, the authors compare
the performance of two generations of NVIDIA GPUs within the Xen, VM Ware
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ESXi?! and KVM?? hypervisors. Results show that GPU passthrough to KVM
achieves better results than Xen and VM Ware.

GPU performance is similar on native machines and virtual machines that use
PCl-passthrough [147]. While it obtains better performance, such exclusive
and native access has several security implications [88], and allocating one
GPU for one VM results in an exclusive usage of that GPU, thus reducing the
efficiency.

In the case of API forwarding, rCUDA [41], vCUDA [129], GViM [58] and
gVirtuS [54] are existing solutions that achieve good performance under certain
circumstances. These approaches provide access to the GPU devices from
a virtualization platform that does not have direct access to them, that is,
communication between the GPU and the VM is done over the network. From
a performance standpoint, specific software is responsible for sharing device
usage (GPUs) between different client virtual machines. An important element
to keep in mind is that the network interconnection restricts the performance of
the executions. Analysis in [107] reveals that improving network infrastructure

can make a big difference to GPU virtualization.

In the work conducted by Reafio et al. [117], an evaluation of the different
solutions available for remote virtualization of GPUs compatible with CUDA
(Compute Unified Device Architecture) [137] is carried out. In the article,
the authors describe the characteristics of some of the technologies, as well
as some advantages and disadvantages. In addition, a comparative analysis
is performed taking into account bandwidth and latency. The analysis
showed that rCUDA presents the best overall results in terms of latency and
bandwidth.

The work carried out by Iserte et al. [67] introduces a solution based on GPU
virtualization and shareability through rCUDA, to strike a balance between

supply and demand for application accelerators. In addition, the feasibility of

21VMWare ESXi - https://wuw.vmware.com/es/products/esxi-and-esx.html
22KVM - https://www.linux-kvm.org/page/Main_Page
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this approach is studied in the AWS public Cloud, and a module for OpenStack
is developed to support virtualized devices and the logic to manage them.

A recent study by Reafio et al. [119] presents an efficient mechanism designed
for memory copies between remote GPUs located on different nodes through
the rCUDA framework. The results obtained with this mechanism refer to an
improvement in performance with respect to the original performance achieved
by CUDA when taking advantage of GPUs located in the same node of the
cluster.

There is few literature referring to the use of acceleration devices on serverless
platforms. One of the examples found is the work conducted by Kim et al.
[77| featuring a serverless platform with GPU support, using NVIDIA-Docker
to allow function containers to access GPUs. This architecture has the
disadvantage that each GPU can only be accessed by invoking a function
simultaneously.

Applications like deep learning, that focus on solving complex
application-related algebraic operations, benefit from the use of specialized
hardware such as GPUs. The use of accelerators has been limited in
the Cloud despite offering improvements in both performance and energy
efficiency compared to traditional CPUs. GPU virtualization helps provide
the scalability, power efficiency, and high performance required for GPGPU
applications in serverless computing.

2.6 Chapter Conclusions

This chapter has reviewed the most recent contributions on the subject of
container computing, serverless computing, and the use of GPUs in Cloud
applications. These topics are related to the central axis of the research and
constitute the information base for the development of novel designs.

As a result of the research carried out, we can conclude that the development
of Cloud Computing has fostered the creation of different types of services
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through the Internet. Using these services can reduce IT costs by shifting
away from investments in hardware, as services can be automatically scaled on
demand. The development of virtualization technologies and containers, led
to the emergence of a new paradigm in the Cloud, serverless computing.

In summary, serverless computing is an innovative approach that has been
extended to all areas of research related to Cloud Computing. As a cloud-based
model, it allows developers to run applications without direct contact with
the underlying technology, thus making it possible to focus more on the
functionalities of their application. Through its pay-as-you-go model, costs
compared to other Cloud services are minimal for certain workloads.

Despite all the identified advantages of serverless computing, there is still a
long way to go to fill gaps related to the integration of acceleration devices
in the execution of applications, the development of open-source frameworks
that avoid vendor lock-in by public Cloud providers and the integration of this
technology with other areas of research such as machine learning and artificial
intelligence.

This service model reduces the investment in infrastructure and costs are only
incurred when the service is used, that is, when the function is executed. These
characteristics make it an area in which efforts are invested and in which new
open-source frameworks are developed that allow moving away from public
serverless platforms into on-premises Cloud platforms.

Taking into account the advantages and limitations of the research analyzed
in this chapter, the fundamental ideas for the development of the solutions
presented below were compiled.
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Serverless architecture and
CloudTrail-Tracker

In the development of different knowledge areas such as industry, research and
education, computer tools are a key element. In this sense, two fundamental
techniques such as simulation and modeling allow us to reduce waiting times
and costs by providing effective solutions to scientific problems. Usually, these
solutions are obtained through intensive applications, that require specialized

computing infrastructures to obtain results in a reasonable time.

In these chapters we refer to different strategies of serverless computing in
public and on-premises Clouds, starting from a general model, which allows
providing new and effective solutions to challenging problems.
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3.1 Function as a Service Model

In the world of data-intensive computing cost management and dynamic scaling
are the main elements behind the success of any analysis platform. This is
why many platforms and technologies have adopted serverless services where
application execution is automatically managed on demand incurring in costs
only for the time the service is used. The main advantage of serverless
computing is that the developer does not have to think about where the code

will run, and can concentrate only on its implementation.
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Figure 3.1: General structure of an event-driven Serverless Architecture.

As shown in Figure 3.1, the main responsibility of a FaaS platform is to provide
event-based processing capabilities on a dynamically managed computing
infrastructure. The design, first manages the actions performed by users that
trigger events that invoke functions. These functions are generally stateless,
that is, each function processes its input, performs the calculation, and
writes its output back to shared storage, so that each function’s processing
is independent of each other. The stateless functions execute specific code
developed in one of the programming languages supported by the FaaS
platform. The functions can be called synchronously or asynchronously. In
the case of asynchronous functions, the client is not blocked waiting for the
result, and on the contrary, synchronous functions do so regardless of whether
they produce results or not. The functions can be invoked from triggers such as
an event generated via HT'TP or an event source. After determining to which
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function or functions the event should be sent, an existing instance of the
function is executed or used to process it. Once the event has been processed,
the execution logs are collected, the result is made available to the user, and
the function is stopped when the execution finishes. The main challenge of
this architecture is to implement these functionalities taking into account cost,
scalability, fault tolerance and latency.

The efficiency of a serverless platform lies in processing the input element in
a function that starts quickly and efficiently. In addition, an event queue
is used to trigger the executions. Depending on the status of the event
queue, the execution of a function is scheduled and the resource allocation is
managed. The code runs in ephemeral execution environments using functions
that communicate with the back-end as a service to drive data storage,
file management, or notification needs. Applications created with serverless
infrastructures automatically scale as usage increases. Therefore, if a function
needs to be run in multiple instances, the provider will start, run, and terminate
them as needed.

Regarding the cost model, users pay for the time and resources used when
executing the functions. The ability to scale-to-zero is one of the most
important elements of serverless platforms. The prices of resources that are
measured like memory or CPU depend on each provider. Scale-to-zero can
bring some latency problems commonly called cold start [20]. In general,
the life cycle of a function involves 4 processes: download the code of the
application, start new execution environment, execute init code and execute

handler code, which is the main function that is executed after the invocation.

For the first invocation of a function, the first thing is to download the
application code and start a new execution environment based on the
configuration information of the function (amount of memory and maximum
execution time, for example in the case of AWS Lambda). When a function is
executed for the first time, all these events occur and it is what is commonly
called a full cold start. If another request is received, only the handler

function is executed again and this execution is much faster, which is called
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warm start. Scaling a function to zero means having no available execution
environments, so when an invocation is received, the service identifies if a
warm execution environment is available, when it does not find any available
computing resources, the process of downloading the code begins, start a new
runtime environment, execute the init code and invoke the handler function
[104]. This bootstrapping time also occurs in the scale up by provisioning more
instances to handle traffic. Although it is true that scaling to zero introduces
latency in the execution of the function, it allows to reduce operational costs

by not having active execution environments when the function is not used.

It is important to note that the cold start phenomenon is more common to be
found in development environments than in production environments, since
in these environments the functions are executed more frequently and the
execution environments remain active for a time window before scaling to zero.
Functions with higher memory allocation are generally less affected by cold
start [104]. The package size of the function is another element to consider
to reduce this phenomenon [104]. The size of the package impacts the time it
takes for the server to download the application code, which is the first process
discussed earlier in the function’s life cycle, so having packages as small as
possible can help in this regard. How often a function is called influences
how long the function stays warm. The most frequently used functions target
warm environments more often than when they are used less frequently [104].
To mitigate cold start issues, Cloud providers are beginning to implement
countermeasures such as provisioned concurrency at the expense of incurring
in additional cost [98].

The code implemented by the developer can have a high impact on the cold
start of the function. In the init code, all the libraries and elements necessary
to execute the handler function are specified, so it is possible to optimize this
code, for example, by trim the libraries to import the necessary services or not

load unnecessary files, to name a few.

A short run stateless function represents the level of abstraction provided by

FaaS models. This model fits data processing applications that require the
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processing of dynamic workloads and allow the platform to automatically scale
in an application independent way [36].

Serverless platforms today share many points in common. They share similar
pricing, implementation, and scheduling models. The difference between them
lies in the Cloud ecosystem considering that only their own services can be
used and the choice of the platform will probably force developers to use
the native services of that platform [20]. When using the serverless services
of a public Cloud provider in particular, the provider is the one who hosts,
supplies and manages the computing resources to run the application. With
this, an important concern that arises is the “vendor lock-in”, which refers to
the impossibility or difficulty of migrating the application to another provider’s
Cloud platform. The emergence of open-source serverless frameworks has

changed this idea as these solutions can work well on multiple Cloud platforms.

The advantages of the serverless paradigm extend to both users and providers.
From the user’s perspective, the developer no longer needs to provision or
manage the computational infrastructure (servers, VMs, containers), their job
is to focus on the logic of the application defining a set of functions that
allows their application to offer the necessary services. On the other hand, the
stateless programming model allows the provider to have more control over the
applications that are running, which enables the optimization of the platform
[20].

From this perspective, this thesis introduces three serverless computing
strategies that are developed throughout this chapter and in chapters 4 and
5. First, a completely open-source serverless platform is presented that
allows obtaining information about the use of an AWS shared account. The
platform has been applied in the educational sector, to carry out an analysis
of learning in subjects related to AWS. One of the consequences of designing
and implementing serverless platforms at a particular provider is the “vendor
lock-in”. Another difficulty when using public Cloud providers is that currently
public serverless frameworks (e.g. AWS Lambda, Google Cloud Functions,
IBM Cloud Functions, Azure Functions) do not offer access to the use of
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acceleration devices like GPUs. To solve these challenges, the second strategy
implemented in this thesis allows integrating the use of acceleration devices in
a serverless on-premises platform, which allows functions to access GPUs by
the functions, in addition to avoiding the lock-in of Cloud providers. Finally,
in the AWS environment and in a private Cloud, another totally serverless
platform is presented that facilitates the inference phase in machine learning

models in a user-friendly way.

3.2 CloudTrail-Tracker: A Serverless Platform for Enhanced
AWS Usage Insights

Accounts in AWS are associated with credit cards, so it is very common in
research groups, companies and courses associated with AWS to use delegated
accounts on the same account. All users in the organization use the same AWS
base account, and the administrator sets limits on user access to services. For
this AWS has the AWS IAM (Identity and Access Management)! service that
allows us to manage access to AWS services and resources securely.

When an AWS account is shared by multiple users, it is important to be able to
monitor the activity of each user to supervise the use of resources. In this sense,
AWS offers the CloudTrail service that allows the related activity to be retained
in the AWS infrastructure. From the CloudTrail console it is only possible to
view the last 90 days of activity and events in text format. Therefore, through
AWS it is not possible to observe the activity carried out over a longer period
in a fast and efficient way, such as through graphical means.

The proposed platform, CloudTrail-Tracker, is fully serverless and runs entirely
on AWS and provides information on the use of an AWS account shared by
multiple AWS TAM users. The logs collected by the AWS CloudTrail service
are stored in a DynamoDB table through a Lambda function, which allows
obtaining information in periods of time longer than the 90 days that is
presented in the CloudTrail console. Logs are queried with precise timestamps

LAWS IAM - https://aws.amazon.com/es/iam/
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through a REST API created with Amazon API Gateway. The front-end
is a web portal based on Vue.js? to visually represent the information of
different users. This platform has been applied in learning analytics for Cloud

instruction.

This section explains in detail the architecture of CloudTrail-Tracker® [95]
developed for the processing of students’ data that take different courses
that use the AWS platform. The main contribution of CloudTrail-Tracker
is materialized in a learning dashboard that combines information about the
use of resources in an AWS account shared by several students.

Also, the learning dashboard allows students to know the degree of progress
of laboratory activities that must be carried out by them. In addition to
academic interest, the data collected by the platform can be especially useful
for monitoring the resources used by users who share the same AWS account.
This research was carried out jointly with José Ramén Prieto Fontcuberta, at
that time a student of the Degree in Computer Engineering at the Universitat
Politécnica de Valéncia. Partial results of this research were included in his
Final Degree Project, available in [114]. The main contribution of the author
of this thesis on this platform, was mainly focused on the development of
a serverless front-end that would allow to easily visualize the information
stored on the events generated by users on the AWS platform. The author
also participated in the overall design of the architecture, fine-tuning the
performance requirements, establishing a security configuration and, finally,
performing a cost analysis of the implemented platform.

3.2.1 Components used

The development of the CloudTrail-Tracker architecture made use of a series
of underlying technologies that will be described in this section. Firstly, the
back-end of the application in charge of storing the actions carried out by users
(students, teachers and administrators) is described. Secondly, the technologies

2Vue.js - https://vuejs.org/
3CloudTrail-Tracker - https://www.grycap.upv.es/cloudtrail-tracker
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used in the educational panel that constitute the front-end of the application
will be addressed.

Back-end services

The AWS services used to implement the architecture are described below:

o AWS IAM* (Identity and Access Management): Tt is a service that allows

you to securely manage the users, groups, permissions and roles that can
access the services of an AWS account. IAM is an AWS account feature
that is provided at no additional charge. With the use of AWS TAM it
is possible to enforce access policies to AWS services, allowing the same

account to be shared in a workgroup.

Amazon S3° (Simple Storage Service): It is an object storage service
offered by AWS. The files are stored in buckets, accessible from any
location on the Internet, which offers scalability, high durability, security

and performance at low cost.

AWS Lambda®: This service allows creating event-driven functions
without the need for explicit server management. To use this service, we
have to define the function code using one of the available programming
languages (NodeJS, Ruby, .NET, Java, Go, Python and custom runtime).

Furthermore, it is possible to trigger a Lambda function indicating an
input event, for example, the upload of a file to an S3 bucket. Lambda
allows thousands of functions to run in parallel. The cost of this service
depends on the allocated amount of RAM, from 128 to 3008 in 64 MB

increments, and the execution time in blocks of 100 ms.

AWS CloudTrail”:  This service allows you to register, monitor

continuously and retain activity on the infrastructure of an AWS account.
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When using this service, a series of files are generated periodically in an
Amazon S3 bucket that describe the events executed in the AWS account.

o AWS DynamoDB?®: It is a NoSQL database service offered by Amazon,
that stores key value pairs with very low data access latency. Provides
optimal performance and storage scaling automatically. This service
is useful as a fully managed database system in the Cloud. This
service enables two capacity modes to be activated with specific billing
options: on-demand capacity mode and provisioned capacity mode. The
provisioned capacity mode was used in this platform since it allows
specifying the number of read and write operations per second. The
cost in this mode depends on the number of reading and writing units

contracted.

e API Gateway®: It is a service that allows the creation, maintenance,
monitoring of REST APIs on a large scale. Its use is usually combined
with other AWS services such as AWS Lambda so that a request to the
REST API created with the API Gateway triggers the execution of a

Lambda function to process the invocation.

o AWS Cognito': Tt is a service that allows incorporating functionalities of
access control, registration and user login in web or mobile applications.
It allows managing millions of users and the login can be done through a
group of defined users, through social identity providers such as Facebook
or Google, or through external providers of OpenID Connect!!.

8 AWS DynamoDB - https://aws.amazon.com/es/dynamodb/
9API Gateway - https://aws.amazon.com/es/api-gateway/
10AWS Cognito - https://aws.amazon.com/es/cognito/
1 OpenID Connect - https://openid.net/connect/
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Front-end components

Once the data generated with the activities carried out by the users in the AWS
account has been collected, it is necessary to display this data in a simple and
understandable way. To do this, a web interface was developed using Vue.js
a JavaScript framework to create user interfaces with intuitive, modern and
easy-to-use features. Vue.js has a very active user community due to all the
advantages that it provides, such as the reuse of components in the code, it
does not require the implementation of special models or collections. Above
all, it allows the execution of a developer view where you can observe in real
time the changes developed on the web. It is also possible to generate a static

website in a comfortable way that can be served from any server.

An important element in the web interface is the use of the AWS SDK for
JavaScript'?. In this sense, it is used to tackle authentication and authorization
workflows of users through Amazon Cognito, thus obtaining credentials to
access other AWS services such as API Gateway that allows consulting the

data of each user.

3.2.2 Architecture

Figure 3.2 shows the architecture of the application. When a user employs a
AWS service, an event is generated and stored in an S3 bucket using CloudTrail.
These logged events describe who, what and when a particular service was
used. CloudTrail typically adds multiple events in the same JSON file. Every
time a file of this type is stored in an S3 bucket, a Lambda function ( Write in
Figure 3.2) is activated. This function parses this file, removing unnecessary
information and storing the relevant fields in a DynamoDB table.

