
coatings

Article

Antifungal Polyvinyl Alcohol Coatings Incorporating
Carvacrol for the Postharvest Preservation of
Golden Delicious Apple

Mayra Sapper , Maria Eugenia Martin-Esparza , Amparo Chiralt and
Chelo Gonzalez Martinez *

Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Ciudad Politécnica de la Innovación,
Universitat Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain; maysap@etsiamn.upv.es (M.S.);
eesparza@tal.upv.es (M.E.M.-E.); dchiralt@tal.upv.es (A.C.)
* Correspondence: cgonza@tal.upv.es

Received: 7 October 2020; Accepted: 21 October 2020; Published: 26 October 2020
����������
�������

Abstract: Different polyvinyl alcohol (PVA) coating formulations incorporating starch (S) and
carvacrol (C) as the active agent were applied to Golden Delicious apples to evaluate their effectiveness
at controlling weight loss, respiration rate, fruit firmness, and fungal decay against B. cinerea and
P. expansum throughout storage time. Moreover, the impact of these coatings on the sensory attributes
of the fruit was also analyzed. The application of the coatings did not notably affect the weight loss,
firmness changes, or respiration pathway of apples, probably due to the low solid surface density of
the coatings. Nevertheless, they exhibited a highly efficient disease control against both black and
green mold growths, as a function of the carvacrol content and distribution in the films. The sensory
analysis revealed the great persistence of the carvacrol aroma and flavor in the coated samples,
which negatively impact the acceptability of the coated products.
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1. Introduction

Postharvest blue mold, caused by Penicillium expansum, and gray mold, caused by Botrytis cinerea,
are two of the most common fungal diseases in apples, pears, and a number of other pectin-rich
fruits [1–3]. Initial infection most often occurs at sites of fruit injury, such as bruises, natural openings,
or puncture wounds. Although infections may start in the field, infected spots often become evident
post-harvest, and expand while fruits are in storage due to the combination of intrinsic factors, such as
the high sugar content, water activity, and ideal pH; together with favorable environmental conditions,
such as low temperatures and high humidity, which permit the postharvest deterioration of the
harvested fruit, this causes considerable economic losses [2,4,5]. In pome fruits, disease symptoms
include soft, light brown watery lesions. Sometimes, infection can develop from placing rotted fruit
next to healthy fruit, spoiling entire lots [6].

Traditionally, the postharvest management of fresh fruit and vegetable decay involves the use of
synthetic chemical fungicides. However, growing public concern over the health and environmental
hazards associated with the increased levels of chemical fungicides and the lack of approval for
the renewal of some of the most effective active molecules has led to the development of safe,
alternative, and natural methods of post-harvest disease control. The application of active coatings
using antimicrobial compounds of natural origin for fruit preservation purposes could solve some of
the challenges associated with stable quality, nutritional value, health safety, and economic production
costs [7]. These coatings can modify the internal gas composition and reduce the water loss through
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the regulation of O2, CO2, and water vapor exchange between the fruit and the external atmosphere.
These modifications could affect the physiological behavior of the coated products, associated with the
shelf life of produce, and, in some cases, even modify their characteristics prior to consumption [8].

The incorporation of active ingredients, such as antimicrobial agents (essential oils or their
components) into the coating matrix represents an additional advantage, since it permits the reduction
of the doses of the active compounds while maintaining their effectiveness [9]. Moreover, the application
of this technology could minimize one of the major drawbacks of using essential oil-based compounds,
such as its potential phytotoxicity; this shows up as spotting on fruit skin, leading to a loss of
marketability and to its strong aroma/flavor, which could affect the organoleptic properties of the
product, leading to sensory incompatibilities of the selected active compound with the target fruit.

Of the natural antimicrobial compounds, thymol, eugenol, carvacrol and other terpenoids,
and phenolic acids from plant essential oils have been widely reported to effectively inhibit
mycelial growth and spore germination through fungistatic and/or fungicidal actions against several
microorganisms in both in vitro and in vivo studies [10–13]. Of them, the monoterpenoid phenol
carvacrol (one of the major constituents of oregano and thyme essential oils) is considered as a safe
food additive in Europe and the USA due to the “generally recognized as safe” status [14]. Carvacrol
exhibited antibacterial and antioxidant activity and several studies have demonstrated its effectivity
against several food-related spoilage fungi such as Fusarium spp., several Aspergillus and Penicillium
strains, Cladosporium spp., Botrytis cinerea, Fusarium oxysporum and Rhizopus oryzae, etc. [15–20].

Starch, widely used as a food coating/packaging polymer, is available from diverse plant sources,
low cost, and biodegradable. Due to their hydrophilic nature, starch films are highly water sensitive
and exhibit poor water vapor barrier properties [21]. To overcome these problems, starch is often
blended with other biopolymers in order to obtain coatings/films with enhanced properties. To this end,
different studies into starch-polyvinyl alcohol (PVA) blend films have been carried out [22–25]. PVA is a
hydrophilic, nontoxic synthetic polymer, biocompatible and biodegradable, resulting in an eco-friendly
material [26]. PVA has also received FDA approval for close contact with food products, making
it widely used as a cold and hot water-soluble film for diverse packaging applications, including
food products, detergents, pharmaceuticals, and agricultural chemicals. Recently, PVA has been
submitted to FDA approval for use as a component of a water-soluble edible film containing dry food
ingredients (GRAS Notice no. 676, 2018). PVA films have good oxygen and aroma barrier properties,
good transparency and high tensile strength, and flexibility. Some authors reported that blend films
based on starch-PVA presented several advantages over pure starch films, due to the formation of
interpenetrated polymer networks with positive effects on the mechanical and water barrier properties
of the composite films [22].

