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Abstract

The centralizer of an endomorphism of a finite dimensional vector
space is known when the endomorphism is nonderogatory or when its
minimal polynomial splits over the field. It is also known for the real
Jordan canonical form. In this paper we characterize the centralizer of an
endomorphism over an arbitrary field, and compute its dimension. The
result is obtained via generalized Jordan canonical forms (for separable
and non separable minimal polynomials). In addition, we also obtain the
corresponding generalized Weyr canonical forms and the structure of its
centralizers, which in turn allows us to compute the determinant of its
elements.
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1 Introduction

The centralizer of an endomorphism has been widely described when the min-
imal polynomial splits on the underlying field, and different characterizations
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have been provided depending on the representation of the endomorphism. For
the Jordan canonical form, a description of the centralizer can be found in
[6, 9, 20] and for a Weyr canonical form, in [16]. For nonderogatory matrices
over arbitrary fields few references exist; a parametrization of the centralizer
for companion matrices (i.e,, nonderogatory matrices) with irreducible minimal
polynomial is given in [7]. For derogatory matrices, a description of the central-
izer over the real field is provided in [9]. No general description can be found in
the literature for the centralizer of derogatory matrices over arbitrary fields.

When the minimal polynomial of a matrix has irreducible factors of degree
greater than 1, it can not be reduced to Jordan or Weyr canonical forms. How-
ever, the Jordan canonical form admits different generalizations over arbitrary
fields (rational canonical forms) depending on whether the minimal polynomial
is separable ([3, 18, 12, 17]) or nonseparable ([18, 11, 4]). We will describe
the centralizer in both cases. The generalized Jordan form is chosen because it
allows us to find a parametrization of the centralizer, in a relatively simple way.

We first recall the centralizer of a companion matrix, building block of the
rational canonical forms. Then, we prove some technical lemmas, which solve
certain matrix equations involving companion matrices. These results allow us
to obtain the centralizer for the generalized Jordan canonical form. Afterwards,
adapting appropriately the technical lemmas, we derive the results needed to
obtain the centralizer for the separable case.

From the generalization of the Jordan canonical form we derive the general-
ized Weyr canonical form, and obtain the corresponding centralizer (which, as
far as we know, cannot be found in the literature). Out of it, we also obtain
an explicit formula for the determinant of the matrices in the centralizer. This
fact is important in order to recognize the automorphisms of the centralizer,
which is key, for instance, to study the hyperinvariant and characteristic lat-
tices of an endomorphism (see [1, 14, 15]). We also compute the dimension of
the centralizer.

The paper is organized as follows: in Section 2 we recall some definitions,
previous results and the generalized Jordan canonical forms over arbitrary fields.
In Section 3 we obtain the generalized Weyr canonical form. Section 4 is devoted
to obtain the centralizer of the generalized Jordan form over arbitrary fields.
In Section 5 we find the centralizer of the generalized Jordan form when the
minimal polynomial is separable, for this case is not a particular case of the
general one. In Section 6 we obtain the centralizers of matrices in the generalized
Weyr canonical form, compute the determinant of a matrix in the centralizer
and, finally, find the dimension of the centralizer.

2 Preliminaries

We recall some definitions and previous results, which will be used throughout
the paper.
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Let V be a finite dimensional vector space over a field F and f : V → V
an endomorphism. We denote by A the matrix associated to f with respect
to a given basis, pA is the characteristic polynomial and mA is the minimal
polynomial of A. In what follows we will identify f with A. The degree of a
polynomial p is written as deg(p).

Given a matrix A = [ai,j ]i,j=1,...,n ∈ Mn(F), we denote by A∗j =

 a1j
...
anj


the j-th column of A and by Ai∗ =

[
ai1 . . . ain

]
the i-th row of A, i.e.,

A = [A∗1, . . . , A∗n] and A =

 A1∗
...

An∗

.

We recall the primary decomposition theorem, which establishes that a ma-
trix A ∈Mn(F) is similar to a direct sum of matrices whose minimal polynomials
are powers of distinct irreducible polynomials over F.

Theorem 2.1 ([10], see also [3, 17]). Let mA = pr11 p
r2
2 . . . prll be the minimal

polynomial of A ∈ Mn(F), where pi ∈ F[x] are distinct monic irreducible poly-
nomials and ri ∈ N. Let Vi = ker(prii (A)), i = 1, . . . , l. Then,

(i) V = V1 ⊕ · · · ⊕ Vl,

(ii) Vi is invariant for A,

(iii) the minimal polynomial of Ai = A|Vi is prii .

The centralizer of A over F is the algebra Z(A) = {B ∈Mn(F) : AB = BA}.
The role of the centralizer is key to analyze important algebraic properties of
the endomorphism ([20]).

The next proposition allows us to reduce the study of the centralizer to the
case where the minimal polynomial is of the form mA = pr, with p ∈ F[x]
irreducible.

Proposition 2.2. [8] Let A and B be endomorphisms on finite dimensional
vector spaces V and W , respectively, over a field F. The following properties
are equivalent:

1. The minimal polynomials of A and B are relatively prime.

2. Z(A⊕B) = Z(A)⊕ Z(B).

From now on we will assume that the characteristic polynomial of A is
pA = pr with p = xs + cs−1x

s−1 + . . . + c1x + c0 irreducible. We denote by C
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the companion matrix of p

C =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cs−1

 ∈Ms(F). (1)

Knowing the centralizer of a matrix, we can obtain the centralizer of any
other similar one. In order to obtain them, it is convenient to describe the
centralizer of a canonical form.

One of the most useful canonical forms for the similarity of endomorphisms
over a finite dimensional space is the Jordan canonical form. It allows us to easily
know the determinant, characteristic and minimal polynomials, eigenvalues and
eigenvectors and rank of the endomorphism, among others. We recall next two
generalizations of it over arbitrary and perfect fields, respectively.

2.1 The generalized Jordan canonical form

The primary rational canonical form of a matrix over a field under similarity is
a generalization of the Jordan canonical form. The name comes from the fact
that it can be obtained using the operations of a field (rational operations) (see
[18]).

Theorem 2.3 (Primary rational canonical form or generalized Jordan canonical
form, [18, 17, 12, 11]). Let pA = pr with p = xs+cs−1x

s−1+ . . .+c1x+c0 ∈ F[x]
irreducible be the characteristic polynomial of A ∈ Mn(F). Then, A is similar
to

G = diag(G1, G2, . . . , Gm), (2)

where

Gi =


C 0 . . . 0
E C . . . 0
...

. . .
. . .

