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ABSTRACT

Measures of centrality in networks defined by means of matrix algebra, like PageRank-type centralities, have been used for over 70 years.
Recently, new extensions of PageRank have been formulated and may include a personalization (or teleportation) vector. It is accepted that
one of the key issues for any centrality measure formulation is to what extent someone can control its variability. In this paper, we compare
the limits of variability of two centrality measures for complex networks that we call classic PageRank (PR) and biplex approach PageRank
(BPR). Both centrality measures depend on the so-called damping parameter α that controls the quantity of teleportation. Our first result is
that the intersection of the intervals of variation of both centrality measures is always a nonempty set. Our second result is that when α is
lower that 0.48 (and, therefore, the ranking is highly affected by teleportation effects) then the upper limits of PR are more controllable than
the upper limits of BPR; on the contrary, when α is greater than 0.5 (and we recall that the usual PageRank algorithm uses the value 0.85),
then the upper limits of PR are less controllable than the upper limits of BPR, provided certain mild assumptions on the local structure of the
graph. Regarding the lower limits of variability, we give a result for small values of α. We illustrate the results with some analytical networks
and also with a real Facebook network.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128567

It is known that PageRank-type centralities were used long before
Google became a famous searcher, but it is also recognized that
the reputation of this company promoted the study and use
of classic tools like Markov chains and Perron Frobenius theo-
rems. Currently, new PageRank-type centralities are used exten-
sively. In particular, we focus on the biplex approach PageRank
centrality,52 and we study the limits of variability of this cen-
trality when compared to the classic PageRank centrality.49 Our
main conclusion is that when the teleportation effect is not too
big, then the upper limits of the biplex approach PageRank are
lower than those of the classic PageRank. That is, if one wants to
bias the ranking to any particular node by using the personaliza-
tion vector—that is, one of the main ingredients of any PageRank
centrality—then this task is more easily done by using the classic
PageRank, and, therefore, we conclude that in this case, the classic
PageRank centrality is more controllable.

I. INTRODUCTION

The fundamental tool in this paper is matrix power series. We
first make a small historical review of the use of matrix power series

in connection with the concept of centrality measures (measures
introduced to account for the important people on social networks).

The pioneering works of Festinger22 and Katz38 on the intro-
duction of matrix analysis to study centrality-related problems in
social networks still maintain the validity of their approaches. In
Ref. 22, the author points out that when the number of members
is very high, the visual depiction of the graph is not enough to give
ideas about the interconnections of the nodes. To overcome this
problem, the author makes use of matrices and shows that the pow-
ering of the adjacency matrix A and its sums (that is,

∑k
i=1 Ai) give

us an idea of how many people will receive a piece of information
in k or less steps. It is also worth noting the relation that the author
makes between reorderings of the adjacency matrix and the detec-
tion of communities (in this respect, one immediately thinks of the
works of Fiedler published years later; see, e.g., Ref. 23). Regarding
the works of Katz, in Ref. 38, it is considered that the importance
of a node is not only a matter of the quantity of votes (links) that it
receives but also the importance of the people who are voting for that
node. He used matrix algebra to make a model. Nowadays, it is con-
sidered (see Ref. 47) that the PageRank model is a modification of
Katz centrality, and this fact has given new insight into the historical
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works of Katz. In this small account of pioneering works on central-
ity measures, it is also mandatory to cite the seminal work of Babelas7

because, although matrices are not used explicitly, it shows a sys-
tematic approach to define concepts such as the shortest distance
between nodes (which are called cells) and, surprisingly, the intro-
duction of open cells that are strongly reminiscent of the concept of
dangling node introduced 50 years later by the founders of Google.49

It is also worthy to recall that the first algorithms to find shortest
paths are posterior in time, since they can be traced back to 1956
(see Refs. 24 and 39). It is also important to remark that in current
times, some authors use not the adjacency matrix itself but functions
of the adjacency matrix to construct power series in order to solve
problems about centrality—or more particularly—communicability
(see, e.g., Ref. 21).

As we have seen so far, the original works put two problems laid
down on the table. On the one hand, they established that matrix
algebra was the key tool to treat these centrality questions. In more
detail, they used matrix power series. On the other hand, they put
some questions that remain open and involve more quantity and
type of data. In fact, analysis of complex networks has a central role
in the contemporary global economy. In particular, we can think
of big corporations that use enormous social networks and want to
know who are the important users, how information is transmitted
and how to avoid issues such as falls down, infrastructure attacks,60

or fake news.3

From this initial centrality measures, there have been a lot of
studies trying to define precisely the nature and function of any cen-
trality measure together with the way in which they can be computed
(see, e.g., Refs. 11, 13, 14, 26, and 53). In this paper, we are interested
in PageRank centrality, which can be formulated as a linear system
or as a power matrix series, and it can be computed efficiently as a
Markov chain.12,27,40,45

Studies about the correlation of PageRank with in-degree were
conducted several years ago (see Ref. 25), but they do not stop
research from using PageRank in different fields. We are inter-
ested in the application of the PageRank algorithm by using dif-
ferent personalization vectors, what is commonly called personal-
ized PageRank.30 This personalization gives the PageRank algorithm
more flexibility, and it can result in more differences in the ranking
with respect to the in-degree approximation. Moreover, PageRank
centrality is a currently active field as it is shown by the quan-
tity of new papers on the topic and by the variety of themes. For
example, PageRank has been applied to analyze the human brain
modeled as a directed graph of neuron links.57 PageRank is most
appreciated when using incomplete data as generally happens in
biological networks as protein interaction networks.36,37 PageRank
is also used as a reference model to compare rankings that use
new techniques.18 PageRank has also recently been used to ana-
lyze opinion formation,28 for networks that change with time while
preserving their nodes,42 to analyze risk in financial networks,62

to include the concept of trust on weighted social networks,15 to
study the vulnerability of gas and electricity networks,55 to rank cita-
tion networks,44 and to rank products following multiple criteria in
dynamic markets.54 There are also new numerical methods for the
PageRank algorithm (see Ref. 59 for the use of regular splittings,31

for a use of GMRES (generalized minimal residual method),56 for
low-rank factorizations, and46 for parallelization).