In this study, PVA-starch coatings incorporating carvacrol were applied to apples to evaluate:
(1) The postharvest behavior of coated fruit in terms of weight loss, respiration rates, and fruit firmness,
(2) the antifungal efficacy of these coatings applied as a curative treatment against B. cinerea and
P. expansum, (3) the sensory acceptance of the coated product.

2. Materials and Methods

2.1. Materials

Polyvinyl alcohol (PVA) (Mw: 13,000–23,000, 87%–89% hydrolyzed) was purchased from
Sigma-Aldrich Química S.L. (Madrid, Spain), native potato starch was supplied by Roquette
Laisa España S.A. (Benifaió, Valencia, Spain), and carvacrol (C) was provided by Sigma-Aldrich
(Steinheim, Germany). Glycerol, used as a starch plasticizer and methanol were supplied by Panreac
Química S.A. (Castellar de Vallès, Barcelona, Spain).

Apples (Malus domestica Borkh cv. Golden Delicious) were purchased from a local packinghouse
(Valencia, Spain). The fruit was chosen according to its uniform shape, size, color, and the absence of
surface defects.
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2.2. Preparation of the Coatings Forming Dispersions and Films

The coating forming dispersions (CFD) were prepared on the basis of previous studies [22].
Thus, starch (2.5% w/w) was dispersed in distilled water and kept at 95 ◦C for 30 min to induce complete
starch gelatinization. Meanwhile, 2.5% (w/w) PVA aqueous dispersion was obtained under stirring at
90 ◦C for 30 min. Both solutions were cooled down to reach room temperature and afterwards, glycerol
was added to the starch dispersion (0.25 g/g of polymer). Carvacrol, used as an antifungal agent,
was incorporated into the PVA dispersion (40% or 80% with respect to the PVA) and homogenized
for 4 min at 12,500 rpm using an Ultra Turrax rotor-stator homogenizer (DI 25 Basic, IKA®-Werke
GmbH & Co. KG, Staufen, Germany). The starch and PVA dispersions were mixed in the adequate
proportion to obtain the different CFD. Table 1 shows the different CFD formulations and their
respective solid composition.

Table 1. Mass fraction (X) (g/100) and viscosity of the different components in each coating forming
dispersion (CFD) and carvacrol retention percentage in the dry films. Mean values (and standard
deviation). (S: Starch; PVA: Polyvinyl alcohol; Gly: Glycerol; and C: Carvacrol).

Formulation
CFD Film

XPVA XS XGLY XC µ (mPa·s) Carvacrol Retention (%)

100PVA:0S 2.5 - - - 2.92 (0.12) a -
100PVA:0S-C40 2.5 - - 1 2.89 (0.09) a 59 (2) a

75PVA:25S-C40 1.875 0.625 0.156 0.75 3.51 (0.02) b 44.3 (0.4) c

50PVA:50S-C40 1.25 1.25 0.312 0.5 5.33 (0.05) c 47 (1) c

50PVA:50S-C80 1.25 1.25 0.312 1 6.04 (0.04) d 54 (2) b

a–d: Different superscript letters within the same column indicate significant differences among formulations
(p < 0.05).

Standalone films were also obtained in order to evaluate the final carvacrol content expected in
the coatings after their drying. To this end, a mass of the formulations containing 1.5 g of total solids
was spread evenly onto Teflon casting plates (150 mm in diameter) to provide a density of solid of
84 g/m2. The films were dried under natural convection for approximately 48 h at 25 ◦C and 45%
relative humidity (RH). After drying, the films were peeled off the casting surface and conditioned at
0% RH (using P2O5) and at 25 ◦C.

2.3. Characterization of Coating Forming Dispersions and Carvacrol Retention in the Films

2.3.1. Rheological Behavior of the Dispersions

The rheological behavior of the different formulations was analyzed in triplicate at 25 ◦C by means
of a rotational rheometer (HAAKE Rheostress 1, Thermo Electric Corporation, Karlsruhe, Germany)
by using a sensor system of coaxial cylinders, type Z34DIN Ti. Measurements were taken between
0–150 s−1 where Newtonian behavior could be assumed and the viscosity values (µ) of the dispersions
were determined.

2.3.2. Carvacrol Retention in the Films

To quantify the retention of the active compound during film formation, a known mass of dried
film was placed in triplicate in amber vials containing 15 mL of an aqueous solution of methanol 50%
(v/v), hermetically sealed and kept under stirring at 300 rpm for 24 h at 25 ◦C to promote carvacrol
extraction. Subsequently, aliquots of the sample extract were measured as to the absorbance (A) at
275 nm, using a spectrophotometer (Evolution 201 UV-Vis, Thermo Fisher Scientific Inc., Shanghai,
China), as previously described by [27]. The carvacrol concentration (C) in the films was determined
by means of a calibration curve obtained with the carvacrol solutions in the same solvent containing
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between 1118 and 71.28 µg/mL (C = 0.014A + 0.0048; r2 = 0.9995). As blank samples, the extract of the
corresponding film without carvacrol was considered (2.3.2).