...
0 . . . E C

 ∈Msαi(F), i = 1, . . . ,m, (3)

C is the companion matrix (1) of p, E is the matrix

E =


0 . . . 0 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 ∈Ms(F), (4)

α1 ≥ α2 ≥ . . . ≥ αm ≥ 0 are integers such that pαi , i = 1, . . . ,m are the
elementary divisors of G and

∑m
i=1 αi = r.
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The following remarks aim at summarizing some properties of the generalized
Jordan canonical form.

Remark 2.4. 1. The matrix G in (2) can be found in many references in
the literature receiving different names: “rational canonical set” ([17], here
the blocks Gi are called “hypercompanion matrices”), “classical canonical
form” ([12]), “Jordan normal form for the field F” ([11], in this paper it
has been obtained by a duality method).

We call the matrixG the generalized Jordan form ofA and α = (α1, α2, . . . , αm)
the generalized Segre characteristic of A. We will refer to a block Gi as
a generalized Jordan block. Here, each αi denotes the number of diagonal
blocks in the matrix Gi.

When deg(p) = 1, the resulting matrix is the Jordan canonical form ([13]).

2. The canonical form (2) allows the following decomposition

G = D +N = diag(D1, . . . , Dm) + diag(N1, . . . , Nm) (5)

Di =


C 0 . . . 0
0 C . . . 0
...

. . .
. . .

...
0 . . . 0 C

 , Ni =


0 0 . . . 0
E 0 . . . 0
...

. . .
. . .

...
0 . . . E 0


with Ni, Di ∈Msαi(F). In general DN 6= ND.

Remark 2.5. A generalized Jordan basis can be written as B = {v(1), v(2), . . . , v(m)}
where v(i) is a generalized Jordan chain. Each one of them contains αi partial
chains, that is

v(1) = {w1,1, . . . , w1,s︸ ︷︷ ︸
v
(1)
1

, w1,s+1, . . . , w1,2s︸ ︷︷ ︸
v
(1)
2

, . . . , w1,(α1−1)s+1, . . . , w1,α1s︸ ︷︷ ︸
v
(1)
α1

}

v(2) = {w2,1, . . . , w2,s︸ ︷︷ ︸
v
(2)
1

, . . . , w2,(α2−1)s+1, . . . , w2,α2s︸ ︷︷ ︸
v
(2)
α2

}

. . .

v(m) = {wm,1, . . . , wm,s︸ ︷︷ ︸
v
(m)
1

, . . . , wm,(αm−1)s+1, . . . , wm,αms︸ ︷︷ ︸
v
(m)
αm

}

such that for i = 1, . . . ,m,

wi,1 ∈ ker(pαi(G)) \ ker(pαi−1(G)),
Gwi,j = wi,j+1, j = 1, . . . , sαi, j 6= ks, k = 1, . . . , αi,
wi,ks+1 = pk(G)wi,1, k = 1 . . . , αi − 1.
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Example 2.6. Let α = (3, 2), that is, G = diag(G1, G2) with

G1 =

 C 0 0
E C 0
0 E C

 ∈M3s(F), G2 =

[
C 0
E C

]
∈M2s(F).

In this case the minimal polynomial of G is mG = p3 and deg(p) = s. Let
B = {v(1), v(2)} be the generalized Jordan basis. Each Jordan chain v(i) contains
αi partial chains

v(1) = {w1,1, . . . , w1,s︸ ︷︷ ︸
v
(1)
1

, w1,s+1, . . . , w1,2s︸ ︷︷ ︸
v
(1)
2

, w1,2s+1, . . . , w1,3s︸ ︷︷ ︸
v
(1)
3

}

v(2) = {w2,1, . . . , w2,s︸ ︷︷ ︸
v
(2)
1

, w2,s+1, . . . , w2,2s︸ ︷︷ ︸
v
(2)
2

}

2.2 The generalized Jordan canonical form of the first
kind

Concerning the existence of canonical forms of matrices for the similarity equiv-
alence relation, particular attention deserves the case when the polynomial p is
separable. In this case, another canonical form can be obtained which allows
the so called Jordan-Chevalley decomposition of a matrix ([17]). We recall here
the results.

The existence of the Jordan-Chevalley decomposition makes easier the study
of certain properties of the endomorphism. For instance, one example is the
study of the lattices of its hyperinvariant and characteristic subspaces (see
[3, 15]). In particular, it makes easier the obtention of the centralizer of the
endomorphism, as we will see later.

Theorem 2.7 (Generalized Jordan canonical form of the first kind, [10, 19]).
Let pA = pr with p = xs + cs−1x

s−1 + . . . + c1x + c0 ∈ F[x] irreducible and
separable be the characteristic polynomial of A ∈Mn(F). Then, A is similar to
a matrix of the form

G = diag(G1, G2, . . . , Gm), (6)

where

Gi =


C 0 . . . 0
I C . . . 0
...

. . .
. . .

...
0 . . . I C

 ∈Msαi(F), i = 1, . . . ,m,

C is the companion matrix (1) of p, I is the identity matrix and α1 ≥ α2 ≥ . . . ≥
αm ≥ 0 are integers such that pαi , i = 1, . . . ,m are the elementary divisors of
G and

∑m
i=1 αi = r.
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Remark 2.8. 1. This canonical form is known as the generalized Jordan
form of the first kind ([4]). A particular case of this canonical form is the
real Jordan canonical form ([9]). When deg(p) = 1, this form also reduces
to the Jordan canonical form.

2. When p is separable, the matrix (6) is obviously similar to the generalized
Jordan form (2) (for a proof see [19]).

3. The canonical form (6) allows a decomposition analogous to (5), which is
the following

G = D +N = diag(D1, . . . , Dm) + diag(N1, . . . , Nm)

Di =


C 0 . . . 0
0 C . . . 0
...

. . .
. . .

...
0 . . . 0 C

 , Ni =


0 0 . . . 0
I 0 . . . 0
...

. . .
. . .

...
0 . . . I 0


with Ni, Di ∈ Msαi(F). Now, DN = ND, and the decomposition is
known as Jordan-Chevalley decomposition. In fact, given pA = pr, p is
separable if and only if A admits Jordan-Chevalley decomposition. See,
for instance, [19].

3 The generalized Weyr canonical form

A canonical form of an endomorphism under similarity, relevant to theoreti-
cal and applied mathematics, is the Weyr canonical form. It has been obtained
when the minimal polynomial splits over F (therefore, it exists over algebraically
closed fields). See [16] for details. This section is devoted to obtain a generaliza-
tion of the Weyr form over an arbitrary field, which will be called the generalized
Weyr canonical form (or Weyr primary rational canonical form).

