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Abstract

We solve the problem of characterizing the Kronecker structure of
a matrix pencil obtained by a rank-one perturbation of another matrix
pencil. The results hold over arbitrary fields.
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1 Introduction

Given a matrix pencil A(s) = A0 +sA1 ∈ Fn×m, the rank perturbation problem
consists in characterizing the Kronecker structure of A(s) +P (s), where P (s) is
a matrix pencil of bounded rank.

The Kronecker structure of a matrix pencil is determined by the complete
system of invariants for the strict equivalence of matrix pencils, i.e., the invari-
ant factors, infinite elementary divisors, and row and column minimal indices.
For regular matrix pencils the Kronecker structure is known as the Weierstrass
structure and is determined only by the invariant factors and the infinite elemen-
tary divisors. In particular, the Jordan structure of a square matrix is defined
by the Weierstrass structure of the associated characteristic pencil, which is a
regular pencil without infinite elementary divisors. Analogously, the feedback
invariants of a pair of matrices, i.e., the invariant factors and the column (or
row) minimal indices are the Kronecker invariants of the associated character-
istic pencil.

In the last decades rank perturbations of matrix pencils have been analyzed
in many papers from different approaches. The problem has been studied gener-
ically, i.e., when the perturbation P (s) belongs to an open and dense subset of

∗itziar.baragana@ehu.eus
†aroca@mat.upv.es

1



the set of pencils of rank less than or equal to r, for a given integer r. In other
cases, the pencil P (s) is an arbitrary perturbation belonging to the whole set
of pencils of rank less than or equal to r. In this paper we follow the second
approach.

From a generic point of view, changes in the Jordan structure of a square
constant matrix or in the Weierstrass structure of a regular pencil corresponding
to a fixed eigenvalue after low rank perturbations have been studied, among
others, in [3, 4, 6, 7, 16, 18, 19, 21, 22]. See also the references therein.

The case where a square matrix (regular pencil) is perturbed by an arbitrary
perturbation matrix P (arbitrary matrix pencil P (s)) has also been studied by
several authors. For square constant matrices and a constant perturbation of
bounded rank r, a solution is given in [23] and [25]. For r = 1 the problem was
already solved in [24]. The case where the perturbation has fixed rank has been
solved in [23] over algebraically closed fields.

For regular pencils the problem has been studied for r = 1 in [15]. For
arbitrary perturbations of bounded rank the problem has been solved in [2],
and for perturbations of fixed rank in [1]. In both cases the solutions obtained
do not involve any condition on the rank of the type “low-rank”, and the results
hold for fields having sufficient number of elements (fields requiring just the
condition that at least one element of the field or the point at infinity is not
included neither in the spectrum of the original pencil nor in the perturbed one).

There is less literature dealing with the case of singular pencils. The problem
is more difficult, since the row and column minimal indices of the pencils are
involved. For non full rank pencils the change of the four types of invariants
under generic low rank perturbations has been characterized in [5]. For square
singular pencils, in [17] the authors represent pencils via linear relations and
obtain bounds for the number of Jordan chains which may change under an
arbitrary rank-one perturbation. The problem of characterizing the feedback
equivalence invariants of a pair of matrices, i.e., the Kronecker invariants of the
associated characteristic pencil, under a constant perturbation of bounded rank
is solved in [11]. Here, the authors find the solution relating the problem to a
matrix pencil completion problem.

In this paper we study arbitrary rank-one perturbations of matrix pencils.
We solve the problem transforming it into a matrix pencil completion problem.
The solution obtained holds for arbitrary fields.

The paper is organized as follows. In Section 2 we introduce the notation,
basic definitions and preliminary results. In Section 3 we establish the prob-
lem which we are going to study and relate it to a matrix pencil completion
problem. Then, in Section 4 we introduce previous results about completion
of matrix pencils which will be needed later. In Section 5, a solution to the
rank-one perturbation problem is stated in Theorem 5.1. Several technical lem-
mas necessary to prove it are given in Subsection 5.1. Theorem 5.1 is proven
is Subsection 5.2. Finally, in Section 6 we summarize the main contributions of
the paper.
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2 Preliminaries

Let F be a field. F[s] denotes the ring of polynomials in the indeterminate s
with coefficients in F and F[s, t] the ring of polynomials in two variables s, t with
coefficients in F. We denote by Fp×q, F[s]p×q and F[s, t]p×q the vector spaces of
p × q matrices with elements in F, F[s] and F[s, t], respectively. Glp(F) will be
the general linear group of invertible matrices in Fp×p.

Given a polynomial matrix G(s) ∈ F[s]p×q, the degree of G(s), denoted by
deg(G(s)), is the maximum of the degrees of its entries. The normal rank of
G(s), denoted by rank(G(s)), is the order of the largest nonidentically zero
minor of G(s), i.e., it is the rank of G(s) considered as a matrix on the field of
fractions of F[s].

A matrix pencil is a polynomial matrix G(s) ∈ F[s]p×q such that deg(G(s)) ≤
1. The pencil is regular if p = q and det(G(s)) is not the zero polynomial.
Otherwise it is singular.

Two matrix pencils G(s) = G0 + sG1, H(s) = H0 + sH1 ∈ F[s]p×q are

strictly equivalent (G(s)
s.e.∼ H(s)) if there exist invertible matrices Q ∈ Glp(F),

R ∈ Glq(F) such that G(s) = QH(s)R.
Given the pencilG(s) = G0+sG1 ∈ F[s]p×q of rankG(s) = n, a complete sys-

tem of invariants for the strict equivalence of matrix pencils is formed by a chain
of homogeneous polynomials Γ1(s, t) | · · · | Γn(s, t), Γi(s, t) ∈ F[s, t], 1 ≤ i ≤ n,
called the homogeneous invariant factors, and two collections of nonnegative in-
tegers c1 ≥ · · · ≥ cq−n and u1 ≥ · · · ≥ up−n, called the column and row minimal
indices of the pencil, respectively. In turn, the homogeneous invariant factors
are determined by a chain of polynomials γ1(s) | . . . | γn(s) in F[s], called the
invariant factors, and a chain of polynomials tk1 | . . . | tkn in F[t], called the
infinite elementary divisors. In fact, we can write

Γi(s, t) = tkitdeg(γi(s))γi

(s
t

)
, 1 ≤ i ≤ n.

The associated canonical form is the Kronecker canonical form. For details see
[13, Ch. 2] or [14, Ch. 12] for infinite fields, and [20, Ch. 2] for arbitrary
fields. In what follows we will work with the homogeneous invariant factors.
We will take Γi(s, t) = 1 (γi(s) = 1) whenever i < 1 and Γi(s, t) = 0 (γi(s) = 0)
when i > n. The sum of the degrees of the homogeneous invariant factors
plus the sum of the minimal indices is equal to the rank of the pencil. Also,
if T (s) = G(s)T , then G(s) and T (s) share the homogeneous invariant factors
and have interchanged minimal indices, i.e., the column (row) minimal indices
of T (s) are the row (column) minimal indices of G(s).