The carvacrol distribution in the films was analyzed through the microstructure of the film’s
cross-sections. To this end, the film samples were previously conditioned in desiccators containing
P2O5 in order to eliminate the water content; then, they were immersed in liquid nitrogen to obtain
cryo-fractured cross-sections. All of the samples were mounted on copper stubs and platinum coated.
The images were obtained by Field Emission Scanning Electron Microscopy (FESEM) (ZEISS®, model
ULTRA 55, Oberkochen, Germany), using an accelerating voltage of 2 kV.

2.4. Quality of Coated Fruit

The apples were cleaned and disinfected by immersion in a 1% sodium hypochlorite solution,
thoroughly rinsed with tap water, and air-dried at room temperature before the coating application.
The samples were dipped in the different CFD for 3 s, while the non-coated samples (controls) were
immersed in a water bath. The CFD were allowed to drip off and afterwards, the applied coatings
were dried by natural convection for about 24 h at room temperature and stored at 25 ◦C and 65% RH
for 14 days. Five pieces of fruit were considered for each formulation.

2.4.1. Surface Density of Solids (SDS)

The SDS of each coating was evaluated by weighing each fruit with a precision balance (Kern
PFB 120-3, Balinguen, Germany) before and after the coating application to obtain the CFD adhered
mass, as it has been reported by other authors [21]. To calculate the total adhered solids, the mass
fraction of each CFD was considered and the SDS (g·m−2) was calculated by applying Equation (1),
according to [28]:

SDS =
(mC −m0)·XSCFS

m0
·ρ·

1
Se

(1)

where mC is the mass of the coated apple, m0 is the mass of the uncoated apple, XSCFS is the mass
fraction of the solids of the CFD (g solids/g solution), and ρ is the apple density (0.9 g·cm−3). To obtain
the specific surface (Se = 6/d, m2 particles m−3 fruit), the average diameter (d) was calculated considering
a spherical geometry for the fruit.

2.4.2. Weight Loss Rate

Fruit weight loss during storage was determined using an analytical balance (ME235P, Sartorius,
Wertheim, Germany) before and after 3, 7, and 14 days of the storage period. The mass loss was
referred to the initial mass of each fruit, and the results were expressed as a relative mass loss rate
(day−1), which was obtained from the slope of the fitted straight line to the relative weight loss versus
time. Five repetitions were considered for each formulation (coated and non-coated).

2.4.3. Respiration Rates

A closed system was used to measure the respiration rate, according to the method proposed
by [29], with some modifications. Thus, two apples were placed into 0.940 L hermetic glass jars with a
septum in the lid for sampling gas in the headspace at different times. Gas sampling was carried out
every 30 min for 4 h by means of a needle connected to a gas analyzer (CheckMate 9900 PBI Dansensor,
Ringsted, Denmark). Two replicates per treatment were performed after 3, 7, and 14 days of the storage
period. The respiration rate (Ri) of the samples in terms of CO2 generation and O2 consumption was
determined from the slope of the fitted linear equation, according to Equation (2). The respiration
quotient (RQ) was determined as the ratio between CO2 production and the O2 consumption.

yit = yi0 ± 100·Ri·
M
V
·t (2)
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where yit is the gas concentration (%O2, %CO2) at time t, yi0 is the initial gas concentration, Ri is the
respiration rate (mL·kg−1

·h−1), M is the mass of the samples, V is the volume (mL) of headspace, and t
is time.

2.4.4. Fruit Firmness

Fruit firmness was measured through a puncture test using a texture analyzer (Stable Micro
Systems, TA.XT plus, Haslemere, England) with a 50 N load cell equipped with an 11-mm diameter
cylindrical probe, applying a modification of the method proposed by [30]. A small skin area was
removed from four opposite sides of each fruit in the equatorial zone where the puncture test was
carried out. The probe penetrated the flesh at 10 mm·min−1 and the force and distance at the break
point of the flesh (Fmax, N, dmax, mm) were determined. Four measurements were taken around
the equatorial plane of the apple in five different samples for each treatment at 0 and after 14 days
of storage.

2.5. In Vivo Antifungal Assays

Stock cultures of B. cinerea (CECT-20973) and P. expansum (CECT-20906) were supplied by the
Spanish Type Culture Collection (Burjassot, Valencia, Spain). These fungal strains were inoculated on
to potato dextrose agar (PDA; Scharlab, Barcelona, Catalonia, Spain) in the dark and incubated at 25 ◦C
until sporulation. Conidia were scraped from the cultures using a sterile loop and subsequently filtered
and transferred to test tubes with sterile distilled water and 0.01% Tween 85. The suspensions were
adjusted by means of an haemocytometer at 3× 104 conidia·mL−1 for B. cinerea and 1× 105 conidia·mL−1

for P. expansum, according to other studies [31,32].
Each fruit was wounded (approximately 1.6 mm in diameter and 2 mm deep) at one point of the

fruit equator using the tip of a stainless-steel rod and inoculated with a micropipette with 100 µL of the
correspondent spore suspension of B. cinerea and 20 µL in the case of P. expansum.