In order to query the stored information, a REST API is created through the
API Gateway service. API Gateway integrates with AWS Lambda so that once
a request has been received by the API, a Lambda function (Read in Figure

12AWS SDK for JavaScript - https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/index.
html
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Figure 3.2: Architecture of CloudTrail-Tracker. Source:[95]

3.2) is triggered to query for the events in the DynamoDB table. This makes
it possible to create a reactive Cloud service, which is automatically activated

by user actions.

As explained above, in order to display this information in a user-friendly
way, a web interface was developed that consults the API Gateway to
produce information regarding the services used. This service has also been
implemented in a serverless way and is made up of a static web page hosted
in an S3 bucket, offering scalable and very low-cost access.

To obtain greater automation in the process of compiling and loading the web
interface in the S3 bucket, Jenkins'® was used. Jenkins is an open-source server
that enables automation of software development parts related to building,
testing, and deploying. In our case, once developers make a Pull Request to
the master branch of the project, two jobs are automatically created in Jenkins.

13 Jenkins - https://www.jenkins.io/
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The first one performs the process of compiling the code (command - npm run
build) as a static web page and includes in the project a file with environment
variables that are necessary for the configuration of AWS Cognito and that
for security reasons is necessary to keep them in a safe environment. Jenkins’
second job is performing the static web loading process in the S3 bucket that
works as hosting. When the process is completed, the developer receives an

e-mail indicating that the two jobs have been completed successfully.

In order to make the application accessible from any device (mobile, tablet,
or laptop), a responsive theme that adapts to different screen sizes was used,
offering an improved experience on multiple platforms. For user authentication
on the web and API protection, Amazon Cognito is used. When a user
authenticates to the application with their access credentials (username and
password), Amazon Cognito verifies them and, if correct, an access token is

obtained to communicate with the API Gateway.

The web interface allows obtaining high-level aggregated information for both
students and teachers in a specified time, which is the basis of the learning
dashboards. The designed architecture allows serverless management through
a reactive event-based computing scheme in order to minimize costs and keep

data access times low.

Computational Platform and Cost Analysis

The proposed solution is developed entirely in the AWS Cloud, it is robust
and scalable and generates costs only for the used services specified in Section
3.2.1, without depending on having a configured server. The AWS account
used in the development of the architecture is a shared account among the
researchers of the GRyCAP research group.

To carry out the queries, it was decided to use the API Gateway since only
the queries received by the API and the amount of outgoing data transferred
are charged. It also provides a free layer of one million queries for up to 12

months. Subsequently the price for each million queries is 3.50 USD /month, in
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case of making more queries the prices decrease. An API Gateway limitation
is that it has a maximum of 30 seconds of waiting for a query, after this time
the API returns a timeout error.

Due to the advantages that we have already discussed of the serverless
architecture, we consider that the best solution for data processing was through
AWS Lambda, where you only pay for the allocated resources and the function
execution time. Depending on the query, the function only runs for a few
seconds, unlike having a server that would be running all the time despite
not making queries. The cost of Lambda functions is calculated using a table
[15] depending on the duration with the allocated memory and the number of
executions. It also includes one million free requests per month and 400000
GB/seconds of computing time per month that covers the needs of the proposed
architecture. The function used to query the DynamoDB database has an
allocated memory of 128MBs of RAM, and the write function has a memory
of 128MBs of RAM. The memory that can be defined in AWS Lambda are in
the range of 128 MB to 3,008 MB in 64 MB increments. The write function is
triggered every time CloudTrail saves the generated events, in a few minutes,
in a file with format gz in an S3 bucket. For the analysis of the information
generated in the file and its writing in the database, it was considered that
the minimum value of the memory range was sufficient. This allows saving
in production costs and if it does not exceed the limits of the free Lambda
layer, the cost will be zero. In the case of the reading function, a low memory
intermediate range is decided since the amount of data to analyze depends
on the query made to the DynamoDB table, so if the range of the query is
one time greater, means that the amount of data to analyze is greater. Using
Amazon CloudWatch Logs'*, an AWS service to monitor and store log files, it
has been verified that a query typically uses between 60 and 80 MB of memory,
which has allowed us to adjust the function’s resources to 128 MBs of memory,
enough for the case study. If necessary, the characteristics of these functions
can be improved by adding more processing memory.

14 Amazon CloudWatch Logs - https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
WhatIsCloudWatchLogs.html

47


https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Chapter 3. Serverless architecture and CloudTrail-Tracker

For the storage of the data generated by the events, we concluded that the
best solution would be to use DynamoDB since there was a large amount of
data and the response times are very low, requiring less than 29 seconds to
comply with the response limitation of API Gateway. For the DynamoDB
collection, the provisioned capacity mode was used, where the number of data
write and read operations that the application will need is defined. The number
of operations can be modified if it is considered that they can grow over time
due to the use of the application. The service does not take into account the
use of CPU and memory, as it does with other solutions. The free layer of this
service includes, without expiration time, 25 read units, 25 write units for each
index, and 25GB of indexed data, thus meeting the needs of the project.

When CloudTrail is configured to store the trace of events executed in the AWS
account and deliver them to the S3 bucket, you pay only for the bucket storage
and not for the CloudTrail service. In the case of Amazon S3, you pay for the
storage used, these being relatively low. For example the first 50 TB/month at
0.023 USD/GB. The free layer has 5GB of storage, 20,000 GET requests, 2,000
PUT, COPY, POST, or LIST requests and 15GB of outbound data transfer
per month for one year. These characteristics satisfy the needs of the project.
In the case of Amazon Cognito, you only pay based on the number of MAU
(Monthly Active Users). The first 50,000 MAUs are free, which largely meets
the needs of the application.

From the analysis carried out previously, we can conclude that the cost of
the proposed architecture is more than affordable. In other words, a zero-cost
serverless architecture has been implemented that has benefits for all users
who use it, whether they are account administrators, teachers or students who
use AWS services. Therefore, the benefits of using a serverless architecture are
demonstrated, in terms of provisioning the infrastructure transparently to the
user and reducing costs.
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3.2.3 Use cases: Processing student progress data with
CloudTrail- Tracker

This section discusses the main use cases and results of processing student
progress with CloudTrail-Tracker. The analysis is carried out in the context
of different subjects in which AWS is used to exemplify public Cloud provider
management concepts. The results are obtained through the data collected
from the students taking these subjects. Firstly, we will analyze the general
questions regarding the case studies, then the main results obtained are

exposed and discussed.

Objectives of the experiments

CloudTrail-Tracker was developed during the academic year 2017/2018
and it was put into production since the academic year 2018/2019.
CloudTrail-Tracker is used in three master’s degree and one online course
related to Cloud Computing topics that involve the use of AWS and that
are taught in the Master’s in Big Data Analytics, Master’s Degree in Parallel
and Distributed Computing, Master’s Degree in Information Management and
in the Online Course in Cloud Computing with AWS'®, Figure 3.3.

Online Course in Cloud
Computing with Amazon Web
Services (AWS) Center for Long-

Life Learning

Computation and Big Data
Management in the Cloud
Master's in Big Data Analytics

Blended Learning Cloud
Computing
Training at UPV

Public Cloud Infrastructures Cloud Services
Master’s Degree in Parallel and Master’s Degree in Information
Distributed Computing Management

Face-to-Face Flip Learning

Figure 3.3: Cloud Computing training at the Universitat Politécnica de Valéncia, in Spain.
Source:[95]

15CursoCloudAWS (in Spanish) - http://www.grycap.upv.es/cursocloudaws
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In these subjects different learning schemes are used, ranging from the
participative face-to-face lesson, to the flipped classroom in which either
students visualize the theoretical material at home, and use the laboratory
sessions to carry out the practices or viceversa. From the beginning of
the assignments, the students have all the material (video lessons, exercises,
learning guides), as well as a practice environment available, from any place,
in the Cloud 24x7 so that the students can carry out the practices at any
time. The practice environment is a virtual machine pre-configured with the
students’ accounts. The students connect via SSH to the virtual machine
that, among other software, has installed aws-cli'® that allows managing AWS

services from the command line.

CloudTrail-Tracker is particularly useful in online training because it allows
monitoring the actions carried out by the students. The instructor, based on
this information, makes decisions aimed at improving the course experience.
For this reason, it has been integrated with the Online Course in Cloud
Computing with AWS, an asynchronous online training course, offered publicly,
that since July 2013 has trained more than 900 people from different countries
(mainly Spain and Latin America). It is a totally online experience where
students have laboratories to deploy their own virtual infrastructures. It also
involves multiple learning materials and self-assessment tools, as described in
the work by Molto et al. [93].

The common nexus of all educational activities is the use of AWS as a public
Cloud platform where practical activities are carried out. The teacher initially
used the portfolio mechanism where the answers to questions related to practice
were collected. However, this method was prone to copies among students. The
fundamental purpose is to know if the student has successfully carried out the
practices, so by using CloudTrail-Tracker the teacher pursues two fundamental
objectives. Firstly, it prevents students from devoting time to create the
portfolio by collecting evidences of the completion of the lab activities. Instead,
this portfolio is now automatically generated by CloudTrail-Tracker and it is

16 AWS-CLI - https://aws.amazon.com/cli
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available for both, the student and the teacher. This way, the student no longer
commits an additional effort preparing it, and the effort invested by the teacher
in assessing it is greatly reduced, since evidences are collected by automated
means. Secondly, it avoids the problem of copying among students because the
system detects the degree of achievement of activities for each student assigned
at the beginning of the course.

Ezxperimental Results

In each of the subjects, the students carry out a set of guided practical
laboratories that show the main functionalities of the AWS services involved.
In order to extract the information generated by each student, we have worked
mainly on the definition of the necessary indicators that make it possible
to demonstrate the realization of practical activities based on the recorded
information of the events. Therefore, a practical laboratory is defined as a
set of ordered events, i.e. an action in an AWS service, which students must
perform in order to classify a practice as complete.

CloudTrail-Tracker has three fundamental panels. The first panel, Figure
3.4, provides general information about all the resources used in the shared
AWS account, in different time frames (last hour, last six hours, last day
and last week). This dashboard provides service-specific information that
may be more costly such as executed EC2 instances (RunInstances), database
(CreateDBlInstance), Lambda functions (CreateFunction) and load balancers
(CreateLoadBalancer) creation. It also allows to know how many services
each user has used in the selected time period, together with a table to know
specifically which services the users have used, as shown in Figure 3.5. The
utility of this panel is more for the AWS shared account administrator to know

the allocated resources and who has used them.

Another display panel, Search by user, allows a more centralised search of the
AWS services used by a specific user, Figure 3.6. Similarly, with the Detail
button, it is possible to find out which specific event has been generated for

each service. The administrator can control the resources used by each user
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Figure 3.4: CloudTrail-Tracker start panel.

and if the teacher knows the number of resource creation operations in each
practice guide, it is possible to know in general if a student has used said

services.

The third of the panels is Search By Course and is arguably the most
important one for students and teachers. The function of this panel is to
detect the percentage of a student’s progress in the practical laboratories.
This educational panel is responsible for calculating whether a set of events
is included in the set of events defined for each practical activity, in a given
period of time. When students consult this panel, their username is selected by
default and they must select the subject to which they belong and the period of
time in which they were taking the course. By default, the date selected is that
of the current academic semester (2019/2020). Figure 3.7 shows the percentage
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Show |10 ¥ entries search:
# & User Event Timestamp (UTC)
0 alucloud20 CreateSecurityGroup 19:10:03 09-04-2020
1 alucloud20 Runlinstances 19:15:59 09-04-2020
2 alucloud20 Stoplnstances 19:28:00 09-04-2020
3 alucloud20 Terminatelnstances 19:30:27 09-04-2020
4 alucloud20 Runinstances 19:33:4409-04-2020
5 alucloud20 Terminatelnstances 19:37:5509-04-2020
6 alucloud20 CreateBucket 19:51:47 09-04-2020
7 alucloudzo PutBucketPolicy 19:52:41 09-04-2020
8 alucloud20 PutBucketWebsite 19:55:1109-04-2020
9 alucloud174 CreateSecurityGroup 20:46:00 09-04-2020

Showing 1to 10 of 4,678 entries Previous 1 2 3 4 5 468 Next

Figure 3.5: Details of services used by all users in the CloudTrail-Tracker Dashboard.

of completion of laboratory practices for a specific student. The teacher at a
glance can determine if the student is progressing in carrying out the activities
since the activity compliance bars have a traffic light classification system, that
is, the bar can have three colors: red (<40% completion of practice), yellow
(between 40% and 80% of completion of practice) and green (>80% completion
of practice).

According to Butler and Wine et al. [27], student learning and understanding
improves when a link is established between feedback and self-regulated
learning. In [111] self-regulated learning is defined as a fundamental component
of the teaching process, which implies active self-control of behavior and
motivation in the performance of the academic tasks of an individual student.
Freitas et al. [50], on the other hand, describes the use of gamified dashboards,
learning analysis, and performance tracking to provide immediate educational
feedback in higher education studies. This corresponds to the objective of this
educational panel, to increase the effective action of feedback and self-regulated
learning by providing access to the tool, so that students know the practical
laboratories already carried out and those that are still pending [95].
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Figure 3.6: Services used by a student in a certain period of time (CloudTrail-Tracker
Search by User panel).
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Figure 3.7: Percentage of completion for each hands-on lab for a specific student. Source:[95]
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It is important to note that, in addition to knowing the percentage of
compliance with practical activities, students can consult the actions that
are still missing to complete the entire practice, as shown in Figure 3.8.
By including the missing actions, a double objective is achieved. First, the
students are aware of the missing activities and are given the opportunity
to self-regulate. Second, many times the students forget to terminate the
resources once the practical activity is finished, incurring in unnecessary

expenses for the teacher.

Show |10 ¥ |entries Search:
# 4 Event Number of missing events

PL_APP CreateAutoScalingGroup 1

PL_APP CreateLaunchConfiguration 1

PL_APP DeleteAutoScalingGroup 1

PL_APP PutMetricAlarm 2

PL_APP PutScalingPolicy 2

PL_APP DeleteTargetGroup 1

PL_APP DeleteSecurityGroup 1

PL_CF AttachVolume 2

PL_CF AuthorizeSecurityGroupEgress 1

PL_CF CreateAutoScalingGroup 1
Showing 1 to 10 of 46 entries Previous 1 2 3 4 5 Next

For further infarmation about each event go to: https:/docs.aws.amazon.com/

Figure 3.8: Missing actions for each hands-on lab for a specific student. Source:[95]

Taking into account the different panels developed in the web interface, it is

possible to define three fundamental roles:

e Students: Users with this role can check the percentage of compliance
with the practical activities carried out as well as be aware of the activities
that still need to be completed. In this way, students benefit in terms of
self-regulated learning.

e Teacher: Users with this role can monitor the progress of students in

each course. Also, useful information is displayed that allows the teacher
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to make decisions about how to conduct the learning of each student.
The main advantages for users with this role lie in the supervision of
the students, in addition to the automatic feedback for the student using
metrics that influence the evaluation. This favors an early intervention by
the teacher to reinforce the most lagging students and provide additional

support if necessary.

System Administrator: Users in this role can monitor the resources
used in the AWS shared account in near real time (15 minute delay
due to the CloudTrail internal log delivery process). From this point
of view, irregularities in the use of resources can be detected, in addition
to allowing a planning of the cost of the resources used throughout a

month.

Another important aspect is to point out that this panel allows displaying

information about the role of each user. Users with the student role can only

access their own data. Users with the teacher role can access the information

of all students. This prevents a student from feeling bad about seeing that his

progress with respect to other students is inferior and, on the other hand, the

teacher can differentiate who are the students who need more attention.

Table 3.1: Results of the satisfaction questionnaire with CloudTrail-Tracker (the
percentage of students that answered in each interval, using a 10-item Likert scale, is shown).

Question [0.4] [5,7] [8,10]

% N % N %

The tool was always accessible whenever I needed it 0 0,0

w

21 139 979

I knew how to use the tool without the instructor’s

guidance

EN

1 07 49 134 944

I was able to properly understand the information
given by the tool

2 14 12 85 128 90,1

The information shown by the tool helped me
identify my progress in each lab activity

7 49 16 11,3 119 838

It can be considered an appropriate support tool
for the technical education in AWS

4 28 12 8,5 126 88,7

Taking into account the impact on students of the developed tool, we decided

to conduct an online survey where they could express their level of satisfaction
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with CloudTrail-Tracker. For the questionnaire, the Likert scale of 10 items
was used, where 0 means totally disagree and 10 means totally agree. Table
3.1 shows the results of a total of 142 students surveyed who have completed
some of the subjects. The research carried out in [95] included the results of
46 students surveyed, which were those available at the time the article was
presented. For this research, it seemed important to update the tables with
the information collected so far. Table 3.2 shows the results of the satisfaction

test taking into account each of the educational activities carried out.

The results indicate that students consider the use of the CloudTrail-Tracker
tool beneficial as support material for the activities that take place in AWS.
No differences were detected between the students who received the classes
in person and those of the online course. The ability to provide almost
real-time information on the progress of the practical activities carried out
in the subjects was highlighted. For their part, the students indicate a series
of recommendations that help improve the tool, for a better understanding of
the data provided.

Table 3.2: Results of the satisfaction questionnaire with CloudTrail-Tracker in each of the
educational activities (N stands for the number of students that filled in the questionnaire
for each subject, AVG stands for average and STD stands for standard deviation. Subjects:
CS (Cloud Services), PCI (Public Cloud Infrastructures), CBDMC (Computation and Big
Data Management in the Cloud)).

