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ABSTRACT 

 

The identification of viroid-derived small RNAs (vd-sRNAs) of 21-24 nucleotides (nt) 

in plants infected by viroids (infectious non-protein-coding RNAs of just 250-400 nt), 

supports their targeting by dicer-like enzymes, the first host RNA silencing barrier. 

However, whether viroids, like RNA viruses, are also targeted by the RNA-induced 

silencing complex (RISC) remains controversial. At the RISC core is one Argonaute 

(AGO) protein that, guided by endogenous or viral sRNAs, targets complementary 

RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana 

benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated 

with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, 

AGO5, AGO6, AGO7, AGO9 and AGO10 from Arabidopsis thaliana. 

Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs, 

except AGO6, AGO7 and AGO10, associated with vd-sRNAs: AGO1, AGO2 and AGO3 

preferentially with those of 21 and 22 nt, while AGO4, AGO5 and AGO9 additionally 

bound those of 24 nt. Deep sequencing analyses showed that sorting of vd-sRNAs 

into AGO1, AGO2, AGO4 and AGO5 depended essentially on their 5’-terminal 

nucleotide, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting 

specific hot spot distributions along the viroid genome. Furthermore, agroexpression 

of AGO1, AGO2, AGO4 and AGO5 on PSTVd-infected tissue attenuated the level of 

the genomic RNAs, suggesting that they, or their precursors, are RISC-targeted. In 

contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-

mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with 

specificity similar to its A. thaliana counterpart. 

 

IMPORTANCE 

 

To contain invaders, particularly RNA viruses, plants have evolved an RNA silencing 

mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived 
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small RNAs of 21-24 nucleotides (nt) that load and guide Argonaute (AGO) proteins 

to target and repress viral RNA. Viroids, despite their minimal genomes (non-protein-

coding RNAs of only 250-400 nt), infect plants and incite diseases. The accumulation 

in infected plants of 21-24 nt viroid-derived small RNAs (vd-sRNAs) supports that 

DCLs also target viroids, but does not clarify whether vd-sRNAs can activate one or 

more AGOs. Here, we show that in leaves of Nicotiana benthamiana infected by 

potato spindle tuber viroid, the endogenous AGO1 and distinct AGOs from 

Arabidopsis thaliana that were overexpressed, associated with vd-sRNAs displaying 

the same properties (5’-terminal nucleotide and size) previously established for 

endogenous and viral small RNAs. Overexpression of AGO1, AGO2, AGO4 and AGO5 

attenuated viroid accumulation, supporting their role in antiviroid defense. 
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 Viroids, regardless of having minimal genomes restricted to a single-stranded (ss) 

non-protein-coding RNA of solely ~250-400 nucleotides (nt), can parasitize the 

higher plants they infect and replicate, spread systemically, and frequently incite 

disease (1 to 3). Most of the approximately 30 viroids characterized so far, including 

the type species potato spindle tuber viroid (PSTVd) (4, 5), have been assigned to the 

family Pospiviroidae on the basis of a rod-like (or quasi-rod-like) secondary structure 

with a central conserved region (CCR), and replication in the nucleus through an 

asymmetric rolling-circle mechanism with double-stranded RNA (dsRNA) 

intermediates (6 to 10). This mechanism is catalyzed by the RNA polymerase II forced 

to transcribe RNA templates (11 to 13), an RNase most likely of class III (14), and the 

DNA ligase 1 redirected to act as an RNA ligase (15), with the CCR playing a critical 

role in the cleavage of the oligomeric (+) strands generated by the rolling circle-

mechanism (14) and in the ligation (circularization) of the resulting monomeric (+) 

strands (16). The remaining four viroids, members of the family Avsunviroidae, display 

a quasi-rod-like or clearly branched secondary structure without CCR but with 

hammerhead ribozymes in both polarity strands; these catalytic RNA motifs mediate 

self-cleavage of the oligomeric strands produced by a symmetric rolling-circle 

mechanism occurring in plastids, mostly chloroplasts (17). To complete their 

infectious cycle, viroids must move at short (cell-to-cell) and long distance through 

the plasmodesmata and phloem, respectively. Some of the RNA motifs that mediate 

these movements have been finely dissected for PSTVd and include trafficking from 

the bundle sheath to mesophyll (18), entry of PSTVd from non-vascular into phloem 

tissue (19), and trafficking from palisade mesophyll to spongy mesophyll (20). A 

genome-wide mutational analysis has mapped loops/bulges in the secondary 

structure of PSTVd, crucial or relevant for replication in single cells (protoplasts) or for 

systemic movement (21). 