New extensions to PageRank have also been invented to
account for the new paradigm of multiplex networks, see Refs. 9,
10, 16, 32, 34, 35, and 52. Of course, other centrality measures have
been adapted to multiplex networks too (see, e.g., HITS,5 eigenvector
centrality,8,58 and other measures17).

In this paper, we focus on comparing the intervals of variation
of two centrality measures. On the one hand, the variation of the
classic PageRank (PR) was studied in Ref. 29, and on the other hand,
the variation of the biplex approach PageRank (as defined in Ref. 52)
was studied in Ref. 50. The biplex approach PageRank (BPR) was
defined with the aim of establishing a building block to construct
a definition of Multiplex PageRank (see Ref. 52 for details) but, as
a centrality measure itself, BPR has shown some interesting prop-
erties. BPR reduces to classic PageRank for some limit situations, it
also correlates well with classic PageRank for the tested networks so
far, and it has been used in connection to other centrality measures
like the works in Refs. 1 and 2. Moreover, BPR can be used as an
analogy to construct other centrality measures like in Ref. 51.

The main interest of this paper is twofold. First, it gives an idea
of how well the BPR is a good approach to PR (and, as a by-product,
it is also evidence of its use as building block to construct a multiplex
PageRank as in Ref. 52). Second, the fact of knowing the variation of
a centrality measure can be translated to the degree of controllabil-
ity of that measure (and controlling centralities is an active line of
research, as it is shown in Refs. 4, 41, and 48).

The rest of the paper has the following structure. In Sec. II, we
give the basic definitions to introduce the limits of variation of PR
and BPR and prove some technical lemmas that will be useful later.
In this section, we also show that the intervals for PR and BPR always
intersect. In Sec. III, we study the relative position of the upper lim-
its of the intervals and give a sharp result. For the lower limits of the
intervals, we give a result only for small values of the damping fac-
tor. In Sec. IV, we give some examples to illustrate the results. The
first is a star-shaped network of any number of nodes. The second
consists of some synthetic random families of complex networks,
and the third is a real Facebook network of 167 nodes. Finally, some
conclusions of the work are given in Sec. V.

II. PRELIMINARIES AND BASIC RESULTS

Throughout this paper, P will denote the row-stochastic matrix
of a complex network with n nodes, no loops, and no dangling
nodes.

The Google matrix with personalization vector v (v ∈ R
n such

that v > 0 and vTe = 1, where e is the all ones vector in R
n) and

damping factor α ∈ (0, 1) is G = αP + (1 − α)evT. Recall that the
(personalized) classic PageRank vector π is the unique eigenvector
of GT associated with the eigenvalue 1 such that πTe = 1, π > 0, and
πTG = πT, while the (personalized) classic PageRank of node i is
the ith-component of π . We denote by PRα(i) the set of all possible
values of the (personalized) classic PageRank of node i ∈ {1, . . . , n}
and fixed α ∈ (0, 1). It is shown in Ref. 29 (Theorem 3.2) that

PRα(i) = (min
j

xji, xii),

where X = (xij) is the matrix given by

X = (1 − α) (I − αP)−1 . (1)

Chaos 30, 023115 (2020); doi: 10.1063/1.5128567 30, 023115-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Recall that matrix X is strictly diagonally dominant of its column
entries and the maximum of each column i is achieved in xii, see
Ref. 29 (Lemma 2.3).

Similarly (see Ref. 52), if we denote by PRBα(i) the set of
all possible values of the (personalized) Biplex approach PageRank
of node i ∈ {1, . . . , n} and fixed α ∈ (0, 1), it is shown in Ref. 50
(Theorem 3.9) that

PRBα(i) = (min
j

cji, cii),

where C = (cij) is the matrix given by

C =
(1 − α)2

β

(

I −
α

β
P

)−1

((1 + α)I − αP) , (2)

with β = 1 − α(1 − α). Recall that matrix C is also strictly diag-
onally dominant of its column entries and the maximum of each
column i is achieved in cii, see Ref. 29 (Lemma 2.3).

We would like to investigate the relation between these two
intervals and decide when one type of PageRank should be preferred
over the other.

For all admissible µ ∈ R, the operator (I − µP)−1 will be
denoted as R(µ). In particular, if 0 ≤ µ < 1, we have

R(µ) =
∞
∑

k=0

µkPk.

Notice that

(I − αP)−1 = R(α),

1

β

(

I −
α

β
P

)−1

=
1

β
R

(

α

β

)

,

so if we use these expressions in (1) and (2), we get that

X = (1 − α)R(α), (3)

C = (1 − α)2

(

I +
α(2 − α)

β
R

(

α

β

))

, (4)

and thus, we can express C − X as

(1 − α)2

(

I +
γ

β(1 − α)
R

(

α

β

))

− (1 − α)R(α). (5)

Since matrices X and C are expressed in terms of the operator
R(·), several properties of such operator are needed and summarized
in the following results.

Lemma 2.1. Let n ∈ N, P = (pij) be the row-stochastic matrix
associated with a complex network of n nodes with no loops and no
dangling nodes, and let Mi = maxj pji be the maximum of the entries
of the ith-column of P. Then, for all i, j ∈ {1, . . . , n} and every λ ∈
(0, 1), we have

• 0 ≤ (R(λ)2)ij ≤ Mj

λ(2 − λ)

(1 − λ)2 , if i 6= j,

• 1 ≤ R(λ)ii ≤ 1 +
Miλ

2

1 − λ
, if i = j.

Proof. (i) Note that

R(λ)2 =
( ∞
∑

k=0

λkPk

)2

=
∞
∑

k=0

(

k
∑

`=0

λ`P`λk−`Pk−`

)

=
∞
∑

k=0

(k + 1)λkPk,

so if i 6= j, then by using that P is row stochastic, we get that

0 ≤ Mj

∞
∑

k=0

(k + 1)λk = Mj

λ(2 − λ)

(1 − λ)2 .

(ii) Since P is a row-stochastic matrix, for every k ≥ 2, we have that
(Pk)ii ≤ Mi, so

1 ≤ R(λ)ii = 1 +
∑

k=2

λk(Pk)ii

≤ 1 + Mi

∑

k=2

λk = 1 +
Miλ

2

1 − λ
.