For the assessment of the coatings’ curative activity, the fruit was first inoculated with the different
fungal strain and after 24 h, samples were coated as previously described. Once dried, the pieces of
fruit were placed on to perforated plastic trays avoiding any direct contact between them and incubated
at 20 ◦C and 85% ± 5% RH. Twelve pieces of fruit were used per treatment. The control fruit was also
inoculated using the same procedure, and afterwards immersed in water as previously described.

Disease incidence (% of infected fruit) and severity (lesion diameter) were assessed after 2, 5, 7, 9,
and 12 days of incubation at 20 ◦C and 55% RH. The lesion diameter (mm) was evaluated by using the
ImageJ 1.52a software (National Institutes of Health, Bethesda, Maryland, USA).

2.6. Sensory Analysis

A 40-member non-trained panel carried out the sensory evaluation of the samples 2 days after the
coating application was performed. The sensory analysis was performed using whole fresh apples and,
as control, uncoated fresh samples were used. All the samples, which were previously cut into wedges
(1/8 of the whole apple), were presented to the judges at the same time. The judges were asked to
evaluate the samples in terms of appearance and aroma, flavor, and overall preference using a 9-point
hedonic scale (1 = “dislike extremely”, 9 = “like extremely”).

This sensory evaluation poses no hazard to human health taking into account the low level
of carvacrol ingested and that carvacrol has been recognized as a food additive and as a flavoring
substance by the Food and Agriculture Organization of the United Nations (FAO) and European Food
Safety Authority (EFSA), respectively [33,34]. The samples were randomly presented with a three-digit
code. All of the evaluations were conducted in an EU homologated sensory room.

The panelists were supplied with a rating sheet containing information on the evaluation procedure,
in addition to the general oral instructions and individual clarifications as required. The panelists
were also required to cleanse their palate with mineral water between the testing of different samples.
The panelist’s average responses were considered for each attribute.
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2.7. Statistical Analysis

The statistical analyses of the results were performed through an analysis of variance (ANOVA)
using Statgraphics Centurion XVI.II (StatPoint Technologies Inc., Warrenton, VA, USA). Fisher’s least
significant difference (LSD) test was used at the 95% confidence level to determine significant differences
between means.

3. Results

3.1. Rheological Behavior of the Coating Forming Dispersions

The gravitational drainage of CFD after application occurs before the coating dries, depending on
the liquid viscosity, greatly affecting the thickness of the applied coating, which, in turn, determines
its barrier capacity. All the formulations exhibited Newtonian behavior in the low shear rate range
considered (0–150 s−1) at the solid concentrations used. The gravitational drainage occurs at low
shear rates, in the order of 1–10 s−1 [35] and the obtained viscosity values correspond to this range.
The viscosities of the CFD are shown in Table 1. The incorporation of carvacrol was observed to have
no significant effect (p > 0.05) on the viscosity value of the pure PVA solution. This could be attributed
to the changes in the PVA concentration in the continuous phase due to its interfacial adsorption at the
oil-water interphase, as observed by other authors for some polymer solutions containing essential
oils [36]. On the other hand, the viscosity significantly rose (p < 0.05) when the starch ratio or carvacrol
content increased in the polymer blends (Table 1), in agreement with the thickening power of starch or
the rise in the dispersed phase concentration (carvacrol). The different values in the viscosity of CFD
will affect the coating thickness or surface density of the solids in the coatings.

3.2. Carvacrol Retention in the Films

The carvacrol retention in the films for each formulation is also shown in Table 1. Remarkable
losses of carvacrol were expected during the film drying step due to the emulsion destabilization
(droplet flocculation and creaming) that occurs in line with the water evaporation and the steam
drag effect at the film surface of the creamed droplets, as reported by other authors for cast films
containing carvacrol or similar volatile compounds [27,37,38]. Nevertheless, the CA-loaded films
exhibited moderate retention values, of about 44%–59% depending on the formulation. The maximum
retention capacity was found for the 100PVA:0S-C40 coating (Table 1) with similar values to those found
by other authors for PVA films with carvacrol [39]. The retention of carvacrol was promoted by the
presence of residual acetyl groups in the PVA chains. As reported by [40], the acetyl groups undergo
ionization, generating negative charges in the polymer chain that can interact with the acidic phenolic
group of CA. This mechanism promotes the binding of CA to the polymer chains, thus contributing to
an increase in its effective retention in the polymer matrix, since the bonded carvacrol is not emulsified
and so, insensitive to the emulsion destabilization and evaporation by the steam drag effect [39,41].
Nevertheless, the low viscosity of the polymer aqueous phase was a limitation for the carvacrol
retention in emulsified systems during the coating drying step. In emulsified polymer systems, high
values of viscosity contribute to reducing the volatile losses since high viscosity limits the creaming
and surface evaporation. The relatively low viscosity of the used CFD led to moderate retention values,
in comparison with other studies that considered 15% PVA and 2% CA in the aqueous dispersion [41].