Observe that if G(s) ∈ F[s]p×q and rank(G(s)) = p (rank(G(s)) = q), then
G(s) does not have row (column) minimal indices. As a consequence, the in-
variants for the strict equivalence of regular matrix pencils are reduced to the
homogeneous invariant factors.

In this paper we study the Kronecker structure of arbitrary pencils per-
turbed by pencils of rank one. A matrix pencil of rank one allows a very simple
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decomposition (see [15] for F = C). In the next proposition we analyze this
decomposition for arbitrary fields, depending on the Kronecker structure of the
pencil.

Proposition 2.1 Let P (s) ∈ F[s]p×q be a matrix pencil of rankP (s) = 1.

1. If P (s) has a nontrivial invariant factor, then there exist nonzero vectors
u ∈ Fp, v̄ ∈ Fq and nonzero pencils ū(s) ∈ F[s]p, v(s) ∈ F[s]q such that

P (s) = uv(s)T = ū(s)v̄T .

2. If P (s) has an infinite elementary divisor, then there exist nonzero vectors
u ∈ Fp, v ∈ Fq such that

P (s) = uvT .

3. If P (s) has a positive column minimal index, then there exist a nonzero
vector u ∈ Fp and a nonzero pencil v(s) ∈ F[s]q such that

P (s) = uv(s)T .

4. If P (s) has a positive row minimal index, then there exist a nonzero vector
v ∈ Fq and a nonzero pencil u(s) ∈ F[s]p such that

P (s) = u(s)vT .

Proof. Let Pc(s) be the Kronecker canonical form of P (s). Then, there

exist Q =
[
q1 . . . qp

]
∈ Glp(F) and R =

r
T
1
...
rTq

 ∈ Glq(F) such that P (s) =

QPc(s)R.

1. If P (s) has a nontrivial invariant factor s + λ, λ ∈ F, then Pc(s) =[
s+ λ 0

0 0

]
∈ F[s]p×q. Hence, P (s) = ((s+ λ)q1)rT1 = q1((s+ λ)r1)T .

2. If P (s) has an infinite elementary divisor, then Pc(s) =

[
1 0
0 0

]
∈ F[s]p×q.

Therefore, P (s) = q1r
T
1 .

3. If P (s) has a positive column minimal index, then Pc(s) =

s 1 0
0 0 0
0 0 0

 ∈
F[s]p×q. Therefore, P (s) = q1(srT1 + rT2 ).

4. If P (s) has a positive row minimal index, then P (s)T has a positive column
minimal index. Therefore, P (s)T = q1(srT1 +rT2 ), i.e., P (s) = (sr1+r2)qT1 ,
as desired.

2
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3 Statement of the problem

The problem we deal with in this paper is the following:

Problem 3.1 (Rank-one perturbation of matrix pencils) Given two ma-
trix pencils A(s), B(s) ∈ F[s]p×q, find necessary and sufficient conditions for
the existence of a matrix pencil P (s) ∈ F[s]p×q of rank(P (s)) = 1 such that

A(s) + P (s)
s.e.∼ B(s).

First of all we analyze two particular cases.

• p = 1 or q = 1, and A(s) 6= 0 or B(s) 6= 0. If F 6= {0, 1}, there always exists

P (s) = P0 + sP1 ∈ F[s]p×q of rank(P (s)) = 1 such that A(s) + P (s)
s.e.∼

B(s). For example, if p = 1, let c ∈ F \ {0} be such that A(s) 6= cB(s).

Then A(s) + (cB(s) − A(s))
s.e.∼ B(s). If F = {0, 1}, then there exists

P (s) ∈ F[s]p×q such that rank(P (s)) = 1 and A(s) + P (s)
s.e.∼ B(s) if and

only if A(s) 6= B(s).

• p > 1 or q > 1, and A(s), B(s) ∈ F[s]p×q are such that A(s)
s.e.∼ B(s) and

A(s) 6= 0. Then there always exists P (s) ∈ F[s]p×q of rank(P (s)) = 1

such that A(s) + P (s)
s.e.∼ B(s). For example, let q = 2 and let a1(s) 6= 0,

a2(s) be the columns of A(s). Then, B(s)
s.e.∼ A(s)

s.e.∼ A(s)

[
1 1
0 1

]
=

A(s) +
[
0 a1(s)

]
.

The next lemma shows that in order to solve Problem 3.1 the pencil A(s) can
be substituted by any other pencil strictly equivalent to A(s). It was proven in
[2, Lemma 3.2] for p = q. The proof for the general case is completely analogous.

Lemma 3.2 Let A(s), B(s), P (s) ∈ F[s]p×q be matrix pencils. Let Q ∈ Glp(F),

R ∈ Glq(F) and A′(s) = QA(s)R. If A(s) + P (s)
s.e.∼ B(s) then A′(s) +

QP (s)R
s.e.∼ B(s).

Problem 3.1 can be stated as a pencil completion problem, as we see next.

Lemma 3.3 Let A(s), B(s) ∈ F[s]p×q be matrix pencils such that A(s) 6s.e.∼ B(s).
Then there exists a matrix pencil P (s) ∈ F[s]p×q of rankP (s) = 1 such that

A(s) + P (s)
s.e.∼ B(s) if and only if one of the following conditions holds:

(i) There exist matrix pencils a(s), b(s) ∈ F[s]1×q, A21(s) ∈ F[s](p−1)×q such

that A(s)
s.e.∼
[
a(s)
A21(s)

]
and B(s)

s.e.∼
[
b(s)
A21(s)

]
.

(ii) There exist matrix pencils ā(s), b̄(s) ∈ F[s]p×1, A12(s) ∈ F[s]p×(q−1) such

that A(s)
s.e.∼
[
ā(s) A12(s)

]
and B(s)

s.e.∼
[
b̄(s) A12(s)

]
.
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Proof. Assume that there exists a matrix pencil P (s) ∈ F[s]p×q of rankP (s) =

1 such that A(s)+P (s)
s.e.∼ B(s). By Proposition 2.1, there exist nonzero pencils

u(s) ∈ F[s]p, v(s) ∈ F[s]q such that P (s) = u(s)v(s)T and u(s) = u ∈ Fp or
v(s) = v ∈ Fq.

If u(s) = u ∈ Fp, let R ∈ Gl(p) be such that Ru =

[
1
0

]
∈ F(1+(p−1)) and

let RA(s) =

[
a(s)
A21(s)

]
∈ F[s](1+(p−1))×q and b(s) = a(s) + v(s)T . Then A(s)

s.e.∼[
a(s)
A21(s)

]
and B(s)

s.e.∼ R(A(s) + P (s)) =

[
a(s)
A21(s)

]
+

[
v(s)T

0

]
=

[
b(s)
A21(s)

]
.

Therefore, (i) holds.
If v(s) = v ∈ Fq, we can analogously obtain (ii).

Conversely, let us assume that (i) holds. As A(s) 6s.e.∼ B(s), we have a(s) 6=

b(s). Let P̄ (s) =

[
b(s)− a(s)

0

]
∈ F[s](1+(p−1))×q. Then rank P̄ (s) = 1 and[

a(s)
A21(s)

]
+ P̄ (s) =

[
b(s)
A21(s)

]
. By Lemma 3.2, there exists a pencil P (s) such

that rankP (s) = 1 and A(s) + P (s)
s.e.∼ B(s).

