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Abstract: Solving optimization problems using heuristic 

algorithms requires the selection of its parameters. 

Traditionally, these parameters are selected by a trial and 

error process that cannot guarantee the quality of the results 

obtained because not all the potential combinations of 

parameters are checked. To fill this gap, this paper proposes 

the application of Taguchi’s orthogonal arrays to calibrate the 

parameters of a heuristic optimization algorithm (the Descent 

Local Search algorithm). This process is based on the study of 

the combinations of discrete values of the heuristic tool 

parameters and it enables to optimize the heuristic tool 

performance with a reduced computational effort. To check its 

efficiency, this methodology is applied to a technical challenge 

never studied before: the optimization of the tensioning 

process of cable-stayed bridges. The statistical improvement of 

the heuristic tool performance is studied by the optimization of 

the tensioning process of a real cable-stayed bridge. Results 

show that the proposed calibration technique provided robust 

values of the objective function (with lower minimum and 

mean values, and lower standard deviation) with reduced 

computational cost. 

 

1 INTRODUCTION 

 

Structural optimization using heuristic methods has a 

major drawback, as the optimized solution depends, to a 

greater or lesser extent, on the heuristic parameters. 

Traditionally, several trial and error combinations of these 

parameters are analyzed to define what parameters fit the 

studied problem best (see [1-2]). Unfortunately, this 

approach has two problems: 1) it consumes a lot of time, 2) 

the quality of the results obtained cannot be guaranteed 

because not all the potential combinations of parameters 

can be checked. To fill this gap, this paper proposes the 

application of Taguchi’s orthogonal arrays to calibrate the 

parameters of a heuristic optimization tool (the Descent 

Local Search algorithm). This process is based on the study 

of the combinations of discrete values of the heuristic tool 

parameters and it enables to optimize the heuristic tool 

performance. To check its efficiency, this methodology is 

applied to a technical challenge never studied before: the 

optimization of the tensioning process of cable-stayed 

bridges built on temporary supports. The resulting 

methodology guarantees the achievement of the optimal 

performance of the optimization tool with reduced 

computational efforts. To the best of the authors’ 

knowledge, this is a major novelty as it proposes the first 

application in the literature of the orthogonal arrays for the 

calibration of heuristic tool parameters. This methodology 

is characterized by its generality as it can be applied to 

other heuristic tools and optimization problems. 

This paper is organized into the following sections: In 

Section 2, a literature review of the modelling of the 

tensioning process of cable-stayed bridges built on 

temporary supports is reviewed. The main assumptions of 

the selected simulation algorithm are also presented. In 

Section 3, the general problem of the optimization of the 

tensioning process of cable-stayed bridges built on 

temporary supports is defined. In Section 4, the design of 

statistical experiments to calibrate the heuristic tool 

parameters is presented. In Section 5, the parameters of the 

heuristic tool are calibrated in a real cable-stayed bridge. 
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The superior performance of the calibrated heuristic tool is 

also showed. Finally, some conclusions are drawn in 

Section 6. 

 

2 MODELING THE TENSIONING PROCESS OF 

CABLE-STAYED BRIDGES  

 

Cable-stayed bridges stand as one of the most aesthetic 

man-built structures. Since the first examples of this 

typology [3], the development of materials, construction 

techniques and simulation methods, as well as economic 

well-being, have contributed to a huge proliferation of this 

kind of bridges.  

In cable-stayed bridges, all the resistant mechanisms are 

related to some extent to the tensile forces of the stay cables 

and, one of the major challenges of these structures is the 

materialization of their construction process to ensure the 

achievement of a target state of stresses and /or 

deformations in service. This state is known as the 

Objective Service Stage, OSS [4]. Since modern cable-

stayed bridges are highly indeterminate systems, there is 

not just one methodology for calculating the cable stay 

forces in the OSS.  

To achieve the OSS, cable-stayed bridges are 

traditionally erected either by the cantilever or by the 

temporary support erection technique [5, 6]. On the one 

hand, the cantilever erection method consists of the 

balanced placement of deck segments supported by stay 

cables from the pylons. This technique is the most common 

construction procedure for long span structures as well as 

for those in locations where no temporary supports can be 

placed (e.g. on water or soil with low bearing capacity). In 

the alternative method, the superstructure is first erected 

using conventional construction techniques on a set of 

temporary supports. Then, when the stay cables are 

installed and pre-stressed, the temporary supports are 

successively lifted, transferring their load to the stay cable-

system.  

The OSS can be characterized by a set of stay cable 

forces. Some of the main criteria used to define these forces 

in the OSS are summarized in [4]. Among these methods, 

the Rigidly Continuous Beam Criterion is noteworthy [7]. 

In this method the stay forces are defined by projecting, 

into the stays’ direction, the vertical reactions of an 

equivalent continuous beam (in which the anchorages of the 

stay cables at the deck are replaced by fictitious supports).  