The addition of starch to the CFD significantly (p < 0.05) decreased the carvacrol retention despite
the increase in viscosity. This can be attributed to the lower degree of affinity of the starch and
carvacrol compared with that of PVA-C, and the subsequent increase in the emulsified carvacrol content
sensitive to destabilization processes and evaporation by means of the steam drag effect. For the same
polymer composition in the formulation, the retention efficiency increased as the carvacrol content
rose; this can be explained by the increase in the viscosity and the reduction in the creaming rate when
the concentration of dispersed phase rose.
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The FESEM micrographs of the films obtained with carvacrol (Figure 1) confirmed the
abovementioned effects. In the film with only PVA, very small carvacrol droplets were observed,
which indicates the PVA’s stabilizing effects in carvacrol (bonded or emulsified) that limit the coalescence
and creaming phenomena, increasing the carvacrol retention in the film. In PVA-starch blend films,
coalescence of carvacrol can be observed forming big liquid clusters entrapped into the polymer matrix
during the film forming process (small arrows in Figure 1). In the starch-PVA blend with the highest
ratio of carvacrol, the top part of the film during the film-forming step and water evaporation appeared
completely flooded by carvacrol, thus revealing the coalescence and creaming of the carvacrol droplets
during this step. Differences in the film microstructure and carvacrol distribution could affect the
carvacrol release, thus affecting its antifungal action.

Figure 1. FESEM micrographs of the cross section of PVA composite films containing carvacrol. Big
arrows indicate the upper part of the film in contact with the air during the drying process (top)
and small arrows, the presence of carvacrol liquid clusters. (a) 100PVA-C40; (b) 75PVA-25S-C40;
(c) 50PVA-50S-C40; (d) 50PVA-50S-C80.

3.3. Effect of Coatings on the Postharvest Quality of Apples

Table 2 shows the values of the surface density of solids (SDS), the rate of the relative weight
loss, the fruit firmness parameters, and the respiration rates of the apple samples after two different
storage times. These parameters allow for the evaluation of the relevance of the coatings on the quality
changes in apple during storage.
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Table 2. Surface solids density (SSD), weight loss rate, force and distance at the failure point (Fmax,
dmax), O2 consumption rate and CO2 production rate, and respiration quotient (RQ) of coated and
uncoated (control) apples.

Property Control 100PVA:0S 100PVA:0S-C40 75PVA:25S-C40 50PVA:50S-C40 50PVA:50S-C80

SSD (g/m2) - 0.352 (0.112) a 0.30 (0.07) a 0.22 (0.08) a 0.49 (0.13) b 0.53 (0.09) b

Weight loss rate (day−1) −0.34 (0.08) a
−0.32 (0.12) a

−0.295 (0.012) a
−0.33 (0.07) a

−0.34 (0.05) a
−0.35 (0.05) a

Fmax (N) 31 (3) a 33 (7) a 32 (4) a 34 (4) a 32 (4) a 29 (3) a

dmax (mm) 3.9 (0.2) bc 4.0 (1.3) bc 4.4 (0.2) c 3.9 (0.6) bc 3.7 (0.5) bc 3.5 (0.4) ab

RO2 t = 3 * 11 (5) ab 6 (5) a 4.8 (1.5) a 11.9 (0.6) ab 9 (4) ab 15 (2) b

RCO2 t = 3 * 16 (4) b 6.6 (0.9) a 11.9 (1.4) b 13 (3) ab 12 (6) ab 14.5 (1.9) b

RQ t = 3 1.4 (0.5) a 0.8 (0.5) a 1.8 (0.3) a 1.358 (0.003) a 1.3 (0.6) a 1.26 (0.03) a

RO2 t = 14 * 11 (3) bc 6 (0.5) a 6.7 (1.2) ab 13 (3) c 12 (5) bc 10.5 (0.8) bc

RCO2 t = 14 * 16 (10) bc 3 (4) a 9.7 (1.4) b 16.2 (0.8) bc 10 (3) b 19 (2) c

RQ t = 14 1.46 (0.13) bc 1.11 (0.07) a 1.708 (0.107) c 1.308 (0.097) ab 1.435 (0.102) b 1.38 (0.07) b

*: (mL·kg−1
·h−1). a–c: Different superscript letters within the same row indicate significant differences (p < 0.05).

The coating thickness will affect the coating efficiency and its value would be related with the
obtained SDS value, although the homogeneity of the solid distribution will also have a significant
impact. SDS depends on the amount of coating that adheres to the surface of the fruit and the total
solid content of the formulation, and it is greatly affected by the wettability, extensibility, and viscosity
of the CFD [42]. The obtained SDS values ranged between 0.3–0.5 g/m2, depending on the formulation.
The amount of adhered solids was relatively low in comparison with similar studies, where thicker
dispersions were used [42]. Likewise, the 50PVA:50S-C40 and 50PVA: 50S-C80 coatings presented
significantly higher SDS values (p < 0.05) compared to the rest of the dispersions, which can be
attributed to their higher viscosity values (Table 2). A high degree of viscosity limits the gravitational
drainage of the applied dispersion before the drying process is applied to the coating, and so promotes
the retention of a greater surface density of the CFD. Therefore, a greater coating thickness could be
expected for the thickest formulations of 1:1 starch-PVA blends with carvacrol. This would also imply
a greater amount of active compound on the fruit surface.