 In addition to replicate and move, viroids need to overcome their host 

surveillance responses, salient among which is RNA silencing (22, 23). This regulatory 

mechanism, which functions at the transcriptional and post-transcriptional level and 
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is particularly sophisticated in plants, tunes endogenous gene expression and plays a 

defensive role restricting pathogen invasion and transposon proliferation. The key 

elicitors of RNA silencing, dsRNAs and snap-folded ssRNA, are processed by specific 

Dicer-like (DCL) isozymes into small RNAs (sRNAs), mainly small interfering RNAs 

(siRNAs) of 21, 22 and 24 nt, or and microRNAs (miRNAs) of 21 and 22 nt (24, to 26). 

One strand of these sRNAs, and of some secondary siRNAs resulting from an 

amplification pathway catalyzed by endogenous RNA-directed RNA polymerases 

(RDRs) and DCLs (27, 28), preferentially loads and guides the RNA-inducing silencing 

complex (RISC), particularly its core consisting of an Argonaute (AGO) protein, to 

target and inactivate their cognate RNAs or DNAs (29). 

 Arabidopsis thaliana contains 10 AGO proteins classified in three clades: i) AGO1, 

AGO5, and AGO10, ii) AGO2, AGO3, and AGO7, and iii) AGO4, AGO6, AGO8, and 

AGO9. This phylogenetic grouping, however, does not necessarily imply functional 

similarity (29, 30). AGO1, AGO2, and AGO7 associate with 21- or 22-nt sRNAs (and 

AGO5 additionally with 24-nt sRNAs), either endogenous or exogenous (as those 

derived from viruses), and at least AGO1, AGO2 and AGO5 operate in post-

transcriptional silencing through cleavage or translation arrest of their RNA targets 

(31 to 37). AGO4, AGO6, and AGO9 associate with 24-nt siRNAs to mediate 

transcriptional silencing through RNA-directed DNA methylation (38, 39), and at least 

AGO4 binds to diverse classes of sRNAs including siRNAs originating from 

transposable and repetitive elements, and cleaves target RNA transcripts (40). AGO10 

acts in the translational control of several miRNA targets, like the mRNAs coding for 

AGO1 (41, 42). Finally, the role of AGO3 and AGO8 in sRNA-directed regulation 

remains unclear (29, 30). A recent transcriptome assembly has identified in N. 

benthamiana homologues for each AGO from A. thaliana, except for AGO3 and AGO9 

(returned as AGO2 and as a variant of AGO4, respectively) (43). 

 Several independent lines suggest that, in addition to playing a key role in 

antiviral defense, RNA silencing is also involved in antiviroid defense. First, viroid 

infection results in the genomic RNA progeny folding upon itself into collapsed 
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secondary structures and in the production of dsRNAs, either replicative 

intermediates or RDR products. Northern hybridizations have detected viroid-derived 

sRNAs (vd-sRNAs), with properties akin to the host and virus sRNAs generated by 

DCLs, accompanying infections by representative members of the two viroid families; 

these vd-sRNAs have been subsequently sequenced by conventional and high-

throughput approaches (44, 45). Second, the expression of a reporter gene and the 

accumulation in infected plants of the genomic viroid RNA appears to be repressed 

by vd-sRNAs in a sequence-specific mode (46 to 49). Third, increased levels of the 

genomic PSTVd RNA have been detected in early infection stages of Nicotiana 

benthamiana deficient for RDR6, in which, additionally, PSTVd entry into floral and 

vegetative meristems is facilitated (50). Fourth, two vd-sRNAs containing the albinism 

determinant of a chloroplast-replicating viroid guide cleavage of the host mRNA 

coding for the chloroplastic heat-shock protein 90 (cHSP90) as predicted by RNA 

silencing, thus providing a feasible mechanism of pathogenesis (51). Fifth, the titer of 

a viroid is enhanced in co-infections with a virus, with this effect occurring via the 

expression of viral-encoded silencing suppressors (52). And, last but not least, early 

pioneering research discovered that PSTVd-cDNA introduced into the tobacco 

genome via Agrobacterium tumefaciens became methylated only following viroid 

RNA-RNA replication, thus unveiling an RNA-directed and sequence-specific 

mechanism for de novo methylation of genomic sequences in plants (53); this 

mechanism of transcriptional silencing is now known to be mediated by specific DCL-

dependent siRNAs and AGOs. More recently, viroid infection has been associated 

with changes in DNA methylation of host ribosomal RNA genes (54), but whether 

those changes result from direct or indirect effects is not known. However, despite all 

these data, no direct evidence exists supporting that AGOs recruit vd-sRNAs. We 

report here that certain members of the AGO family, specifically AGO1, AGO2, AGO4 

and AGO5 load vd-sRNAs from PSTVd, and eventually attenuate the viroid titer. 