�

The following identity is a direct consequence of the First
Resolvent Identity [see Ref. 19, p. 566)] and will be used later:

Lemma 2.2. For every λ, µ in the domain of R(·)

µR(µ) − λR(λ) = (µ − λ)R(λ)R(µ). (6)

In particular, we will use that

R(α) =
1

β
R

(

α

β

)

−
α(1 − α)

β
R(α)R

(

α

β

)

. (7)

If we denote γ = α(1 − α)(2 − α), by using (5), we get that

C − X

1 − α
= (1 − α)

[

I +
α(2 − α)

β
R

(

α

β

)]

− R(α)

= (1 − α)I +
[

(γ − 1)I +
γα(1 − α)

β
R

(

α

β

)]

R(α)

= (1 − α)I − (1 − γ )

[

I −
γα(1 − α)

β(1 − γ )
R

(

α

β

)]

R(α)

and thus,

C − X

(1 − α)2 = I −
1 − γ

1 − α

[

I −
γα(1 − α)

β(1 − γ )
R

(

α

β

)]

R(α). (8)

We remark that (8) strongly suggests considering the Resolvent
Identity (7) for α and α

β
. To this end, some estimations involving

R(α) and R( α

β
) will be needed.

Lemma 2.3. Given any n ∈ N, for all i, j ∈ {1, . . . , n} and
every α ∈ (0, 1), we have

β

1 − α
min

i
R(α)ij ≤ R

(

α

β

)

ij

≤
β

1 − α
R(α)jj.

Furthermore, if i 6= j, then

R(α)ij ≤ αR(α)jj.
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Proof. By Lemma 2.2, we have that

R(α) =
1

β
R

(

α

β

)

(I − α(1 − α)R(α)),

so

R

(

α

β

)

= βR(α) [I − α(1 − α)R(α)]−1

= βR(α)

∞
∑

k=0

αk(1 − α)kR(α)k

=
β

1 − α
R(α)

[

(1 − α)

∞
∑

k=0

αk [(1 − α)R(α)]k

]

=
β

1 − α
R(α)T =

β

1 − α
TR(α),

for

T = (1 − α)

∞
∑

k=0

αk [(1 − α)R(α)]k .

Notice that T is row stochastic because [(1 − α)R(α)]k is row
stochastic. Thus, on the one hand,

β

1 − α
min

i
R(α)ij ≤ R

(

α

β

)

ij

and on the other hand,

R

(

α

β

)

ij

≤
β

1 − α
max

i
R(α)ij =

β

1 − α
R(α)jj.

Now, we denote (yij) = Y = I − αP and consider for every
i = 1, . . . , n

ri(Y) =
∑

j6=i

|yij|
|yii|

=
∑

j6=i

|yij| (recall thatyii = 1).

In addition, since P is row stochastic

ri(Y) = α
∑

j6=i

pij = α.

Notice also that Y is strictly row diagonally dominant. Reference 33
(Ex. 2.5.17) follows

R(α)ij

ri(Y)
≤ R(α)jj

for all j = 1, . . . , n and i 6= j, i.e.,

R(α)ij ≤ ri(Y)R(α)jj = αR(α)jj.

�

Corollary 2.4. Given any n ∈ N, for all i, j ∈ {1, . . . , n} and
every α ∈ (0, 1), we have

• mini R(α)ij = mini 6=j R(α)ij and mini xij = mini 6=j xij

• mini R( α

β
)

ij
= mini 6=j R( α

β
)

ij
and mini cij = mini 6=j cij.

Proof. First, notice that if we compute each element of X and C
in (3) and (4), then for every i, j ∈ {1, . . . , n},

{

xij = (1 − α)R(α)ij, i 6= j,

xjj = (1 − α)R(α)jj.










cij = (1−α)γ

β
R
(

α

β

)

ij
, i 6= j

cjj = (1 − α)2 + (1−α)γ

β
R
(

α

β

)

jj
,

In order to prove (i), we will proceed by Reductio ad Absur-
dum. If we assume on the contrary that mini xij = xjj, which is
clearly equivalent to the fact that R(α)ij ≥ R(α)jj, for all i 6= j, then
consequently, by Lemma 2.3, we get that

1 ≤
mini 6=j R(α)ij

R(α)jj

≤ α < 1,

which is a contradiction.
Note that the first part of (ii) is a direct consequence of (i).

Indeed, it suffices to notice that 0 < α

β
< 1, for all α ∈ (0, 1). In

order to prove the second part of (ii), we will proceed again by
Reductio ad Absurdum. If we suppose that mini cij = cjj, then

1 ≤
(1−α)γ

β
R( α

β
)

ij

(1 − α)2 + (1−α)γ

β
R( α

β
)

jj

≤
(1−α)γ

β
R( α

β
)

ij

(1−α)γ

β
R( α

β
)

jj

≤
α

β
< 1,

for all i 6= j, again by using Lemma 2.3, which is a contradiction. �

Lemma 2.5. Given any n ∈ N, for all i, j ∈ {1, . . . , n} and
every α ∈ (0, 1), we have

• The following inequalities hold:

β

(1 − α)2 min
j

R(α)ji ≤
(

R

(

α

β

)

R(α)

)

ii

,

(

R

(

α

β

)

R(α)

)

ii

≤
β

(1 − α)2 R(α)ii,

β

(1 − α)2 R(α)ii ≤
β

(1 − α)2 (R(α)ii)
2.

• (R(α)ii)
2 ≤ (R( α

β
)R(α))

ii
.

• The following inequality holds:

R(α)ii −
γα(1 − α)

(1 − γ )β

(

R

(

α

β

)

R(α)

)

ii

≤ R(α)ii

[

1 −
γα(1 − α)

(1 − γ )β
R(α)ii

]

.

Proof. (i) Notice that matrix W = (1−α)2

β
R
(

α

β

)

is row stochas-

tic and since maxj R(α)ji = R(α)ii, it follows that

min
j

R(α)ji = eT
i (min

j
R(α)ji1) ≤ (WR(α))ii

= eT
i (WR(α)ei) ≤ eT

i (R(α)ii1) = R(α)ii,

which proves the first two inequalities. The last inequality in (i) is
a direct consequence of the fact that 1 ≤ R(α)ii and hence R(α)ii ≤
(R(α))2

ii, for all α ∈ (0, 1).
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(ii) Note that
(

R

(

α

β

)

R(α)

)

ii

≥ R

(

α

β

)

ii

R(α)ii ≥ (R(α)ii)
2,

where the condition i = j is essential here.
Finally, (iii) easily follows from (ii). �

To conclude this section, we prove a relevant result showing
that for every α ∈ (0, 1) and every arbitrary node i ∈ {1, . . . , n},
there is always some overlapping between the intervals PRα(i) and
PRBα(i).