Once the target behaviour in the OSS has been defined, 

they can be clustered into a vector {NOSS}. This vector 

includes the target stay forces for the inner cables and the 

target deformation for the backstays. The elements of 

{NOSS} can be obtained by the sum of a passive {NP} and 

an active {NA} state as presented in Equation 1. The former 

vector includes the passive response produced when a 

Target Load, TL, is applied to the structure, while the latter 

one includes the effect of the active prestressing on the 

stays. 

          OSSPAPOSS IMNNNN ·   (1) 

{NA} can be simulated by multiplying a set of imposed 

strains in the stays {εOSS} to an Influence Matrix [IM] that 

includes the effect of the prestressing in each stay of the 

structure. The only unknown vector of Equation 1 is {εOSS} 

and it can be directly defined as follows: 

        POSSOSS NNIM 
1

    (2) 

in which [IM]-1 is the inverse of [IM]. 

{εOSS} can be used to simulate the construction process 

of a cable-stayed bridge from a direct approach. In fact, this 

hypothesis is followed by the Direct Algorithm (DA) to 

avoid the need for an overall iterative process to assure the 

achievement of the OSS, significantly reducing the 

computation time.  

 

- Simulation algorithm 

The definition of an adequate construction procedure that 

assures the achievement of the OSS on site is a complex 

nonlinear problem as during construction the structural 

system does not remain constant and partial structures arise. 

These partial structures might be more flexible than the 

completed bridge and might be subjected to higher loads 

during construction. In fact, many researchers and 

practitioners have stated the importance of simulating the 

construction process of cable-stayed bridges [8].  

The traditional method to simulate the construction 

process of a cable-stayed bridge is to start at the OSS and 

dismantle the structure (according to the opposite 

construction sequence on site). Several authors have 

proposed methods based on this “backward” approach both 

for the temporary supports (Backward Algorithm, BA [9]), 

and the cantilever erection method [10]). The main 

inconvenience of this simulation is the difficulty to model 

any modification in the bridge design and/or in its 

tensioning strategy. To overcome these problems, a forward 

simulation, which follows the actual erection sequence on 

site was proposed for the temporary supports (Forward 

Algorithm, FA [11]) and the cantilever method [10].  

Most of the simulation methods presented in the 

literature assume that any construction stage can be 

obtained by activating or deactivating a group of elements, 

loads or boundary conditions from the following or the 

preceding construction stages. This hypothesis assumes that 

the construction process can be simulated by linear 

superposition of stages. An alternative approach (Direct 

Algorithm, DA, [12]) proposed a direct simulation of the 

temporary support erection method avoiding the 

superposition of stages principle and increasing 

computational efficiency. To enable the simulation of the 

time dependent phenomena the direct approach was 

combined with the forward superposition of stages in the 

Forward- Direct Algorithm [13].  
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In this work the DA is used to simulate the tensioning 

process of cable-stayed bridges. The main hypotheses of 

this algorithm are as follows: (1) Each construction stage is 

simulated with an independent Finite Element Model 

(FEM). (2) A Local Iterative Process is used to simulate the 

lifting of the temporary supports during the tensioning 

operations. In this process the structural system of the FEM 

of each construction stage is successively updated (by 

intruding the new stay cables and removing the temporary 

supports when they are lifted). In this process, vertical 

reactions at the temporary supports are evaluated. When 

tensile stresses are obtained in the temporary supports, they 

are removed for the subsequent tensioning operations. (3) 

Once the deck is raised from a temporary support, this is 

removed. (4) In the FEMs, stay forces are simulated by 

imposed strains, , on the stays. (5) To avoid the 

requirement of an overall iterative process, the prestressing 

of the last tensioning operation is based on the unstressed 

length concept and therefore, the stay cable forces are 

simulated with the vector {εOSS} defined in Equation (2). A 

detailed explanation of the Direct Algorithm can be found 

in [12]. 

 

- Optimization of the tensioning process  

A number of scholars have proposed the optimization of 

the design [14], the stay cable forces [15-18], and the 

construction planning of the cantilever erection method 

[19]. Nevertheless, to the best of the authors’ knowledge no 

work addressing the optimization of the tensioning process 

of cables-stayed bridges built on temporary supports has 

been found in the literature. Traditionally, this sequence is 

defined according to the designer’s experience on a trial 

and error basis in two tensioning operations (see for 

example, the tensioning process of the Talavera de la Reina 

Bridge [20]). In the first tensioning operation, the stays are 

introduced in alternative sides from the pylon to the bridge 

abutments. Each stay is prestressed to nearly 80% of the 

cable force in the OSS. Finally, in the second operation, the 

stay forces are prestressed again to ensure the achievement 

of the OSS. To fill this gap, the calibration methodology 

proposed in this paper has been applied to a novel problem: 

the optimization of the tensioning process of cable-stayed 

bridges built on temporary supports.  