The firmness of the fruit was evaluated through the maximum force and the penetrated distance
values at the failure point, since it represents the deformability of the flesh associated with differences
in the cell turgor [42]. At initial time (t = 0), the uncoated control fruit exhibited a force value of
29 ± 3 N and a deformation distance of 2.9 ± 0.4 mm. After two storage weeks, the distance at failure
point increased in all (coated and uncoated) of the apple samples with respect to the initial value,
thus indicating the loss of cellular turgor throughout time due to the progressive dehydration of
the samples at the surface level, which favors the sample deformation without break. However,
no significant changes occurred in the maximum force value, which presents similar values for
every sample. The samples exhibiting the greatest SDS values have the lowest deformability values,
while those coated with pure PVA with carvacrol (with a low SDS value) were the most deformable.
However, non-significant differences were found regarding the weight loss rate of the different samples
(uncoated and coated) during the 14 storage days. This reflects a mild barrier effect of the coatings to
water exchanges, which may be due to the highly hydrophilic nature of the polymers that enhanced
the water vapor permeability and to the low amount of adhered solids, which reflected the very
limited thickness of the coatings. An increase in the polymer concentration in the CFD, and so
in viscosity, could enhance the coating thickness and boost the barrier effect to water exchanges.
However, the industrial application of the CFD points to the need for low viscosity in order to facilitate
their manipulation.

The effect of the coatings on the respiration rate of apples (uncoated and coated samples) was
evaluated through O2 consumption and CO2 generation and the respiration quotient (RQ) after
3 and 14 days of storage (Table 2). In uncoated apples (control), these values were 11 ± 5 and
16 ± 4 mL·kg−1

·h−1 for O2 consumption and CO2 generation, respectively, coinciding with other
studies [42]. Coatings can serve as gas barriers, which could reduce respiration rates [43], due to
a blockage of the surface pores. A lower respiration rate is associated with a lower exchange of
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gases and, therefore, a more limited availability of oxygen to allow respiration. However, changes
in the internal atmosphere of the fruit depend on the type of material used, the homogeneity and
thickness of the coating, and potential interactions with the natural wax of the fruits, etc. [42,44].
In general, a decrease in the O2 consumption and CO2 production was observed in the coated samples,
although the great variability found made this decrease non-significant in most cases, despite the fact
that these hydrophilic coatings represent an excellent barrier to oxygen [45]. Samples coated with pure
PVA, containing or not carvacrol, exhibited the lowest respiration rates in line with the lower oxygen
permeability of PVA [22]. The variability in the values can be attributed to the natural variability
in fruits and to the small amount of coating material deposited on the surface that may lead to the
incomplete coverage of the fruit once the coating dries [46]. In general, no significant changes in the
respiration patterns were observed throughout the storage period.

The respiration quotient (RQ) ranges from 0.7–1.3 in aerobic respiration depending on the
metabolic substrate [47]. In general, this respiratory quotient did not change over time, which shows
that there were no changes in the metabolic pathways during the time of analysis. Nor were any
significant differences found in the RQ of the different treatments, except for the formulation with pure
PVA with carvacrol, where the RQ was higher after both 3 and 14 days of storage, in line with the
lowest oxygen consumption rates with normal CO2 production rates. Carvacrol incorporation in pure
PVA did not reduce the great barrier capacity of PVA to oxygen, but increased the CO2 production, in
comparison with pure PVA.

These analyses led to the conclusion that applied coatings were not effective at controlling the
water vapor exchanges of the fruits which produced a slight increase in the fruit deformability during
storage, although pure PVA based coatings limited the oxygen consumption to a greater extent than
those of PVA-starch blends with carvacrol. This compound did not induce negative changes in the
metabolic pathway of apple, as deduced from the values of the respiration quotient. Likewise, it is
remarkable that neither the respiration pattern nor the symptoms observed on the fruit surface pointed
to any phytotoxicity of the carvacrol in the coated fruits.

3.4. Fungal Decay of Apples

Numerous studies have previously shown that the application of coatings with the incorporation
of essential oils, or some of their pure components, contributed to the control of various diseases
caused by pathogens in the postharvest storage of fruit (including B. cinerea and P. expansum) [48–50].
Nevertheless, a wide variability in the efficiency of the disease control can be found due to numerous
factors that influence the antifungal properties of the coatings. The nature of the coating matrix,
the type and concentration of antifungal compounds used, the species and strains of the target
postharvest pathogens, the cultivar and the physical and physiological conditions of the host fruit and
the postharvest environmental conditions are among the most important.