Theorem 2.6. Let us consider a complex network with n ∈ N

nodes, no loops and no dangling nodes, let i ∈ {1, . . . , n} be a node
of the complex network. Let us denote by PRα(i) and PRBα(i)
the intervals of all possible values of the Classical and Biplex PageR-
ank respectively of node i for some fixed α ∈ (0, 1). Then, PRα(i) ∩
PRBα(i) 6= ∅.

Proof. We will proceed by Reductio ad Absurdum. Given
a node i ∈ {1, . . . , n} and α ∈ (0, 1), we assume that PRα(i) ∩
PRBα(i) = ∅. Since the upper bound of the interval PRα(i) is xii

and the upper bound of PRB(i) is cii, then either minj cji > xii or
cii < minj xji. Now, we check both cases:

• Suppose that minj cji > xii. From (5), we have that

γ

β
R

(

α

β

)

ji

− R(α)ii > 0 for everyj 6= i.

Then, by Lemma 2.3,

γ

β
R

(

α

β

)

ii

≥
γ

β
R

(

α

β

)

ji

> R(α)ii ≥
1 − α

β
R

(

α

β

)

ii

.

Notice that R( α

β
)

ii
6= 0 since otherwise R( α

β
)

ii
= R( α

β
)

ji
= 0

= R(α)ii for all j, so 0 = minj cji 6> xii. Thus,

γ

β
>

1 − α

β
,

which makes that γ − (1 − α) > 0, but this is a contradiction
since for every α ∈ (0, 1)

γ − (1 − α) = (α − 1)3 < 0.

• Suppose that cii < minj xji. From (5), we have that

(1 − α) +
γ

β
R

(

α

β

)

ii

< min
j

R(α)ji

⇐⇒ (1 − α) +
γ

β
R

(

α

β

)

ii

<
1 − α

β

β

1 − α
min

j
R(α)ji,

which implies by Lemma 2.3 that for every j,

(1 − α) +
γ

β
R

(

α

β

)

ii

<
1 − α

β
R

(

α

β

)

ji

.

Notice that R( α

β
)

ii
6= 0 since, otherwise, R( α

β
)

ji
= 0 for every j, and

this would imply that 1 − α < 0. Then, for every 1 ≤ j ≤ n,

1 − α

R
(

α

β

)

ii

+
γ

β
<

1 − α

β

R
(

α

β

)

ji

R
(

α

β

)

ii

.

Therefore, by Lemma 2.3,

1 − α

R
(

α

β

)

ii

+
γ

β
<

(1 − α)

β

α

β

and since
1

R( α

β
)

ii

≤
β − α

β
, we have

(1 − α)3

β
+

γ

β
<

(1 − α)

β

α

β
,

which is equivalent to the fact that

(1 − α)3

β
+

γ

β
−

(1 − α)

β

α

β
< 0.

Again, this is a contradiction since for every α ∈ (0, 1),

β(1 − α)3 + βγ − α(1 − α) = (1 − α)3 > 0.

�

III. COMPARISON OF PAGERANK INTERVALS PRα(i )

AND PRBα(i )

In order to compare the intervals PRα(i) and PRBα(i), we
first focus on the upper limits, that is, we compare the values of xii

[where the upper limit of PRα(i) is reached for a given i] and the
values of cii [where the upper limit of PRBα(i) is reached for the
same node i]. We split this study into two parts, corresponding to
the cases xii ≤ cii and cii ≤ xii. After that, we will focus on the com-
parison of the lower limits of the intervals PRα(i) and PRBα(i) by
comparing the minimum of xij and cij for a given j.

A. When does x ii ≤c ii hold?

We will separate the study in two cases, according to the values
of α:

Case 1. We will show that xii ≤ cii for all α ∈ (0.34, 0.48).
Moreover, when Mi decreases to 0, this interval expands to (0.34, 0.5).

Notice that Pii = 0 since there are no self-loops, so by using (3)
and (4), xii ≤ cii if and only if

R(α)ii − (1 − α)

[

1 +
α(2 − α)

β
R

(

α

β

)

ii

]

≤ 0.

By using the series expansion of R(·), the last expression is equivalent
to the following:

α −
γ

β
+

∞
∑

k=2

(

αk −
γ

β

(

α

β

)k
)

(Pk)ii ≤ 0.

Hence, if we define the function ϕ(α, k) for every k ∈ N ∪ {0} and
every α ∈ (0, 1) by

ϕ(α, k) = αk −
γ

β

(

α

β

)k

,

then xii ≤ cii if and only if

∞
∑

k=3

ϕ(α, k)(Pk)ii ≤
α(1 − 2α)

β
− ϕ(α, 2)(P2)ii. (9)
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We are going to show that (9) holds when α ∈ (0.38, 0.48), by
analyzing the behavior of this function ϕ(α, k).

For k = 2, ϕ(α, 2) = α2(1 − γ

β3 ) is always positive for all α ∈
(0, 1) since both α and β3 − γ are positive for all α ∈ (0, 1).

Notice that for k ≥ 3, all the functions ϕ(α, k) are negative in
the interval (0.34, 0.60). Indeed, since

ϕ(α, k) = αk

(

1 −
γ

βk+1

)

,

it suffices to check that 1 − γ

βk+1 < 0, for all k ≥ 3 in (0.34, 0.60)

or equivalently that 0 < log(γ ) − (k + 1) log(β), which in turn is

equivalent to k + 1 >
log(γ )

log(β)
[notice that β(x) < 1, for all x ∈ (0, 1)],

which occurs for k ≥ 3.
Moreover, (P2)ii ≤ Mi, where Mi denotes the maximum entry

of the ith-column of P, so for α ∈ (0.34, 0.60), we have that xii ≤ cii

as long as

α(1 − 2α)

β
− ϕ(α, 2)Mi ≥ 0,

which is equivalent to

α(1 − 2α)

βϕ(α, 2)
≥ Mi.