 

3 OPTIMIZATION OF THE TENSIONING 

PROCESS OF CABLE STAYED BRIDGES 

 

According to Stork et al. [21] optimization techniques 

can be classified into the following three groups: (1) Exact 

optimization methods, (2) Surrogate-based optimization 

methods, and (3) Heuristic and Metaheuristic optimization 

methods. Among these tools it is important to highlight the 

Heuristic Algorithms, as they provide adequate solutions 

for realistic and complex optimization problems [22-34]. 

For this reason, a heuristic algorithm (Descent Local Search 

DLS, with a first improvement strategy to explore the 

solution space) was selected to optimize the tensioning 

process of cable-stayed bridges in this paper. The DLS has 

been widely applied to other structural optimization 

problems (see e.g. [2, 35]) and starts with an initial feasible 

solution So1 obtained by giving values randomly to the 

design variables. This initial solution is transformed into a 

new solution So2 by slightly changing the values of some of 

its defining design variables. If So2 is feasible and performs 

better than So1 in terms of the objective function 

considered, it is adopted as the new current solution of the 

optimization problem. Otherwise, So2 is rejected and a new 

solution is created and checked. The process ends when no 

improvement of the current solution happens after a 

predefined number of iterations. 

The problem of the optimization of a structure can be 

expressed as minimizing a certain objective function, with 

respect to some design variables and subjecting it to some 

parameters and constraints. 

For each value of the design variables, the objective 

function has a distinct value and defines a point in the 

solution space.  

In this section the Objective functions, Parameters, 

design variables, and Constraints of the optimization 

problem are described. The assumed parameters of the DLS 

algorithm are also analyzed.  

 

- Objective function 

The optimization was based on a unique objective 

function: minimizing bending moments at the pylon base 

throughout the construction process. The selection of this 

function was based on the authors’ experience as structural 

engineers of cable-stayed bridges. In fact, in the temporary 

support erection method, the structural system of the pylon 

changes significantly between construction and service 

stages. During construction, the pylon works in the plane of 

the bridge as a cantilever subjected to the unbalanced loads 

of the cables, while in service it is a cantilever stiffened by 

the whole cable-stayed system. Obviously, the proposed 

methodology is also valid for any other objective function. 

 

 Parameters 

 

The parameters refer to the fixed characteristics of the 

FEM of the cable-stayed bridge to be optimized. These 

features can be divided into the following groups: (1) 

Geometry: Defined by the node’s coordinates and their 

connectivity in elements, (2) Sections and materials in the 

pylon, deck and stay cables, and (3) Construction and 

Service loads (excluding the tensioning operations included 

in the design variables section). To minimize the 

computational cost the model simplicity is advised. In this 

paper, the different bridge elements (pylon, deck and stay 
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cables) are simulated with beam elements. It is worth 

highlighting that all the characteristics of the FEM remain 

constant throughout the optimization process.  

 

- Design variables 

The design variables are successively updated throughout 

the optimization process. The following design variables 

are considered for the optimization of the tensioning 

process of a cable-stayed bridge: (1) Number of tensioning 

operations Nop: This variable defines the number of times 

the stay cables are tensioned. (2) Tensioning matrix [T]: 

This matrix defines the tensioning process based on the 

assumptions of the Direct Algorithm [12]. According to this 

method, the tensioning operations are simulated by 

percentages of the stay cable strains in the OSS, oss. In this 

way, [T] includes Nop rows and 2 columns. The first column 

identifies the cable tensioning order, while the second one 

defines the percentage of oss introduced by the tensioning 

operation. The optimization algorithms must obtain the 

tensioning matrix [T] for an optimum value of the targeted 

objective function. To do so, they start from an initial 

solution of the tensioning matrix [Ti] that is successively 

updated to get a better value of the objective function. 

Figure 1 shows a stressing matrix of an academic example 

of the 4-cable stayed bridge model included in this figure. 

This structure is tensioned in 8 stages. In the first tensioning 

operation the four stays are installed and prestressed to 80% 

of the oss. Finally, in the second tensioning operation the 

four stays are prestressed again to reach 100% of the oss. 

This figure also includes the matrix [Ti+1] to illustrate how 

[T] is updated throughout the optimization process. This 

matrix includes random changes (highlighted in bold) in 

both the tensioning order and the tensioning strains.  
 

- Constraints 

The constraints define the conditions that must be 

satisfied by the optimization algorithm. The constraints 

assumed in the analyses are as follows: (1) Ultimate Limit 

State ULS: The internal forces in the different structural 

elements, pylon, deck and cables, must not exceed the 

strength of their materials in ULS during the tensioning 

process. (2) Cables: No compression forces are allowed in 

the stay cables in any construction stage. (3) Service Limit 

State SLS: The nodal displacements must not exceed the 

maximum deflections allowed in the SLS. Cracking may be 

allowed to some extent, but it must always be controlled. 