If (ii) holds, the result holds applying the previous case to A(s)T and B(s)T .
2

Remark 3.4 Observe that if the permutation P (s) is of the form P (s) =
uv(s)T , u ∈ Fp, then the perturbation problem can be transformed into a row
completion problem. Analogously, if P (s) = u(s)vT , v ∈ Fq, then the perturba-
tion problem can be transformed into a column completion problem.

4 Matrix pencil completion theorems

According to Lemma 3.3, the Problem 3.1 can be approached as a matrix pencil
completion problem. We introduce in this section some results in that area
which will be used later. To state them we need some notation and definitions.

Given two integers n and m, whenever n > m we take
∑m
i=n = 0. In the

same way, if a condition is stated for n ≤ i ≤ m with n > m, we understand
that the condition disappears.

Given a sequence of integers a1, . . . , am such that a1 ≥ · · · ≥ am we will
write a = (a1, . . . , am) and we will take ai = ∞ for i < 1 and ai = −∞ for
i > m. If am ≥ 0, the sequence a = (a1, . . . , am) is called a partition.

Given three sequences d, a and g, we introduce next the concept of gener-
alized majorization.

Definition 4.1 (Generalized majorization [9, Definition 2]) Given three
sequences of integers d = (d1, . . . , dm), a = (a1, . . . , as) and g = (g1, . . . , gm+s)
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such that d1 ≥ · · · ≥ dm, a1 ≥ · · · ≥ as, g1 ≥ · · · ≥ gm+s, we say that g is
majorized by d and a (g ≺′ (d,a)) if

di ≥ gi+s, 1 ≤ i ≤ m, (1)

hj∑
i=1

gi −
hj−j∑
i=1

di ≤
j∑
i=1

ai, 1 ≤ j ≤ s, (2)

where hj = min{i : di−j+1 < gi}, 1 ≤ j ≤ s (dm+1 = −∞),

m+s∑
i=1

gi =

m∑
i=1

di +

s∑
i=1

ai. (3)

In the case that s = 0, condition (2) disappears, and conditions (1) and (3)
are equivalent to d = g.

In the case that s = 1, from condition (3) we observe that a1 is completely

determined by d and g (a1 =
∑m+1
i=1 gi −

∑m
i=1 di), therefore we will write

g ≺′ (d, a1) as g ≺′ d and we will refer to it as 1step-generalized majorization.
Moreover, it is easy to see that g ≺′ d if and only if

di = gi+1, h ≤ i ≤ m,

where h = min{i : di < gi}.
In [9], the 1step-generalized majorization is called elementary generalized

majorization and it is denoted by g ≺′1 (d, a1).

Remark 4.2

1. If g and d satisfy that gi ≤ di for 1 ≤ i ≤ m, then h = m+ 1 and g ≺′ d.

2. Notice that if g ≺′ d and for some index 1 ≤ i ≤ m we have di > gi+1,
then i < h.

Given two pencilsH1(s) ∈ F[s](n+p)×(n+m) andH(s) ∈ F[s](n+p+x+y)×(n+m),
of rank(H1(s)) = n and rank(H(s)) = n + x, in [12, Theorem 4.3] (see also [8,
Theorem 2]), necessary and sufficient conditions are given for the existence of a

pencil Y (s) ∈ F[s](x+y)×(n+m) such that H(s)
s.e.∼
[
H1(s)
Y (s)

]
. The two following

lemmas are particular cases of [12, Theorem 4.3] for x+ y = 1. First, we state
the result when x = 0, y = 1.

Lemma 4.3 ([12, Particular case of Theorem 4.3]) Given two matrix pen-
cils H1(s) ∈ F[s](n+p)×(n+m), H(s) ∈ F[s](n+p+1)×(n+m) of rank(H1(s)) =
rank(H(s)) = n, let π1

1(s, t) | · · · | π1
n(s, t), g1 ≥ · · · ≥ gm ≥ 0 and w1 ≥ · · · ≥

wθ > 0 = wθ+1 ≥ · · · ≥ wp be the homogeneous invariant factors, the column
and the row minimal indices of H1(s), respectively, and let π1(s, t) | · · · | πn(s, t),
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c1 ≥ · · · ≥ cm ≥ 0 and u1 ≥ · · · ≥ uθ̄ > 0 = uθ̄+1 ≥ · · · ≥ up+1 be the homo-
geneous invariant factors, the column and the row minimal indices indices of
H(s), respectively.

Let g = (g1, . . . , gm), w = (w1, . . . , wp), c = (c1, . . . , cm), u = (u1, . . . , up+1).

There exists a pencil h(s) ∈ F[s]1×(n+m) such that H(s)
s.e.∼
[
h(s)
H1(s)

]
if and

only if
θ̄ ≥ θ, (4)

πi(s, t) | π1
i (s, t) | πi+1(s, t), 1 ≤ i ≤ n, (5)

u ≺′ w, (6)

g = c. (7)

Next, we state the result when x = 1, y = 0.

Lemma 4.4 ([12, Particular case of Theorem 4.3]) Given two matrix pen-
cils H1(s) ∈ F[s](n+p)×(n+m), H(s) ∈ F[s](n+p+1)×(n+m) of rank(H1(s)) = n
and rank(H(s)) = n + 1, let π1

1(s, t) | · · · | π1
n(s, t), g1 ≥ · · · ≥ gm ≥ 0 and

w1 ≥ · · · ≥ wp be the homogeneous invariant factors, the column and the
row minimal indices of H1(s), respectively, and let π1(s, t) | · · · | πn+1(s, t),
c1 ≥ · · · ≥ cm−1 ≥ 0 and u1 ≥ · · · ≥ up be the homogeneous invariant factors,
the column and the row minimal indices of H(s), respectively.

Let g = (g1, . . . , gm), w = (w1, . . . , wp), c = (c1, . . . , cm−1), and u =
(u1, . . . , up).

There exists a pencil h(s) ∈ F[s]1×(n+m) such that H(s)
s.e.∼
[
h(s)
H1(s)

]
if and

only if (5),
g ≺′ c, (8)

w = u. (9)

5 Main theorem

In the following theorem we give a solution to Problem 3.1.

Theorem 5.1 Let A(s), B(s) ∈ F[s]p×q be matrix pencils such that A(s) 6s.e.∼
B(s). Let rankA(s) = n1, rankB(s) = n2, let φ1(s, t) | · · · | φn1

(s, t), c1 ≥
· · · ≥ cq−n1

≥ 0 and u1 ≥ · · · ≥ up−n1
≥ 0 be, respectively, the homogeneous

invariant factors, column minimal indices and row minimal indices of A(s) and
let ψ1(s, t) | · · · | ψn2(s, t), d1 ≥ · · · ≥ dq−n2 ≥ 0 and v1 ≥ · · · ≥ vp−n2 ≥ 0
be, respectively, the homogeneous invariant factors, column minimal indices and
row minimal indices of B(s).