One important feature leading the present work is that the Weyr canonical
form allows to describe the matrices in the centralizer of an endomorphism in
an upper triangular form (see [16]). We will generalize it to arbitrary fields,
and will obtain the corresponding upper triangular form of the matrices in
the centralizer. We will use this property to calculate the determinant of the
elements of the centralizer.

The Weyr canonical form can be obtained from the Jordan canonical form
reordering appropriately the vectors of a Jordan basis. In fact, it is associated
to the conjugate partition of the Segre characteristic of the endomorphism (see
[16]). To obtain the generalized Weyr canonical form we use the same sort of
transformation, as we see next.

According to Proposition 2.2, we will assume that the minimal polynomial
of the matrix A ∈Mn(F) is of the form mA = pr, where p is irreducible over F.
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The generalized Weyr canonical form will also be associated to the conjugate
partition of the generalized Segre characteristic of A.

Let α = (α1, . . . , αm) be the generalized Segre characteristic of A, and B =
{v(1), v(2), . . . , v(m)} the generalized Jordan basis defined in Remark 2.5, where

v(i) = {v(i)1 , . . . , v
(i)
αi } and each partial chain v

(i)
j is composed by a collection of

s vectors. To obtain a generalized Weyr basis from it, we proceed analogously
to the obtention of the Weyr basis, but replacing vectors by partial chains. The
relations among the partial chains can be sketched as follows

v
(1)
α1 ← · · · ← v

(1)
1

v
(2)
α2 ← · · · ← v

(2)
1

...
...

v
(m)
αm ← · · · ← v

(m)
1

In order to renumber the partial chains according to its absolute position in
the basis we need to introduce some notation. Let (β1, . . . , βh) be the different
values of the generalized Segre partition and (n1, . . . , nh) its frequencies. Let
(µ1, . . . , µh) be the cumulative frequencies of βi (µi = µi−1 + ni). For i =
1, . . . ,m, let σi = α1 + . . .+ αi (σ0 = 0). For σi−1 < j ≤ σi, we define

vj = v
(i)
j−σi−1

.

Then, the partial chains of the basis can be described as follows

vσ1 · · · vσ1−βh+1 · · · vσ1−βk+1 · · · vσ1−β2+1 · · · vσ1−β1+1

...
...

...
...

...
vσµ1 · · · vσµ1−βh+1 · · · vσµ1−βk+1 · · · vσµ1−β2+1 · · · vσµ1−β1+1

 n1

...
...

...
...

vσµk−nk+1
· · · vσµk−nk−βh+2 · · · vσµk−nk−βk+2

...
...

...
vσµk · · · vσµk−βh+1 · · · vσµk−βk+1

 nk

...
...

...

vσµh−nh+1 · · · vσµh−nh+1−βh+2

...
...

vσµh · · · vσµh−βh+1

 nh

Now, taking this basis in vertical order we obtain the generalized Weyr form.
In more detail, if we write the identity matrix as

In =
[
I∗(1), . . . , I∗(σ1), I∗(σ1+1), . . . , I∗(σµh )

]
,
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where I∗(j) denotes a block of s consecutive columns of In (notice that σµhs = n),
the permutation matrix reordering the basis is

P =
[
I∗(σ1) . . . I∗(σµh ) | I∗(σ1−1) . . . I∗(σµh−1) | · · · | I∗(σ1−βh+1) . . . I∗(σµh−βh+1) |

. . . | I∗(σ1−βk) . . . I∗(σµk−1
−βk) | · · · | I∗(σ1−βk−1+1) . . . I∗(σµk−1

−βk−1+1) |

· · · | I∗(σ1−β2) . . . I∗(σµ1−β2) | . . . | I∗(σ1−β1+1) . . . I∗(σµ1−β1+1)

]
(7)

and the following theorem is obtained.

Theorem 3.1. Let G = diag(G1, . . . , Gm) be a generalized Jordan matrix as
in (2). Let pG = pr be its characteristic polynomial with p irreducible and
deg (p) = s. Let α = (α1, . . . , αm) be the generalized Segre characteristic of G
and τ = (τ1, . . . , τα1

) the conjugate partition of α.
Then, G is similar to a matrix

W =


W1 E2 . . . 0 0

0 W2
. . . 0 0

...
...

. . .
. . .

...
0 0 . . . Wα1−1 Eα1

0 0 . . . 0 Wα1

 , (8)

where

Wi =


C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

 ∈Msτi(F), i = 1, . . . α1,

Ei+1 =



E 0 . . . 0
0 E . . . 0
...

...
. . .

...
0 0 . . . E
0 0 . . . 0
...

...
...

...
0 0 . . . 0


∈Msτi×sτi+1

(F), i = 1, . . . α1 − 1,

with E defined as in (4).

Proof. Representing G with respect to the basis reordered according to the per-
mutation matrix P described in (7), we obtain the desired result, i.e. P−1GP =
W . Observe that, because of the reordering chosen, the sizes of the resulting
diagonal blocks are given by τ , the conjugate partition of α.
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Example 3.2. Let G be a generalized Jordan form with generalized Segre
characteristic α = (3, 2, 2) and

B = {v(1), v(2), v(3)} = {{v(1)1 , v
(1)
2 , v

(1)
3 }, {v

(2)
1 , v

(2)
2 }, {v

(3)
1 , v

(3)
2 }},

the corresponding basis. We can sketch the relations among the partial chains
of the basis as

v
(1)
3 ← v

(1)
2 ← v

(1)
1

v
(2)
2 ← v

(2)
1

v
(3)
2 ← v

(3)
1

Notice that (β1, β2) = (3, 2), (n1, n2) = (1, 2), (µ1, µ2) = (1, 3), (σ1, σ2, σ3) =
(3, 5, 7). For σi−1 < j ≤ σi, we define

vj = v
(i)
j−σi−1

,

then, the partial chains of the basis can be described as follows

v3 v2 v1
}

n1 = 1
v5 v4
v7 v6

}
n2 = 2

Now, if we take this basis in vertical order B′ = {{v3, v5, v7}, {v2, v4, v6}, {v1}},
we obtain the generalized Weyr basis associated to the conjugate partition of α,
τ = (3, 3, 1). The permutation matrix which reorders the basis is

P =
[
I∗(3) I∗(5) I∗(7) I∗(2) I∗(4) I∗(6) I∗(1)

]
,

and the resulting matrix is

W =



C E
C E

C E
C E

C
C

C


∈M7s(F).

Remark 3.3. The Weyr characteristic can be obtained in terms of the kernels
of pi(W ) ([16]). Analogously, the generalized Weyr characteristic τ can be
computed as

τ1 = 1
s dim(ker(p(W )),

τ2 = 1
s (dim(ker(p2(W ))− dim(ker(p(W ))),

...
τα1

= 1
s (dim(ker(pα1(W ))− dim(ker(pα1−1(W ))).
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4 The centralizer of a matrix over an arbitrary
field

The centralizer Z(A) of a matrix A ∈ Mn(F) is known when the characteristic
polynomial splits over F (see [20]), for nonderogatory matrices (see [7]) and for
F = R (see [9]).