(4) Tensioning matrix [T]: The definition of the tensioning 

matrix is limited to two prestressing operations and must 

satisfy the following conditions: (a) Cable installation: To 

achieve the bridge geometry, every stay cable must be 

tensioned at least once. In addition, cables must be installed 

with a minimal tension stress to compensate for wedge 

slips. (b) Tensioning strains: To ensure the achievement of 

the OSS in service, the last tensioning operation of every 

stay cable must correspond with its oss. (c) Temporary 

supports: The temporary supports are lifted when a negative 

reaction appears at a temporary support, and this element is 

removed henceforth. (d) Prestressing sequence: The same 

cable cannot be tensioned in two consecutive tensioning 

operations. Depending on the satisfied restraints, the matrix 

[T] can be classified as “without consecutive tensioning 

operations in one stay” (satisfying d) and “with consecutive 

tensioning operations in one stay” (not satisfying d). It is 

important to highlight that is necessary to enable the 

algorithms to generate the second type of matrices to be 

able to optimize the number of tensioning operations.  

Figure 1: Examples of tensioning matrices [Ti] and [Ti+1]. of a four 

stays cable-stayed bridge throughout the optimization process.  

 

- Parameters of the heuristic algorithms 

The application of the DLS algorithm requires the 

common definition of: (1) The maximum number of 

random variations in the tensioning order. This parameter 

defines the maximum number of times that the tensioning 

order of [T] must be randomly modified in each iteration of 

the optimization algorithm; that is to say, changes in the 

first column of [T]. In the simulated structure in this paper, 

three different levels (1, 3 and 6) are considered. (2) The 

maximum number of random variations in the tensioning 

strains. This characteristic refers to the maximum number 

of times the tensioning strains are modified in each 

iteration; that is to say, changes in the second column of 

[T]. Three different levels (1, 2 and 3) are considered in this 

paper. (3) The maximum distance between stay cables 

when tensioned successively. This parameter limits the 

changes in the tensioning order (first column of [T]) as they 

are restricted only to those cables located close enough to 

the one being prestressed. To ease the mathematical 

representation of this requirement the stays are named in 

terms of their distance from the tensioned cable as 

presented in Figure 2. In this figure, the tensioned cable 

(highlighted with a dotted line) is named 0 and the rest of 

the stay cables are named successively according to their 
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proximity to the stressed cable. For example, Figure 2.a 

shows how the first stay cable is the one tensioned, and the 

remaining cables are named 1, 2 and 3 respectively. The 

numbering of the distance to the second cable when 

prestressed is presented in Figure 2.b. In this case, three 

levels of distance are considered (1, 2 and 3). (4) The 

maximum range of variation in the tensioning strains. This 

parameter refers to the percentage of oss defined in the 

second column of [T]. For example, if a cable is tensioned 

to 80% of its oss, and the maximum allowed variation of 

this strain is fixed at 10%, the tensioning strain of the cable 

in the following iteration would be any random number 

between 80% and 90%. In this work, three levels of 

distance (10%, 50% and 80%) are considered in the 

simulations presented in this work. (5) The type of matrix 

[T]. These matrices have been defined with two levels 

(with, W, or without, W/O, consecutive tensioning 

operations in a stay cable). (6) The maximum number of 

iterations. To achieve the optimal solution, it is necessary to 

establish a stopping criterion for the iterative upgrade of the 

solution. After analyzing the convergence of different 

examples of growing complexity, this criterion has been 

fixed by the maximum number of iterations (10000). The 

parameters required for the simulation of the DLS 

optimization algorithm are summarized in Table 1.  

 
Figure 2: Definition of the distance between the tensioned (represented 

with a dotted line) and the passive stays cables in two tensioning 
operations: (a) First cable tensioned, (b) Second cable tensioned. 

 

Table 1. Parameters governing the DLS algorithm 

Parameters Nº of Levels / [Levels] 

Maximum number of changes 

in the tensioning order 
3 / [1, 3,6] 

Maximum number of changes 

in the tensioning stresses 
3 / [1, 2, 3] 

Maximum distance between 

tensioned stays 
3 / [1, 2, 3] 

Maximum change of the 

tensioning stress  
3 / [10%, 50%, 80%] 

Matrix type  

2 / [With or without consecutive 

tensioning operations in a stay 

cable] 

Installation force of the stay 

cables 
1 / Fixed (constraints) 

Max number of iterations  1 / Fixed (10000) 

In the heuristic algorithms, the solution depends, to a 

greater or lesser extent, on the algorithm parameters. The 

number of possible combinations of these parameters 

increases exponentially with the number of levels analyzed. 

This might lead to an overwhelming number of possible 

tensioning matrices. This is especially problematic when, as 

in the case of the heuristic algorithms, many iterations are 

required to optimize the solution of each of these processes. 

To solve this problem, trial and error combinations of the 

algorithm parameters are traditionally analyzed to define 

the values of the algorithm parameters. Unfortunately, this 

unsystematised procedure cannot guarantee that the optimal 

combination of the heuristic algorithm parameters has been 

analyzed. To fill this gap, a systematic procedure to define 

the level of the heuristic DLS algorithm parameters based 

on the design of experiments is proposed in the following 

section (or, in other words, to calibrate the heuristic tool 

parameters).  