Let c = (c1, . . . , cq−n1
), d = (d1, . . . , dq−n2

), u = (u1, . . . , up−n1
), v =

(v1, . . . , vp−n2
) and n = min{n1, n2}.
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1. If c = d, u = v, then there exists a pencil P (s) ∈ F[s]p×q of rank(P (s)) =

1 such that A(s) + P (s)
s.e.∼ B(s) if and only if

ψi−1(s, t) | φi(s, t) | ψi+1(s, t), 1 ≤ i ≤ n. (10)

2. If c 6= d, u = v, let
` = max{i : ci 6= di},

f = max{i ∈ {1, . . . , `} : ci < di−1} (d0 = +∞),

f ′ = max{i ∈ {1, . . . , `} : di < ci−1} (c0 = +∞),

G = n− 1−
n−1∑
i=1

deg(gcd(φi+1(s, t), ψi+1(s, t)))−
p−n∑
i=1

ui.

Then there exists a pencil P (s) ∈ F[s]p×q of rank(P (s)) = 1 such that

A(s) + P (s)
s.e.∼ B(s) if and only if (10) and

G ≤
q−n∑
i=1

min{ci, di}+ max{cf , df ′}. (11)

3. If c = d, u 6= v, let
¯̀= max{i : ui 6= vi},

f̄ = max{i ∈ {1, . . . , ¯̀} : ui < vi−1} (v0 = +∞),

f̄ ′ = max{i ∈ {1, . . . , ¯̀} : vi < ui−1} (u0 = +∞),

Ḡ = n− 1−
n−1∑
i=1

deg(gcd(φi+1(s, t), ψi+1(s, t)))−
q−n∑
i=1

ci.

Then there exists a pencil P (s) ∈ F[s]p×q of rank(P (s)) = 1 such that

A(s) + P (s)
s.e.∼ B(s) if and only if (10) and

Ḡ ≤
p−n∑
i=1

min{ui, vi}+ max{uf̄ , vf̄ ′}. (12)

4. If c 6= d, u 6= v, then there exists a pencil P (s) ∈ F[s]p×q of rank(P (s)) =

1 such that A(s) + P (s)
s.e.∼ B(s) if and only if there exist homogeneous

polynomials π1
1(s, t) | · · · | π1

n(s, t) such that

lcm(φi(s, t), ψi(s, t)) | π1
i (s, t) | gcd(φi+1(s, t), ψi+1(s, t)), 1 ≤ i ≤ n,

(13)
and one of the four following conditions holds:

(a)
c ≺′ d, u ≺′ v, (14)

n∑
i=1

deg(π1
i (s, t)) = n−

q−n1∑
i=1

ci −
p−n2∑
i=1

vi. (15)
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(b)
d ≺′ c, v ≺′ u, (16)

n∑
i=1

deg(π1
i (s, t)) = n−

q−n2∑
i=1

di −
p−n1∑
i=1

ui. (17)

(c) (14) and (17).

(d) (16) and (15).

For the proof of the theorem we need some technical lemmas on 1step-
generalized majorizations, which are presented in Subsection 5.1. Afterwards,
the theorem will be proven in Subsection 5.2.

If F is algebraically closed, the conditions of the case c 6= d, u 6= v can
be written in terms of inequalities, as stated in the next lemma. The proof is
inspired by that of [26, Corollary 4.3].

Lemma 5.2 Let Ω1(s, t), . . . ,Ωn(s, t),Ψ1(s, t), . . . ,Ψn+1(s, t) ∈ F[s, t] be ho-
mogeneous polynomials such that Ω1(s, t) | · · · | Ωn(s, t), Ψ1(s, t) | · · · | Ψn+1(s, t),
and

Ψi−1(s, t) | Ωi(s, t) | Ψi+1(s, t), 1 ≤ i ≤ n. (18)

Let x be a nonnegative integer.
If F is an algebraically closed field, then there exist homogeneous polynomials

π1
1(s, t) | · · · | π1

n(s, t) satisfying

lcm(Ωi(s, t),Ψi(s, t)) | π1
i (s, t) | gcd(Ωi+1(s, t),Ψi+1(s, t)), 1 ≤ i ≤ n, (19)

and
n∑
i=1

deg(π1
i (s, t)) = x (20)

if and only if

n∑
i=1

deg(lcm(Ωi(s, t),Ψi(s, t))) ≤ x ≤
n∑
i=1

deg(gcd(Ωi+1(s, t),Ψi+1(s, t))). (21)

Proof. From (19) and (20), clearly we deduce (21).
Conversely, assume that (21) holds. Condition (18) implies that

lcm(Ωi(s, t),Ψi(s, t)) | gcd(Ωi+1(s, t),Ψi+1(s, t)), 1 ≤ i ≤ n,

hence, ∆i(s, t) = gcd(Ωi+1(s,t),Ψi+1(s,t))
lcm(Ωi(s,t),Ψi(s,t))

are homogeneous polynomials.

Let δi = deg(lcm(Ωi(s, t),Ψi(s, t)), δ
′
i = deg(gcd(Ωi+1(s, t),Ψi+1(s, t))), 1 ≤

i ≤ n. From (21) we have

0 ≤ x−
n∑
i=1

δi ≤
n∑
i=1

(δ′i − δi).

10



Let z1, . . . , zn be integers such that 0 ≤ zi ≤ δ′i − δi = deg(∆i(s, t)) and∑n
i=1 zi = x −

∑n
i=1 δi. As F is algebraically closed, there exists homoge-

neous polynomials γi(s, t) such that deg(γi(s, t)) = zi and γi(s, t) | ∆i(s, t),
for 1 ≤ i ≤ n.

Let π1
i (s, t) = lcm(Ωi(s, t),Ψi(s, t))γi(s, t), 1 ≤ i ≤ n. Then, π1

i (s, t) |
π1
i+1(s, t) for 1 ≤ i ≤ n− 1, and they satisfy (19) and (20). 2

Example 5.3 Let F = C, n = 6, x = 3. Ω1(s, t) = · · · = Ω5(s, t) = 1,Ω6(s, t) =
s2 + t2, Ψ1(s, t) = . . .Ψ5(s, t) = 1,Ψ6(s, t) = Ψ7(s, t) = s2 + t2. Then

lcm(Ωi(s, t),Ψi(s, t)) = 1, 1 ≤ i ≤ 5; lcm(Ω6(s, t),Ψ6(s, t)) = s2 + t2,

gcd(Ωi+1(s, t),Ψi+1(s, t)) = 1, 1 ≤ i ≤ 4,

gcd(Ωi+1(s, t),Ψi+1(s, t)) = s2 + t2, 5 ≤ i ≤ 6,

and (21) holds. The homogeneous polynomials

π1
1(s, t) = · · · = π1

4(s, t) = 1, π1
5(s, t) | s+ it, π1

6(s, t) = s2 + t2

satisfy (19) and (20).