CursoCloudAWS SEN ICP CGDNBD
(N=88) (N=17) (N=7) (N=33)
AVG STD AVG STD AVG STD AVG STD
Q1-Accessibility 9,62 0,85 10,00 0,00 9,71 0,76 985 0,44
Q2-Ease 9,42 1,12 965 086 9,71 049 9,03 1,19
Q3-Self explanatory 8,99 1,39 9,59 0,80 9,86 0,38 9,03 1,07
Q4-Relevant 8,20 2,27 8,20 087 957 1,13 9,18 1,18
Q5-Utility 8,85 1,85 982 039 10,00 000 936 1,03

The tools that provide information on the behavior of the students allow to
reshape the courses taking into account the aspects in which the students
present greater difficulties.  The information collected with the use of
CloudTrail-Tracker allowed a statistical analysis of the Online Course in
Cloud Computing with Amazon Web Services. The study involves a total of
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Table 3.3: Average percentage of progress of the students in each lab activity. Activities
are shown in the table in chronological order of appearance in the course material from left
to right.

Lab Activity Avg. Progress (%)
PL_EC2 72,12
PL _EC2_S3 54,58
PL_RDS 46,78
PL_APP 43,07
PL_CF 39,15
PL VPC 35,54
PL_LAMBDA_SQS 19,74

427 students who participated in the academic year 2016/2017, 2017/2018,
2018/2019. All information related to the course is available at [93].

Table 3.3 displays the average percentage of student progress for each hands-on
activity conducted on AWS. The practices are shown in chronological order,
that is, PL.__EC2 corresponds to the first laboratory to be carried out and
PL LAMBDA SQS to the last one. The results indicate that, in general,
the latest practices are the ones that students carry out the least frequently,
this may mean that a re-planning of the practice time is necessary and that

attention to students should be reinforced in the last part of the course.

3.2.4 Discussion

Cloud Computing helps solve some of the challenges facing education today.
It can be said that Cloud Computing has driven the development of large
online universities. The CloudTrail-Tracker tool constitutes a contribution
in those courses where AWS services are used. Automated acquisition of
student activities on the AWS platform results in a near-real-time learning
analytics useful for students’ self-awareness of their progress. Having a learning
dashboard that gives the teacher an overview of the students’ progress allows

the development of different teaching methods.
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Being able to share this information with students encourages self-regulation
where the students know the activities they have carried out and those that
still have to be completed. This is fundamentally the ability of a student to
manage and plan their time, and to be aware of the academic skills that they
may or may not achieve with the performance of the activities. In this way,
the academic success of the students depends above all on themselves. The
tool alone is an example of how to use and combine the diverse resources of
Cloud providers such as AWS in applications that involve computing and data

management.

In addition, the development of this type of applications, in educational
areas, must be profitable and that it be carried out efficiently, compiling
the information generated by each student in the development of laboratory
activities. It is also important that it is accessible from anywhere at any
time, which requires the system to be available at all times. The design of
this event-driven serverless architecture encourages both, an all-day operating
system that only generates cost when used. This depends on the use by
students, but if they operate in the free tier of AWS services, the cost can
be practically zero.

On the other hand, the use of the tool is not limited only to the educational
sector, since anyone who has an AWS account can benefit. That is,
through CloudTrail-Tracker you can view all the actions that are executed
in AWS, which makes it possible to have more centralized control over
the resources that have been used in a given period of time. The web
portal developed in CloudTrail-Tracker allows to visually represent high-level
aggregated information about the use of services on AWS by different users,
based on the events recorded by CloudTrail. In addition, it allows querying
personalized information for a particular user and obtaining summarized
information across multiple users for the different services employed in a time
frame. Despite the fact that in the use case it refers to courses, this concept can
be replaced by a work group or project, since the grouping of users in different
roles is done through AWS TAM. The Dashboard and the Search by user panel

are general-purpose modules that provide an easy-to-use graphical view of the
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services used in a multi-tenant AWS account. To the author’s knowledge,
there is no open-source serverless platform that offers high-level analytics of
the usage of an AWS account. Therefore, outside of the educational field, the
platform can be adopted by individuals, organizations or research groups that
operate a multi-tenant AWS account.

After doing a study of the literature related to the implementation of
educational dashboards, no research was found where reference was made to
a serverless platform that automatically collects information about student
actions in a shared AWS account. For other teachers or AWS account
administrators to benefit from the implemented tool, CloudTrail-Tracker has
been released as an open-source development under the Apache 2.0 license,
available on GitHub'".

3.3 Chapter Conclusions

In the development of this chapter, the fundamental elements of the serverless
architecture and CloudTrail-Tracker, the first strategy based on serverless
computing addressed in this thesis, were introduced. All designed platforms
build on the function-as-a-service model to provide event-based processing
capabilities. In the FaaS model, the functions are executed in stateless compute
containers, which are activated by an event, such as uploading a file to a file
storage system such as Amazon S3, and which are completely managed by the

provider of services.

The FaaS model allows the developer to focus more on the application logic
and less on the configuration of the back-end infrastructure, which is managed
by the service provider. The pay-as-you-go model, automatic scaling, and
scale-to-zero are features that save costs and provide a flexible platform. This
has led to this model being, in recent years, widely adopted by developers.

CloudTrail-Tracker is the first tool described, of the three strategies based
on the FaaS model that are part of this research. CloudTrail-Tracker

17CloudTrail-Tracker GitHub repository - https://github.com/grycap/cloudtrail-tracker
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processes usage records from the AWS public Cloud provider, with the aim
of obtaining relevant information about the resources used in an AWS shared
account. The system involves a completely serverless architecture based
fundamentally on Lambda functions and a NoSQL database service, which
allows minimizing the operational cost of the solution. It also operates within
the AWS acccount itself, without requiring to provide external access to a
third-party data processing tool. This tool has been implemented in the
educational field in subjects related to computing in AWS. This has allowed
the instructor to know the realization of the practical activities developed by
the students in said infrastructure. In addition, an educational web portal
has been implemented that includes graphic components to facilitate the
interpretation of information. The use of the tool encourages the development
of self-regulated learning. In this chapter, an analysis was made of the
architecture on which CloudTrail-Tracker is based, as well as of the use cases
where the tool was implemented. Finally, the results obtained were discussed

and presented.
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Chapter 4

Availability of GPUs on

Serverless On-Premises

Platforms

This chapter describes another serverless computing strategies developed as
part of this research. As reflected in the state of the art (Chapter 2), the
use of GPU-backed accelerated computing to optimize the processing times
of the functions is a fundamental point that has not yet been properly
addressed in serverless computing. We propose in this chapter a solution to
this problem through a platform that supports virtualized computing of GPUs
in on-premises serverless computing frameworks. Different GPU virtualization
technologies are integrated with the benefits of the FaaS framework for scalable
event-driven data processing.

63



Chapter 4. Availability of GPUs on Serverless On-Premises Platforms

This work extends a previous development from the GRyCAP research
group: OSCAR! (Open Source Serverless Computing for Data-Processing
Applications) [109], an open-source serverless platform that is based on
Kubernetes and OpenFaaS for data processing applications. The platform
supports parallel file processing through Docker container-based applications in
response to uploading files to a data storage such like MinIO?. The components
used in the architecture design and some of the characteristics of the platform

involved in the deployment of the platform are explained below.

4.1 Components used

Before addressing the general structure of the application, some of the
underlying technologies used for the design and implementation of the proposed
architecture are explained. Firstly, the structure of the OSCAR platform is
exposed in a general way and then, the technologies used for the virtualization
of the GPUs are described.

4.1.1 OSCAR

The serverless platforms of public Cloud providers have some limitations
that prevent their benefits from being applied in the execution of general
applications. These limitations are primarily focused on the maximum function
execution time, the amount of allocable memory and the provided storage
capacity. These challenges together with the advantages provided by the
serverless paradigm have generated great interest in the development of
open-source frameworks to define functions in orchestration platforms such
as Kubernetes. These platforms do not have the aforementioned restrictions
and can be deployed in public, private and federated Cloud infrastructures,
as is the case of the EGI Federated Cloud®. Notice though that deploying
an open-source FaaS framework on a public Cloud is lacks the benefits of

LOSCAR - https://github.com/grycap/oscar
2MinIO - https://min.io/
3EGI Federated Cloud - https://www.egi.eu/federation/egi-federated-cloud/
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scale-to-zero. Thus, the main targets should be both on-premised and federated
Clouds.

OSCAR provides users with the ability to self-deploy a scalable integrated
platform accessed through a simple Graphical User Interface (GUI) to define
and manage the full life cycle of functions that are triggered when users upload

a file to a storage system data [109].

From the web interface the user can view the functions displayed on the
platform and access the system that stores the files used with the functions.
In the process of defining a function, the user has to specify three required
elements and several optional elements (such as environment variables and
CPU or memory limits). The required elements are: the name of the function,
the Docker image that contains the code of the application, the environment
with the software dependencies and a shell-script to be executed when the
function is activated. The function is triggered when a file is uploaded to
the input storage system. From this moment on, the file is processed in
an ephemeral container that contains the application code and the settings
specified in the function definition. After processing is complete, the output is

displayed on the output storage system.

The components that make up the OSCAR architecture can be divided into
two main groups: those that allow elasticity at the virtual machine level and
those that provide functions as a service. For now we will focus on those that
provide FaaS platform capability and later in Section 4.2.1 we will refer to the

other components.

OpenFaaS, MinIO and Kaniko? are the fundamental elements of the OSCAR
architecture that provide the capability of functions as a service. OpenFaaS
is a framework that allows the creation of serverless functions with Docker
and Kubernetes. MinlO is an open-source object storage server with features
similar to Amazon S3, was one of the first to adopt the API and provides S3

4Kaniko - https://github.com/GoogleContainerTools/kaniko
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compatibility as the de facto standard for Cloud data storage [92|. Kaniko is
a tool to create container images in Kubernetes from a Dockerfile®.

OSCAR Manager is the service that provides the orchestration of the services.
Users can invoke and initialize functions through a REST API offered by this
service [109]. The process of creating the function is transparent to the user and
part of the request for a new function from the web interface. This request is
received by the OSCAR Manager service and Kaniko creates the Docker image
corresponding to the specified function. The image built by Kaniko is stored
in a Docker Registry running inside the Kubernetes cluster, the input/output
buckets are created in MinlO, and the OpenFaaS function is created using
the image created by Kaniko. Once the process detailed above is complete,
the function is ready for file processing. The function is invoked when a file
is loaded into the MinlO input bucket, and then the result of the function is

received into the output bucket.

The OSCAR user interface is developed with Vue.js and Vuetify®. Both are
versatile JavaScript frameworks that allow for a better experience in web
development. The web interface is deployed within the Kubernetes cluster
so it is necessary to expose this service to make it accessible from a web
browser. The web interface is implemented within the Kubernetes cluster, so
it is necessary to expose this service to make it accessible from a web browser.
To expose the services, a NodeJS server was used that allows interaction with
other services such as OSCAR Manager, MinIO and OpenFaa$S [109].

OSCAR is a platform developed by several researchers at GRyCAP, the space
where the thesis was developed. In this sense, the collaboration with Alfonso
Pérez and Sebastian Risco, researchers at the GRyCAP, stands out. The final
results of this research are included in the Master’s Thesis of Sebastian Risco
[51]. The contribution to this platform was mainly oriented to the development
of a web interface that allowed users to deploy and configure functions in a
visual and simple way. In addition, to interact with the underlying services

5Dockerfile reference - https://docs.docker.com/engine/reference/builder/
6Vuetify - https://vuetifyjs.com/
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of the platform such as OpenFaaS (creation of functions) and MinlO (file
storage), a NodeJS server was implemented that, first, served the static web
page and, second, allowed communication between the internal services of the
Kubernetes cluster where OSCAR is implemented and the elements displayed
in the interface. In addition, the author also introduced the GPU support for
accelerating the execution of the function invocations in the OSCAR platform

and supported the different use cases shown in the thesis.

4.1.2 rCUDA

Virtualization is the fundamental technology in public and private clouds
capable of offering greater flexibility and simplicity. In virtualized and
specifically containerized environments, access to the GPU is increasingly
necessary, hence new challenges have emerged in terms of compatibility with
these devices. In environments where high-performance computing workloads
are required to be run, virtualization of GPUs can reduce acquisition costs and

consumption by increasing the use of the same GPU.

In the section 2.5, the best-known solutions for GPU virtualization were
mentioned. In the development of this research it was decided to use rCUDA".

rCUDA is a framework developed by researchers from the Universitat
Politécnica de Valéncia that allows the virtualization of remote GPUs
compatible with CUDA. rCUDA is based on creating virtual GPUs on
machines without a local GPU. These virtual devices are physically located
on a remote host that offer GPGPU services [118]. In HPC centers, rCUDA
increases the flexibility, sharing a GPU between multiple applications, thus

promoting the development of a multitenat environment.

rCUDA is structured as a client-server application as shown in Figure 4.1. The
rCUDA client is presented as an NVIDIA CUDA Runtime and Driver API and
is installed on the node where the application that requests GPGPU services
is located. On the other hand, the server must be installed on the node where

"rCUDA - http://www.rcuda.net/
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the physical GPUs are located. When the rCUDA client receives a request
from the application, it is processed and forwarded to the server, where it is
interpreted and executed on the real GPU. Once the processing on the GPU
is finished, the rCUDA server sends the result to the client, where they are
finally sent to the application.

Client Side Server Side

Application }

CUDA Runtime API

rCUDA client library

rCUDA Daemon

] : Comunication] [ CUDA Driver
: layer API
Software :

.....................................................................

Hardware i

GPU

Comunication layer

NETWORK
Figure 4.1: Overview of the rCUDA virtualization strategy.

As all rCUDA client-server applications require the network to establish
communication between the client and the server, this may introduce delays
in receiving information due to the characteristics of the network. To optimize
this information exchange rCUDA provides support for various underlying
network technologies such as InfiniBand [110], the RoCE network (RDMA over
converged Ethernet) [120] for efficient data transport and the stack general of
TCP/IP protocols.

Unlike other tools that allow you to virtualize GPUs with rCUDA, it is
possible to share the same GPU by several applications. Furthermore, these
virtualization framework separates the GPUs from the nodes, that is, it

allows applications to access virtualized GPUs that are not even installed
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on the physical machine where they are run. Another very important
functionality of rCUDA is the possibility of providing support to different
interconnection technologies such as the high performance network InfiniBand.
These characteristics were taken into account when choosing rCUDA as
GPGPU virtualization technology for integration with OSCAR.

4.1.3 NVIDIA Container runtime for Docker

The advantages of containers for application delivery by encapsulating their
dependencies facilitate the reliable execution of applications, which has led to
an increase of this technology in data centers. In data intensive applications
as in the case of deep learning applications, it is nearly mandatory to use
acceleration devices to reduce processing times. Docker containers do not
natively support the use of specialized hardware such as GPUs, because both,
Docker containers and hardware, are platform independent.

To allow the use of NVIDIA GPUs in Docker images, it is necessary
to install NVIDIA-Docker® on the host where the containers are running.
NVIDIA-Docker is a runtime developed by NVIDIA that simplifies the use of
applications that require GPUs within Docker containers. Once the runtime
is installed, it is only necessary to specify the --gpus option when executing
the docker run command, thus providing the container with all the elements
necessary to execute the code on the GPU. One of the limitations of using
NVIDIA-Docker is that it restricts the use of the GPU concurrently by another

container.

4.2 Architecture

Figure 4.2 shows the proposed architecture for accessing a remote GPU from
OSCAR through rCUDA. The rCUDA client is installed on the Kubernetes
jobs where the functions are processed and the rCUDA server is located in
another cluster where the physical GPUs are located.

8NVIDIA-Docker - https://github.com/NVIDIA/nvidia-docker
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Figure 4.2: OSCAR architecture to access external GPU resources through rCUDA.
Source:[96]

As explained previously, the proposed architecture is based on the OSCAR
framework that allows developers to run applications packaged in Docker
containers as functions that are triggered in response to certain events, in
this case when uploading a file to the MinlO input bucket. This event-based
architecture simplifies data and infrastructure management by abstracting all

end-user configurations [96].

Figure 4.3 shows the integration of rCUDA into the OSCAR architecture with
a higher level of depth.

On the one hand, there is a Kuberentes cluster with the OSCAR framework

that supports the implementation and execution of functions that run as
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Kubernetes jobs. The user from the web interface creates a function defining
the Docker image with the application code, the name of the function and
the script to execute inside the container. The OSCAR Manager uses
Kaniko to build the Docker image including, in addition to the components
for the serverless execution of the function (OpenFaaS Watchdog and FaaS
supervisor), the rCUDA client libraries. This allows to have a ready image
with the necessary environment settings for the execution of the function once
an event is received. In this way, the image is reused at each invocation of
the function, which makes the process of generating the final result faster. If
the user application supports the use of GPU, requests to the CUDA API are
made through the rCUDA client library to the server. On the other hand, in
a Docker container running on a remote cluster where the physical GPUs are
located, the CUDA libraries are installed and the rCUDA server running as
a daemon. To access the GPUs from the rCUDA server, NVIDIA-Docker has
been installed to virtualize the GPUs inside the container. It is possible to
install the rCUDA server on the underlying operating system without using
Docker, but by having it in a container eases the ability to add new GPGPU
rCUDA node servers.

Requests made from the application to the CUDA API are detected by the
rCUDA client library and over the network are sent to the rCUDA server and
executed on the physical GPU. Once the result of the execution is obtained, it
is sent again to the rCUDA client that sends the response to the application.

Including the rCUDA server in a Docker container is not trivial and was not
supported by the rCUDA code. During the investigation, bugs were detected
and reported to rCUDA developers who were responsible for correcting them

in the code.