A key characteristic of the proposed methodology is its 

applicability to heuristic parameters with any number of 

levels. Obviously, using a higher number of levels (or more 

allowable parameters) might lead to better optimization 

results. Nevertheless, to avoid excessive computation costs 

previous knowledge of the optimization problem is advised 

to define adequately the parameter levels.  

 

4 DESIGN OF EXPERIMENTS FOR THE 

CALIBRATION OF THE DLS PARAMETERS 

 

The Design of Experiments (DOE) [36] theory is 

traditionally used to minimize the number of simulations 

required to draw statistically significant conclusions. This 

systematic method enables the determination of the 

relationship between factors affecting a process and the 

output of that process. In its simplest form, an experiment 

aims at predicting the outcome by introducing a change of 

the preconditions represented by one or more independent 

input variables. The change in one or more of these input 

variables is generally hypothesized to result in a change in 

one or more output dependent variables. 

The main idea in the DOE refers to the orthogonality 

between the effects of the studied variables (or factors). In 

this way, the subset of analyzed experiments is chosen to 

exploit the information about the most important features of 

the studied problem, while using a fraction of the effort for 

full factorial design in terms of experimental runs and 

resources. In other words, it makes use of the fact that many 

experiments in full factorial design are often redundant, 

giving little or no new information about the system.  

The advantage of orthogonal arrays is that they provide 

balanced designs, so factor levels are properly weighted. To 

illustrate this concept, Figure 3 is presented. The design 

described in this figure consists of the combination of three 

variables, A, B and C, with two levels (+) or (-). The aim of 

this example is to obtain the levels of the variables that 
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minimize a certain objective function. On the one hand, 

Figure 3.a represents a full factorial plan design where all 

the possible combinations of the variables are analyzed. 

Each highlighted point of the figure represents a studied 

experiment. For example, the lowest vertex on the left 

represents an experiment with the following levels in the 

variables: A (-), B (-) and C (-). The number of simulations 

for the full factorial design would be the number of levels 

to the power of the number of variables; that is 23 = 8. 

These eight points are depicted as the vertices of the cube in 

this figure. On the other hand, Figure 3.b shows an 

orthogonal design defined with the Taguchi’s L4 array. 

This array enables the study of 4 properly selected cases 

instead of 8. This figure shows that the projections of all the 

bases allow the correct identification of the effect of the 

level changes of each of the variables (in fact, the 

projection of the cube on all the planes is indeed always a 

square) [37]. Finally, Figure 3.c shows the analysis of a 

non-orthogonal experiment, where 4 experiments were 

randomly selected. The analysis of this case is not very 

representative as the projections of the cube in the different 

bases do not provide squares but triangles Unlike the 

preceding examples, this indicates that the selected 

experiments might not provide information about the whole 

system of solutions [37].  

Figure 3 was presented to illustrate the importance of the 

values of the variables in the experiment. As stated in Box 

et al. [37] the complete projections of the Taguchi’s arrays 

are orthogonal and therefore, they provide the essential 

information required to characterize the solution space with 

the minimal number of experiments.  

In order to introduce non-experienced engineers and 

practitioners to the design of orthogonal experiments, in the 

60’s, Genichi Taguchi [38] developed a set of tables 

designed to define the minimal set of experiments that 

provides statistically significant information about the 

problem. In engineering, this technique has been widely 

applied (see for example [39-43]). 

In the Taguchi tables, known as the orthogonal arrays, 

the number of experiments depends on the number of 

variables and their levels. For example, an orthogonal array 

L18 [36] enables the study of one factor with two levels 

(factor A) and seven factors with three levels (factors B, C, 

D, E, F, G and H).  

 

 
Figure 3. Graphical representation of a (a) Full factorial plan design, (b) 
Fraction orthogonal plan design with the application of the L4 array, and 

(c) Fraction non orthogonal plan design with random cases. Adapted from 

[37]. 
 

The number 18 represents the number of experiments 

required to assure an orthogonal experiment. Each of these 

experiments is defined in a different row in which the levels 

of the different factors are detailed. The computational 

advantages of the orthogonal arrays are obvious as to obtain 

the same results from a full factorial analysis, a total 

number of 2·73=1458 experiments would be required 

instead of the 18 proposed by this technique.  

The levels of the parameters of the analyzed algorithms 

described in Table 1 leads to 162 DLS experiments for full 

factorial designs. To minimize the number of experiments 

required to define the levels of the parameters of the DLS 

algorithm, the orthogonal arrays are applied in the 

following section.  

 

- Application of the orthogonal arrays 

The L18 array can be adapted to deal with the only 5 

parameters considered (named A, B, C, D and E). In this 

case, parameters F, G and H will take null values. It is 

important to highlight that in this procedure it is 

traditionally advised to assume some columns as null to 

increase the probability of achieving a successful statistical 

analysis. The particularization of the L18 array for the 

analysis of the five factors of the LDS algorithm and their 

corresponding values is presented in Table 2. 