Corollary 5.4 Under the conditions of Theorem 5.1, if F is an algebraically
closed field and c 6= d, u 6= v, there exists a matrix pencil P (s) ∈ F[s]p×q of

rank(P (s)) = 1 such that A(s) + P (s)
s.e.∼ B(s) if and only if (10), and one of

the four following conditions hold

(a) (14) and

n∑
i=1

deg(lcm(φi(s, t), ψi(s, t))) ≤ x ≤
n∑
i=1

deg(gcd(φi+1(s, t), ψi+1(s, t))),

(22)
where x = n−

∑q−n1

i=1 ci −
∑p−n2

i=1 vi.

(b) (16) and

n∑
i=1

deg(lcm(φi(s, t), ψi(s, t))) ≤ y ≤
n∑
i=1

deg(gcd(φi+1(s, t), ψi+1(s, t))),

(23)
where y = n−

∑q−n2

i=1 di −
∑p−n1

i=1 ui.

(c) (14) and (23).

(d) (16) and (22).

11



5.1 Technical results

All of the sequences involved in this subsection are ordered partitions of non-
negative integers.

Lemma 5.5 Let S ≥ 0 be a nonnegative integer and let a = (a1, . . . , am) be a
partition of nonnegative integers. Then there exists a partition of nonnegative
integers g = (g1, . . . , gm+1) such that

∑m+1
i=1 gi = S and g ≺′ a.

Proof. Put a0 = +∞, am+1 = −∞. Then,

m∑
j=i

aj + iai−1 ≥
m∑

j=i+1

aj + (i+ 1)ai, 1 ≤ i ≤ m+ 1,

and S ≥ (m+ 2)am+1. Let k = min{i ∈ {1, . . . ,m+ 1} : S ≥
∑m
j=i+1 aj + (i+

1)ai}, i.e.,

m∑
j=k

aj + kak−1 > S ≥
m∑

j=k+1

aj + (k + 1)ak =

m∑
j=k

aj + kak.

Let S′ = S −
∑m
j=k aj . Then kak−1 > S′ ≥ kak. Let q and r be the quotient

and the remainder of the euclidian division of S′ by k, i.e., S′ = kq + r with
0 ≤ r < k. Then ak−1 > q ≥ ak. Observe that if k ≤ m, then ak ≥ 0, and if
k = m+ 1, then S′ = S ≥ 0, hence q ≥ 0.

Let us define
gi = q + 1, 1 ≤ i ≤ r,
gi = q, r + 1 ≤ i ≤ k,
gi = ai−1, k + 1 ≤ i ≤ m+ 1.

Then g1 ≥ · · · ≥ gm+1 ≥ 0,
∑m+1
i=1 gi = S and

gi ≤ q + 1 ≤ ak−1 ≤ ai, 1 ≤ i ≤ k − 1,
gi+1 = ai, k ≤ i ≤ m. (24)

Let h = min{i : ai < gi}. From (24) we derive that h ≥ k and ai = gi+1,
h ≤ i ≤ m. Therefore, (g1, . . . , gm+1) ≺′ a.

2

Example 5.6 Given the partition a = (8, 6, 5, 5, 5, 3, 1) (m = 7), we show some
examples of the previous result for different values of S.

1. S = 50. Then
∑7
j=1 aj + a0 > S ≥

∑7
j=2 aj + 2a1. k = 1, S′ = S −∑7

j=1 aj = 17, q = 17, r = 0. It results g = (17, 8, 6, 5, 5, 5, 3, 1).

2. S = 34. Then
∑7
j=3 aj + 3a2 > S ≥

∑7
j=4 aj + 4a3. k = 3, S′ =

S −
∑7
j=3 aj = 15, q = 5, r = 0. It results g = (5, 5, 5, 5, 5, 5, 3, 1).

12



3. S = 5. Then
∑7
j=8 aj + 8a7 > S ≥

∑7
j=9 aj + 9a8. k = 8, S′ = S −∑7

j=8 aj = S = 5, q = 0, r = 5. It results g = (1, 1, 1, 1, 1, 0, 0, 0).

Lemma 5.7 Let E ≥ 0 be a nonnegative integer and let a = (a1, . . . , am) be a
partition of nonnegative integers. Then there exists a partition of nonnegative
integers e = (e1, . . . , em−1) such that

∑m−1
i=1 ei = E and a ≺′ e if and only if

E =

m∑
i=2

ai or E ≥ a1 +

m∑
i=3

ai. (25)

Proof. Assume that there exists e = (e1, . . . , em−1) such that
∑m−1
i=1 ei = E

and a ≺′ e. Then ei ≥ ai+1, 1 ≤ i ≤ m− 1, hence E ≥
∑m
i=2 ai.

Let us suppose that E >
∑m
i=2 ai. Then

∑m−1
i=1 (ei − ai+1) > 0, hence there

exists k ∈ {1, . . . ,m− 1} such that ek > ak+1. Thus k < h = min{i : ei < ai},
which means e1 ≥ a1 and therefore

E = e1 +

m−1∑
i=2

ei ≥ a1 +

m∑
i=3

ai.

Conversely, let us assume that (25) holds. We define ei = ai+1, 2 ≤ i ≤ m−1

and e1 = E −
∑m
i=3 ai. Then

∑m−1
i=1 ei = E. If E =

∑m
i=2 ai, then e1 = a2 and

a ≺′ (e1, . . . , em−1). If E ≥ a1 +
∑m
i=3 ai, then e1 ≥ a1 ≥ a3 = e2. Thus,

e1 ≥ · · · ≥ em−1 ≥ 0, h = min{i : ei < ai} > 1, and we have ei = ai+1,
h ≤ i ≤ m− 1. Therefore, a ≺′ (e1, . . . , em−1).

2

Given two pairs of nonincreasing sequences of integers, (d,a) and (c,b),
in [10, Theorem 5.1] the authors solved the problem of obtaining necessary
and sufficient conditions for the existence of a sequence g that is majorized (in
the sense of generalized majorization) by both pairs. The conditions are very
involved. In the first item of the next Lemma we solve the same problem for
the 1step-generalized majorization of partitions. The characterization obtained
is much more simple in this case.

Lemma 5.8 Let S,E ≥ 0 be nonnegative integers and let c = (c1, . . . , cm),
d = (d1, . . . , dm) be partitions of nonnegative integers such that c 6= d.

Let ` = max{i : ci 6= di}, f = max{i ∈ {1, . . . , `} : ci < di−1} (d0 = +∞),
and f ′ = max{i ∈ {1, . . . , `} : di < ci−1} (c0 = +∞).

1. There exists a partition g = (g1, . . . , gm+1) of nonnegative integers such

that
∑m+1
i=1 gi = S, g ≺′ c and g ≺′ d if and only if

S ≤
m∑
i=1

min{ci, di}+ max{cf , df ′}. (26)

13



2. If f > 1 and f ′ > 1, there exists a partition of nonnegative integers
e = (e1, . . . , em−1) such that

∑m−1
i=1 ei = E, c ≺′ e and d ≺′ e if and only

if

E ≥
m∑
i=1

max{ci, di} −max{cf , df ′}. (27)

3. If f = 1 or f ′ = 1, there exists a partition of nonnegative integers e =
(e1, . . . , em−1) such that

∑m−1
i=1 ei = E, c ≺′ e and d ≺′ e if and only if

E =
∑m
i=1 max{ci, di} −max{cf , df ′},

or
E ≥

∑m
i=1 max{ci, di} −max{cf+1, df ′+1}.