The carvacrol concentrations in the coatings, taking into account its mass fraction in the CFD
and assuming the same retention percentage as in the films, were: 0.17, 0.10, 0.07, and 0.14 g C/g dry
coating for the 100PVA:0S-C40, 75PVA:250S-C40, 50PVA:50S-C40, and 50PVA:50S-C80 formulations,
respectively. This implies samples with a higher or lower content of the active compound, whose release
rate will also influence the effectiveness at controlling fungal growth when the minimal inhibitory
concentration is reached at the infection point. In terms of the carvacrol release, different behaviors could
be expected as a function of the carvacrol load in the coating and its distribution in the polymer matrix
as a consequence of the different PVA-starch-carvacrol interactions and the final film microstructure
(Figure 1). The greater chemical affinity of PVA with carvacrol could limit its release from the matrix
when it is richer in PVA. Likewise, the presence of starch in coating formulations could partially inhibit
the action of the antimicrobial agent due to its nutritional effect that can favor the growth of fungi,
such as Botrytis [42]. All of these aspects can contribute to the different growth inhibition behavior
observed for the coatings in each fungus.
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Figure 2 shows the incidence level of both fungi as a function of storage time both for the
control samples and those coated with the different formulations. The incidence percentage reached a
practically constant value from 5–8 storage days onwards, depending on the treatment, which was
affected by the type of coating and fungus. A 100% incidence of Botrytis was observed for both
the control samples and those coated with pure PVA without carvacrol, whereas lower percentages
(67%–83%) were reached in samples coated with formulations containing carvacrol. In the case of
Penicillium, the asymptotic incidence level was lower than in Botrytis, being more sensitive to the
different treatments. Specifically, the greatest incidence level of Penicillium was observed for the
treatment with pure PVA without carvacrol, which could be related with the ability of Penicillium to
use PVA as a carbon source for growth purposes [51,52]. On the other hand, the lowest incidence level
was detected for the treatments with starch-PVA blends with carvacrol and the intermediate values for
both the control samples and those coated with pure PVA with carvacrol. These results indicate the
different sensitivity of each fungus to the coating action and carvacrol effect. Whereas every coating
with carvacrol reduced the incidence level of Botrytis, the incidence of Penicillium was only notably
affected by the coatings formed by PVA-starch blends, where a faster release of the active compound
could be expected due to its weaker bonding to the polymer matrix.

Figure 2. Incidence (%) and severity disease (mm) in apple inoculated with (a,c) Botrytis cinerea and
(b,d) Penicillium expansum throughout the incubation time.

Figure 2 also shows the values of the diameter of the lesions (mm), which represent the severity of
the disease caused by both fungi (B. cinerea and P. expansum) in the fruit throughout the storage period.
The MANOVA analysis showed that both factors, coating treatment and storage time, significantly
affected (p < 0.05) the disease’s severity, without there being any significant interactions. The disease’s
severity increased throughout storage time in every case, more slowly in the samples coated with
films containing carvacrol, without any significant differences between the control samples and those
coated with PVA without carvacrol. The values of disease severity observed for Penicillium were a
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great deal lower than for Botrytis, with different trends concerning the effect of the carvacrol content.
In Penicillium, the coatings with pure PVA and carvacrol reduced the growth of the lesion diameters to
a lower extent than the blend coatings of starch and PVA with carvacrol. In contrast, the reduction
in the growth of the fungal lesion for Botrytis was less significant with the 50PVA50S-CA40 coating,
which contained the lowest final concentration of carvacrol. Therefore, both the concentration of the
active compound and its release rate from the polymer matrix affected the fungal growth, depending
on the fungal physiology and its sensitivity to the active compound in the different growth stages.

The antifungal activity of carvacrol has been related to the severe damage to the fungal membranes
and cell walls, which led to the morphological deformations, collapse and deterioration of the conidia,
and/or hyphae [19]. Antifungal effects were also observed by other authors for thymol essential oil
(EO) in Red Fuji apple [53]. These authors showed that, additionally to the known antifungal activity of
thymol essential oil (with thymol and carvacrol as major components), the efficacy of thyme essential
oil was also related to the induction of host resistance, since the state of alertness is activated in the
fruit after the oil application. Nevertheless, these authors also pointed out that the direct application of
the EO provoked the appearance of a certain degree of phytotoxicity in the samples, which was not
observed in the samples submitted to the studied treatments. However, the progressive volatilization
of carvacrol may reduce its antifungal action throughout the storage time.

To summarize, the application of carvacrol-loaded coatings exerted a positive antifungal effect on
apples, as significant reductions in the severity and incidence level of both P. expansum and B. cinnerea
were observed. Thus, after 12 storage days, the severity of the damage was reduced by around 30%,
and even by up to 33%, with respect to the control samples when using carvacrol-loaded coatings
for Botrytis and Penicillium, respectively. Likewise, in the same period of time, the incidence level
decreased by up to 27% and by around 40% for Botrytis and Penicillium, respectively.

3.5. Sensory Evaluation

The results of the sensory analysis carried out with the formulations applied to whole apples are
summarized in Figure 3. As can be observed, the appearance of the apple was not significantly affected
by the coating applications. On the contrary, the judges found significant differences (p < 0.05) regarding
the aroma and flavor attributes between uncoated samples or ones coated only with pure PVA and those
samples treated with the active coatings due to the negative impact of the odor and taste of carvacrol.
Similar results have been previously observed by other authors for other carvacrol-loaded coatings [54].