Note that this holds true in the interval (0.34, 0.48) because

Mi ≤ 1 ≤
α(1 − 2α)

βϕ(α, 2)
,

for those α ∈ (0.34, 0.48). Furthermore, when Mi decreases to 0, this
interval expands to (0.34, 0.50) (see the top left panel in Fig. 1).

Case 2. We will show that xii ≤ cii for all α ∈ (0, 0.39).
From (8) together with Lemma 2.5 (iii), it follows that if

1 − γ

1 − α
R(α)ii

[

1 −
γα(1 − α)

(1 − γ )β
R(α)ii

]

≤ 1 , (10)

then xii ≤ cii.
Since

[

1 −
γα(1 − α)

(1 − γ )β
R(α)ii

]

≥ 1 −
γα(1 − α)

(1 − γ )β

1

1 − α
> 1/2 > 0,

for all α ∈ (0, 1) (see the top right panel in Fig. 1), then (10) holds if
and only if

1 − γ

1 − α
R(α)ii ≤

[

1 −
γα(1 − α)

(1 − γ )β
R(α)ii

]−1

,

but if we consider the geometric series, this is equivalent to the fact
that the expression

1 + R(α)ii

[

γα(1 − α)

(1 − γ )β
−

1 − γ

1 − α

]

+
∑

k=2

(

γα(1 − α)

(1 − γ )β

)k

(R(α)ii)
k

is non-negative. Since for every α ∈ (0, 1) (see the bottom right
panel in Fig. 1),

[

γα(1 − α)

(1 − γ )β
−

1 − γ

1 − α

]

< 0,

then Lemma 2.1 implies that

R(α)ii

[

γα(1 − α)

(1 − γ )β
−

1 − γ

1 − α

]

≥
(

1 + Mi

α2

1 − α

)[

γα(1 − α)

(1 − γ )β
−

1 − γ

1 − α

]

.

Notice also that R(α)ii ≥ 1 implies that

γ 2α2(1−α)2

(1−γ )2β2

1 − γα(1−α)

(1−γ )β

=
∑

k=2

(

γα(1 − α)

(1 − γ )β

)k

≤
∑

k=2

(

γα(1 − α)

(1 − γ )β

)k

(R(α)ii)
k.

Consequently,

8(α, Mi) ≤ 1 + R(α)ii

[

γα(1 − α)

(1 − γ )β
−

1 − γ

1 − α

]

+
∑

k=2

(

γα(1 − α)

(1 − γ )β

)k

(R(α)ii)
k,

where 8(α, Mi) is defined as

8(α, Mi) = 1 +
(

1 + Mi

α2

1 − α

)[

γα(1 − α)

(1 − γ )β
−

1 − γ

1 − α

]

+
γ 2α2(1−α)2

(1−γ )2β2

1 − γα(1−α)

(1−γ )β

,

and thus, we have that xii ≤ cii as long as 8(α, Mi) ≥ 0 (see the left
panel in Fig. 2).

Notice that the fact that

R(α)ii <
1

1 − α

was used to get

γα(1 − α)

(1 − γ )β
R(α)ii <

γα(1 − α)

(1 − γ )β

1

1 − α
,

which satisfies that

γα(1 − α)

(1 − γ )β

1

1 − α
< 1,

for all α ∈ (0, 1). Observe that the sign of the function 8(α, Mi)

depends on Mi. In fact, 8(α, Mi) = 0 if and only if

Mi = −
(

1 + R2(α)
γα(1−α)

(1−γ )β
− 1−γ

1−α

+ 1

)

1 − α

α2
,
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FIG. 1. Some auxiliary functions: α(1−2α)

βϕ(α,2)
in (0.34, 0.48) (top left panel), 1 − γα(1−α)

(1−γ )β

1
1−α

(top right panel), γα(1−α)

(1−γ )β
− 1−γ

1−α
(bottom left panel), and function γ

β
(bottom right

panel).

where

R2(α) =
γ 2α2(1−α)2

(1−γ )2β2

1 − γα(1−α)

(1−γ )β

,

but the function

9(α) = −
(

1 + R2(α)
γα(1−α)

(1−γ )β
− 1−γ

1−α

+ 1

)

1 − α

α2

can be seen to take values in [0, 1] only for α ∈ [ξ , 0.5] with
ξ ≈ 0.399 (see the right panel in Fig. 2).

This means that 8(α, Mi) = 0 has a single root αi in [0, 1],
which must necessarily lie in [ξ , 0.5]. In addition, 8(α, Mi) takes
positive values on the interval (0, αi) and negative ones on the inter-
val (αi, 1]. It follows that 8(α, Mi) ≥ 0 for every α ∈ (0, ξ ] and every
i; consequently, xii ≤ cii, for all α ∈ (0, ξ ].

Notice that the intervals obtained in Case 1 and in Case 2
overlap and lead the conclusion that xii ≤ cii, for all α ∈ (0, 0.48).
Moreover, this interval expands to (0, 0.5) as Mi decreases to 0, that

FIG. 2. More auxiliary functions: 8(α, 0.9) (left side) and 9 (right side).
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is, the inequality xii ≤ cii also holds for α ∈ [0.48, 0.5) for Mi small
enough.

B. When does c ii ≤x ii hold?

We will define two intervals Iλ and Hλ,Mi
depending on a certain

parameter λ ∈ (0, 1) and on the maximum value Mi of the entries of
the ith-column of P such that for all α ∈ Iλ ∩ Hλ,Mi

, we will have that
cii ≤ xii.

We make the important remark that the approach previously
taken for the inequality xii ≤ cii involved the Resolvent Identity (6)
together with some estimation given in Lemma 2.5 (iii). Unfortu-
nately, in our present situation, such an approach turns out to be
unsuccessful. The reason is that the estimation in Lemma 2.5 gives
now irrelevant information.

Thus, a different approach must be taken. From (8), it follows
that

(C − X)ii

(1 − α)2 = 1 −
1 − γ

1 − α
R(α)ii +

γα(1 − α)

β(1 − α)

(

R

(

α

β

)

R(α)

)

ii

= 1 −
1 − γ

1 − α
R(α)ii +

αγ

β

(

R

(

α

β

)

R(α)

)

ii

,

so cii ≤ xii if and only if

1 −
1 − γ

1 − α
R(α)ii +

αγ

β

(

R

(

α

β

)

R(α)

)

ii

≤ 0.