(28)

Equivalently,

E =

m∑
i=2

max{ci, di} or E ≥ max{c1, d1}+

m∑
i=3

max{ci, di}.

Proof. Let us assume that c` > d`. If d` > c` the proof is analogous.
We have c`−1 ≥ c` > d`, hence f ′ = `. Moreover, ci ≥ ci+1 ≥ di, f ≤ i ≤

` − 1. Then, cf ≥ df ≥ d` = df ′ . Hence, when c` > d`, conditions (26), (27)
and (28) are respectively equivalent to

S ≤
f−1∑
i=1

min{ci, di}+ cf +

m∑
i=f

di, (29)

E ≥
f−1∑
i=1

max{ci, di}+

m∑
i=f+1

ci, (30)

E =

m∑
i=2

ci or E ≥ c1 +

m∑
i=3

ci. (31)

Moreover, if f ′ = 1 then ` = 1 and as a consequence, f = 1. Therefore,
when c` > d`, the condition f = 1 or f ′ = 1 is equivalent to f = 1.

Let us prove the different cases.

1. Assume that there exists a partition g = (g1, . . . , gm+1) such that
∑m+1
i=1 gi =

S, g ≺′ c and g ≺′ d.

Let h = min{i : ci < gi} and h′ = min{i : di < gi}. As g`+1 ≤ d` < c`, by
Remark 4.2, item 2, we have ` < h. In the same way, as gf ≤ cf < df−1,
f − 1 < h′.

Therefore,
gi ≤ min{ci, di}, 1 ≤ i ≤ f − 1,
gf ≤ cf ,
gi+1 ≤ di, f ≤ i ≤ m,

from where we obtain (29).

Conversely, let us assume that (29) holds.

14



• If S <
∑f−1
i=1 min{ci, di} then f > 1. Let

k = min{i ∈ {1, . . . f − 1} : S <

k∑
i=1

min{ci, di}},

i.e.,
∑k−1
i=1 min{ci, di} ≤ S <

∑k
i=1 min{ci, di} and define

gi = min{ci, di}, 1 ≤ i ≤ k − 1,

gk = S −
∑k−1
i=1 min{ci, di},

gi = 0, k + 1 ≤ i ≤ m+ 1.

Then
∑m+1
i=1 gi = S and gk < min{ck, dk}. Therefore, g1 ≥ · · · ≥

gk−1 > gk ≥ 0 = gk+1 = · · · = gm+1. Thus, g = (g1, . . . , gm+1) is a
partition. As gi ≤ min{ci, di}, 1 ≤ i ≤ m, by Remark 4.2, item 1, we
have g ≺′ c and g ≺′ d.

• If S ≥
∑f−1
i=1 min{ci, di}, let S = S −

∑f−1
i=1 min{ci, di} ≥ 0. Then

S ≤ cf +
∑m
i=f di. We define di = df−1+i, 1 ≤ i ≤ m − f + 1, and

d = (d1, . . . , dm−f+1), i.e., d = (df , . . . , dm). By Lemma 5.5, there

exists a partition g = (g1, . . . , gm−f+2) such that
∑m−f+2
i=1 gi = S

and g ≺′ d.

Now we define

gi = min{ci, di}, 1 ≤ i ≤ f − 1,
gi = gi−f+1, f ≤ i ≤ m+ 1.

Let us see that gf ≤ gf−1, i.e., that g1 ≤ min{cf−1, df−1}. If g1 ≤ d1,
then g1 ≤ df = min{cf , df} ≤ min{cf−1, df−1}. If g1 > d1, then

di = gi+1, 1 ≤ i ≤ m − f + 1, hence S = g1 +
∑m−f+1
i=1 di. As

S ≤ cf +
∑m
i=f di, we obtain g1 ≤ cf ≤ min{cf−1, df−1}. Therefore

g = (g1, . . . , gm+1) is a partition.

Let h′ = min{i : di < gi} and h
′

= min{i : di < gi}. Observe
that di ≥ gi, 1 ≤ i ≤ f − 1, di = di−f+1 ≥ gi−f+1 = gi for f ≤ i <

f+h
′−1, and df+h

′−1 = dh′ < gh′ = gf+h
′−1. Then, h′ = f+h

′−1.

As di = di−f+1 = gi−f+2 = gi+1 for h′ ≤ i ≤ m, we obtain that
g ≺′ d.

Let h = min{i : ci < gi}. Recall that di ≤ ci for f ≤ i ≤ m. We
have,

gi ≤ ci, 1 ≤ i ≤ f − 1,
gi ≤ di ≤ ci, f ≤ i ≤ h′ − 1,
gi ≤ di−1 ≤ ci, f + 1 ≤ i ≤ `.

Thus, h > max{h′ − 1, `} and, as a consequence, ci = di = gi+1 for
h ≤ i ≤ m. Therefore g ≺′ c.
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2. Assume that f > 1 (hence f ′ > 1) and there exists a partition e =

(e1, . . . , em−1) such that
∑m−1
i=1 ei = E, c ≺′ e and d ≺′ e. Then ei ≥ ci+1,

1 ≤ i ≤ m− 1. Moreover, e`−1 ≥ c` > d`, by Remark 4.2, item 2, ei ≥ di,
1 ≤ i ≤ ` − 1. Hence, ef−1 ≥ df−1 > cf , and as before it means that
ei ≥ ci, 1 ≤ i ≤ f − 1. Thus,

ei ≥ max{ci, di} 1 ≤ i ≤ f − 1,
ei ≥ ci+1, f ≤ i ≤ m− 1,

and we obtain (30).

Conversely, let us assume that f > 1 and (30) holds. Let us define

ei = max{ci, di}, 2 ≤ i ≤ f − 1,
ei = ci+1, f ≤ i ≤ m− 1,

e1 = E −
∑m−1
i=2 ei.

Then, E =
∑m−1
i=1 ei, e2 ≥ · · · ≥ ef−1 ≥ cf−1 ≥ cf+1 = ef ≥ · · · ≥ em−1

and, from (30) we derive e1 ≥ max{c1, d1} ≥ e2. Therefore (e1, . . . , em−1)
is a partition. Let h = min{i : ei < ci} and h′ = min{i : ei < di}. It is
clear that h ≥ f and h′ ≥ f , hence ei = ci+1, h ≤ i ≤ m− 1, which means
that c ≺′ e. Moreover, for f ≤ i ≤ `− 1, ei = ci+1 ≥ di, thus h′ ≥ ` and
ei = ci+1 = di+1, h′ ≤ i ≤ m− 1. Therefore d ≺′ e.

3. Let us assume that f = 1 and there exists a partition e = (e1, . . . , em−1)

such that
∑m−1
i=1 ei = E, c ≺′ e and d ≺′ e. From Lemma 5.7 we obtain

(31).