The levels of these parameters correspond with those 

presented in Table 1. It is important to highlight that this 
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analysis provides enough degrees of freedom to study the 

residuals (as factors F, G and H are not considered).  

In the following section, the DLS algorithm is applied for 

the optimization of the tensioning process of a cable-stayed 

bridge. Table 2 shows the considered levels for the factors: 

(A) Matrix type: 2 levels [with, W, or without, W/O, 

consecutive tensioning operations in the stay cables]. (B) 

Maximum number of changes in the tensioning order: 3 

levels: [1, 2, 6]. (C) Maximum number of changes in the 

tensioning stresses: 3 levels [1, 2, 3]. (D) Maximum 

distance between tensioned stays: 3 levels [1, 2, 3] and (E) 

Maximum change of the tensioning stress: 3 levels [10%, 

50%, 80%]. 
Table 2 Particularization of the L18 array for the analysis of the DLS 

algorithm.  

  
FACTOR 

A B C D E F G H 

1 W/O 1 1 1 10 0 0 0 

2 W/O 1 2 2 50 0 0 0 

3 W/O 1 3 3 80 0 0 0 

4 W/O 3 1 1 50 0 0 0 

5 W/O 3 2 2 80 0 0 0 

6 W/O 3 3 3 10 0 0 0 

7 W/O 6 1 2 10 0 0 0 

8 W/O 6 2 3 50 0 0 0 

9 W/O 6 3 1 80 0 0 0 

10 W 1 1 3 80 0 0 0 

11 W 1 2 1 10 0 0 0 

12 W 1 3 2 50 0 0 0 

13 W 3 1 2 80 0 0 0 

14 W 3 2 3 10 0 0 0 

15 W 3 3 1 50 0 0 0 

16 W 6 1 3 50 0 0 0 

17 W 6 2 1 80 0 0 0 

18 W 6 3 2 10 0 0 0 

 

 

5 APPLICATION OF THE PROPOSED 

METHODOLOGY TO A REAL CABLE-STAYED 

BRIDGE 

 

In order to show the applicability of the proposed 

methodology to the tensioning process of a full-scale 

structure documented in the literature, a simplified model of 

a cable-stayed bridge for the city of Wuxi in China [12] is 

analyzed. The model of this structure has a 63 m high 

concrete pylon, a 180 m long steel box girder deck and 18 

stays arranged in a semi-harp symmetrical form. The self-

weight of the bridge deck, g1, and the target load, TL, are 

135 kN/m and 202.5 kN/m respectively. The stays are 

uniformly anchored every 9 m along the bridge deck and 

every 1.8 m along the pylon as presented in Figure 4.a. 

Alternative examples of cable-stayed bridges can be found 

in the literature [44-46]. 

 
 

Figure 4. (a) Cable stayed bridge in Wuxi (China). (b) FEM Model. Units 

in m. 
 

The FEM of this structure is presented in Figure 4.b. This 

model is composed of 146 beam elements (88 for the deck, 

40 for the pylon and 18 for the stay cables). The area, 

inertia and Young modulus of each of these elements is 

summarized in Table 3. 

Table 3. Mechanical properties of the real structure. 

ELEMENT E (MPa) A (m2) I (m4) 

Deck 206000 1,72 4.20 

Pylon 33500 8.54 14.4 

Cables 195000 0.0072 0,01E-0.9 

 

The stay cable forces and the {NOSS} were calculated to 

ensure null vertical deflections at the connections between 

the deck and the stay cables. From Equation (2), the {OSS} 

was calculated and the obtained values are presented in 

Figure 5.a ({OSS}) and Figure 5.b ({NOSS}) respectively. 

The cable-stayed bridge is erected on temporary supports 

after 36 construction stages. In the initial stage the bridge 

deck is supported by 18 temporary and 3 permanent 

supports. The temporary supports are placed below every 

stay cable. During the simulation of the tensioning process, 

once a temporary support is raised it is removed from the 

structure. 

The static response of the structure is evaluated assuming 

geometrical linearity. It is important to take into account 

that the simulation is not based on a static structural system, 

but on an evolutive one. In fact, each optimization step is 

based on the analysis of as many structures as the stressing 
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operations described in the tensioning matrix studied. The 

objective function to be minimized corresponds to the 

bending moment at the connection of the pylon with the 

deck (node 41 in beam element 85 as presented in Figure 

4). The cable sag is neglected due to the reduced length of 

the stays. 

 

Figure 5: (a) Strains in the OSS, (b) Forces in the stays in the OSS. 

The tensioning process of the cable-stayed bridge is 

optimized with the DLS algorithm. This optimization tool 

was programmed in Fortran and integrated to the structural 

analysis code presented in [47-49]. In the following 

sections, the results of the algorithms are presented and 

analyzed.   

- Analysis of the optimization parameters 

A full factorial analysis of the previous parameters 

requires 162 tests. Nevertheless, this number can be 

reduced to 18 when the L18 array presented in Table 2 is 

applied. The use of this array represents a reduction of 88% 

of the required tests (from 162 to 18 cases). It is important 

to highlight that each of these cases requires a significant 

computational effort as it is based on the optimization of a 

tensioning process with many construction stages. 