In this section we obtain the centralizer of a matrix in the generalized Jordan
form (2), therefore for arbitrary fields. We can obtain it thanks to the structure
of the generalized Jordan form and its behavior face to the matrix multiplication.
We achieve the result in three steps: in Subsection 4.1 we recall the centralizer
of a companion matrix (i.e., nonderogatory matrix), in Subsection 4.2 we obtain
the centralizer of a generalized Jordan block, and finally in Subsection 4.3 we
find the centralizer of a generalized Jordan matrix. To prove our results, we
introduce in Subsection 4.2 some technical lemmas concerning the obtention of
solutions of certain matrix equations.

4.1 The centralizer of a companion matrix

Let C ∈ Mn(F) be the companion matrix (1) and mC(x) = xn + cn−1x
n−1 +

. . .+ c1x+ c0 its minimal polynomial.

In the following lemma we recall the characterization of the centralizer of a
companion matrix ([7]). Next, we give a more simple proof than that of [7].
Moreover, the technique we use to prove it, is also used later to obtain the
centralizer of the generalized Jordan form.

Lemma 4.1. [7] The centralizer Z(C) of the companion matrix C is

{X ∈Mn(F) : X =
[
v Cv . . . Cn−1v

]
, v ∈ Fn}.

Proof. From the definition of the centralizer, we have that

X ∈ Z(C)⇔ CX = XC.

As,
CX = C

[
X∗1 . . . X∗n

]
=
[
CX∗1 . . . CX∗n

]
,

XC =
[
X∗2 . . . X∗n −c0X∗1 − . . .− cn−1X∗n

]
,

identifying columns we obtain

X∗2 = CX∗1
X∗3 = CX∗2 = C2X∗1
. . .
X∗n = CX∗n−1 = Cn−1X∗1


therefore

CX = XC ⇔ X =
[
X∗1 CX∗1 . . . Cn−1X∗1

]
.
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As a consequence of the above lemma we see that the matrices in the cen-
tralizer Z(C) can be parametrized in terms of the elements of the first column.
Next corollary shows another parametrization in terms of the last row.

Corollary 4.2. Let X = [xi,j ] ∈ Z(C). Then,

xn−i,1 = cn−ixn,1 + cn−i+1xn,2 + . . .+ cn−1xn,i+xn,i+1, i = 1, . . . , n−1. (9)

Proof. As

X =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n

. . .

xn,1 xn,2 . . . xn,n

 =
[
X∗1 CX∗1 . . . Cn−1X∗1

]
,

for j = 1, . . . , n− 1,
x1,j+1

x2,j+1

. . .
xn−1,j+1

xn,j+1

 = C


x1,j
x2,j
. . .

xn−1,j
xn,j

 =


0 0 . . . 0 −c0
1 0 . . . 0 −c1

. . .

0 0 . . . 0 −cn−2
0 0 . . . 1 −cn−1




x1,j
x2,j
. . .

xn−1,j
xn,j

 =


−c0xn,j

x1,j − c1xn,j
. . .

xn−2,j − cn−2xn,j
xn−1,j − cn−1xn,j

 .
It means that for i = 1, . . . , n, j = 1, . . . , n− 1 (x0,j = 0)

xn−i,j = cn−ixn,j + xn−i+1,j+1. (10)

Applying (10) repeatedly we obtain the conclusion:

xn−i,1 = cn−ixn,1 + xn−i+1,2 =

= cn−ixn,1 + cn−i+1xn,2 + xn−i+2,3 =

. . .

= cn−ixn,1 + cn−i+1xn,2 + . . .+ cn−1xn,i + xn,i+1.

As a consequence, the following results arise.

Corollary 4.3. [2] Assume that C ∈ Mn(F) is the companion matrix (1).
Then, it is satisfied that

1. dim(Z(C)) = n.

2. Let X ∈ Z(C), then

det(X) = 0⇔ X∗1 = 0⇔ Xn∗ = 0.

3. If the polynomial associated to C is irreducible, then

det(X) = 0⇔ X = 0.
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4.2 The centralizer of a generalized Jordan block

Let G be a generalized Jordan block as in (3). Our target now is to obtain the
centralizer of G.

We introduce the following notation: given a matrix X = [xi,j ]1≤i,j≤n ∈
Mn(F), we denote by X̃ ∈Mn(F)

X̃ =


0 xn,1 xn,2 . . . xn,n−1
0 0 xn,1 . . . xn,n−2

. . .

0 0 0 . . . xn,1
0 0 0 . . . 0

 . (11)

The next lemma is key to compute the centralizer of a generalized Jordan
matrix G.

Lemma 4.4. Let C ∈Mn(F) be a companion matrix as in (1) and E a matrix
as in (4). Let X,Y ∈ Z(C) and T ∈Mn(F). Then

EX + CT = TC + Y E ⇔ X = Y, T = T ′ + X̃,

where T ′ ∈ Z(C) and X̃ is defined as in (11).

Proof. By Lemma 4.1 we have that

X ∈ Z(C)⇔ X =
[
X∗1 CX∗1 . . . Cn−1X∗1

]
,

Y ∈ Z(C)⇔ Y =
[
Y∗1 CY∗1 . . . Cn−1Y∗1

]
.

Observe that

EX =


xn,1 . . . xn,n−1 xn,n

0 . . . 0 0
. . .

0 . . . 0 0

 , Y E =


0 . . . 0 y1,1
0 . . . 0 y2,1

. . .

0 . . . 0 yn,1

 .
If we denote by ei the i-th vector of the canonical basis of Fn, then

EX + CT =
[
xn,1e1 . . . xn,ne1

]
+
[
CT∗1 . . . CT∗n

]
,

TC + Y E =
[
T∗2 . . . T∗n −c0T∗1 − . . .− cn−1T∗n + Y∗1

]
.