Conversely, let us assume that f = 1 and (31) holds. By Lemma 5.7, there

exists a partition e = (e1, . . . , em−1) such that
∑m−1
i=1 ei = E and c ≺′ e.

Therefore, ei ≥ ci+1, 1 ≤ i ≤ m− 1.

Let h = min{i : ei < ci} and h′ = min{i : ei < di}. As f = 1, we have
ci ≥ di−1 ≥ di, 2 ≤ i ≤ `. Therefore, ei ≥ ci+1 ≥ di, 1 ≤ i < ` and h′ ≥ `.
Since eh′ < dh′ = ch′ , h ≤ h′ and ei = ci+1 = di+1, h′ ≤ i ≤ m−1. Hence,
d ≺′ e.

2

Remark 5.9 Observe that condition (28) implies condition (27).

Lemma 5.10 Let a = (a1, . . . , am), e = (e1, . . . , em−1) be partitions of nonneg-

ative integers such that a ≺′ e and
∑m−1
i=1 ei ≤

∑m
i=1 ai. Let θ = #{i : ei > 0}

and θ = #{i : ai > 0}. Then θ ≥ θ.

Proof. We have θ ≤ m− 1, θ ≤ m and
∑θ
i=1 ei ≤

∑θ
i=1 ai. Let h = min{i :

ei < ai}. Then ei = ai+1 for h ≤ i ≤ m− 1.

Assume that θ > θ. Then 0 <
∑θ
i=θ+1 ei ≤

∑θ
i=1(ai − ei). It means that

there exists i ∈ {1, . . . , θ} such that ai−ei > 0. Therefore, h ≤ θ < θ < m, from
where we conclude that eθ = aθ+1 = 0, which is a contradiction with θ > θ.

2
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5.2 Proof of Theorem 5.1

Necessity. Let us assume that there exists a pencil P (s) ∈ F[s]p×q of rankP (s) =

1 such that A(s) + P (s)
s.e.∼ B(s). By Lemma 3.3, one of the two following

conditions holds:

(i) There exist pencils a(s), b(s) ∈ F[s]1×q and A21(s) ∈ F(p−1)×q such that

A(s)
s.e.∼
[
a(s)
A21(s)

]
and B(s)

s.e.∼
[
b(s)
A21(s)

]
.

(ii) There exist pencils ā(s), b̄(s) ∈ F[s]p×1 and A12(s) ∈ Fp×(q−1) such that

A(s)
s.e.∼
[
ā(s) A12(s)

]
and B(s)

s.e.∼
[
b̄(s) A12(s)

]
.

• Let us assume that (i) holds. Then n ≥ rank(A21(s)) ≥ max{n1, n2}−1 ≥
n − 1, hence rank(A21(s)) = n − x with x = 0 or x = 1. Let π1

i (s, t) |
· · · | π1

n−x(s, t), g = (g1, . . . , gq−n+x) and w = (w1, . . . wp−1−n+x) be,
respectively, the homogeneous invariant factors, column minimal indices
and row minimal indices of A21(s). By Lemmas 4.3 and 4.4,

φi(s, t) | π1
i (s, t) | φi+1(s, t), 1 ≤ i ≤ n− x,

ψi(s, t) | π1
i (s, t) | ψi+1(s, t), 1 ≤ i ≤ n− x. (32)

Thus,
ψi−1(s, t) | φi(s, t), 1 ≤ i ≤ n,
φi(s, t) | ψi+1(s, t), 1 ≤ i ≤ n− x.

Notice that in the case that x = 1 we have n1 = n2 = n, then φn(s, t) |
ψn+1(s, t) = 0 is also satisfied. Therefore, (10) holds.

1. Assume that c = d, u = v. As it has been seen, condition (10) is
necessary.

2. Assume that c 6= d, u = v. Then n1 = n2 = n. If rank(A21(s)) = n,
from Lemma 4.3 we obtain g = c and g = d, which is a contradiction
with c 6= d. Therefore, rank(A21(s)) = n − 1, i.e., x = 1. Applying
Lemma 4.4, we obtain

g ≺′ c, g ≺′ d, (33)

w = u = v. (34)

From (32) and (34),∑q−n+1
i=1 gi = n− 1−

∑n−1
i=1 deg(π1

i (s, t)−
∑p−n
i=1 wi

≥ n− 1−
∑n−1
i=1 deg(gcd(φi+1(s, t), ψi+1(s, t)))

−
∑p−n
i=1 ui = G.

By Lemma 5.8,

q−n+1∑
i=1

gi ≤
q−n∑
i=1

min{ci, di}+ max{cf , df ′}.

Therefore, (11) holds.

17



3. Assume that c = d, u 6= v. Then n1 = n2 = n. If rank(A21(s)) =
n − 1, from Lemma 4.4 we obtain w = u and w = v, which is a
contradiction with u 6= v. Therefore, rank(A21(s)) = n, i.e., x = 0.

Applying Lemma 4.3, we obtain

u ≺′ w, v ≺′ w, (35)

g = c = d. (36)

From (32) and (36),∑p−n−1
i=1 wi = n−

∑n
i=1 deg(π1

i (s, t))−
∑q−n
i=1 gi

≤ n−
∑n
i=1 deg(lcm(φi(s, t), ψi(s, t)))−

∑q−n
i=1 ci

=
∑p−n
i=1 ui −

∑n
i=1 deg(ψi(s, t))

+
∑n
i=1 deg(gcd(φi(s, t), ψi(s, t))).

Observe that since u 6= v, we have gcd(φ1(s, t), ψ1(s, t)) = 1, hence

n∑
i=1

deg(gcd(φi(s, t), ψi(s, t))) =

n−1∑
i=1

deg(gcd(φi+1(s, t), ψi+1(s, t))).

By Lemma 5.8 and Remark 5.9,∑p−n−1
i=1 wi ≥

∑p−n
i=1 max{ui, vi} −max{uf̄ , vf̄ ′}

=
∑p−n
i=1 ui +

∑q−n
i=1 vi −

∑p−n
i=1 min{ui, vi}

−max{uf̄ , vf̄ ′},

therefore,∑q−n
i=1 vi+

∑n
i=1 deg(ψi(s, t))−

∑n
i=1 deg(gcd(φi(s, t), ψi(s, t)))

≤
∑p−n
i=1 min{ui, vi}+ max{uf̄ , vf̄ ′}

which implies that

Ḡ < n−
∑n
i=1 deg(gcd(φi(s, t), ψi(s, t)))−

∑p−n
i=1 ci

≤
∑p−n
i=1 max{ui, vi}+ max{uf̄ , vf̄ ′}.

Therefore, (12) holds.

4. Assume that c 6= d, u 6= v. If rank(A(s)) = rank(B(s)), then
applying Lemmas 4.3 and 4.4, we obtain g = c = d or w = u = v,
which is a contradiction. Therefore, rank(A(s)) 6= rank(B(s)). Then
n ≥ rank(A21(s)) ≥ max{n1, n2} − 1 = n, i.e., rank(A21(s)) = n
(x = 0). From (32) we derive (13).