For 0 < λ < 1, consider ηλ(α) = αλ − α

β
and

Iλ = {α ∈ [0, 1] : ηλ(α) ≥ 0}.

Notice that Iλ expands to [0, 1] as λ decreases to 0 and narrows down
to the two-point set {0, 1} as λ increases to 1 (see Fig. 3).

Note that if α ∈ Iλ and

1 −
1 − γ

1 − α
R(α)ii +

αγ

β
(R(αλ)R(α))ii ≤ 0,

then cii ≤ xii, since by (6)

R(αλ)R(α) =
1

α − αλ

(

αR(α) − αλR(αλ)
)

=
1

1 − αλ−1

[

R(α) − αλ−1
∞
∑

k=0

(αλ)
k
Pk

]

,

so (R(αλ)R(α))ii can be written as

1

1 − αλ−1

[

R(α)ii − αλ−1
∞
∑

k=0

(αλ)
k
(Pk)ii

]

.

Thus, for α ∈ Iλ, the condition

1 −
1 − γ

1 − α
R(α)ii +

αγ

β

1

1 − αλ−1

·
[

R(α)ii − αλ−1

(

1 +
∞
∑

k=2

(αλ)
k
(Pk)ii

)]

≤ 0,

would imply that cii ≤ xii, and this condition is equivalent to

1 +
[

αγ

β

1

1 − αλ−1
−

1 − γ

1 − α

]

R(α)ii

−
γ

β

αλ

1 − αλ−1

(

1 +
∞
∑

k=2

(αλ)
k
(Pk)ii

)

≤ 0.

Notice that for all α ∈ (0, 1), we have that

γ

β

αλ−1

1 − αλ−1
< 0,

and (Pk)ii ≤ Mi for all k ≥ 2. Also,
[

αγ

β

1

1 − αλ−1
−

1 − γ

1 − α

]

< 0,

and 1 ≤ R(α)ii, so the following sufficient condition is obtained: if
α ∈ Iλ ∩ Hλ,Mi

, then cii ≤ xii, where Hλ,Mi
is defined as

Hλ,Mi
= {α ∈ (0, 1) : θ(α, λ, Mi) ≤ 0},

where θ(α, λ, Mi) is given by

1 +
[

αγ

β

1

1 − αλ−1
−

1 − γ

1 − α

]

−
γ

β

αλ

1 − αλ−1

[

1 +
Miα

2λ

1 − αλ

]

.

Notice that θ(α, λ, Mi) takes positive values for all α ∈ (0, 0.5], λ ∈
(0, 1), and Mi ∈ (0, 1].

As mentioned above, Iλ expands from right to left to (0, 1) as λ

decreases to 0. If Mi is taken sufficiently smaller than λ, then Hλ,Mi
is

not empty and expands to [0.5, 1) as Mi decreases to 0 (see Fig. 4).
Notice that [0.5, 1) contains all α’s for which the upper extreme

of the Biplex PageRank is smaller than the upper extreme of the Clas-
sical PageRank; particularly, as Mi gets closer to zero, the interval
of such α’s exhausts the interval [0.5, 1). For instance, for λ = 0.15

FIG. 3. Iλ for different λ’s: η0.9 and I0.9 (left panel), η0.5 and I0.5 (center panel), and η0.2 and I0.2 (right panel).
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FIG. 4. I0.1 and H0.1,Mi
for different Mi ’s: η0.9 and I0.9 (top left panel), η0.5 and I0.5 (top central panel), η0.2 and I0.2 (top right panel), ϕ(α, 0.1, 0.1) (bottom left panel),

ϕ(α, 0.1, 0.05) (bottom central panel), and ϕ(α, 0.1, 0.0001) (bottom right panel).

and Mi = 0.1, the value α = 0.85 falls into H0.15,0.10. This means that
for α = 0.85, we obtain cii ≤ xii when the maximum value of the
ith-column of P is less than or equal to 0.1.

C. Comparison of the lower extremes of the intervals

Now, we turn to the lower extremes of the Classical PageRank
and the Biplex PageRank intervals. In this case, we will only obtain
that mini cij ≤ mini xij for “small” α’s.

We make the trivial observation that R( α

β
)

ij
= 0 automati-

cally implies 0 = R(α)ij = mini xij = mini cij. On the other hand,
R(α)ij = 0 implies mini xij ≤ mini cij. Thus, we will assume in what
follows mini R(α)ij > 0.

Notice that by Corollary 2.4, it can be safely assumed that

min
i

xij = min
i 6=j

xij and min
i

cij = min
i 6=j

cij.

Recall that for i 6= j, (4) and (3) become

xij = (1 − α)R(α)ij and cij =
(1 − α)γ

β
R

(

α

β

)

ij

,

so it readily follows

min
i 6=j

xij ≥ min
i 6=j

cij ⇐⇒
mini 6=j R(α)ij

mini 6=j R
(

α

β

)

ij

≥
γ

β
.

For i 6= j, let us calculate

lim
α→0

R(α)ij

R( α

β
)

ij

.

From

0 ≤ R(α)ij ≤ R(α)jj ≤
α

1 − α

and

0 ≤ R

(

α

β

)

ij

≤ R

(

α

β

)

jj

≤
α

β − α
,

it follows that

lim
α→0

R

(

α

β

)

ij

= lim
α→0

R(α)ij = 0.

In addition to this,

d

dα
R(α)ij =

∑

k=1

kαk−1(Pk)ij

and

d

dα
R

(

α

β

)

ij

=
1 − α2

β2

∑

k=1

k

(

α

β

)k−1

(Pk)ij ,

which makes

lim
α→0

d

dα
R(α)ij = Pij = lim

α→0

d

dα
R

(

α

β

)

ij

.

It suffices now to use L’Hôpital’s rule to get that

lim
α→0

R(α)ij

R
(

α

β

)

ij

= 1.

Finally, notice that γ /β < 0.6 for all α ∈ (0, 1) evidently implies that
for α close to zero,

mini 6=j R(α)ij

mini 6=j R
(

α

β

)

ij

≥
γ

β
,

which is equivalent to

min
i

xij ≥ min
i

cij.
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IV. SOME EXAMPLES AND SIMULATIONS

In this final section, an analytical example, some simulations on
synthetic random models and real examples are included in order to
illustrate the results obtained in Secs. II and III.