In the cluster where OSCAR is running, the user creates a new function
with the application code from the web interface. It is important to note
that in order to use the acceleration devices the user needs to configure their
application with GPU support. Once OSCAR Manager receives the request for

a new function, Kaniko is executed, where in addition to the user’s application,
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Figure 4.3: Integration of rCUDA into the OSCAR architecture. Source:|96]|

the rCUDA client libraries and the environment variables required for the
configuration, such as the IP of the server and the number of GPUs to be used,
are included in the construction of the image. This is executed as Kubernetes

jobs and the communication with the server is through the network.

All the components of the architecture exist independently, so the main
contribution to the proposed solution is the integration of GPUs as background
resources to serverless functions that need to be executed quickly and with
resources immediately provisioned. This serverless execution strategy allows
optimizing the use of GPUs, as well as reducing the cost of implementation,
since TCUDA allows the use of a GPU by multiple applications. This
architecture extends the support of the OSCAR serverless platform into mixed
workloads that include standard CPU and GPU requirements [96].
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The integration of an application in a Docker container is relatively easy,
despite this, the integration of rCUDA had configuration problems because
it had never been tested in these environments. These bugs were resolved
in collaboration with the rCUDA developers. The work of the thesis
has concentrated on the integration of these components into the OSCAR
architecture to enable the efficient use of accelerator devices such as GPUs
by the functions. This is not trivial and required to address issues such as:
integrating rCUDA in the container environment, optimizing the execution of
functions taking into account the best possible scenario, and accessing GPUs

from a container in a Kubernetes cluster.

4.2.1 Description of underlying technologies

OSCAR services are implemented in a horizontally elastic Kubernetes cluster.
The OSCAR architecture components that enable this feature are the
Infrastructure Manager (IM) [29] and CLuster Elasticity System (CLUES) [3].
IM is an open-source tool for deploying complex Cloud infrastructures using
high-level declarative languages like RADL? (Resource Application Description
Language) and TOSCA'Y. Thanks to the multi-cloud ability of IM, OSCAR
can be deployed on multiple public, on-premises and federated Clouds.

CLUES is an open-source modular elasticity system that allows the
introduction of horizontal elasticity capabilities (greater number of compute
nodes) for cluster-based computing. Elastic Cloud Computing Cluster (EC3)
[28] [31] was used for the deployment of these components. EC3 is an
open-source tool that allows the deployment through IM of clusters defining
elasticity rules with CLUES [109]. All these tools were developed by GRyCAP
researchers and are currently used in production in EOSC marketplace ! and
EGI Federated Cloud!'?, an IaaS-type Cloud, composed of private academic

9RADL - https://imdocs.readthedocs.io/en/latest/radl.html

10Tosca - https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/0s/
TOSCA-Simple-Profile-YAML-v1.3-0s.html

HEOSC marketplace - https://marketplace.eosc-portal.eu/

12EGI Federated Cloud - https://www.egi.eu/federation/egi-federated-cloud/
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Clouds and open standards that offers computing resources to the European

research community [35].

Firstly, as a proof of concept with OSCAR, the Ramses and OneCloud
platforms were used. Later, to implement the proposed architecture with the
tools mentioned above, the on-premises Cloud Horsemen was used. All this
platforms are part of the infrastructure that the research group GRyCAP has
and the characteristics were described in Section 1.3.

4.3 Use Case: Availability of GPUs on Serverless

On-Premises Platforms

This section covers the use case implemented in the platform designed for GPU
integration in OSCAR. The experiments carried out allow demonstrating the
functionalities and showing the times obtained when using different scenarios
involving executions in CPUs and virtual and native GPUs. Initially, it is
explained what it consists of and the objectives of the case study. Then, the
results of the experiments performed will be shown and finally a discussion is

made taking into account the results obtained.

4.3.1 Objectives of the experiments

To cover the different GPU virtualization strategies, several scenarios have
been designed to evaluate the benefits of the proposed solution in a real
use case for the classification of echocardiography movies in pathological,
borderline and sound cases. The classification model applied to this case
study is developed by QUIBIM!? a company dedicated to applying image
processing techniques to improve human health and that maintains a close
collaboration with the GRyCAP research group. The model allows to classify
an echocardiography image into three categories taking into account the
acquisition view: four-chamber, long-axis and short-axis |71] [33]. To apply

other techniques to extract information from the images, it is necessary to

I3QUIBIM - http://quibim.com/
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apply this classification since they depend fundamentally on the acquisition

view.

The echocardiography movies used to test the functionalities of the architecture
were obtained from the PROVAR [97] study. From each patient, 10-20 movies
are obtained using different techniques, morphological and doppler, from three
different viewing angles. The movies have a duration of 2 to 4 seconds and are
made up of a few dozen frames. The resolution of the movies is 240 by 340

pixels.

The model for the classification of echocardiographic movies was developed
using Keras!? and Tensorflow!®. In the training, validation and estimation
phases it is possible to use GPU if they are available. As indicated earlier, all
echocardiographic movies are made up of several black frames, some of them
contain noise, which makes it difficult to infer the view, so it is necessary to
apply the model to each frame and thus obtain a consensus. Figure 4.4 shows
the processing of an echocardiography movie. Firstly, it is necessary to extract
the frames from the movie. Then, to each one of these frames the estimator
is applied to obtain the classification of the view. Finally, the result obtained

from each frame is analyzed and a consensus of the view is obtained.

D

- Estimator |-

Estimator -

Estimator oo

Estimator

Estimated Consensus
Views of the Estimated
Echocardio Video Video Frames - ] frames Views

Figure 4.4: Processing pipeline for the use case. Source:[96]

In this particular use case, the model has been acquired in collaboration with
QUIBIM, so the training was carried out previously. Therefore, we have

focused on the segmentation part of the echocardiographic movies and on the

Keras - https://keras.io/
15Tensorflow - https://www.tensorflow.org/
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classification of the images since the executions are of short duration. The
fundamental objective with this case study is to test the capabilities of the
architecture regarding the use of virtualized GPUs. However, it is also possible
to train the models since it supports the execution of long-running jobs.

Requirements

In general, the training process of ML models is the ones that need the
most computing resources. However, the cost of the inference process is not
negligible either. Serverless architectures appear to be a viable solution to
utilize ML models in production by implementing parallelization techniques
and acceleration devices. Several videos are obtained from the same patient,
which are uploaded on the platform, this triggers the process, first, of
segmentation of the video into frames and then of inference according to the

different views. This allows the simultaneous processing of multiple videos.

In case studies that use unsupervised classification models, where the model
conforms to observations, certain requirements need to be considered. These
models are built on a previous phase where they are trained and validated,
followed by an error evaluation phase and finally the production phase in which
the models are used for classifying new objects. The following requirements
are defined in this use case:

e The process of extracting the frames of each video and the simultaneous
execution of the inference phase throughout the processing nodes must
be able to be carried out without the application developer explicitly
implementing it, allowing the parallelism capabilities to be exploited.

e GPUs should be used transparently by functions if available on the

underlying computing node.

e Avoid blocking a GPU by a single process in order to maximize the use

of resources.
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e Easily deploy in the production environment, the applications already

validated in the development environment.

Data is updated every day, so model retraining is critical, as continuous
acquisition of information will optimize model accuracy, improve performance,
and save time by customizing models automatic. In this sense, the use of GPUs
can alleviate the problem to speed up continuous training and the deployment
of algorithms. Using the function as a service model and GPUs seem to be

very convenient for scenarios that use unsupervised classifiers.

Scenarios

Serverless computing has enabled a new way of designing architectures,
where services are developed as functions largely based on CPU. In order
to analyze the feasibility of integrating acceleration devices, such as GPUs,
into a serverless on-premises platform (OSCAR), the following scenarios are

proposed:

e Scenario 1: Execution from the Python console. Echocardiography
movies are processed from the Python console in a Docker container
that has access to a Tesla V100 GPU through NVIDIA-Docker. In this
scenario, the execution times that are obtained are the most similar to
those that would be obtained when accessing a GPU natively. The main
disadvantage of this approach is that it is not possible to automate the
movie processing workflow. The user would have to manually run the
script to segment the videos and to classify each of the frames extracted
from the movies. From the point of view of the development of computing
today, this implies a manual execution that makes it difficult to use it in
production, permanently blocks GPU resources and limits its efficient use
since in case the process workflow had some stages that could be executed
in CPUs, since they are not decoupled, they would continue consuming
GPU resources. Furthermore, it requires manual implementation of
parallelism. However, allows to determine the baseline processing times

when using a lightweight virtualized approach to access a GPU.
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e Scenario 2: OSCAR+CPU. In this scenario, the processing of the movies
in the functions that run in OSCAR is done automatically, but based
exclusively on the available CPU. These settings will serve as a basis for
comparing execution times in scenarios where acceleration devices are

used.

e Scenario 3: OSCAR+Remote GPU (rCUDA). This approach provides
remote GPU access to serverless functions that run on the OSCAR
platform. These functions are executed in Docker containers in an elastic
Kubernetes cluster. Using rCUDA makes it possible to share a GPU
across multiple applications at the same time, enabling the development
of a multitenant environment and the efficient use of GPUs.

e Scenario 4: OSCAR-+Native GPU. In this configuration the physical
GPUs are located on the machine where the OSCAR platform is deployed.
Accessing GPUs from within the Kubertenes cluster is via the NVIDIA
device plugin for Kubernetes'®. In addition, to access GPUs in the
processing of the movies, it is necessary to install NVIDIA-Docker in
the containers within the Kubernetes cluster, which are those that run as

serverless functions.

The computer infrastructure used to carry out the test was Horsemen, whose
characteristics were explained in Section 1.3. It is important to note that in
all scenarios that use the GPU, virtualization techniques are used, from light
virtualizations as is the case of scenario 1, to more complex visualizations as is
the case of scenario 4 where it is necessary to virtualize devices at more than
one level. The possibility of native execution on GPUs has been ruled out,
since the OSCAR platform is a multitenant Cloud and therefore users are not
expected to execute their code natively. The implemented scenarios allow to
take advantage of GPU virtualization efficiently and profitably.

One of the main advantages provided by FaaS environments is the automated
horizontal elasticity managed by the platform. This translates into the ability

6NVIDIA device plugin for Kubernetes - https://github.com/NVIDIA/k8s-device-plugin
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to process multiple functions in parallel, which can be implemented in OSCAR.
In this sense, two variants are defined in scenarios 2, 3 and 4 in order to achieve
optimal parallelization levels. The implementation of the model to classify the
images extracted from the echocardiography movies requires the use of the
Tensorflow and Keras libraries, which is an important element when designing
the workflow for the execution of the functions.

/

Q="

OSCAR-UI

o -

-
Download

Trigger multiple
Classify image
Functions

~

k Upload video

to Minio Bucket

Store video
images

Trigger

/ 4

remote CUDA

Results
Store classified
*=  images
( Classify
image

Classﬂy

|rnage

Function,

rcuDA

C"E"t Function
Execu foh on PU

through rCUDA

—

é Split Function

- /

Figure 4.5: Workflow of the selected use case on the OSCAR platform using remote GPUs
with two different functions. Source:[96]

0OSCAR

Figure 4.5 shows the first variant, where two functions are defined: one
to segment the echocardiography movies (Split Function) and the other
(Classify Image Function) to classify the frames that are obtained from
the segmentation. In this approach, the Keras and Tensorflow libraries are
imported each time the segmentation function generates an image to classify.
This solution achieves the execution of multiple classification functions in
parallel but increases the execution time by having to import the libraries

each time an image is classified.

In the second variant, Figure 4.6, all the processing is done in a single function.

Firstly, the videos are segmented into images that are later classified. In this
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Figure 4.6: Workflow of the selected use case on the OSCAR platform using remote GPUs
with all the code in one function. Source:[96]

case the Tensorflow and Keras libraries are imported only once. The use of
this variant means that the parallelization will be done in the execution of
multiple videos and not in the classification of the images as proposed in the

first variant.

In Scenario 3, rCUDA is used as the virtualization technology for GPUs.
In this case the use of the first variant can have a significant impact on
performance since the libraries are imported from the client to the server
through the network. Therefore, based on how it can affect the performance
of the application according to the workflow described in Figure 4.5, it was
decided to use the variant shown in Figure 4.6 to integrate rCUDA in the
OSCAR platform. However, it is important to note that in other case studies,
where the cost of processing the functions is of a higher order and it is not
necessary to import the rCUDA libraries a large number of times, it could be

relevant to divide the functions.

The objective of defining these scenarios is to be able to determine the
advantages and limitations of each one, comparing the execution time of the
echocardiography movies. With the result of this comparison, it will be possible

to determine which of the scenarios is the most suitable for real use cases similar
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to the one we have analyzed in this section, which constitutes a novel element
in the integration of GPUs in serverless architectures.

4.3.2 Experiment Results

In each of the proposed scenarios, the processing time of the echocardiographic
movies of a patient was analyzed. For this, the segmentation time of the video
into images and its classification using the pre-trained model of Tensorflow and
Keras were taken into account. Figure 4.7 shows the average times measured

to load the libraries and the training model.
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Figure 4.7: Average time importing the required modules and loading the pre-trained
model in the analyzed scenarios. Source: [96]

As can be seen in the graph, the shortest time is for scenario 1 where execution
from the Python console is using a lightweight virtualization environment.
On the other hand, the most considerable time when importing the libraries
and loading the model corresponds to scenario 3, where rCUDA is used to
virtualize the GPUs within the containers that execute the processing. In
fact, the rCUDA server loads the data and the application kernel (Tensorflow
and Keras libraries) obtained through the rCUDA client onto the GPU (Tesla
V100 32GB), using the network. The rCUDA client runs on Kubernetes jobs
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on a virtual machine where access to GPUs is not available. The network
connection established between the client and the rCUDA server is through a
10GbE card. It was precisely to avoid this overload that the second variant of
packaging all the processing in a single function was selected.
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Figure 4.8: Comparison classifying different length videos in the analyzed scenarios.
Source:[96]

Several executions were implemented using the on-premises serverless platform,
to analyze the total processing time in each of the proposed scenarios. In the
executions, videos with different lengths were used, which could be decomposed
into 60, 120, 180, 240, 300 and 360 frames. Figure 4.8 shows the times measured
for the different runs. It is important to note that the processing times in this
graph include the time to import the Tensorflow and Keras libraries and the

pre-trained model shown in Figure 4.7.
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For each of the tests carried out, the results obtained in scenario 1 constitute
the base reference for the other scenarios. In this case the GPU virtualization
environment is the lightest and a serverless platform is not used. With this
approach it is not possible to take advantage of serverless architectures when
it comes to multi-run processing along with automated elasticity based on the
number of virtual machines in the Kubernetes cluster. Using the serverless
platform and processing on the CPUs, the processing times are higher than
using the GPU, mainly in those videos that are divided into more frames and

need more computing resources.

Scenarios 1 and 4 are the ones that use light virtualization environments for the
GPU, since the GPUs are located on the physical machine where the execution
takes place. If we compare these two scenarios, the execution time from the
Python console are slightly less than the execution time obtained with OSCAR.
This behavior is due to the fact that once a video is uploaded to OSCAR, the
environment creation is triggered to execute the functions that implement the
classification code, and in the case of the Python console, this environment
is already created and the classification code execution is done by the user
manually. An alternative to improve this difference would be to prevent the
OSCAR platform from scaling to zero, which translates to keeping a function
warm while waiting to execute the processing. Since the difference in the
execution time in this case is not significant, we do not consider it necessary

to implement this alternative.

In scenarios 3 and 4 the use of the GPU in OSCAR has been integrated.
In this case, the best performance approach to process a single video, that
can have different durations, is scenario 4, where the physical GPU is on
the machine where the platform has been deployed. In the processing of a
video on the serverless platform we define different phases: Initialize container,
Input/Output, Import Modules, Load pre-trained model and Processing. The
first two phases are executed by the OSCAR framework for creating the
processing environment and to upload and download the input and output files
respectively. The other phases correspond to the GPU virtualization overhead

and depend essentially on the performance of the network. In the Figure 4.9
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the processing times are shown, indicating each one of the phases mentioned

above.
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Figure 4.9: Time segmentation according to the main execution phases in scenarios 3 and
4. Source: [96]

It is evident that in the case of scenario 4 where access to the GPU is local,
the processing is faster since the access is practically native. In the case of
OSCAR with rCUDA, processing is significantly slower because rCUDA is a
client-server application that makes extensive use of the network.

A last experiment has been carried out to evaluate the behavior of scenarios 3
and 4 when several videos are processed simultaneously. Figure 4.10 shows the
execution times of up to 4 videos processed in parallel. In the case of OSCAR
+ Native GPU, as the processing load increases, a bottleneck is created due to
the fact that the NVIDIA device plugin for Kubernetes does not allow sharing
a GPU between multiple jobs, so the processing must be done one by one. In
the case of OSCAR with the virtualized GPU through rCUDA, better results
are obtained in the parallelization since rCUDA allows a better use of the
GPUs by being able to share them with multiple applications.

In order to assess the elasticity of the architecture, the deployment of a new
Kubernetes cluster node was activated to determine the time required for
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Figure 4.10: Execution times for processing up to 4 videos (180 frames) in scenario 3 and
4. Source:[96]

provisioning and configuration in the on-premises platform. The calculated
time to provision one node was approximately 5 minutes, which can be
significantly reduced by using preconfigured virtual machine images. In
addition CLUES could be extended with proactive policies that anticipate peak
loads. In the case of on-premises Clouds, there are other alternatives such as
the suspension and reactivation of resources that significantly reduce the cost.
In [24] all these alternatives are studied. This time was not considered when
measuring the execution time of the implemented use cases, since the objective
was not to measure the elasticity of the platform but the ability to integrate

GPU support for the execution of serverless functions.
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4.3.3 Discussion

In today’s computing, graphics cards are a basic part of scientific applications,
with particular importance in providing essential GPGPU services. The
performance of an application increases considerably when acceleration devices
are used. GPUs allow to solve problems of a higher order and complexity in
a reasonable time that cannot be solved in CPUs. The code runs faster and
allows multiple instructions to run simultaneously. The use of CPUs in this
case study showed that the use of GPUs improves performance considerably
in the intensive processing of complex applications.