If rank(A(s)) < rank(B(s)), then rank(A(s)) = n, rank(B(s)) =
n+ 1. Applying Lemmas 4.3 and 4.4 we obtain

g = c, u ≺′ w, (37)

g ≺′ d, w = v. (38)

From (37) and (38) we derive (14) and (15).

Analogously, if rank(B(s)) < rank(A(s)) we obtain (16) and (17).
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• Let us assume that (ii) holds. Then

A(s)T
s.e.∼
[
ā(s)T

A12(s)T

]
, B(s)T

s.e.∼
[
b̄(s)T

A12(s)T

]
.

Recall that the column and row minimal indices of a pencil are, respec-
tively, the row and column minimal indices of its transposed.

Applying the results of the previous case, the interlacing condition (10) is
satisfied and

– If c = d, u 6= v, we obtain (12).

– If c 6= d, u = v, we obtain (11).

– If c 6= d, u 6= v and rank(A(s)) < rank(B(s)), we obtain (14) and
(17).

– If c 6= d, u 6= v and rank(B(s)) < rank(A(s)), we obtain (16) and
(15).

Sufficiency.

Case u = v. In this case, n = n1 = n2.
Assume that c = d and (10) holds or that c 6= d and (10) and (11)

hold. By Lemma 3.3, it is enough to prove the existence of matrix pencils

a(s), b(s) ∈ F[s]1×q, A21(s) ∈ F[s](p−1)×q such that A(s)
s.e.∼

[
a(s)
A21(s)

]
and

B(s)
s.e.∼
[
b(s)
A21(s)

]
.

Let
π1
i (s, t) = gcd(φi+1(s, t), ψi+1(s, t)), 1 ≤ i ≤ n− 1.

Then π1
1(s, t) | · · · | π1

n−1(s, t) and (10) implies that

φi(s, t) | π1
i (s, t) | φi+1(s, t), 1 ≤ i ≤ n− 1,

ψi(s, t) | π1
i (s, t) | ψi+1(s, t), 1 ≤ i ≤ n− 1.

(39)

Let S = n − 1 −
∑n−1
i=1 deg(π1

i (s, t)) −
∑p−n
i=1 ui and let us see that S ≥ 0.

We have∑n−1
i=1 deg(π1

i (s, t)) +
∑p−n
i=1 ui ≤

∑n
i=2 deg(φi(s, t)) +

∑p−n
i=1 ui

= n− deg(φ1(s, t))−
∑q−n
i=1 ci,

and ∑n−1
i=1 deg(π1

i (s, t)) +
∑p−n
i=1 ui ≤

∑n
i=2 deg(ψi(s, t)) +

∑p−n
i=1 ui

= n− deg(ψ1(s, t))−
∑q−n
i=1 di.

If
∑n−1
i=1 deg(π1

i (s, t)) +
∑p−n
i=1 ui = n, then φ1(s, t) = ψ1(s, t) = 1,

∑q−n
i=1 ci =∑q−n

i=1 di = 0, and

n−1∑
i=1

(deg(π1
i (s, t))− deg(φi+1(s, t))) =

n−1∑
i=1

(deg(π1
i (s, t))− deg(ψi+1(s, t))) = 0,
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therefore, c = d, π1
i (s, t) = φi+1(s, t) = ψi+1(s, t), 1 ≤ i ≤ n − 1 and A(s)

s.e.∼
B(s). As A(s) 6s.e.∼ B(s), we derive S ≥ 0.

Notice that in the case that c 6= d, because of condition (11), S = G ≤∑q−n
i=1 min{ci, di} + max{cf , df ′}. Then, by Lemma 5.5 (in the case c = d)

or by Lemma 5.8 (in the case c 6= d), there exists a partition of nonnegative

integers g = (g1, . . . , gq−n+1) satisfying
∑q−n+1
i gi = S and (33).

As
∑n−1
i=1 deg(π1

i (s, t)) +
∑p−n
i=1 ui +

∑q−n−1
i gi = n− 1, there exists a pencil

A21(s) ∈ F(p−1)×q of rank(A21(s)) = n − 1, homogeneous invariant factors
π1
i (s, t) | · · · | π1

n−1(s, t), column minimal indices g1 ≥ · · · ≥ gq−n+1 and row
minimal indices u1 ≥ · · · ≥ up−n.

From (39), (33) and Lemma 4.4, there exist pencils a(s), b(s) ∈ F[s]1×q, such

that A(s)
s.e.∼
[
a(s)
A21(s)

]
and B(s)

s.e.∼
[
b(s)
A21(s)

]
.

Case c = d. The conclusion follows applying the previous result of the case
u = v to the pencils A(s)T and B(s)T .

Case c 6= d, u 6= v. Assume that there exist homogeneous polynomials π1
1(s, t) |

· · · | π1
n(s, t) satisfying (13).

(a) If (14) and (15) hold, then q − n1 = q − n2 + 1, i.e., n1 = n2 − 1, hence
n1 = n and n2 = n+1. From (15), there exists a pencil A21(s) ∈ F(p−1)×q

of rank(A21(s)) = n, homogeneous invariant factors π1
i (s, t) | · · · | π1

n(s, t),
column minimal indices c1 ≥ · · · ≥ cq−n and row minimal indices v1 ≥
· · · ≥ vp−n−1. Moreover, because of (13),∑p−n−1

i=1 vi = n−
∑q−n
i=1 ci −

∑n
i=1 deg(π1

i (s, t))

≤ n−
∑q−n
i=1 ci −

∑n
i=1 deg(φi(s, t)) =

∑p−n
i=1 ui.

From Lemma 5.10, we obtain #{i : vi > 0} ≤ #{i : ui > 0}. Applying
Lemmas 4.3 and 4.4, there exist pencils a(s), b(s) ∈ F[s]1×q such that

A(s)
s.e.∼

[
a(s)
A21(s)

]
and B(s)

s.e.∼
[
b(s)
A21(s)

]
. The sufficiency follows from

Lemma 3.3.

The cases (b), (c) and (d) are similar.
2

Remark 5.11 From the proof of Theorem 5.1 and Remark 3.4, when u = v we
can conclude that if A(s)+P (s)

s.e.∼ B(s) where P (s) is a pencil of rank(P (s)) =
1 with a positive row minimal index, then there also exists P̄ (s) = ūv̄(s)T (i.e.,

P̄ (s) has not a positive row minimal index) such that A(s) + P̄ (s)
s.e.∼ B(s).

Analogously, when c = d, if A(s) + P (s)
s.e.∼ B(s) where P (s) is a pencil

of rank(P (s)) = 1 with a positive column minimal index, then there also exists
P̄ (s) = ū(s)v̄T (i.e., P̄ (s) has not a positive column minimal index) such that

A(s) + P̄ (s)
s.e.∼ B(s).
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6 Conclusions

Given a matrix pencil, regular or singular, we have completely characterized the
Kronecker structure of a pencil obtained from it by a perturbation of rank one.
The result holds over arbitrary fields.
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