 

MATERIALS AND METHODS 
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 PSTVd inoculation. Nicotiana benthamiana seedlings were grown in a controlled 

chamber (28°C with fluorescent light for 16 h and 25°C in darkness for 8 h) and, at the 

cotyledon/first true leaf stage, they were infiltrated with cultures of Agrobacterium 

tumefaciens C58 carrying a binary plasmid empty or with a head-to-tail dimeric insert 

of PSTVd (NB variant, GenBank accession number AJ634596.1) under the control of 

the 35S promoter of cauliflower mosaic virus (CaMV) (55). 

 Agroinfiltration assays. Binary plasmids for expressing, under the control of the 35S 

promoter of CaMV, AGO versions from A. thaliana tagged at their N-terminal region 

with three tandem repeats of the HA epitope (AGO1, AGO2, AGO7 and AGO10), or 

with a single HA epitope (AGO3, AGO4, AGO5, AGO6 and AGO9), were described 

previously (34, 37). Binary plasmids for expressing miR390 from A. thaliana and the 

beta-glucuronidase (GUS) from Escherichia coli, both under the control of the 35S 

promoter of CaMV, were also described previously (34). Transient expression assays 

in N. benthamiana leaves with cultures of A. tumefaciens were performed as 

described previously (56, 57). 

 RNA extraction and analysis by PAGE and Northern-blot hybridization. Total RNA 

preparations (RNA-Input) or immunoprecipitates (RNA-IP, see below) from PSTVd-

infected upper non-inoculated leaves of N. benthamiana (and from mock-inoculated 

controls) were obtained by double extraction with buffer-saturated phenol, 

precipitated with ethanol, and resuspended. RNAs were then separated by 

denaturing PAGE (in 1X TBE buffer and 8 M urea) on either 5% gels (for the 

monomeric circular, mc, and linear, ml, PSTVd forms) or 17% gels (for vd-sRNAs and 

miRNAs) that were stained with ethidium bromide for assessing equal loading by the 

fluorescence emitted by the 5S or 4S RNAs. Following electrotransference of RNAs to 

Hybond-N+ membranes (Roche Diagnostics GmbH), they were hybridized with 

internally-radiolabeled full-length riboprobes (synthesized by in vitro transcription) 

for detecting PSTVd (+) strands, or with 5’-radiolabeled deoxyribonucleotide probes 

[prepared according to standard procedures (58)] for detecting specific miRNAs. 
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Hybridization was at 70°C in the presence of 50% formamide (for detecting mc and 

ml forms), or at 42°C with PerfectHyb Plus hybridization buffer (Sigma) (for detecting 

vd-sRNAs) (50). After washing at 60°C in 0.1X SSC with 0.1% SDS (mc and ml forms), 

or at 55°C in 1X SSC with 0.1%SDS (vd-sRNAs and miRNAs), the membranes were 

analyzed with a phosphoimager (Fujifilm FLA-5100) using programs Image Reader 

FLA-5100 and Image Gauge 4.0. 

 RNA Immunoprecipitation assays. RNA-IP were obtained with a rabbit polyclonal 

antibody (GenScript) against the N-terminal region of AGO1 from N. benthamiana 

(MVRKKRTDVPGGAESFESHEC), which is characteristic of this AGO isoform, and with a 

mouse monoclonal antibody (12CA5, Roche Diagnostics GmbH) against an epitope of 

the hemaglutinin (HA) from human influenza virus. Immunoprecipitation assays were 

performed as reported previously (37) with minor modifications. In brief, N. 

benthamiana leaves (0.5-1 g) were homogenized with liquid nitrogen and mixed with 

12 ml/g (HA antibody) or 3 ml/g (AGO1 antibody) of lysis buffer [50 mM Tris-HCl, pH 

7.4, 2.5 mM MgCl2, 100 mM KCl, 0.1% Nonidet P-40, 1 μg/ml leupeptin, 1 μg/ml 

aprotonin, 0.5 mM phenylmethylsulfonyl fluoride, and one tablet of complete 

proteinase inhibitor cocktail (Roche Diagnostics GmbH)]. The insoluble material was 

removed by centrifugation at 8000 X g for 5 min at 4°C and, after taking two aliquots 

(of 20 μl and 1 ml) for analysis of the Protein- and RNA-Input fractions, respectively, 

the remaining clarified lysate was incubated at 4°C for 15 min with 4 μg/ml of one 