Given a complex network of n nodes, i ∈ {1, . . . , n} and α ∈
(0, 1), if we use Theorem 2.6, then the possible relative position of
intervals PRα(i) = (xmin, xmax) and PRBα(i) = (cmin, cmax) can be
one of the following:

• Type 1: if PRα(i) ⊆ PRBα(i), i.e.,

cmin ≤ xmin < xmax ≤ cmax,

• Type 2: if xmin < cmin < xmax ≤ cmax,
• Type 3: if cmin ≤ xmin < cmax < xmax, and
• Type 4: if PRBα(i) ⊂ PRα(i), i.e.,

xmin < cmin < cmax < xmax.

Following this notation, we are going to compute which nodes (or
how many of them) have a relative position of intervals PRα(i) and
PRBα(i) of Types 1, 2, 3, and 4. First, we consider an example where
each interval PRα(i) and PRBα(i) can be analytically computed.

Example 4.1. If we consider G = Sn the undirected star of
n + 1 nodes with center at node 1, then the row-stochastic matrix P
associated with Sn is

P =











0 1
n

. . . 1
n

1 0 0
...

...
. . .

...
1 0 . . . 0











.

It is easy to check that P0 = I and for every 0 ≤ k ∈ N ∪ {0}, we get
that

P2k+1 =











0 1
n

. . . 1
n

1 0 . . . 0
...

...
. . .

...
1 0 . . . 0











= M1,

P2k+2 =











1 0 . . . 0

0 1
n

. . . 1
n

...
...

. . .
...

0 1
n

. . . 1
n











= M2.

Therefore, by using some properties of the geometric series, for every
α ∈ (0, 1),

R(α) = I +
∞
∑

k=0

α2k+1P2k+1 +
∞
∑

k=0

α2k+2P2k+2

= I +
α

1 − α2
M1 +

α2

1 − α2
M2,

R(
α

β
) = I +

αβ

β2 − α2
M1 +

α2

β2 − α2
M2.

Hence, by using (3) and (4),

X = (1 − α)R(α) = (1 − α)I +
α

1 + α
M1 +

α2

1 + α
M2,

C = (1 − α)2(I +
α(2 − α)

β
R(

α

β
))

=
(1 − α)2(1 + α)

β
I +

α2(2 − α)

1 + α2
M1 +

α3(2 − α)

β(1 + α2)
M2.

By using these expressions of X and C, if we calculate x11 and c11, we
get that

x11 = (1 − α) +
α2

1 + α
,

c11 =
(1 − α)2(1 + α)

β
+

α3(2 − α)

β(1 + α2)
,

and, therefore, by direct computation, we obtain that

x11 < c11 ⇐⇒ α ∈
(

0,

√
5 − 1

2

)

. (11)

Now let us compare xii with cii for 2 ≤ i ≤ n. Note that, in this case,

xii = (1 − α) +
1

n

α2

1 + α
,

cii =
(1 − α)2(1 + α)

β
+

1

n

α3(2 − α)

β(1 + α2)
,

and hence,

xii < cii ⇐⇒ α ∈ (0, ξn), (12)

with ξn > 0.5 for all n ≥ 1 and ξn −→ 0.5+, as n increases to infinity.
Let us compare xj1 with cj1, for every 1 ≤ j ≤ n. Note that

xj1 =
α

1 + α
,

cj1 =
α2(2 − α)

1 + α2
,

and, therefore,

xj1 < cj1 ⇐⇒ α ∈ (

√
5 − 1

2
, 1). (13)

Therefore, by using (11) and (13), we get that the relative position of
PRα(1) and PRBα(1) as

• Type 1 if and only if α ∈ (0, 1
8

] and

• Type 4 if and only if α ∈ ( 1
8

, 1),

where 8 denotes the Golden ratio.
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FIG. 5. Fraction of nodes in Erd˝os–Rényi networks with n = 100 nodes such that PRα(i) ⊆ PRBα(i) (Type 1, left panel), xmin < cmin ≤ xmax ≤ cmax (Type 2, central
panel) and PRBα(i) ⊂ PRα(i) (Type 4, right panel) for different values of the linking probability p.

Finally, in order to compare xji with cji, if j 6= 1 6= i, then

xji =
1

n

α2

1 + α
,

cji =
1

n

α3(2 − α)

β(1 + α2)
,

which makes that for every j 6= 1 6= i,

xji < cji ⇐⇒ α ∈ (η, 1), (14)

for

η =
1

3



−5 3

√

2

9
√

29 + 43
+

3

√

9
√

29 + 43

2
− 1



.

Notice that the case i = 1 6= j has no interest since we are looking for
the minimum value of each column of X and C, and it never occurs in
the first row (xji < x1i and cji < c1i if j 6= 1).

Hence, by using (12) and (14), if 2 ≤ i ≤ n, then the relative
position of PRα(i) and PRBα(i) is

• Type 1 if and only if α ∈ (0, η],
• Type 2 if and only if α ∈ (η, ξn], and
• Type 4 if and only if α ∈ (ξn, 1),

since η ≈ 0.3926 and ξn > 0.5 for all n ≥ 1.
Note that for every α ∈ (0, 1), there is no node i ∈ {1, . . . , n}

such that the relative positions of intervals PRα(i) and PRBα(i) is
of Type 3.

Now, we are going to compute the relative positions of intervals
PRα(i) and PRBα(i) for some classic synthetic random models.

Example 4.2. If we consider Erd˝os-Rényi random networks20

with n = 100 nodes and compute the relative position of intervals
PRα(i) and PRBα(i) for different values of the linking probability p

from 0.1 to 0.9, Fig. 5 shows that for small values of α not bigger than
α0(p) between 0.2 and 0.4 (depending on the linking probability p) all
nodes have a relative position of intervals PRα(i) and PRBα(i) of
Type 1, while if α ≥ 0.5 (independently of the linking probability p)
all nodes have a relative position of intervals of Type 4. If we take val-
ues of α between α0(p) and 0.5 then there are simultaneously nodes
with relative positions of intervals of Types 1 and 2, but again there
are no nodes with relative position of intervals of Type 3.