Identifying the two expressions we obtain

T∗2 = xn,1e1 + CT∗1
T∗3 = xn,2e1 + CT∗2 = xn,2e1 + C(xn,1e1 + CT∗1) = (xn,2 + xn,1C)e1 + C2T∗1
. . .
T∗n = xn,n−1e1 + CT∗n−1 = (xn,n−1 + xn,n−2C + . . .+ xn,1C

n−2)e1 + Cn−1T∗1
−c0T∗1 − . . .− cn−1T∗n + Y∗1 = xn,ne1 + CT∗n


(12)
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Hence

T∗2 = xn,1e1 + CT∗1
T∗3 = xn,2e1 + xn1e2 + C2T∗1
. . .
T∗n = xn,n−1e1 + xn,n−2e2 + . . .+ xn,1en−1 + Cn−1T∗1
−c0T∗1 − . . .− cn−1T∗n + Y∗1 = xn,ne1 + CT∗n


and replacing T∗2, . . . , T∗n into the last equation

c0T∗1+
c1(xn,1e1 + CT∗1)+
c2(xn,2e1 + xn,1e2 + C2T∗1)+
. . .
cn−1(xn,n−1e1 + xn,n−2e2 + . . .+ xn,1en−1 + Cn−1T∗1)+
xn,ne1+
+C(xn,n−1e1 + xn,n−2e2 + . . .+ xn,1en−1 + Cn−1T∗1) =

= (c0In + c1C + . . .+ cn−1C
n−1 + Cn)T∗1+

c1xn,1e1+
c2(xn,2e1 + xn,1e2)+
. . .
cn−2(xn,n−2e1 + xn,n−3e2 + . . .+ xn,1en−2)+
cn−1(xn,n−1e1 + xn,n−2e2 + . . .+ xn,2en−2 + xn,1en−1)+
xn,ne1 + xn,n−1e2 + xn,n−2e3 + . . .+ xn,1en =

=


c1xn,1 + c2xn,2 + . . .+ cn−2xn,n−2 + cn−1xn,n−1 + xn,n

c2xn,1 + c3xn,2 + . . .+ cn−1xn,n−2 + xn,n−1
. . .

cn−2xn,1 + cn−1xn,2 + xn,3
cn−1xn,1 + xn,2

xn,1

 = Y∗1,

Taking into account Corollary 4.2 we conclude that

xi,1 = yi,1, i = 1, . . . , n,

therefore X∗1 = Y∗1, and since X,Y ∈ Z(C) we obtain that X = Y . Moreover,
from equations (12) denoting T =

[
T∗1 T∗2 . . . T∗n

]
,

T =
[
T∗1 CT∗1 C2T∗1 . . . Cn−1T∗1

]
+


0 xn,1 xn,2 . . . xn,n−1
0 0 xn,1 . . . xn,n−2

. . .

0 0 0 . . . xn,1
0 0 0 . . . 0

 ,

i.e. T = T ′ + X̃ where T ′ ∈ Z(C) and X̃ defined as in (11) as desired.
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Conversely, assume that X,T ′ ∈ Z(C), Y = X and T = T ′ + X̃ where X̃ is
defined as in (11). To prove that

EX + CT = TC + Y E,

it is enough to prove that

EX + CX̃ = X̃C +XE,

and this equation is satisfied whenever (9) is satisfied. But it fulfills because,
X ∈ Z(C).

Corollary 4.5. The set

M = {(X,T ) ∈Mn(F)×Mn(F) : X ∈ Z(C), T = T ′ + X̃, T ′ ∈ Z(C)}

is a vector subspace of dimension

dim(M) = 2n.

Notice that since EX̃ = X̃E = 0, Lemma 4.4 can be stated in a more general
form as in the following lemma.

Lemma 4.6. Let C ∈Mn(F) be a companion matrix as in (1) and E a matrix
as in (4). Let X ′, Y ′ ∈ Z(C), T,A ∈Mn(F) and X = X ′+ Ã, Y = Y ′+ Ã with
Ã defined as in (11). Then

EX + CT = TC + Y E ⇔ X = Y, T = T ′ + X̃,

where T ′ ∈ Z(C) and X̃ is as in (11).

Particular cases of the previous results are stated in the next corollary; they
will be used later.

Corollary 4.7. 1. Let Y ∈ Z(C) and T ∈Mn(F). Then

CT = TC + Y E ⇔ Y = 0, T ∈ Z(C).

2. Let X ∈ Z(C) and T ∈Mn(F). Then

TC = CT + EX ⇔ X = 0, T ∈ Z(C).

The next theorem is the main result of this subsection. We give a charac-
terization of the centralizer of a generalized Jordan block.

Theorem 4.8 (Centralizer of a generalized Jordan block). Let G ∈ Ms`(F) be
a generalized Jordan block, mG = p`, p irreducible and deg(p) = s. Then, the
centralizer Z(G) of G is
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X1,1 0 . . . 0 0
X2,1 X1,1 . . . 0 0

...
. . .

. . .
...

...

X`−1,1 X`−2,1
. . . X1,1 0

X`,1 X`−1,1 . . . X2,1 X1,1

 ,
X1,1 ∈ Z(C),

Xi,1 = X ′i,1 + X̃i−1,1,

X ′i,1 ∈ Z(C),

i = 2, . . . , `.


,

where X̃i−1,1 is defined as in (11).

Proof. For ` = 1 the result is immediate. Assume that ` ≥ 2. We prove the
theorem by induction on k = 2, . . . , `. For k = 2 it is straightforward to see that

Z

([
C 0
E C

])
=

{[
X 0
T X

]
: T = T ′ + X̃, X, T ′ ∈ Z(C)

}
.

Assume that the property is true for k and let us prove that it is satisfied
for k + 1.

Let us write

Gk+1 =

[
Gk 0
Ek C

]
,

where Ek =
[

0 . . . 0 E
]
. Assume that Xk+1 ∈ Z(Gk+1) and write

Xk+1 = [Xi,j ]1≤i,j≤k+1 =

 Xk

X1,k+1

. . .
Xk,k+1

Xk+1,1 . . . Xk+1,k Xk+1,k+1

 , Xi,j ∈Ms(F).

Then,
Xk+1Gk+1 = Gk+1Xk+1

if and only if the following equations (13)-(16) are satisfied

GkXk = XkGk +

 0 . . . 0 X1,k+1E
...

...
...

0 . . . 0 Xk,k+1E

 , (13)

Gk

 X1,k+1

...
Xk,k+1

 =

 X1,k+1C
...

Xk,k+1C

 , (14)


EXk,1 + CXk+1,1 = Xk+1,1C +Xk+1,2E,

...
...

...
EXk,k + CXk+1,k = Xk+1,kC +Xk+1,k+1E,

(15)

EXk,k+1 + CXk+1,k+1 = Xk+1,k+1C. (16)
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From equations (14) and (16) we have

CX1,k+1 = X1,k+1C
EX1,k+1 + CX2,k+1 = X2,k+1C

...
EXk−1,k+1 + CXk,k+1 = Xk,k+1C
EXk,k+1 + CXk+1,k+1 = Xk+1,k+1C

and as a consequence of Corollary 4.7 we obtain X1,k+1 = . . . = Xk,k+1 = 0 and
Xk+1,k+1 ∈ Z(C).