Figure 3. Sensory profile of the uncoated (control) and the different coating formulations applied onto
whole fresh apples in terms of appearance, aroma, flavor, and preference.
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4. Conclusions

None of the coating formulations reduced the weight loss or promoted significant changes in the
respiration rates in apples, probably due to the low surface solid density of these coatings. Despite that,
the application of carvacrol-loaded coatings was effective at reducing the incidence and severity of
the black and blue molds caused by B. cinnerea and P. expansum. An analysis of the impact of the
carvacrol-loaded coating on the apple sensory attributes revealed that the threshold of unpleasantness
of aroma and flavor perception was reached when the coatings were applied and the aroma and flavor
of the coated apples were negatively affected. Therefore, the application of these kinds of coatings to
apples is recommended only as a pre-harvest treatment because of the high antifungal efficiency and
low degree of fitotoxicity. Further studies are needed to evaluate if the organoleptic properties of the
product change when those coatings are applied as a pre-harvest treatment.
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Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide MnxOy-SiO2. Adsorption
2015, 22, 417–423. [CrossRef]

41. Tampau, A. Carvacrol Encapsulation by Electrospinning or Solvent Casting to Obtain Biodegradable
Multilayer Active Films for Food Packaging Applications. Ph.D. Thesis, Universitat Politecnica de Valencia,
Valencia, Spain, 2020.

42. Sapper, M.; Palou, L.; Pérez-Gago, M.B.; Chiralt, A. Antifungal starch–gellan edible coatings with thyme
essential oil for the postharvest preservation of apple and persimmon. Coatings 2019, 9, 333. [CrossRef]

43. Conforti, F.D.; Totty, J.A. Effect of three lipid/hydrocolloid coatings on shelf life stability of Golden Delicious
apples. Int. J. Food Sci. Technol. 2007, 42, 1101–1106. [CrossRef]

44. Smith, S.; Geeson, J.; Stow, J. Production of modified atmospheres in deciduous fruits by the use of films and
coatings. HortScience 1987, 22, 772.

45. Miller, K.; Krochta, J. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Technol.
1997, 8, 228–237. [CrossRef]

46. Banks, N.H.; Dadzie, B.K.; Cleland, D.J. Reducing gas exchange of fruits with surface coatings.
Postharvest Biol. Technol. 1993, 3, 269–284. [CrossRef]

47. Kader, A.A.; Zagory, D.; Kerbel, E.L.; Wang, C.Y. Modified atmosphere packaging of fruits and vegetables.
Crit. Rev. Food Sci. Nutr. 1989, 28, 1–30. [CrossRef] [PubMed]

48. Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroa, N.E.; Sanfuentes, E.A.
Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for
strawberries—In Vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017, 129, 29–36.
[CrossRef]

49. Tovar, C.D.G.; Chaves-López, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential
oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018,
78, 61–71. [CrossRef]

50. Perdones, A.; Sanchezgonzalez, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on
storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [CrossRef]

51. Qian, D.; Du, G.; Chen, J. Isolation and culture characterization of a new polyvinyl alcohol-degrading strain:
Penicillium sp. WSH02-21. World J. Microbiol. Biotechnol. 2004, 20, 587–591. [CrossRef]

52. Kawai, F.; Hu, X. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 2009,
84, 227–237. [CrossRef]

53. Banani, H.; Olivieri, L.; Santoro, K.; Garibaldi, A.; Gullino, M.L.; Spadaro, D. Thyme and savory essential oil
efficacy and induction of resistance against botrytis cinerea through priming of defense responses in apple.
Foods 2018, 7, 11. [CrossRef]

54. Cano, A.; Nácher, M.C.; Chiralt, A.; Pons, M.P.M.; Llopis, M.B.; Martínez, M.C.B.; Martínez, C.G. Quality of
goat′s milk cheese as affected by coating with edible chitosan-essential oil films. Int. J. Dairy Technol. 2016,
70, 68–76. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.carbpol.2010.04.047
http://dx.doi.org/10.1016/j.foodchem.2015.11.054
http://dx.doi.org/10.1016/j.lwt.2019.108290
http://dx.doi.org/10.3390/polym12020497
http://www.ncbi.nlm.nih.gov/pubmed/32102448
http://dx.doi.org/10.1007/s10450-015-9696-2
http://dx.doi.org/10.3390/coatings9050333
http://dx.doi.org/10.1111/j.1365-2621.2006.01365.x
http://dx.doi.org/10.1016/S0924-2244(97)01051-0
http://dx.doi.org/10.1016/0925-5214(93)90062-8
http://dx.doi.org/10.1080/10408398909527490
http://www.ncbi.nlm.nih.gov/pubmed/2647417
http://dx.doi.org/10.1016/j.postharvbio.2017.03.005
http://dx.doi.org/10.1016/j.tifs.2018.05.019
http://dx.doi.org/10.1016/j.postharvbio.2012.04.002
http://dx.doi.org/10.1023/B:WIBI.0000043172.83610.08
http://dx.doi.org/10.1007/s00253-009-2113-6
http://dx.doi.org/10.3390/foods7020011
http://dx.doi.org/10.1111/1471-0307.12306
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of the Coatings Forming Dispersions and Films 
	Characterization of Coating Forming Dispersions and Carvacrol Retention in the Films 
	Rheological Behavior of the Dispersions 
	Carvacrol Retention in the Films 

	Quality of Coated Fruit 
	Surface Density of Solids (SDS) 
	Weight Loss Rate 
	Respiration Rates 
	Fruit Firmness 

	In Vivo Antifungal Assays 
	Sensory Analysis 
	Statistical Analysis 

	Results 
	Rheological Behavior of the Coating Forming Dispersions 
	Carvacrol Retention in the Films 
	Effect of Coatings on the Postharvest Quality of Apples 
	Fungal Decay of Apples 
	Sensory Evaluation 

	Conclusions 
	References