Concretely, in the analyzed example, 36 different 

construction stages are required. The first 18 of these stages 

requires a local iterative process with additional FEM to 

model the lifting of the temporary supports. The average 

number of the iterations required in this process was 3. To 

assure the convergence of the optimization algorithm based 

on the previous experience of the authors a maximum of 

10.000 iterations were considered and each analysis of the 

optimization algorithm was repeated 6 times to reduce the 

randomness of the process. Therefore, reducing from 162 to 

18 cases is equivalent to reduce the analysis of a maximum 

of (18 x 3+18) x 10.000 x 162 x 6=699.840.000 finite 

element models to a maximum of (18 x 3+18) x 10.000 x 

18 x 6=77.760.000. This can be used to quantify roughly 

the advantage of the method, even though it is important to 

highlight that these numbers might BE altered by the real 

number of iterations in each simulation.”. That way the 

computation time was reduced from more than 1290 to 140 

hours in a computer with an i7 processor and 16GB RAM. 

The results of the ANOVA are summarized in Table 4. 

This table includes the sum of squares, the degrees of 

freedom (DOF), the F and the P values for each factor and 

their combinations. From these results, the optimal values 

of the different parameters can be statistically identified by 

the p-value (see e.g. [37]). This parameter refers to the level 

of marginal significance within a statistical hypothesis test 

representing the probability of the occurrence of a given 

event. A smaller p-value means that there is stronger 

evidence in favor of the alternative hypothesis. In most 

analyses, a value of 0.05 is used as the cutoff for 

significance [38]. In this way, if the p-value is less than 

0.05, we reject the null hypothesis that there is no 

difference between the means and conclude that a 

significant difference does exist. As presented in Table 4, 

this is the case of parameters B (p-value 0.0168) and D (p-

value 0.0024). The rest of the parameters (A, C and E) are 

not significant. 

 
Table 4: Table summarizing the results of the ANOVA analysis. 

Factor  Square sum DOF F_Value P_Value 
A 1.93E+06 1 0.22 0.6367 

B 7.42E+07 1 4.30 0.0168 

C 7.50E+05 1 0.44 0.6487 

D 1.12E+08 1 6.50 0.0024 

E 2.33E+08 1 6.50 0.2643 

 

The analysis of the DLS algorithm was based on the 18 

optimization runs described in Table 2. In order to reduce 

the randomness in each of these simulations, each 

optimization run was repeated 6 times, leading to a total of 

108 analyses. To determine the statistical significance of 

the different studied factors, an analysis of the variance 

(ANOVA) of the objective function was performed with the 

commercial software Statgraphics. In this analysis, the 

levels of each factor are named 1, 2 and 3 respectively. The 

results of this analysis are presented in Figure 6. The first 

part of this figure (Figure 6.a) includes the standard Pareto 

diagram of the different factors. This diagram shows that 

the parameters with the highest standardized effects are 

factor B level 3 and factor D level 3. The second part of the 

diagram (Figure 6.b) defines the effect of each levels of the 

five studied factors in the mean standardized value of the 
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objective function. This figure shows that the lowest 

objective functions are obtained for the following factors: A 

2, B3, C2, D3 and E2. These levels correspond with the 

variables defined in Table 5; that is, 6 changes in the 

tensioning order, 2 changes in the tensioning stress, a 

maximum distance of 3 between tensioned stays, 10% 

maximum change of the tensioning stress and a matrix with 

consecutive tensioning operations.  

The optimal parameters obtained in this section will not 

remain constant for every structure as they depend on the 

optimization assumptions and the characteristics of the 

structure to be optimized. In those structures, another 

application of Taguchi’s Orthogonal arrays will enable the 

definition of the optimal optimization algorithm parameters.  

It is important to highlight two points: 1) the optimal 

solution was not included in the 18 combinations analyzed, 

and 2) this combination represents the optimal performance 

of all 162 possible combinations.  

 
Figure 6: (a) Standardized effect of each factor. (b) Mean standardized 

value of the objective function. 

 
Table 5. Optimum combination of parameters for the DLS algorithm. 

Factor Optimum level 
A: Matrix Type With consecutive 

tensioning operations 

B: Maximum changes in the tensioning order 6 

C: Maximum changes in the tensioning stresses 2 

D: Maximum distance between tensioned stays 3 

E: Maximum change of the tensioning stress  10 % 

- Study of the optimum levels of the DLS 

In order to check the results of the optimum combination 

of parameters presented in Table 5, a new set of 

optimization runs (based on this definition of the levels of 

the parameters) was performed. The obtained results (Test 

2) were compared with those of the 18 cases introduced into 

the ANOVA analysis (Test 1). It is important to highlight 

that each of the tests have been repeated 6 times to reduce 

the randomness of the solution among different runs. In this 

way the results correspond to 108 runs (6 repetitions for 

each of the 18 cases defined in the Table 2) and 6 (6 

repetitions for the variables in Table 5) in Tests 1 and 2, 

respectively. 