Now, equation (13) reduces to GkXk = XkGk. Applying the induction
hypothesis we can write

Xk =


X1,1 0 . . . . . . 0
X2,1 X1,1 0 . . . 0
X3,1 X2,1 X1,1 . . . 0

...
...

...
. . .

...
Xk,1 Xk−1,k X1,k−2 . . . X1,1

 ,

where X1,1 ∈ Z(C) and Xi,1 = X ′i,1 + X̃i−1,1, X
′
i,1 ∈ Z(C) and X̃i−1,1 is as in

(11), for i = 2, . . . , k. It allows us to rewrite equations (15) as follows

CXk+1,k+1 = Xk+1,k+1C
EX1,1 + CXk+1,k = Xk+1,kC +Xk+1,k+1E
EX2,1 + CXk+1,k−1 = Xk+1,k−1C +Xk+1,kE

...
EXk−1,1 + CXk+1,2 = Xk+1,2C +Xk+1,3E
EXk,1 + CXk+1,1 = Xk+1,1C +Xk+1,2E

As X1,1 and Xk+1,k+1 ∈ Z(C), by Lemma 4.4 the second of these equations

implies that Xk+1,k+1 = X1,1 and Xk+1,k = X ′k+1,k+X̃1,1 with X ′k+1,k ∈ Z(C).
Now, from the third equation and Lemma 4.6 we obtain that Xk+1,k = X2,1

and Xk+1,k−1 = X ′k+1,k−1 + X̃2,1. Proceeding in the same way we obtain the
desired result.

The following corollary generalizes Corollary 4.5.

Corollary 4.9. Under the hypotesis of Theorem 4.8 we have that

dim(Z(G)) = `s.

4.3 The centralizer of a generalized Jordan form

In order to obtain the centralizer of a generalized Jordan form we need to prove
first two technical results.
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Lemma 4.10. Let G1 ∈Msa(F), G2 ∈Msb(F), a ≥ b, be two generalized Jordan
blocks. Let T = [Ti,j ] ∈ Msa×sb(F) be a block matrix with Ti,j ∈ Ms(F) such
that

G1T = TG2. (17)

Then,

T =

[
0
T1

]
,

with T1 ∈ Z(G2).

Proof. Denoting T = [Yi,j ]i=1,...,a,j=1,...,b, equation (17) is

CY1,1 . . . CY1,b−2 CY1,b−1 CY1,b
EY1,1 + CY2,1 . . . EY1,b−2 + CY2,b−2 EY1,b−1 + CY2,b−1 EY1,b + CY2,b

...
...

...
...

EYa−3,1 + CYa−2,1 . . . EYa−3,b−2 + CYa−2,b−2 EYa−3,b−1 + CYa−2,b−1 EYa−3,b + CYa−2,b
EYa−2,1 + CYa−1,1 . . . EYa−2,b−2 + CYa−1,b−2 EYa−2,b−1 + CYa−1,b−1 EYa−2,b + CYa−1,b
EYa−1,1 + CYa,1 . . . EYa−1,b−2 + CYa,b−2 EYa−1,b−1 + CYa,b−1 EYa−1,b + CYa,b


=

=



Y1,1C + Y1,2E . . . Y1,b−2C + Y1,b−1E Y1,b−1C + Y1,bE Y1,bC
Y2,1C + Y2,2E . . . Y2,b−2C + Y2,b−1E Y2,b−1C + Y2,bE Y2,bC

...
...

...
...

Ya−2,1C + Ya−2,2E . . . Ya−2,b−2C + Ya−2,b−1E Ya−2,b−1C + Ya−2,bE Ya−2,bC
Ya−1,1C + Ya−1,2E . . . Ya−1,b−2C + Ya−1,b−1E Ya−1,b−1C + Ya−1,bE Ya−1,bC
Ya,1C + Ya,2E . . . Ya,b−2C + Ya,b−1E Ya,b−1C + Ya,bE Ya,bC


.

Identifying the block components of the last column and taking into account
Corollary 4.7, we successively obtain that

Y1,b = 0, Y2,b = 0, . . . Ya−1,b = 0, Ya,b ∈ Z(C).

Then, identifying the block components of the last but one column and taking
into account Corollary 4.7 and Lemma 4.6, we successively obtain that

Y1,b−1 = 0, Y2,b−1 = 0, . . . Ya−2,b−1 = 0, Ya−1,b−1 = Ya,b,

and
Ya,b−1 = Y ′a,b−1 + Ỹa,b, Y ′a,b ∈ Z(C).

Identifying the block components of the third block column starting from the
end and taking into account Corollary 4.7, Lemma 4.6 and Lemma 4.4, we
obtain

Y1,b−2 = 0, Y2,b−2 = 0, . . . Ya−3,b−2 = 0, Ya−2,b−2 = Ya,b,

and

Ya−1,b−2 = Ya,b−1, Ya,b−2 = Y ′a,b−2 + Ỹa,b, Y ′′a−1,b−2 ∈ Z(C).
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Proceeding analogously down the remaining columns we obtain

T =



0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
Ya,b 0 . . . 0 0
Ya,b−1 Ya,b . . . 0 0

...
...

. . .
...

...
Ya,2 Ya,3 . . . Ya,b 0
Ya,1 Ya,2 . . . Ya,b−1 Ya,b


,

with Ya,j = Y ′a,j+Ỹa,j−1 and Ya,b, Y
′
a,j ∈ Z(C) for j = 1, . . . , b−1 as desired.

The next lemma can be proved in a similar way.

Lemma 4.11. Let G1, G2 be two generalized Jordan blocks as in (3), G1 ∈
Msa(F), G2 ∈ Msb(F), a ≤ b. Let T = [Ti,j ]i=1,...,a,j=1,...,b be a block matrix
with Ti,j ∈Ms(F) such that

G1T = TG2.

Then,
T =

[
T1 0

]
,

with T1 ∈ Z(G1).

Theorem 4.12 (Centralizer of a generalized Jordan form). Let G = diag(G1, . . . , Gm)
be a generalized Jordan matrix. Let pG = pr be its characteristic polynomial,
p irreducible, mG = pr1 , r1 ≤ r and deg (p) = s. Let α = (α1, . . . , αm) be the
generalized Segre characteristic of G. If X ∈ Z(G), then

X = [Xi,j ]i,j=1,...,m,

where Xi,j ∈ Msαi×sαj (F) are block lower triangular Toeplitz matrices of the
form:

1) If αi = αj, then Xi,i ∈ Z(Gi).

2) If αi < αj, then
Xi,j =

[
Xi,i 0

]
,

where Xi,i ∈ Z(Gi).