Integrating GPUs into a serverless on-premises platform that provides
event-based computing for invoking functions that run as jobs in an elastic
Kubernetes cluster enables efficient processing of applications that make
intensive use of computing resources. In this case study, different virtualization
techniques of GPUs have been used for the segmentation of echocardiography
movies and classification of the images obtained from the segmentation process.

Scenario 1 is a reference to analyze the processing times when using a GPU in
a light virtualized environment and there is no automation in the execution of
the video processing. In scenario 2, using OSCAR, automates the processing
of videos in serverless functions and allows analysis of processing times when
GPUs are not used. Scenarios 3 and 4 that use different GPU virtualization
technologies in OSCAR have limitations and advantages, and it is the user
who must decide which option best suits the needs of their application.

According to the results obtained in the previous experiments, where a single
video that can have different duration is processed, the most effective solution
is that of scenario 4, where the GPU is located on the physical machine where
the serverless platform is implemented. Now, the results are very different
when multiple videos are run simultaneously. In this sense, the use of rCUDA
in OSCAR allows the development of a multitenant environment by executing

multiple functions that simultaneously access the same GPU.
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GPU support in container orchestration systems is managed by reserving full
GPUs to containers by means of PCl-passthrough or similar technologies.
The resource contention and management is simple and managed by the
orchestrator. There are still unexplored areas regarding the integration
of GPU-based computing into orchestration systems through remote
virtualization techniques for accelerated computing. Concurrent GPU access
cannot be implemented so far in a Kubernetes cluster with native access to
GPUs where a function (application) reserve these types of devices completely
and are only released when processing is complete.

We pursue the use of GPU virtualization or GPU sharing techniques, such
as the use of rCUDA, which increases the complexity as the GPU is shared
among containers. Time sharing is provided by the rCUDA server, but we
could still limit the number of virtual GPUs through the resource annotation
in the container orchestration. The resource contention is much more complex,
and it is mainly performed at the rCUDA server side. However, we have the
risk of over-committment in the client side (e.g. scheduling so many virtual
GPUs that physical resources are exhausted). Although this may happen with
rCUDA, this issue will be solved in future releases of rCUDA. In the meantime,
our solution will take care of the limitations of resources by limiting the number
of virtual GPUs.

In the Chapter 2 an analysis was made of some research that allowed
the virtualization of GPUs. Such is the case of [77] where the authors
propose to integrate an open-source serverless framework (IronFunctions'")
with NVIDIA-Docker to allow containers to access GPUs. This solution has
the disadvantage that only one function can access the GPU either virtualized
or native, while the architecture designed in this research using rCUDA allows
simultaneous access of several functions to the same GPU.

One of the most promising areas of research today is closely related to serverless
computing and fog/edge computing. This paradigm aims to solve the problems

related to the emergence of data-intensive and real-time applications powered

17TronFunctions - https://open.iron.io/
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by mobile computing and the IoT. A promising application of serverless
computing based on event-driven execution is workload distribution among
hundreds of end devices for IoT applications.

The integration of acceleration devices in serverless platforms, allows the
introduction of support for event-driven execution applications with dynamic
cluster provisioning and scale-to-zero capabilities. OSCAR is the perfect
paradigm for event-driven applications in highly distributed heterogeneous
environments, such as the IoT. This type of platform fits very well in any
application that conforms to a model where data is captured in a distributed
way and in which its process requires non-trivial resources. For example, image
analysis, characterization of medical data, dynamic re-training of machine

learning models, to name a few.

Using rCUDA, as a GPU virtualization tool, allows GPUs to be multiplexed
and made available where no physical GPUs are available. The integration of
rCUDA in OSCAR, fits very well in an environment combined with a backend
in the cloud where GPU resources cannot be exclusively dedicated or due to
their nature it is more efficient to concentrate them on a specific equipment,
such as having a server with NVLink!® and several cards, to which several

conventional servers are connected.

The application fields of serverless computing are very broad and the power
of using accelerated devices in the processing of scientific applications further
widens the path, towards the application of other areas of computing, where
the use of accelerated serverless computing to scientific applications can be

very beneficial.

Developing this architecture extends the current trend of serverless
architectures that rely only on CPUs. With this study it has been shown
that the integration of GPUs in a serverless on-premises platform is possible
and also allows improving performance in scientific applications that require

the use of specialized devices.

18NVLink - https://www.nvidia.com/en-us/data-center/nvlink/
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4.4 Chapter Conclusions

In the development of this chapter, the second serverless computing strategy
that is part of the research was addressed. In this case we adopted
OSCAR, an open-source platform for data processing applications based on the
function-as-a-service model. The analysis mainly focused on the integration
of virtualization techniques for GPUs in on-premises serverless computing
platforms based on containers within OSCAR. Specifically, remote GPU
virtualization techniques through rCUDA and light virtualization techniques
through NVIDIA-Docker were addressed. These virtualization techniques were
analyzed through 4 scenarios that include the “practically native” execution
(light virtualization with NVIDIA-Docker) of the application on the GPU,
the execution using the OSCAR platform but using the CPU, running with
OSCAR using a GPU that was in a remote cluster and running with OSCAR
in a cluster that had access to the physical GPU.

In addition, a use case of transthoracic echocardiography imaging that uses
machine learning techniques to perform segmentation and classification of
images was presented. For this case study, the 4 proposed scenarios were
analyzed and the results obtained in each case were compared with the
objective of analyzing with which approach the best results were obtained.
The results obtained showed the feasibility of integrating GPUs and serverless
computing through rCUDA, to provide accelerated support for the functions.
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Chapter 5

Serverless services for machine

learning model inference

Using ML models and artificial intelligence applications on local servers
is challenging due to the lack of high-end local computing power, what
introduces significant delays in inference and training processes. Indeed, the
continuous maintenance of hardware by system administrators is becoming
increasingly complex. The difficulty in the use of these models is another
challenge that machine learning users face. In addition, the problem of scaling
according to demand is not easy to implement without downtime. Under
these circumstances, serverless computing arises as an alternative that allows

managing scalable computing resources in a transparent way for the user.

To this aim, the third serverless computing strategy presented in this thesis
is to design a serverless service that enables the user to efficiently execute
(in terms of cost and performance) predictions based on ML models on the
AWS Cloud provider and on a serverless on-premises platform based on the
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OSCAR framework. This architecture can automatically scale-to-zero to
reduce deployment costs when the platform is not in use. An existing catalog
of already trained and publicly available ML models is integrated with the
serverless platform. The models used are from the DEEP Open Catalog! that
was created in the DEEP Hybrid-DataCloud? [86] European project.

5.1 Components used

This section introduces the main technologies used before describing the overall
architecture of the application. Firstly, the DEEP as a Service APT? (DEEPaaS
API) [85] is described. DEEPaaS is a tool developed in the frame of the
DEEP Hybrid-DataCloud* H2020 project that facilitates access to machine
learning, deep learning and artificial intelligence models through a REST API.
Secondly, the frameworks, SCAR and OSCAR, that allow the deployment
of the serverless platform on AWS and on-premises are described. These
frameworks are products developed in the research group (GRyCAP) in which
the thesis is developed and DEPaaS is a development within the European
project in which the group has participated intensively. Lastly, the web
interface developed to facilitate access by users to the models implemented
in the proposed solution is described.

5.1.1 DEFEPaaS API

DEEPaaS API is a Python-based tool built on azohttp® that provides access to
machine learning models. With DEEPaaS, users can integrate their machine
learning model or a neural network with a REST API and thus access its
functionalities through HTTP calls. For the integration of applications with
the DEEPaaS API the requirements and changes are minimal, allowing easier
interaction with the training and model validation functionalities.

IDEEP Open Catalog - https://marketplace.deep-hybrid-datacloud.eu/
2DEEP Hybrid-DataCloud - https://deep-hybrid-datacloud.eu/
SDEEPaaS API - https://github.com/indigo-dc/DEEPaaS

4DEPP Hybrid-DataCloud - https://deep-hybrid-datacloud.eu/
SATOHTTP - https://docs.aiohttp.org/en/stable/
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DEEPaaS API allowed the prediction and training of a machine learning model
through the integrated REST API. In order to obtain the prediction of a model
in the proposed solution, it was necessary to develop in the DEEPaaS API a
functionality to obtain the result of the prediction through a command-line
interface. For this, a command written in Python was implemented, that allows
specifying certain input values, to obtain the prediction result through the
command line. This functionality provides support for batch-based execution
of ML models packaged with the DEEPaaS API to execute on both high-end
HPC supercomputers and batch-based computing installations such as virtual
clusters.

The command to be executed is deepaas-predict. It requires options to
specify the input file and the output directory, which are --input-file and
--output-file respectively. The option --url allows you to specify a URL
instead of a local file as an input element. The option --content-type allows
you to specify the type of file you want to obtain at the output. By default it
is a JSON file with the result of the prediction, but there are several models
that allow, for example, to obtain JPG or ZIP files. Another of the available
options (--model-name) is mainly used when there is an environment with
several models installed and we must specify from which one we want to obtain
the prediction. This implemented functionality allows to extend the field of use
of the DEEPaaS API in scenarios where the REST API cannot be used and
the command line is possible. The development of CLI tools that connect to a
REST API that implements the service is the habitual approach in distributed
systems.

5.1.2 Serverless Frameworks

This section refers to the frameworks that allow the serverless execution of
applications on AWS and on-premises Cloud. For the deployment of the models
in a private Cloud, OSCAR is used, an open-source platform that supports
the FaaS computing model, which was described in Chapter 4 in Section 4.1.1.
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Next subsection describes SCAR [108], a tool to run containers out of Docker
images in AWS Lambda.

SCAR

As described in previous sections of this thesis, Lambda is the serverless
computing service provided by AWS. One of the main limitations of this service
and most all FaaS platforms is that it is not possible to install external packages
at run time because functions do not run under root privileges. This prevents
using generic applications or applications that require runtimes that are not
supported by the serverless computing framework. Despite Docker could be
a solution to encapsulate such dependencies, installing Docker requires root
access. To resolve this limitation, a mechanism is required to run Docker
images in user space without the need for prior installation. This is where
tools like udocker, Singularity, CharlieCloud, Shifter or Podman are important
because they precisely allow the execution of Docker images in the user space.

Despite these tools have similar characteristics, it is important to analyze some
metrics like interaction with Docker images as the most widely used container
technology, GPU and MPI support, security and portability, privilege model,
among others, to determine the advantages and limitations of each one [94].
Table 5.1 shows a summary of the comparison of these tools. As a result of

this analysis, it was concluded that:

e All container-based visualization tools have native support for MPI and
Infiniband. They also have GPU through commands in the CLI.

e Singularity is the most used technology today in HPC centers, but
it requires that system administrators have installed previously the

Singularity framework in the resources.

e CharlieCloud and Shifter, also need privileged access to install some of

their dependencies.

94



5.1 Components used

Table 5.1: Comparison of container-based virtualization tools

Interation with Docker

Deployment

Does not use Docker at all.

Just download and execute udocker
and the installation will be performed

udocker It has the ability to import .
. automatically.
Docker images. .
(no root access required)
Works completely 1ndep(.31.1dent Root access required to install
of Docker. It has the ability to sinenlarity. setuid need root
Singularity import Docker images, convert & Y

them to singularity images, or run
Docker containers directly.

to work correctly.
Needs Go installed in the host.

Charlie Cloud

Needs Docker installed to
run most of the commands.
It can import Docker images.

Download the GitHub repo
and build. Most commands
require docker installed,

so it requires root access.

Docker does not need to be installed.
Primary workflow is to pull and

Needs an Image Gateway (depends
on MongoDB server, squashfs-tools,

Shifter . . virtualenv and Python 2.7).
convert Docker images into . ] :
Shifter images Requires root access to build
' and compile.
Does not need Docker installed. Available through ir}stallation
Podman Has the ability to import packages on most Linux

images from Docker hub and Quay.io.

distributions.
Requires root access for installation.

e Podman, of the technologies analyzed, is the most recent. For those users

with experience in Docker, the use of Podman is reduced to replacing
docker for podman. It has GPU support, however the configurations
and settings are more complex than in the case of the previous tools.
One of the characteristics of Podman that has most interested the
development community is the ability to transition from the traditional
world of containers to Kubernetes. The developments implemented look
promising, but it will probably take a few more years for most HPC use

cases.

udocker has very good characteristics in terms of the metrics analyzed: it
does not require prior installation or privileges and is a more user-oriented
tool due to its simple way of use, which mimics the Docker CLI to some

extent.
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The previously discussed solutions that require privileges for installation are
not operational as the executions are implemented in Lambda functions where
root privileges are lacking. Indeed, SCAR is a framework that uses udocker
to transparently allow containers out of Docker images to be run on AWS
Lambda as event-driven applications such as in response to uploading a file in
an S3 bucket. This is possible because SCAR uses udocker to extract container
images from Docker Hub® and run such containers on non-privileged user space

[55].

The SCAR architecture is divided into two fundamental parts: client and
supervisor. The SCAR client is a Python script that provides a CLI (Command
Line Interface) and is responsible, among other tasks, for managing the life
cycle of the Lambda function. On the other hand, the SCAR Supervisor
represents the code of the Lambda function and is responsible for downloading
the image from Docker Hub and creating the container using udocker. In case
of having a triggering event source, it manages the input data and output and
allows the execution of a script inside the container for greater versatility [108].

To create a Lambda function with SCAR a YAML? file is needed to describe
the job to be executed. It is necessary to specify the Docker image with
the application is specified, the script that you want to execute within the
container, the input and output bucket and the execution mode. SCAR
has three execution modes: lambda (default), batch and lambda-batch that

determines the service that will execute based on computational requirements.

In the lambda execution mode, all executions will be performed as Lambda
functions. In the batch execution mode, the execution is carried out in
AWS Batch® a service that runs jobs based on Docker containers on a set
of self-provisioned virtual machines, even with GPU support, that grow and
shrink depending on the execution needs. In lambda-batch execution mode,
executions are performed in Lambda and if the predetermined timeout is
reached the execution is delegated to AWS Batch. In this way, AWS Lambda

SDocker Hub- https://hub.docker.com/
"YAML - https://yaml.org/
8 AWS Batch - https://aws.amazon.com/batch

96


https://hub.docker.com/
https://yaml.org/
https://aws.amazon.com/batch

5.1 Components used

can be used for short jobs, while longer runs can be delegated to AWS Batch
[14].

The AWS Lambda development environment has some restrictions such as:
restricted computing capacity currently limited by 3008 MB of RAM, where
CPU performance is correlated to the amount of memory chosen, maximum
execution time of 15 minutes, read-only file system based on Amazon Linux,
with a disk storage capacity of 512MB in /tmp that may be shared among
several invocations, and a default limit of 1000 concurrent execution of the
same function. These limitations mean that certain applications cannot run
on Lambda, so SCAR has expanded its computer back-end by integrating AWS
Batch into its execution modes. In this way, SCAR automatically delegates
the job resulting from the invocation to the function as an AWS Batch job,

without the user having to intervene.

AWS Batch

Typically, jobs that involve analyzing large amounts of data are long-running
and require continuous use of available resources. AWS Batch directly provides
a service and an endpoint for batch job execution, without having to provision
and configure the resources required to install a job queue, and without
worrying about elasticity management. In this sense, Cloud providers have
developed services for batch job processing, such as AWS Batch.

AWS Batch dynamically executes Docker container-based jobs on a set of
virtual machines that automatically scales up and down based on execution
needs, allowing you to focus on analyzing results. AWS Batch accelerates the
execution of jobs by provisioning GPU-based virtual machines in applications
that have these devices integrated. The four components that help organize
work in AWS Batch are [142]:

e Jobs: It is the unit of work that is sent to AWS Batch, which can be
implemented as a shell script, executable or a Docker image. Jobs are

run transparently as containerized applications in an EC2 instance of a
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compute environment. The parameters of the job definition are used for

execution.

Job Definition: Describes how a job will run. Resources such as IAM
roles are provided to access other AWS services, memory and CPU
requirements are specified. The job definition can also control container

properties like environment variables and persistent storage.

Job Queues: Where the job remains until it is processed in a compute
environment. It is possible to associate one or more environments to the

same queue and assign priority values even between work queues.

Compute Environment: Managed computing resources (AWS efficiently
manages instance scaling and configuration) or unmanaged (user manages
their own environment) that are used to run jobs. It is possible to specify
the type of instance and the maximum, minimum and desired number of
virtual CPUs.

A typical architecture for processing a job in AWS Batch is shown in the
Figure 5.1. Through the AWS Batch console it is possible to send jobs to
process. However, in the designed architecture, the Lambda function created
with SCAR, which is activated when uploading a file to the S3 bucket, is
responsible for sending the jobs to AWS Batch. The use of AWS Batch can be

summarized in the following four steps:
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e Step 1: Create a compute environment defining among other

characteristics the type of environment (managed or unmanaged), name
of the environment, role of the service and role of the instance to delimit
the services associated with the jobs that will be executed in the EC2

instances.