The statistical analyses of the results of both tests are 

summarized in Table 6. This table includes the number of 

simulations, the average, the standard deviation, the 

minimum and the maximum values of the objective 

function, the range of the solution (max-min values), the 

standard bias, and kurtosis coefficients.  

 
Table 6. Summary of the tests. 

Parameter Test 1 Test 2 
Number of simulations 108 6 

Average objective function [kNm] 14774.5 10003.3 

Standard deviation [kNm] 3014.2 1380.3 

Minimum objective function [kNm] 8939.0 8500.0 

Maximum objective function [kNm] 18687.0 12878.0 

Range [kNm] 9748.0 4378.0 

Standard bias -1.6 1.6 

Standard kurtosis  -1.6 0.8 

 

The analysis of Table 6 shows that: (1) Lower average 

objective functions are obtained in Test 2. In fact, the 

obtained bending moments (10003.3 kNm) are 33.3% lower 

than the average in Test 1 (14774.5 kNm). (2) Significantly 

lower standard deviations are obtained in Test 2, as the 

obtained value (1380.3 kNm) represents a reduction of 

54.2% of the standard deviation obtained in Test 1 (3014.2 

kNm). (3) The results of Test 2 results are better bounded as 

the range of its solutions (4378.0 kNm) is lower than that 

obtained in Test 1 (9748.0 kNm). (4) The standard kurtosis 

of Test 2 (0.8) is lower than that of Test 1 (-1.6). 

The frequency histogram is presented in Figure 7.a. This 

figure shows how the results of Test 2 are better bounded 

than in Test 1. This is also appreciable in Figure 7.b, where 

the box and whisker plot of each test is presented. The 

analysis of this graph shows that the lower and upper 

quartiles are closer in Test 2. In addition, this set has a 

lower number of outliers and its mean value is smaller. 

To check if the factor levels of Test 2 are statistically 

significant, a statistical hypothesis test was carried out [37]. 

In this procedure, the statistical relationship between two 

data sets is compared as an alternative to an idealized null 

hypothesis, H0, which proposes no relationship between the 

two data sets. The comparison is deemed statistically 

significant if the relationship between the data sets would 

be an unlikely realization of the null hypothesis according 
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to a threshold probability (p-value lower than 0.05). The 

following analyses were carried out: (1) H0: “The average 

values of Test 1 and Test 2 are equal”. Comparison between 

average values shows that the confidence interval for Test 1 

is 10003.35 +/- 1061.04 kNm, while for Test 2 it is 

14774.51 +/- 847.77 kNm. The null hypothesis was rejected 

after obtaining a P-value lower than 0.05 (specifically 

0.00002). (2) H0: “The standard deviation of Test 1 and 

Test 2 are equal”: Working in a similar way with the 

standard deviation, confidence ranges of [932.37; 2644.44] 

and [2522.03; 3746.92] kNm were obtained for Tests 1 and 

2 respectively. This null hypothesis is also rejected after 

obtaining a P-value of 0.024. These results show that the 

improvement in both the average values and the standard 

deviation of Test 2 are statistically significant.  

 

 
Figure 7: Statistical comparison of Test 1 and Test 2: (a) Frequency 

Histogram, (b) Box & Whisker plot.  

 

From all the results presented above, it can be concluded 

that use of the proposed levels of the variables in the DLS 

algorithm leads to statistically better results than those 

obtained with a random or arbitrary selection of those 

levels.  

6 CONCLUSIONS 

 

Traditionally the parameters of the heuristic optimization 

algorithms are selected by a trial and error process. The 

main inconvenience of this methodology is that it cannot 

guarantee the quality of the obtained results because not all 

the potential combinations of parameters are checked. To 

fill this gap, this paper proposes the application of 

Taguchi’s orthogonal arrays to calibrate the parameters of a 

heuristic optimization tool (the Descent Local Search 

algorithm). This methodology is based on the study of the 

combinations of discrete values of the heuristic algorithm 

parameters and it enables to optimize the heuristic tool 

performance with a reduced computational effort. To check 

its efficiency, this methodology is applied to a technical 

challenge never studied before: the optimization of the 

tensioning process of cable-stayed bridges. The advantages 

of the proposed calibration are illustrated in the example. In 

fact, the proposed calibration of the heuristic algorithm 

parameters provided more robust values of the objective 

function (with lower mean and lower standard deviation) 

with a significantly lower computational cost.  

It is important to highlight the generality of the proposed 

methodology as it can be applied to other optimization 

problems and optimization tools. This application will 

require the following steps: (1) Identifying the variables, 

constraints and parameters of the problem to be optimized. 

(2) Identifying the parameters and the levels of the 

optimization tool. (3) Choosing and adapting an adequate 

orthogonal array to determine the different combinations of 

the levels of the optimization tool parameters. (4) Doing an 

ANOVA analysis to determine the optimal levels of the 

optimization tool parameters 
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