3) If αi > αj, then

Xi,j =

[
0

Xj,j

]
,

where Xj,j ∈ Z(Gj).
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Proof. Let X ∈ Z(G) and assume that X = [Xi,j ]i,j=1,...,m. Then, the block
components of X satisfy the following equations:

GiXi,j = Xi,jGj , i, j = 1, . . . ,m.

The structure of the blocks Xi,j for i, j = 1, . . . ,m is a direct consequence of
Theorem 4.8 and Lemmas 4.10 and 4.11.

Example 4.13. Let G be a generalized Jordan matrix with minimal polyno-
mial mG = p5, where p is an irreducible polynomial of deg(p) > 1 and whose
companion matrix is C as in (1). Let α = (5, 4, 3, 1, 1) be its generalized Segre
characteristic, i.e. the generalized Jordan form of G is

G =



C
E C

E C
E C

E C
C
E C

E C
E C

C
E C

E C
C

C


In this case a matrix X ∈ Z(G) has the following form

X =



A1

A2 A1 I1
A3 A2 A1 I2 I1 L1

A4 A3 A2 A1 I3 I2 I1 L2 L1

A5 A4 A3 A2 A1 I4 I3 I2 I1 L3 L2 L1 Q1 W1

H1 B1

H2 H1 B2 B1 M1

H3 H2 H1 B3 B2 B1 M2 M1

H4 H3 H2 H1 B4 B3 B2 B1 M3 M2 M1 R1 X1

J1 K1 C1

J2 J1 K2 K1 C2 C1

J3 J2 J1 K3 K2 K1 C3 C2 C1 S1 Y1
N1 O1 P1 D1 G1

T1 U1 V1 F1 E1



,

where A1 ∈ Z(C) and for i = 2, . . . , 5, Ai = A′i + Ãi−1 with A′i ∈ Z(C) and
Ãi−1 is defined as in (11). An analogous pattern occurs in each block.
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5 The centralizer of a matrix over a perfect field

When F is a perfect field we can replace the matrices E by identity matrices I in
the generalized Jordan form, obtaining the generalized Jordan canonical form
of the first kind (see Theorem 2.7). In fact, a perfect field is not a necessary
condition, it is enough that the polynomial p is separable.

In what follows, we calculate the centralizer of a generalized Jordan matrix
of the first kind. Although it is not a particular case of the centralizer of a
generalized Jordan form, we can easily derive the technical results we need to
obtain the centralizer in this case from those obtained in Section 4.

An example of this case is the centralizer of the real Jordan form.

The following results are variants of Lemma 4.6 and Corollary 4.7, respec-
tively, adapted to this case.

Lemma 5.1. Let C ∈Mn(F) be a companion matrix as in (1). Let X,Y ∈ Z(C)
and T ∈Mn(F). Then

X + CT = TC + Y ⇔ X = Y, T ∈ Z(C).

This result is, in fact, an immediate consequence of the next lemma.

Lemma 5.2. Let C ∈Mn(F) be a companion matrix as in (1). Let Y ∈ Z(C)
and T ∈Mn(F). Then

CT = TC + Y ⇔ Y = 0, T ∈ Z(C).

Proof. By Lemma 4.1 we have that

Y ∈ Z(C)⇒ Y =
[
Y∗1 CY∗1 . . . Cn−1Y∗1

]
.

CT =
[
CT∗1 . . . CT∗n

]
TC + Y =

[
T∗2 . . . T∗n −c0T∗1 − . . .− cn−1T∗n

]
+[

Y∗1 CY∗1 . . . Cn−1Y∗1
]
.

Identifying the two expressions we obtain:

T∗2 = CT∗1 + Y∗1
T∗3 = CT∗2 + CY∗1 = +C2T∗1 + 2CY∗1
. . .
T∗i = Ci−1T∗1 + (i− 1)Ci−2Y∗1
. . .
T∗n = Cn−1T∗1 + (n− 1)Cn−2Y∗1
−c0T∗1 − . . .− cn−1T∗n = CT∗n + Cn−1Y∗1


Replacing the values of all T∗i in the last equation we have:
−c0T∗1−c1(CT∗1+Y∗1) . . .−ci−1(Ci−1T∗1+(i−1)Ci−2Y∗1) . . .−cn−1(Cn−1T∗1+
(n− 1)Cn−2Y∗1) = C(Cn−1T∗1 + (n− 1)Cn−2Y∗1 + Cn−1Y∗1,
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therefore,
p(C)T∗1 = p′(C)Y∗1.

Observe that p(C) = 0 and since p is separable p′(C) 6= 0. Moreover, p′(C) ∈
Z(C). By Corollary 4.3 we have that det(p′(C)) 6= 0. Hence, Y∗1 = 0.

The converse is trivial.

Theorem 5.3 (Centralizer of a generalized Jordan block of the first kind).
Let G ∈ Ms`(F) be a generalized Jordan block of the first kind with mG = p`,
deg(p) = s, p irreducible and separable. Then, the centralizer Z(G) of G is


X1 0 . . . 0
X2 X1 . . . 0
...

...
. . .

...
X` X`−1 . . . X1

 , Xi ∈ Z(C), i = 1, . . . , `

 .

Proof. For ` = 1 the result is immediate. Assume that ` ≥ 2. We prove
the theorem by induction on k = 2, . . . , `. For k = 2, it can be proved as a
consequence of Lemmas 5.1, 5.2. Assume that the hypothesis is true for k. To
prove that it is also true for k + 1 it is enough to follow step by step the proof
of Theorem 4.8, replacing E by the identity matrix.

Observe that the centralizer in this case is analogous to the centralizer ob-
tained in Theorem 4.8, but now there is no dependency between the blocks of
a lower diagonal and those of the diagonal immediately above it.

In order to obtain the centralizer of a generalized Jordan form of the first
kind, we need to translate Lemmas 4.10 and 4.11 to the case where the poly-
nomial p is separable. Their proofs are analogous to those of Lemmas 4.10
and 4.11.

Lemma 5.4. Let G1 ∈ Msa(F), G2 ∈ Msb(F), a ≥ b be two generalized Jordan
blocks of the first kind. Let T = [Ti,j ] ∈ Msa×sb(F) be a block matrix with
Ti,j ∈Ms(F) such that

G1T = TG2.

Then,

T =

[
0
T1

]
,

with T1 ∈ Z(G2).

Lemma 5.5. Let G1, G2 be two generalized Jordan blocks of the first kind,
G1 ∈ Msa(F), G2 ∈ Msb(F), a ≤ b. Let T = [Ti,j ] ∈ Msa×sb(F) be a block
matrix with Ti,j ∈Ms(F) such that

G1T = TG2.