Step 2: Create a job queue to store the jobs to process. The AWS Batch
Scheduler is in charge of deciding when, where, and which job will be
processed in the compute environments. The job definition specifies the

priorities for processing the jobs.
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e Step 3: A job definition is created that specifies the Docker image to use,
the memory and virtual CPU requirements that must be less than the
maximum values of the compute environment stated before. You can also
specify a maximum run time for the job execution to detect failures, as
well as the number of times you want AWS Batch to retry job execution

in case of failure.

e Step 4: Create a job from the job definition and submit it for its

processing.

Jobs that are submitted to AWS Batch go through several states to reflect the
different stages of the processing:

e SUBMITTED: A job has been submitted to the job queue but has not
been processed by the scheduler. It is evaluated to see if any dependencies
are necessary and, if so, it reaches the PENDING state, otherwise it goes
to the RUNNABLE state.

e PENDING: A job that is queued but could not be processed yet due to

a dependency on another job or resource.

e RUNNABLE: A job that has no dependency and is ready to be processed
on a host as soon as resources are available.

e STARTING: The job has been assigned to a host and the container
creation process is starting. After the container is running it goes to

the RUNNING state.

e RUNNING: The job is running on an Amazon EC2? instance as a Docker
container. If the job has any failed attempts and you still have retries in
your configuration the job goes to RUNNABLE state.

o SUCCEEDED: The job completed successfully and remains visible in the
AWS Batch console for 24 hours.

9 Amazon ECS - https://aws.amazon.com/ecs/
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e FAILED: The job has failed on all the attempts. Jobs persist on the AWS
Batch console for 24 hours.

l,l’: AWS BATCH

__Submita__|
3w

User AWS Batch
Console

Fetch Job
Definition

JOB
DEFINITION

'
'
'
'
'
'
(d
'
'
'
'
v

Docker image

e

AWS Batch
Scheduler

Decide which Job to run and in
which of the computing
environments, attached to the
job queue and previously
created, that have available

resources.

Compute Environment

EC2 instance EC2 instance

Autoscaling Group

Compute Environment

EC2 instance EC2 instance

Autoscaling Group

11 ,
. vCPUS IAM Role

Figure 5.1: Typical AWS Batch architecture for job processing.

5.1.3 Web Interface

The implementation of a graphical interface contributes to improve the user
experience, reducing the learning curve of the tool and its efficient usage.
As part of this solution, a web interface was implemented so that users
could interact more easily with machine learning models. For development,
Vue.js and Vuetify were used, two JavaScript frameworks that, as explained in
previous Sections (3.2.1, 4.1.1), allow the development of user interfaces in an
intuitive and simple way. The web interface is compiled as a static web that
is served from an S3 bucket and registered under the grycap.net'® domain.

Web authentication is done through Amazon Cognito, a service offered by AWS
that allows user sign-up, sign-in, and access control in web and mobile apps
quickly and easily. In this architecture, authentication is used in two ways,
the first through an Amazon Cognito User Pools'! where a group of users is

10Web Interface - https://scar-deepaas-ui.grycap.net/
HUser Pools - https://docs.aws.amazon.com/cognito/latest/developerguide/
cognito-user-identity-pools.html
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5.2 Architecture

created and assigned access credentials. The second form of authentication
is through an OpenID Connect provider. In this case, it was integrated with
DEEP IAM® to allow existing users from that community to log-in to our
service. Both forms of authentication are integrated with Amazon Cognito
Identity Pools'® (Federated Identities) to obtain temporary AWS credentials
with limited privileges that allow access to other AWS services such as AWS
Lambda, Amazon S3, AWS CloudWatch among others.

The user can obtain easily the prediction of a model from the web interface, for
this it is possible to upload, download, delete and list the files that you want
to process, also it is possible to check the status of the job being processed. All
this is possible through the OSCAR API and AWS services such as Amazon
S3, AWS Lambda and AWS Batch, so it was necessary to use the AWS SDK
for JavaScript which allows access to these services through a web application.

5.2 Architecture

Figure 5.2 shows the proposed architecture for the integration of ML models
as serverless services on public and on-premises Clouds. For integration in
AWS, the architecture is based on SCAR that allows Docker images to run,
as functions that are triggered in response to events, in this case, when
uploading a file to an S3 bucket. In the function creation process, the user
specifies the execution mode taking into account if they are long duration jobs
(batch execution mode executed in AWS Batch) or if they are short duration
jobs (lambda execution mode executed in AWS Lambda). In addition, if
the duration of the work is unknown, the user can choose the lambda-batch
execution mode where it is first executed in AWS Lambda and before reaching
the default timeout, the process is automatically delegated to AWS Batch.

In both AWS and OSCAR deployment methods, you can define three storage
providers (Amazon S3, MinlO and EGI DataHub) for the input and output

I2DEEP IAM - https://iam.deep-hybrid-datacloud.eu/
131denity Pools - https://docs.aws.amazon.com/cognito/latest/developerguide/
cognito-identity.html
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files. In the case of deployment on AWS, Amazon S3 was selected as the storage
provider for the input and output files, with the aim of fully implementing the
platform in a public Cloud provider.

The integration of the models in a private Cloud is done through the OSCAR
framework, where users upload the files to a shared storage back-end, which
automatically activates the execution of parallel invocations to the function
responsible for processing each file. In this deployment method, to evaluate
the versatility of the platform, MinlO and EGI DataHub were used as storage
providers. The input files, accessible from the web interface, are stored in
MinlO, so the user must include the credentials to access MinlO from the web
interface. The results of the prediction are stored in the user’s space in EGI

DataHub, which is accessible via a link in the graphical interface.
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Figure 5.2: Architecture for the integration of Machine Learning models in AWS.

Previously, it is necessary for the administrator to create the functions that
will make the model available through the SCAR client in the case of the
deployment method in AWS and through the OSCAR user interface in the

102



5.2 Architecture

on-premises deployment. In the case of SCAR it is necessary to specify
the Docker image, execution mode, input and output folder and the script
to execute to carry out the processing. In the case of OSCAR, the same
characteristics are specified as in SCAR, except for the execution mode that is

only applicable in the case of AWS.

As a result, a function is created that will be executed every time a file is
uploaded to the input folder. The users can authenticate with their Amazon
Cognito credentials or if they are DEEP users, they can do it through DEEP
IAM identity provider. Once the user authenticates on the web, an identity
token is obtained that allows access to the files that are stored in the S3
bucket in case of selecting the deployment method in AWS. In case of selecting
OSCAR, it is necessary to enter the MinlO access credentials as explained

above.

Developing this architecture enables machine learning and deep learning
models to be integrated into a serverless platform that enables execution in
public and on-premises Clouds. The open-source tools SCAR and OSCAR were
used to create highly parallel event-driven file processing serverless applications
in environments such as AWS Lambda, AWS Batch and on-premises Cloud.
This implementation has enabled the creation of a serverless service on the
AWS public platform and in a private Cloud, that grows elastically based on
execution needs, and terminates the provisioned resources when they are no

longer needed.

5.2.1 Computing platform and price of services

The implemented architecture has two fundamental branches, one fully
devoloped in the AWS Cloud and the other in a local Cloud. It can
automatically scale-to-zero to reduce implementation costs when the platform
is not used. In the case of AWS the costs are generated when using Amazon S3,
AWS Lambda and AWS Batch. Using AWS Batch does not incur in an extra
cost apart from the cost of the EC2 instances created to run the application.
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In the case of Amazon S3, two buckets were used, one to store the files to obtain
the predictions of the models, which in turn works as a trigger for the Lambda
function, and the other bucket is used to host the web interface. In this use
case, Lambda functions have a memory of 1024MB and there is one function
deployed for each integrated model. In the case of the models implemented
in AWS Batch, jobs run on general-purpose m3.medium EC2 instances with 1
vCPU and 3.75 GBi of memory priced at $0.067 per hour.

For the deployment process of the platform designed in multi-cloud,
Infrastructure as Code (IaC) tools that rely on DevOps approaches are
used. These are in charge of automating the infrastructure provision and
delivery and configuration of the software for the deployment of the system.
For example, to deploy OSCAR, IaC tools are used, such as EC3, Ansible
and IM. EC3 provisions elastic virtual clusters through the IM on public
(AWS, Google Cloud or Microsoft Azure) and on-premises (OpenNebula
and OpenStack) infrastructure providers. The IM allows the deployment of
complex and custom infrastructures defined in recipes for Ansible Galaxy and
described using the TOSCA specification in order manage the configuration
of the underlying infrastructure. The implementation effort in the thesis has
focused on supporting the availability of different accelerator resources in the
framework of serverless computing, taking advantage of the infrastructure
created through tools such as EC3, IM or Ansible Galaxy. The use of
these tools facilitates the development of high-performance infrastructures at
a higher level of abstraction.

The OSCAR framework was deployed on the Ramses platform, a cluster that
was configured with characteristics similar to the compute environments (2
m3.medium instances) defined in AWS Batch. That is, a maximum of two
nodes were configured with 1vCPU and 4GB of memory.
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5.3 Use Case: Serverless services for machine learning model

inference

This section evaluates the use of the proposed architecture for the execution of
several case studies of ML models on the platform. In this sense, and with the
aim of being able to integrate other available models, a detailed study of the
use of the platform in obtaining the inference of ML models that are publicly
accessible is provided. The objective is to be able to evaluate the advantages
of the developed system, in terms of jobs processed/time unit.

5.3.1 Objectives of the experiments

The proposed event-based architecture integrates machine learning models
with different execution strategies and methods. Specifically, three models
from the DEEP catalog are used and the Darknet example available in the
SCAR repository. As discussed in Section 5.1, one of the elements on which
this platform is based is the DEEPaaS API, a tool developed in the DEEP
project, which is why we have decided to use models from the DEEP catalog as
use cases. In the deployment on AWS these models run in AWS Batch because
they do not meet AWS Lambda’s limitations. In order to test the lambda
execution mode, the Darknet example was integrated into the platform. These

models are described below:

e Audio Classifier’*: This model is a tool for performing audio classification,
which is previously trained in the 527 high-level classes in the AudioSet!®.
The input file is an audio file (compatible with most formats) and returns
a JSON file with the top 5 predictions.

e Plant Species Classifier'®: The plant species classifier uses an optimized
neural network to identify plants using RGB images as input. As a result

14 Audio Classifier - https://marketplace.deep-hybrid-datacloud.eu/modules/
deep-oc-audio-classification-tf.html

15 AudioSet - https://research.google.com/audioset/dataset.

16Plant Species Classifier - https://marketplace.deep-hybrid-datacloud.eu/modules/
deep-oc-plants-classification-tf.html
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a JSON file is obtained with the 5 main predictions. The previously

trained model is based on plant images from iNaturalist!”.

e Body Pose Detection!®:

The body pose detection model was originally
created by Google'® and allows using the deep neural networks pose
estimation in real time. With this model it is possible to detect the
pose of one person or multiple people. As input it expects an RGB image
and it is possible to obtain three types of output as specified by the
developer. For example, it is possible to obtain a JSON file with the key
points, an image indicating these points or a ZIP file with the JSON file
and the image indicating the points of the body. For this case study, a
ZIP file is obtained with the image and the JSON file resulting from the

classification.

e Darknet example?’: Darknet?! is an open-source neural network written
in C and CUDA. This example uses the YOLO (you only look once)
library for real-time object detection, such as people, cars, animals,

among others.

Figure 5.4 shows the workflow for processing a file. The following points explain
how this process occurs from the time a file is uploaded to the platform until

the classification result is obtained.

e The users authenticate on the web to access the classification services of
the different models available. To authenticate, credentials are required
from either the Amazon Cognito user pool or the DEEP TAM which is

the external identity provider included in this application.

e Once the users have authenticated on the web, they have to select a
method of deployment. If OSCAR is selected, it is necessary to configure

7iNaturalist - https://www.inaturalist.org/

18Body  Pose Detection -  https://marketplace.deep-hybrid-datacloud.eu/modules/
deep-oc-posenet-tf.html

YGoogle body pose detection - https://github.com/tensorflow/tfjs-models/tree/master/
posenet

20Darknet example - https://github.com/grycap/scar/tree/master/examples/darknet

21Darknet - https://pjreddie.com/darknet/
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the MinIO credentials in the SETTINGS tab as shown in Figure 5.3. If
the deployment is on AWS, this step can be skipped.

= Make predictions through AWS with SCAR G admin
5 DASHBOARD
LISETTINGS

[>106 ouT

Fields to configure access to MinlO

Minio Enpoint

SUBMIT C CANCEL

Figure 5.3: Settings tab to configure access to MinlO.

e Then, one of the available ML models must be selected. When a model
is selected, two links of interest are displayed, Input example for models
and Link to the model in the Catalog, to access examples of input files
and the catalog repository respectively. With this information, the user

has more specialized information on the use of each of the models.

e Once a model has been selected, it is possible to upload the files to obtain

the prediction result.

e The input and output files are stored in the storage providers indicated
in the deployment of the functions. In the case of AWS, an S3 bucket
for the input and output files. In the case of OSCAR, a MinlO bucket
for the input files and EGI DataHub for the output files. This bucket
has a directory structure that is important to understand to facilitate
the integration of a model with the architecture. When deploying the
function, a folder is created in the bucket with the name of each model
(this is defined in the SCAR YAML and OSCAR user interface). Later,
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within each folder there are two folders, input and output, and inside these

folders a new folder is created (from the web interface) with the user’s

name. This structure allows users to only access their own data because

the information displayed on the web interface is limited according to

the authenticated user. This allows the development of a multi-tenant

environment and add a trigger event for each model independently,

making use of the same input bucket.

e Once the function finishes processing the input file, the result is stored in

the output folder corresponding to the user and the selected model.

e The result of the prediction generated by the selected model can be

downloaded from the user interface or accessed via a link to the user’s
space in EGI DataHub, if the OSCAR deployment method was selected.

Select a method of

deployment
( and model

User

Download
prediction

result

Figure 5.4: Simplified file processing workflow.
methods selected, either on AWS or in a local cluster with OSCAR.

5.3.2 Experimental results
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Functions with different deployment

In order to test different execution methods and the integration of the models

as services in the AWS Cloud provider and in a private Cloud, different

experiments were developed. This section analyzes the results obtained by

doing similar tests for the different deployment methods and execution modes

in the case of AWS. The proposed architecture is fundamentally based on
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SCAR and OSCAR for the execution of serverless functions in AWS (Lambda
or AWS Batch) and in a private Cloud respectively.

The models belonging to the DEEP catalog use Tensorflow and the size of the
Docker images are bigger than the limit allowed by Lambda (512MB), so the
inference process for these jobs must be run in batch execution mode. In the
Darknet example, the Docker image meets this limit, so execution in lambda
mode was possible. Functions in OSCAR that run as Kubernetes jobs do not

have any of these limitations.

Figure 5.5 shows the web interface once the user has authenticated using one
of the available ways (Amazon Cognito user pool or DEEP IAM credentials).
The panels that remain visible are Select a Method of Deployment, Select a
Model and Upload files. To generate an event that will automatically trigger
the function the files are uploaded in the following path <bucket_name>
/<model_name>/input/<username>/<input_file>. This storage process is
done automatically by the web interface taking into account the method of
deployment (AWS or OSCAR), the user and the selected model.

The AWS Batch compute environment deployment process begins once the
file has been uploaded to the S3 bucket and the event that triggers the SCAR
function is generated. Deploying the AWS Batch compute environment can
take several minutes because the EC2 instance needs to be provisioned and

configured.

From the web interface it is possible to see the status of the jobs deployed in
AWS Batch and in OSCAR, Figure 5.6. In the case of AWS, for each model
that you want to integrate into the platform, a Lambda function is created. In
addition to this, another Lambda function is created to check the status of the
jobs through the AWS Batch API??, as shown in Figure 5.8. This function is
activated when the user updates the status of the jobs from the web interface.
Through the OSCAR API it is possible to check the status of the deployed
jobs. This allows you to track the lifecycle of jobs that are processed in AWS

22 AWS Batch API - https://docs.aws.amazon.com/batch/latest/APIReference/batch-api.pdf
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= Make predictions through AWS with SCAR O admin
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©2020, GRYCAP-13M-UPY, Universitat Politécica de Valéncia, Spain.

Figure 5.5: Select Method of Deployment, Select Model and Upload Files panels of the Web
Interface.

Batch, which are long-running. These jobs constitute the inference phase of
a job that was triggered by an event, in this case, uploading the file to be
processed in an storage provider like S3 or MinlO.

As previously discussed, accessing AWS resources from the web interface
requires the use of the AWS SDK. However, there are certain resources that are
not yet available from the AWS SDK for Javascript due to cross-origin resource
sharing (CORS) [47] policies, a mechanism that uses additional HT'TP headers
to allow a user agent (a browser in a Web context) to obtain permissions to
access selected resources from a server, in an origin (domain) other than the
one it belongs to.

The AWS Batch API is one of these services that CORS does not currently
support. Therefore, it was necessary to implement the query from a Lambda
function that does allow CORS policies to be activated from the web interface
and makes the request from an environment where CORS does not apply, so
it is possible to access the AWS Batch API. Figure 5.7 shows the code of the
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=  Make predictions through AWS with SCAR B dnaranjo
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Figure 5.6: Web interface for the status of jobs and user files.

Lambda function implemented to query the status of the jobs. The code is
written in Node.js** and only jobs that are in the PENDING, RUNNABLE,
RUNNING, FAILED and SUCCEEDED states are checked. The information
obtained is returned to the web interface and is displayed in the Jobs States

panel.

The result of the prediction is stored in the path <bucket_name>/<model_
name>/output/<username>/<output_file> in the storage provider defined
in the creation of the function. The Figure 5.6 also shows the panel of the web
interface where the files belonging to each user are displayed according to the
specified model. From this panel it is possible to download the files or delete
them if they are not necessary. In the case of OSCAR, the output files are
stored in the user’s space in EGI DataHub, which is accessible through a link.