Example 4.3. If we consider Barabási–Albert synthetic
networks6 with n = 100 nodes and compute the relative position of
intervals PRα(i) and PRBα(i) for different values of the mini-
mum degree value d from 3 to 24, Fig. 6 shows that, as it happened
for Erd˝os-Rényi random networks, for small values of α not bigger
than α0(d) between 0.2 and 0.4 (depending on the minimum degree
value d), all nodes have a relative position of intervals PRα(i) and
PRBα(i) of Type 1. On the other hand, if α ≥ 0.5 (independently
of the minimum degree value d) all nodes have a relative position of
intervals of Type 4. If we take values of α between α0(d) and 0.5, then
there are simultaneously nodes with relative positions of intervals of
Types 1 and 2, but again there are no nodes with relative position of
intervals of Type 3.

Example 4.4. If we consider Watts–Strogatz synthetic networks61

with n = 100 nodes (rewiring probability β and 500β links) and
compute the relative position of intervals PRα(i) and PRBα(i) for
different values of the rewiring probability β from 0.1 to 0.9, Fig. 7
shows that, as it happened for Erd˝os–Rényi random networks and
Barabási–Albert synthetic networks, for small values of α not bigger
than α0(β) smaller than 0.4 (depending on the rewiring probability β)
all nodes have a relative position of intervals PRα(i) and PRBα(i)
of Type 1. Again, if α ≥ α1(β) (depending on the rewiring probability
β, but close to 0.5), all nodes have a relative position of intervals of
Type 4. Finally, if we take values of α between α0(β) and α1(β), then
there are simultaneously nodes with relative positions of intervals of
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FIG. 6. Fraction of nodes in Barabási–Albert synthetic networks with n = 100 nodes such thatPRα(i) ⊆ PRBα(i) (Type 1, left panel), xmin < cmin ≤ xmax ≤ cmax (Type
2, central panel) and PRBα(i) ⊂ PRα(i) (Type 4, right panel) for different values of the minimum degree value d.

Types 1 and 2, but again there are no nodes with relative position of
intervals of Type 3. There are several clear similarities of the behav-
ior of Watts–Strogatz networks with the preceding synthetic models,
but main differences with the previous synthetic examples are the
following:

• Not all the nodes have relative position of intervals of Type 4 for all
values of α > 0.5, so the threshold value α = 0.5 is not universal
for all the networks.

• There are small values of α (much smaller than 0.2) such that
there are simultaneously nodes with relative positions of intervals
of Types 1 and 2.

Finally, we present an example of the relative position of
intervals PRα(i) and PRBα(i) for a real social network.

Example 4.5. We finally consider the 167 nodes giant con-
nected component of Facebook users network presented in Ref. 43
(corresponding to the giant component of matrix called 0 in the
Facebook circles network collected in Ref. 63) that consists of circles

FIG. 7. Fraction of nodes in Watts–Strogatz synthetic networks with n = 100 nodes (rewiring probability β and 500β links) such that PRα(i) ⊆ PRBα(i) (Type 1, left
panel), xmin < cmin ≤ xmax ≤ cmax (Type 2, central panel), and PRBα(i) ⊂ PRα(i) (Type 4, right panel) for different values of the rewiring probability β .
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FIG. 8. Fraction of nodes in the giant connected component of Facebook users network of 167 nodes such that PRα(i) ⊆ PRBα(i) (Type 1, left panel), xmin < cmin ≤
xmax ≤ cmax (Type 2, central panel), and PRBα(i) ⊂ PRα(i) (Type 4, right panel).

(or friends lists) from Facebook collected from survey participants
using an app (see Ref. 63 for more details). If we compute the relative
position of intervals PRα(i) and PRBα(i) as a function of α, Fig.
8 shows that, as it happened for all previous synthetic networks, for
small values of α (smaller than 0.2), all nodes have a relative position
of intervalsPRα(i) andPRBα(i) of Type 1, while if α is bigger than a
value around 0.5 all nodes have a relative position of intervals of Type
4. If we take values of α in the interplay, then there are again simul-
taneously nodes with relative positions of intervals of Types 1 and 2,
but there are no nodes with relative position of intervals of Type 3.

V. CONCLUSIONS

In this paper, we have compared the intervals of variation of
two centrality measures known as classic PageRank (PR) and biplex
approach PageRank (BPR). The main tool to perform the analy-
sis has been the use of power series and their properties. From the
theoretical study (Secs. II and III), we can highlight the following
conclusions.

1. The intervals of variation of PR and BPR always have a
nonempty intersection. This evidences that the BPR is a reason-
able approximation to PR, in the sense that the upper and lower
limits can be different, but there is always a zone in where the
results are the same.

2. When the damping parameter α is lower than 0.48, we have
shown that the upper limits of the interval for PR are lower than
the upper limits of the interval for BPR. This means that when
the effects of the teleportation are high (and, therefore, there is
a substantial neglect of the topology of the network), the PR is
more controllable in its upper zone. In Sec. IV, we have obtained
that for small values of α, the relative position of the intervals is
of Type 1 or 2, that is, consistent with the theoretical analysis.

3. The cases in which the upper limits of the interval for BPR are
lower than the upper limits of the interval for PR always hap-
pen when α is greater than 0.5. In particular, for small values of
the elements of the row-stochastic matrix P associated with the
network, it holds that upper limits of the BPR interval are lower
than upper limits of the PR interval when α is greater than 0.5.
The consequences of this fact are remarkable. Note that usu-
ally we are interested in the top-K levels of a ranking, that is,
the upper limits. Therefore, knowing that the usual value for α

is 0.85, this conclusion means that in this situation, the BPR is
more controllable in its higher values than the PR. In Sec. IV,
we have obtained that for high values of α, the relative position
of the intervals is of Type 4 [with no appearance of any interval
of Type (3) that is consistent with our theoretical analysis].

4. The theoretical analysis that we have presented in Sec. III is
very restrictive for small values of alpha since it requires that
alpha must be close to zero. However, for small values of α (and,
therefore, high teleportation), in most of our numerical results,
it holds that lower limits of the BPR interval are lower than
lower limits of the PR interval. This conclusion, together with
the previous one, implies that for small values of the damping
factor, the interval of variation of the biplex PageRank is con-
tained into the interval of variation of the classic PageRank, that
is, PRα(i) ⊂ PRBα(i), that corresponds to the situation that
we have denoted as Type 1. It is interesting to note that this
effect was observed in the numerical examples of Ref. 2, where,
by the nature of the model, high values of teleportation were
preferred.
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