Then,
T =

[
T1 0

]
,

with T1 ∈ Z(G1).
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Theorem 5.6. Let G = diag(G1, . . . , Gm) be a generalized Jordan matrix of
the first kind. Let pG = pr be its characteristic polynomial, p be irreducible
and separable, mG = pr1 , r1 ≤ r and deg p = s. Let α = (α1, . . . , αm) be the
generalized Segre characteristic of G. If X ∈ Z(G), then

X = [Xi,j ]i,j=1,...,m,

where Xi,j ∈ Msαi×sαj (F) are block lower triangular Toeplitz matrices of the
form:

1) If αi = αj, then Xi,i ∈ Z(Gi).

2) If αi < αj, then
Xi,j =

[
Xi,i 0

]
,

with Xi,i ∈ Z(Gi).

3) If αi > αj, then

Xi,j =

[
0

Xj,j

]
,

with Xj,j ∈ Z(Gj).

Proof. The result follows straightforward from Theorem 5.3 and Lemmas 5.4
and 5.5.

6 Centralizer of a generalized Weyr form

In this section we compute the centralizer of a generalized Weyr matrix. Let W
be a matrix of the form

W =


W1 E2 . . . 0 0

0 W2
. . . 0 0

...
...

. . .
. . .

...
0 0 . . . Wα1−1 Eα1

0 0 . . . 0 Wα1

 ,
with Wi and Ei as in (8).

Theorem 6.1. Let W be the generalized Weyr matrix with generalized Segre
characteristic α = (α1, . . . , αm). Let τ = (τ1, . . . , τα1

) be the conjugate partition
of α. Then, if K ∈ Z(W ),

K =


K1,1 K1,2 . . . K1,α1−1 K1,α1

0 K2,2 . . . K2,α1−1 K2,α1

...
...

. . .
...

...
0 0 . . . Kα1−1,α1−1 Kα−1−1,α1

0 0 . . . 0 Kα1,α1

 , (18)

built according to the following recursive construction
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1. Kα1,α1
is a block matrix of τα1

× τα1
independent blocks of Z(C).

2. The blocks on the main diagonal for i = 1, . . . , α1 − 1 are of the form

Ki,i =

[
Ki+1,i+1 Yi,i

0 Xi,i

]
,

where Xi,i is composed by (τi − τi+1) × (τi − τi+1) independent blocks of
Z(C) and Yi,i is composed by τi+1×(τi−τi+1) independent blocks of Z(C).

3. The blocks on the last column for i = 1, . . . , α1 − 1 are of the form

Ki,α1
=

[
Yi,α1

Xi,α1

]
,

where Xi,α1
is a block matrix of (τi−τi+1)×τα1

independent blocks of Z(C)

and Yi,α1
= Y ′i,α1

+

(
Ỹi+1,α1

X̃i+1,α1

)
where Y ′i,α1

is composed by τi+1 × τα1

independent blocks of Z(C) and Ỹi+1,α1
, X̃i+1,α1

are composed by blocks
defined as in (11). Notice that Yα1,α1 = Kα1,α1 .

4. For i, j = 1, . . . , s− 1, i ≤ j,

Ki,j =

[
Ki+1,j+1 Yi,j

0 Xi,j

]
,

where Xi,j is a block matrix of (τi− τi+1)× (τj − τj+1) independent blocks

of Z(C), and Yi,j = Y ′i,j +

(
Ỹi+1,j

X̃i+1,j

)
where Y ′i,j is composed by τi+1 ×

(τj − τj+1) independent blocks of Z(C) and Ỹi+1,j , X̃i+1,j are composed by
blocks defined as in (11).

Proof. Let G be a matrix similar to W in generalized Jordan form. If P is the
matrix described in (7) and X ∈ Z(G), then P−1XP = K.

Remark 6.2. If p is separable, the block structure of K ∈ Z(W ) is the same
as (18) but every block component is in Z(C).

Example 6.3. Following with Example 4.13, the Weyr characteristic of G is
τ = (5, 3, 3, 2, 1). This partition τ gives us the number of blocks of the diagonal
blocks in the generalized Weyr form.
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The generalized Weyr form is

W =



C E
C E

C E
C

C
C E

C E
C E

C E
C E

C
C E

C
C



,

and a matrix K ∈ Z(W ) has the form

K =



A1 I1 L1 Q1 W1 A2 I2 L2 A3 I3 L3 A4 I4 A5

B1 M1 R1 X1 H1 B2 M2 H2 B3 M3 H3 B4 H4

C1 S1 Y1 K1 C2 J1 K2 C3 J2 K3 J3
D1 G1 P1 O1 N1

F1 E1 V1 U1 T1
A1 I1 L1 A2 I2 L2 A3 I3 A4

B1 M1 H1 B2 M2 H2 B3 H3

C1 K1 C2 J1 K2 J2
A1 I1 L1 A2 I2 A3

B1 M1 H1 B2 H2

C1 K1 J1
A1 I1 A2

B1 H1

A1



,

where the blocks in this matrix satify the same relations as in Example 4.13.

6.1 Determinant of the centralizer

We proved in Theorem 6.1 that the elements of the centralizer of the generalized
Weyr canonical form are block upper triangular matrices. As a consequence, the
determinant of K ∈ Z(W ) can be computed as the product of the determinants
of the diagonal blocks (see [5] for the centralizer of a Weyr form)

det(K) = det(K1,1) det(K2,2) . . . det(Kr,r).

Hence, the diagonal blocks are key to characterize the automorphisms of the
centralizer. An important application of this property will be the characteriza-
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tion of hyperinvariant and characteristic lattices of the endomorphism (see [14]
for the case when p splits over F).

In Example 4.13 (also Example 6.3), the expression of the determinant for
those elements of the centralizer results in

det(K) = det(X) = det(A1)5 det(B1)4 det(C1)3 det

[
D1 G1

F1 E1

]
.

Remark 6.4. Notice that the formula is exactly the same in the separable and
nonseparable cases, as the block components of the diagonal blocks of a matrix
K ∈ Z(W ) are elements in Z(C). Therefore, the condition for a matrix in the
centralizer to be an automorphism is exactly the same in both cases.

6.2 Dimension of the centralizer

As a consequence of Corollary 4.9, to compute the dimension of the centralizer
we must take into account that each block has dimension equal to s. Then,
according to the Segre and Weyr characteristics we have that

dim(Z(G)) = s(α1 + . . .+ (2m− 1)αm) =

= dim(Z(W )) = s(τ21 + . . .+ τ2r ).

Notice that when deg(p) = s = 1 the result matches the Frobenius formula of
the dimension of the centralizer of a Jordan and Weyr form ([16]).
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