Having the file system on this storage providers (Amazon S3, MinIO and
ONE DATA) we achieve high availability, long-term preservation and remote
accessibility from anywhere to the files used in the prediction.

23Node.js - https://nodejs.org
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Figure 5.7: Lambda function code to check the state of jobs through the API of AWS
Batch.

As an example, Figure 5.9 shows the prediction result of the body pose
detection model. On the left (a) the original image is shown, on the right
(b) the image with the points of the body detected by the model is observed
and in the bottom part (c) the result of the prediction is shown in JSON
format. These files are stored in a ZIP file accessible from the web interface

that generates the model during the processing of the input image.

As it was well addressed in other sections of the thesis in the case of serverless
platforms with scale-to-zero, it is important to determine the cold start of the
functions. On this platform that AWS Batch is used for the processing of
functions, it is also important to analyze the startup time of the instances.

Figure 5.10 shows the processing times for 10 sample images used in the
Darknet model, deployed on AWS Lambda. The graph shows that for the first
execution the time is considerably longer because the function needs to first
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Figure 5.8: Process to querying, from the web interface, the status of the jobs in AWS
Batch.

a) Original Image. b) Image resulting from the prediction.
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Figure 5.9: Example of the result obtained using the Body Pose Detection model.
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carry out the configuration process, which involves downloading the Docker
image containing the application code, starting a new execution environment,
run the initialization code and run the main function. From this moment on,
the other execution times are practically the same. After the first invocation
where the function is initialized and affected by the cold start, the following
invocations have a similar execution time of approximately 16 seconds.
Notice that subsequent invocations will mostly reuse the aforementioned

configuration, thus executing much faster.
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Figure 5.10: Execution times for 10 images in AWS Lambda.

Figure 5.11 shows the same experiment performed on AWS Lambda but in
this case the 10 runs are performed with images of the Body Pose Detection
model on AWS Batch. In the graph, the blue bar shows the time since the job
is sent to the compute environment to be processed until a result is obtained.
This required approximately 14 seconds, which was very consistent across the
different executions.

On the other hand, the total execution time (yellow bar + blue bar) that is
measured from the moment the job is created to the end of the processing is
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very different. This behavior is due to the fact that in the first execution it
is necessary to provision the resources of the instance that will process the
jobs, hence it takes a little longer. The compute environment in AWS Batch
is configured in this case for the maximum execution of 2 EC2 instances to
service the requests. The 10 jobs are sent simultaneously and queued, the AWS
Batch scheduler delegates them to the instances whenever there are resources
for processing. Therefore, the processing time is divided into: waiting time
for available resources and the time it takes to be processed once the work is
delegated to the instance. Once there are available resources, the job changes
its state and is processed in a few seconds as shown in the graph. Because these
jobs are precisely those of long duration it was decided that the web interface
should show a panel where the user could track the status of the jobs.
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Figure 5.11: Execution times for 10 images in AWS Batch.

The information provided by AWS Batch allows knowing the total execution
time (yellow bar + blue bar), which includes the waiting time in the job queue
(yellow bar) and the file execution time (blue bar) once it has been delegated
to the compute environment. In the case of AWS Lambda, it is only possible
to know the total execution time (green line).
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Figure 5.12 shows the times obtained in the same experiment performed in
AWS Lambda and AWS Batch, but in this case the execution is carried out in
a private cluster with OSCAR. OSCAR is deployed in an elastic Kubernetes
cluster that grows or shrinks, based on the number of nodes, depending on
the workload. To recreate a compute environment similar to AWS Batch, the
cluster was configured with a maximum of 2 nodes with 1 vCPU and 4 GB of
memory (equivalent to the two instances defined in AWS Batch).
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Figure 5.12: Execution times for 10 images in OSCAR cluster.

As in AWS Batch, the yellow bar shows the waiting time of the jobs in the
queue and the blue bar the execution time. The execution time, as in AWS
Batch, includes the download time of the input file, the processing time of
that file and the upload time of the output file. In all cases, except execution
number 4, the processing time is approximately equal to the processing times
obtained in AWS Batch. It is important to note that the order of execution
of the work depends on the configuration of Kubernetes scheduler. The total
execution time of the 10 jobs is similar to those obtained in Batch (300 seconds

in AWS Batch for 360 seconds in OSCAR approximately).
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In execution number 4, the increase in execution time (blue bar) is striking.
Since files with similar characteristics are used, this difference should not exist.
It is important to note that the 10 simultaneous executions cause the OSCAR
platform to deploy a new node, to cover the workload that has been generated.
After several tests carried out, we were able to conclude that the increase in
execution time, in this job, is due to an internal network problem when a
new node is deployed, which causes the function to take longer to download
the input file from the MinlO bucket, although the input file processing time
remains the same. This problem is possibly due to the fact that when a new
node is deployed a reconfiguration of the nodes is carried out, which causes the
network connection to be lost for a few seconds. To verify this, the 10 jobs were
submitted with both nodes active and the results showed that this increase in
execution time did not occur. The different tests carried out allowed us to

detect this problem, which is being worked on for its subsequent solution.

The deployment of a new node is done using CLUES, a tool presented in
Section 4.2.1. The maximum number of nodes to deploy with CLUES has
been set to two to simulate the same compute environment as in AWS Batch.
After a few seconds of uploading the files to the input bucket, CLUES detects
the need to deploy a new node to service the workload. The measured time for
the deployment and configuration of a new node was approximately 5 minutes.
Only one of the jobs, execution number 9 in Figure 5.12, was the one that was
completed in the newly deployed node, hence the longest waiting and total
execution time. After about three minutes, if there are no jobs to process,
CLUES turns the node off again.

The results in each of the deployment methods are different. In the case of
AWS Lambda we see how the first execution takes longer but the execution
time of the other functions is similar because Lambda can process up to 1000
functions concurrently. In the case of AWS Batch this does not happen in the
same way mainly because the jobs go to a queue where they wait for available
resources to be scheduled. However, using AWS Batch in these architectures
allows you to implement other applications that do not comply with the AWS

Lambda restrictions, and it is also possible to use acceleration devices such as
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GPUs to obtain better performance. The use of a local platform with OSCAR
allows budget savings by obtaining execution times similar to public Cloud
platforms such as AWS and without the restrictions of certain environments

such as Lambda.

An analysis of the cost of the platform is shown in Table 5.2. The table
breaks down the prices based on the AWS Lambda and Amazon EC2 resources
used. In the case of AWS Lambda, AWS Batch and Amazon S3 its use on the
platform has been made clear. AWS CloudWatch is for monitoring, storage
and access to log files. In the case of Amazon S3 and Amazon CloudWatch,
prices are given in a general way as they depend on the size of the files to be
processed and the size of the logs stored respectively. For example, to process
1000 images of an average size of 150KB, which are the ones used in this case
study, the cost of Amazon S3 would be $ 0.0034 per month.

It is also important to note that using the free tier of all these AWS services
can reduce the cost to virtually zero. For example, in the case of AWS Lamba,
the free tier includes one million free requests per month and 400,000 GB per
seconds of computing time per month, which would be sufficient for this use

case.

The costs of implementation in a local Cloud depend largely on the volume
of use and the capacity of the platform. Expenses related to electricity or
specialized personnel who guarantee their activity and safety are not included.
The minimum infrastructure should contemplate 2 nodes for the services of the
medium-sized platform where the storage required for the input and output

files depends largely on the intended use of the platform.

Using the Azure Total Cost of Ownership (TCO) Calculator?*, for a computing
environment as the same characteristics as the one referenced in the local
Cloud, and taking as reference the 386 seconds (Figure: 5.12) of the maximum
execution time of a job, a cost of $0.048 per execution is obtained. With AWS

24Total Cost of Ownership - https://azure.microsoft.com/en-us/pricing/tco/calculator/
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Table 5.2: Cost of the platform in a public (AWS) and local Cloud.

Servi Resource Pri Execution Cost
ervice Provided rices Time (s) (per execution)
AWS Lambda 2048MB RAM $0,0000033333/100ms 4 $0,00013332
. m3.medium EC2 K
AWS AWS Batch instances (1 vOPU 4GB) $0,067 per hour 297 $0,0055275
Amazon S3 First 50TB $0,023 per GB
Amazon Store and access .
CloudWatch log files $0,50 per GB
Local Cloud OSCAR 2 nodes (1vCPU 4GB) - 386 $0,048

Batch and AWS Lambda you get lower costs per execution as shown in table
5.2.

5.3.3 Daiscusstion

The designed platform is based on tools that allow the implementation of
the FaaS model. SCAR enables the deployment of containers out of Docker
images as serverless functions in AWS. The execution modes in SCAR allow
the processing of long-running models involving large Docker images, as well as
short-run and image models that comply with AWS Lambda restrictions. The
sudden increase in workload (uploading hundreds of files to the S3 bucket)
can be handled seamlessly with the lambda execution mode by running the
functions asynchronously. Requests are automatically queued until AWS
Lambda supplies the on-demand computing capabilities necessary to process

invocations in parallel.

On the other hand, the batch execution mode also allows handling large
amounts of data that are executed in a longer time and with different
characteristics that need to be provisioned through EC2 instances (virtual
machines).  Jobs are automatically queued and delegated to compute
environments based on the available resources. Processing in compute
environments can be done using acceleration devices by provisioning
GPU-based virtual machines. In this way it is possible to limit the cost at
the expense of parallel processing or provision more resources to obtain the
results faster, depending on the user’s budget.
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Execution in a private Cloud making use of the OSCAR framework allows
the implementation of machine learning and artificial intelligence models on
a serverless platform in which no hardware costs are incurred and the lock-in
imposed by public Cloud providers is avoided. The use of OSCAR allows
the configuration of infrastructures that grow and decrease elastically and in
addition to the possibility of scale-to-zero the working nodes in case of not
using resources, which translates into energy efficiency. Another interesting
element to keep in mind is that OSCAR is integrated with EGI Federated
Cloud [66], an TaaS-type Cloud, made of private and academic Clouds with
virtualized resources and built around open standards.

The research [68] performs a series of experiments to run Amazon MXNet
machine learning framework in Lambda. Experimental results show that
a serverless platform is suitable for machine learning model inference. In
this research, the tests carried out are to obtain the prediction on models
that are already integrated within the AWS platform and that comply with
the limitations of Lamba. The fundamental objective is to measure the
performance in terms of processing time, scalability and memory used in the
inference of models that meet the limits imposed on AWS Lambda. In [115]
SerFer is presented as a machine learning application inference system on the
AWS platform. In this system the inference is restricted to AlexNet 78] and
the implementation is based on a component that orchestrates the execution
of the inference and that is constantly executed in an EC2 instance, which

generates a permanent cost.

In the proposed solution, the field of application has been extended to models
that are not integrated into the AWS platform, that use Tensorflow and that are
not limited by Lambda restrictions, something that is pending in the research
mentioned above. Furthermore, the use of these models is done in a simple
way, through a web interface, so that users can obtain the prediction results
without having specific skills working with AWS or machine learning models.
One of the main advantages of the proposed platform is that it only generates
cost when the services are being used, in addition to automatically scaling

where the processing capacity is increased according to demand.
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The system described in [22] presents serverless services for predicting deep
learning models, called Barista?>. This approach proposes a local environment
for the development of a framework that allows predictions to be run by
selecting the virtual machine configuration depending on the service level
objectives, cost and execution time. For a local cloud, it seems like a good
solution, but it is necessary to have a machine powerful enough to implement
the framework. However, the architecture designed in this thesis makes it easy
to inference pre-trained machine learning models into public and private Cloud
at a reduced cost.

The platform as an inference system for machine learning applications is
designed as an architecture that automatically scales according to processing
needs, which scales to zero by introducing a delay in the start of processing,
while saving on budget. Once the function is initialized the results can be

obtained in acceptable processing times.

Developing this architecture greatly facilitates the inference phase of ML
models by making use of public and private Clouds. The users, according
to their possibilities, can select whether to deploy the models in a local Cloud
with sufficient resources for the processing of the files or otherwise, execute
the inference phase on the AWS infrastructure. The predictions are obtained
through serverless services which favors the reduced cost, since expenses are
only incurred when the application is used. This solution represents a step
forward in simplifying the inference phase of machine learning models and
artificial intelligence applications.

5.4 Chapter Conclusions

The third serverless computing strategy of the research was addressed in this
chapter. The presented platform facilitates the use of artificial intelligence
models through a web interface using AWS or a private Cloud as back-end
execution. The architecture used SCAR for running applications packaged in

25Barista - https://zivgitlab.uni-muenster.de/pria/Barista
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Docker images as functions in AWS Lambda, which are triggered in response
to certain events. It also adopted OSCAR to deploy serverless function in an
on-premises Cloud. Model integration was implemented through the DEEPaaS
APT a service that provides easy access to machine learning, deep learning, and
artificial intelligence models. To facilitate access to the models by users, a web
interface was developed that allows interaction with the model’s functionalities

in the inference phase.

As use cases, models with different deployment methods were used, in OSCAR
or AWS, and with execution modes that included AWS Lambda, for the
execution of short jobs and that comply with the limitations of Lambda, and
AWS Batch for the execution of long jobs that did not comply with the Lambda
limitations. Results showed scale-to-zero capabilities to minimize service costs
and automatic scaling capabilities as the number of jobs to process increased.
A discussion of these results was conducted taking into account other platforms
that provide access to machine learning and artificial intelligence models.
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Chapter 6

Conclusions and Future Work

This chapter presents the general conclusions of this thesis. First, the main
contributions of each of the designed architectures are summarized. Next,
future works that may continue to be developed as part of the research are
described. Finally, the chapter concludes with a reference to the scientific
publications and projects that have supported the lines of investigation of the
thesis.

6.1 Conclusions

With the development of this research, a response has been given to the general
objective set at the beginning of the thesis, referring to the design of different
serverless computing strategies. The designs have been developed in public
and private Cloud platforms, together with the use of acceleration devices
that allowed to efficiently address the problems in data processing.
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This research has focused on different serverless computing strategies that allow
the execution of scientific applications and the resolution of larger problems.
The proposed solutions are developed in the AWS Cloud using SCAR and other
AWS services. Also for local implementations OSCAR is used and in OSCAR,
a serverless on-premises framework that runs on top of an elastic Kubernetes

cluster.

Firstly, CloudTrail-Tracker has been developed, a serverless platform that
provides aggregated information about the use of a shared AWS account. The
tool is composed of an event processing back-end that automatically collects
evidence of user activity. The platform has focused on the registration of
activities developed by students enrolled in AWS-related subjects.

The implemented educational web dashboard includes graphic components
that facilitate the interpretation of the information by the instructor and
the students. The interface allows students to know precisely the degree of
completion of each laboratory practice in order to promote self-regulation.
The dashboard also helps system administrators control the resources that are
used in AWS accounts. The tool has been put into production with practically
no cost and the initial satisfaction results point to the goodness of the support

to facilitate progress in the completion of courses related to AWS.

The development of CloudTrail-Tracker is completely serverless in the AWS
Cloud, where the back-end and the front-end work without the need to
provision virtual machines (EC2 instances) at practically zero cost, which
constitutes a model of reference for the design of future applications in
the Cloud. As a result of the research carried out, we consider that
CloudTrail-Tracker constitutes a tool that provides great benefits (control and
monitoring) in environments where a shared AWS account is used, so the use
of the application is restricted to AWS. Despite the fact that AWS offers the
CloudTrail service to find out the activities carried out in the last 90 days,
this time is insufficient when it comes to applications that require querying
for the events in a longer period of time. In addition, the way events are

represented in CloudTrail hinders the ability to obtain aggregated metrics.
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These limitations detected in this service are resolved with the development
of CloudTrail-Tracker. Despite the tool is currently focused on the education
sector, it is considered a general-purpose tool. Changes could be easily applied
to deal with other project-based wider scope.

Secondly, the use of GPUs was integrated with different virtualization
techniques in the serverless on-premises OSCAR platform. Fundamentally,
we addressed remote GPU virtualization through rCUDA and lightweight
virtualization with NVIDIA-Docker. In particular, the integration of GPUs
into an event-driven computing-based serverless platform is evaluated to
provide accelerated support for functions that run as jobs in an elastic
Kubernetes cluster.

The implemented use case constitutes a real study of echocardiographic movies
that uses machine learning techniques to carry out the segmentation process
of the movies in images and later the classification of these images depending
on the angle of view. Video processing is done in an on-premises serverless
Cloud, with nodes enabled to support GPU and CPU.

The results indicate that in single video processing the best approach is the
direct access to the GPU. Virtualizing the GPU with rCUDA produces better
results than those obtained with CPU usage, but they are far from those
obtained with native access to the GPU. However, in the case of rCUDA the
ability to support multiple applications access to the same GPU proved to be a
powerful feature to support improved parallelism on serverless platforms. The
integration of rCUDA in OSCAR constitutes a starting point in the shared
access of a GPU by multiple applications on serverless platforms.

The integration of GPUs in a serverless platform constitutes a fundamental
element in the adoption of this technology for the processing of scientific
applications that require the use of acceleration devices. Until now, there
was a certain belief that serverless platforms were limited to CPU usage,
as is the case with the large public Cloud providers, that provide these
services without access to acceleration devices. With the virtualization
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techniques studied in the development of the research, we integrated GPUs
in a serverless on-premises platform that demonstrated its applicability by
improving performance in terms of processing time. Furthermore, the analysis
of the different virtualization techniques used in the study allowed to detect
limitations in the integration of these devices in orchestration systems such as
Kubernetes, when reserving the use of a GPU for an application, which should

be addressed in future works.

Finally, in order to make it easier for users to invoke machine learning models,
a serverless cloud platform has been implemented with a simple web interface,
using AWS and OSCAR as execution back-end, that offers scaling to zero to
minimize service costs. Users only need to upload their files through the web
interface to generate concurrent processing. The application processes the files

and leaves the prediction results in the web interface accessible by users.

Being able to interact with machine learning models from a serverless platform,
without the need to define complex jobs and through a web interface, represents
a step forward in simplifying the adoption of these models by end users. The
development of a tool of these characteristics allows reducing the distance
between artificial intelligence, serverless computing and the user, providing
a complete abstraction in the use of these technologies. The study carried
out demonstrates the benefit of using serverless platforms to address scientific
problems related to machine learning and artificial intelligence. Apart from
the integration of the inference phase, it is necessary to carry out an analysis
to be able to implement the training of these models, which can greatly benefit
from the use of acceleration devices. The level of abstraction introduced in the
developed platform allows inexperienced users to interact with more complex

machine learning models.

Stateless, event-driven behavior, automatic elasticity, and short execution
times are the key elements of serverless computing. Machine learning and
artificial intelligence are one of the fastest growing areas of computing that can
benefit from these features. Serverless computing has been shown to be useful

for inference and prediction in public and on-premises cloud environments. The
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serverless computing strategies proposed in this thesis foresee a rapid growth in
the adoption of the serverless model in scientific applications that require high
workloads, use of acceleration devices, which can grow and decrease according
to demand and all this at a minimum cost. It is important to note that the
serverless model is oriented for bursts of short-lived jobs. Otherwise the cost,
in the case of the public Cloud can be dramatically higher compared to the

use of virtual machines [43].

The development of this work has allowed to extract a series of lessons. The
first one, GPU-enabled computing back-ends for FaaS constitute a very good
scenario for avoiding resource lock-in and facilitating time sharing of resources.
The results obtained in the experiments carried out support the use of open
source serverless platforms, integrated with different virtualization techniques
of acceleration devices, for the resolution of complex scientific problems, at a
reduced cost. The second one, user-level containerization is a highly interesting
working area that overcomes the limitations of multi-tenant data centers.
The third one, Cloud orchestration and automated DevOps have facilitated
strongly the execution of reproducible experiments. The fourth one, the
integration of machine learning and artificial intelligence models in a serverless
computing platform facilitates the use of highly complex models by users
without experience in this technology. The fifth one, the advantages that
serverless computing provides in terms of reduced costs, developers never have
to deal with servers and the scalability that it inherently provides, ensures that
it is a field of Cloud Computing from which it remains much to be exploited and
investigated, for its applicability in solving scientific problems that constitute
a challenge today.

With the results obtained in this thesis, we conclude by stating that all the
objectives proposed at the beginning of the research have been successfully
achieved. With the development of the thesis, different tools based on the
serverless model have been generated for users to take advantage of its benefits
without a deep knowledge of the technologies used.

127



Chapter 6. Conclusions and Future Work

6.2 Future Works

Future work includes firstly the maintenance of these tools with the aim of
including new functionalities, which implies an arduous work of research and
development. Furthermore, it would be anticipated to speak of final versions
because there are always improvements that can be implemented.

In the field of learning analytics with CloudTrail-Tracker it is possible to
improve the information displayed by customizing for the role of the users who
makes use of the tool. It is planned to include additional panels so that the
instructor can detect problems of excessive use of resources during a practical
laboratory session. For the students, the inclusion of a system that allows
showing the average performance with respect to their peers, in addition to
accessing the history of events and the degree of completion of the practices,

is expected.

The definition of learning itineraries is also proposed so that it is possible to
detect differences between the events developed in a practice and the path
defined by the instructor. This will allow the teacher to offer specialized help
and complementary material to students that the system detects with greater
problems. In order to motivate students to carry out the activities, it is planned

to include gamification techniques.

In the field of acceleration device virtualization, it is planned to include a plugin
in the Kubernetes cluster that will eliminate the bottleneck in the processing
of multiple parallel videos currently introduced by the current NVIDIA plugin.
This will allow the sharing of GPUs by the same function (Kubernetes pod),
which can have a decisive influence on the execution times of the applications.
In addition, integrating the OSCAR and SCAR architecture will allow the
processing of hybrid workloads.

Finally, in the availability of serverless services for machine learning models on
the AWS platform, there are two fundamental lines of action. One focused on

incorporating other existing open catalog machine learning models. The other
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line refers to including the training/re-training capacity of the models from the
web interface, which requires a more exhaustive analysis of the implications.
This would allow full adoption of serverless technology in machine learning and
artificial intelligence applications.

6.3 Scientific production and fundings for this thesis

The realization of this doctoral thesis has led to the publication of a series
of research articles, publications at conferences and research stays, detailed

below:

e Naranjo, D.M.; Prieto, J.R.; Molté, G.; Calatrava, A. A Visual
Dashboard to Track Learning Analytics for Educational Cloud Computing.
Sensors 2019, 19, 2952. https: //www. mdpi. com/ 1424-8220/ 19/ 13/
2952. JCR. Instruments & Instrumentation 15/61. Q1.

Abstract: Cloud providers such as Amazon Web Services (AWS) stand
out as useful platforms to teach distributed computing concepts as well
as the development of Cloud-native scalable application architectures on
real-world infrastructures. Instructors can benefit from high-level tools to
track the progress of students during their learning paths on the Cloud,
and this information can be disclosed via educational dashboards for
students to understand their progress through the practical activities.
To this aim, this paper introduces CloudTrail-Tracker, an open-source
platform to obtain enhanced usage analytics from a shared AWS account.
The tool provides the instructor with a visual dashboard that depicts the
aggregated usage of resources by all the students during a certain time
frame and the specific use of AWS for a specific student. To facilitate
self-regulation of students, the dashboard also depicts the percentage of
progress for each lab session and the pending actions by the student.
The dashboard has been integrated in four Cloud subjects that use
different learning methodologies (from face-to-face to online learning)
and the students positively highlight the usefulness of the tool for Cloud
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instruction in AWS. This automated procurement of evidences of student
activity on the Cloud results in close to real-time learning analytics useful
both for semi-automated assessment and student self-awareness of their

own training progress.

Naranjo, D.M., Gomes, J., David, M., Blanquer, I, & Molto,
G. Comparison of Container-based Virtualization Tools for HPC
Platforms. IBERGRID 2019 - Delivering Innovative Computing and
Data services to Researchers (23-26 de septiembre de 2019): Comparison
of Container-based Virtualization Tools for HPC Platforms. LIP Indico
(Indico). (n.d.). Retrieved April 8, 2020, from https://indico. lip.
pt/ event/ 575/ contributions/ 1856/

Abstract: Virtualization technologies are a fundamental element in Cloud
Computing. Docker is the most known and used container platform
worldwide. It is designed for microservices virtualization and application
delivery but its model does not fit well with High-Performance Computing
(HPC) platforms. HPC environments are multi-user systems where users
should only have access to their own data and computing resources.
Misconfigured Docker installations pave the way for privilege escalation,
including the ability to access other users’ data and, at the same time,
gaining control of the cluster and computing resources.

In the world of HPC, the focus of containerised applications is not
necessarily on DevOps, but on the ability to minimise HPC node
configuration and manage applications’ software dependencies through
containers. Several open source initiatives have addressed this problem
of bringing containers to the HPC space such as Singularity, Shifter,
CharlieCloud and uDocker. In this sense, Singularity seems to be the
most popular container system for HPC centres, but there are alternatives
such as uDocker that support the execution of containers in user space, a
key feature in HPC platforms. Therefore, it is important to analyze the
benefits and drawbacks of these solutions when they are deployed in real

HPC system and applied to scientific production applications.
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All these tools, with potentially similar characteristics, bring the benefits
of the containers to the HPC world. However, it is important to analyze
important metrics in order to determine the advantages of one over
another. The fields to analyze include, but are not limited to: interaction
with Docker, support for Graphics Processing Unit (GPU), support for
low-latency interconnects such as InfiniBand, support for Message Passing
Interface (MPI), security and portability, privilege model, integration
with Local Resource Management Systems (LRMS), among others. The
objective of this communication is to show the behaviour and limitations
of different container technologies in the context of HPC systems.

A. Pérez, S. Risco, D. M. Naranjo, M. Caballer and G. Moltd,
"On-Premises Serverless Computing for Event-Driven Data Processing
Applications,” 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), Milan, Italy, 2019, pp. 414-421.https://
ieeexplore. ieee. org/document/8814513. GGS Class 2 in the
GII-GRIN-SCIE index of conferences.

Abstract: The advent of open-source serverless computing frameworks
has introduced the ability to bring the Functions-as-a-Service (FaaS)
paradigm for applications to be executed on-premises. In particular,
data-driven scientific applications can benefit from these frameworks
with the ability to trigger scalable computation in response to incoming
workloads of files to be processed. This paper introduces an open-source
framework to achieve on-premises serverless computing for event-driven
data processing applications that features: i) the automated provisioning
of an elastic Kubernetes cluster that can grow and shrink, in terms of
the number of nodes, on multi-Clouds; ii) the automated deployment of
a FaaS framework together with a data storage back-end that triggers
events upon file uploads; iii) a service that provides a REST API to
orchestrate the creation of such functions and iv) a graphical user interface
that provides a unified entry point to interact with the aforementioned
services. Together, this provides a framework to deploy a computing

platform to create highly-parallel event-driven file-processing serverless
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applications that execute on customized runtime environments provided
by Docker containers that run on an elastic Kubernetes cluster. The
usefulness of this framework is exemplified by means of the execution
of a data-driven workflow for optimised object detection on video. The
workflow is tested under three different workloads which process ten, a
hundred and a thousand functions. The results show that the presented
architecture is able to process such workloads taking advantage of its

elasticity to make a sensible usage of the resources.

Research stay of 3 months (May, June and July 2019) at the Laboratory
of Instrumentation and Particle Physics (LIP) in Lisbon.

Summary of the Stay: One of the fundamental research lines of the thesis
is containerized computing. The most used tool for the execution of
containers is Docker but in user spaces, such as HPC centers, Docker is
not very used because it needs root access. There are other tools that
allow the execution of containers in these environments such as udocker.
In the research stay, we worked with the udocker developers,which allowed
us to understand all the functionalities of the tool at a greater level of
depth. udocker is integrated in SCAR to execute containers out of Docker
images in environments where root access is not available, as it is the
case of AWS Lambda. These tools were used in the implementation of
the platform described in the section 5. The work in those months was
fundamentally oriented to carry out a study and comparison of tools
that would allow the execution of containers in user spaces. The tools
analyzed were Singularity, Shifter, CharlieCloud and udocker, since they
are the most outstanding in the field of execution of Docker containers
in user spaces. The results of this comparison were presented at the
IBERGRID 2019 conference referenced above and a summary of these
results is described in the section 5.1.2. As conclusions of the work done
in the stay it was determined that udocker in comparison with the other
tools analyzed is more user-oriented, since even the command line imitates
the Docker.
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e Naranjo D.M., Risco, S., de Alfonso, C., Pérez, A., Blanquer, I.,
and Molto, G. (2020). Accelerated serverless computing based on GPU
virtualization.  Journal of Parallel and Distributed Computing, 139,
32-42. https://doi.org/10. 1016/ 5. jpdc. 2020. 01. 004. JCR.
Comp. Science, Theory & Methods, 43/105. Q2.

Abstract: This paper introduces a platform to support serverless
computing for scalable event-driven data processing that features a
multi-level elasticity approach combined with virtualization of GPUs.
The platform supports the execution of applications based on Docker
containers in response to file uploads to a data storage in order to
perform the data processing in parallel. This is managed by an elastic
Kubernetes cluster whose size automatically grows and shrinks depending
on the number of files to be processed. To accelerate the processing
time of each file, several approaches involving virtualized access to
GPUs, either locally or remote, have been evaluated. A use case that
involves the inference based on deep learning techniques on transthoracic
echocardiography imaging has been carried out to assess the benefits and
limitations of the platform. The results indicate that the combination of
serverless computing and GPU virtualization introduce an efficient and
cost-effective event-driven accelerated computing approach that can be

applied for a wide variety of scientific applications.

e Naranjo, Diana M, Risco, S., G. Molté and Blanquer, 1., "A Serverless
Gateway for the Ezxecution of Open Machine Learning Models on AWS"
Gateways 2020, Conference hosted online. Contribution type: Demo.

Abstract:  Serverless computing has become a paradigm for the
implementation and development of a wide range of applications based
on events in the Cloud. Today, with the rise of machine learning models
and artificial intelligence applications, both Cloud providers and large
companies are focusing their efforts on offering these services to their
customers. This article proposes a serverless computing platform to

facilitate running tasks for inference using machine learning models on
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the AWS Cloud provider. The back-end grows elastically based on
execution needs and features scale-to-zero features to minimize costs,
while the front-end provides a simplified user experience to trigger the
inference phase for machine learning models. The results demonstrate
that the proposed solution constitutes a step forward on simplifying
the Cloud-based execution of machine learning and artificial intelligence

models.
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Part of this work was also supported by the project DEEP-Hybrid-DataCloud,
European Union’s Horizon 2020 Research and Innovation Programme, under
Grant 777435. The general objective of this project is to promote the use
of intensive computing services by different communities and research areas,
and their support by the corresponding e-Infrastructure providers and open
source projects. The project will integrate and improve existing components in
the Cloud ecosystem, developing a service that supports intensive computing
techniques that require access to specialized devices such as GPUs, for the

processing of large datasets.
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6.4 Software Developments

This section refers to the open-source developments that are part of the
research process, as well as a short summary of the repository and the author’s

contribution.

e CloudTrail-Tracker: The URL of the service in production is
http://cloudtrailtracker.cursocloudaws.net and it is accessible
as a demonstration through the credentials (user: demo/password:
demoDem0!). This research has two fundamental repositories on GitHub:

1. Back-end Development (https://github.com/grycap/
cloudtrail-tracker): CloudTrail-Tracker is a tool that provides
enhanced information on the use of multiple users of an AWS
account. It essentially consists of a serverless back-end composed
of an AWS Lambda function, which is activated for the storage
in Amazon DynamoDB of the information collected by AWS
CloudTrail in Amazon S3. It also has a REST API based on the
Amazon API Gateway service that queries the events stored in
DynamoDB through a Lambda function.

2. Front-end development (https://github.com/grycap/
cloudtrail-tracker-ui): CloudTrail-Tracker-UI is a web
portal based on Vue.js, a Javascript framework that allows the
development of user interfaces. The web application consults the
CloudTrail-Tracker REST API to view stored information related
to the use of AWS services by different users who share an AWS
account. The interface authentication process is built on AWS
Cognito, an AWS tool that makes it easy to control access to web
and mobile applications. The web service is also serverless as it is
available through Amazon S3.

The development of the project had the contribution of several developers.
In this sense, the main contribution of the author of this thesis was
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related to the general design of the architecture, establishing security
configurations, developing the web portal, doing a cost analysis, and,
finally providing support for the maintenance of the implemented
platform.

OSCAR (Open Source Serverless Computing for Data-Processing
Applications) https://github.com/grycap/oscar: OSCAR is an open
source platform to support the Functions as a Service (FaaS) computing
model for file processing applications. OSCAR is based on the processing
of files through events that are generated from uploading a file to
a storage system such as Amazon S3 or MinlO. Processing runs in
custom runtime environments provided by Docker containers running
on an elastic Kubernetes cluster. The platform can be automatically
deployed across multiple clouds to create highly-parallel event-driven
file-processing serverless applications.

The development of this platform has the participation of several
developers. In this sense, the main contribution of the author of this thesis
was related to the development of a web interface that would allow users
to display and configure functions in a visual and simple way, in addition
to the development of a server that, on the one hand, served the interface
web and on the other hand allows interaction with underlying OSCAR
technologies such as OpenFaaS and MinlO. In addition, the author also
implemented GPU support in OSCAR to accelerate the execution of
functions and supported the different use cases explained in previous

sections.

Serverless Machine Learning Inference https://github.com/grycap/
scar-deepaas-ui: The objective of this platform is to facilitate the
execution of machine learning and artificial intelligence models through
a web interface. This platform is composed of a back-end, in which the
serverless functions are deployed, one for each model, for the processing
of the input files. The deployment of the functions in AWS is through
SCAR, a framework to run Docker container images transparently in AWS
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Lambda. The serverless OSCAR platform is used for the deployment of

the models in a private Cloud.

In addition, the platform has a user interface served from Amazon S3

that allows:

1. Select whether to run the inference phase on AWS (public Cloud
provider) or OSCAR (a serverless platform that can be deployed

on-premises).

2. Select the model from which you want to obtain the prediction result,
in this case four models were selected as case studies, three models
from the DEEP Open Catalog! and another model from the SCAR

repository?.

3. Upload the files to process either to Amazon S3 or MinlO depending
on whether the deployment method has been selected in AWS or
OSCAR respectively. In addition, the result of the prediction can be
consulted through the web if the deployment is carried out in AWS
or in the user’s EGI DataHub? space.

The design and implementation of this architecture has been developed by
the author of this thesis with the aim of facilitating the inference process
of machine learning and artificial intelligence models through serverless
platforms. The inference phase is fundamentally based on DEEPaaS API,
a REST API that allows easy access to machine learning and artificial
intelligence models. For its integration with the developed platform, it
was necessary to add a new functionality that would allow obtaining the
result of the prediction through the command line. The integration of
machine learning and artificial intelligence models in on-premises and
public serverless platforms allows exploring new solutions in intensive

data processing.

!DEEP Open Catalog - https://marketplace.deep-hybrid-datacloud.eu/
2SCAR Repository - https://github.com/grycap/scar/tree/master/examples/darknet
3EGI DataHub - https://datahub.egi.eu
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