(HA) or the other (AGO1) antibody, and then at 4°C for 30 min with 100 μl/ml of 

Protein-A agarose beads (Roche Diagnostics GmbH). Beads were washed six times for 

10 min with lysis buffer at 4°C and, after taking one aliquot (20 μl) of the final bead 

suspension for Protein-IP analysis, the rest was used for RNA-IP analysis. RNAs were 

released by incubating the beads at 65°C for 15 min in 0.5 vol of proteinase K buffer 

[0.1 M Tris-HCl, pH 7.4, 10 mM EDTA, 300 mM NaCl, 2% SDS, and 1 μg/μl proteinase 

K (Roche Diagnostics GmbH)]. RNA-Input and RNA–IP aliquots were extracted with 

saturated phenol pH 4.5 (Amresco), phenol:chloroform:isoamyl alcohol, and 

chloroform, and recovered by ethanol precipitation. For sRNA gel blot assays, 2-5 μg 
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of RNA of the RNA-Input fraction, and one half of the RNA-IP fraction, were used as 

indicated in the previous section. For protein blot assays, 20 μl of the Protein-Input 

and Protein-IP fractions were mixed with the same volume of 2X PDB buffer (1.25 M 

Tris pH 6.8, 10% SDS, 80% glycerol, 10% -mercaptoetanol and 0.02% bromophenol 

blue) and heated at 100°C for 3 min; aliquots (10 and 2.5 μl, respectively) were 

applied onto NuPAGE Bis-Tris minigels (4-12%) (Novex, Life Technologies) and equal 

loading was assessed by the intensity generated by the large subunit of Rubisco after 

staining with Ponceau S (Sigma). HA-AGOs were electrotransferred to PVDF 

membranes and detected by chemiluminescence with anti-HA peroxidase antibody 

(Roche Diagnostics GmbH) at a 1:1000 dilution and Western Lighting plus-ECL 

substrate (Perkin-Elmer). AGO1 from N. benthamiana was similarly detected, but 

using the antibody against its N-terminal region at a 1:1000 dilution and a goat anti-

rabbit IgG (H&L) secondary antibody conjugated to horse radish peroxidase 

(Agrisera) at a 1:20000 dilution, and the same substrate. 

 Deep sequencing analysis of sRNAs. Experimental details on sRNA purification, 

adapter ligation, RT-PCR amplification, library purification, and high-throughput DNA 

sequencing on the Illumina Genome Analyzer Hi-Seq 2000 (FASTERIS SA, Plan-les-

Ouates, Switzerland), has been described previously (50). In the first deep sequencing 

four bar-coded samples, corresponding total sRNAs (inputs) and immunoprecipitates 

(IPs, obtained with an anti-HA monoclonal antibody) from PSTVd-infected N. 

benthamiana overexpressing HA-tagged AGO1 and -AGO2, were run in the same 

channel. In the second deep sequencing we proceeded as in the first, but the four 

bar-coded samples corresponded to sRNAs inputs and IPs from PSTVd-infected N. 

benthamiana overexpressing HA-tagged AGO4 and -AGO5. In the third deep 

sequencing, we proceeded again as in the first, but the four bar-coded samples 

corresponded to sRNAs inputs and IPs (obtained with an anti-AGO1 polyclonal 

antibody) from mock-inoculated and PSTVd-infected N. benthamiana. The resulting 

reads, after bar-code identification, were processed by removing the adaptor and 

grouping them into different files according to their sequence length. Only 18-26 nt 
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reads were mapped against the PSTVd sequence (variant NB) (59). To filter, analyze 

and visualize the mapping data, a set of perl scripts was developed. IP enrichment or 

depletion was calculated for each unique 21-, 22- or 24-nt vd-sRNA as log2 [(IP reads 

+ 1)/(Input reads +1)], and plotted for each size class as the fraction (%) of unique 

vd-sRNA sequences enriched >2-fold (log2 >1) or depleted >2-fold (log2<1) in the 

IP compared to the input. 

 

RESULTS 

 

 PSTVd infection of N. benthamiana does not affect miR168-mediated AGO1 

accumulation. As indicated above, AGO1 is a key player of the antiviral defense 

mediated by RNA silencing. Infection by plant RNA viruses induces and reduces the 

accumulation of AGO1 mRNA and AGO1 protein, respectively (42, 60). The 

explanation for this apparent paradox is that expression of AGO1 mRNA is 

translationally repressed by miRNA168 (61), the accumulation of which is elicited by 

virus infection (42, 60). In view of these results, we first checked whether a similar 

situation occurs during a viroid infection. For this purpose, plants of N. benthamiana 

were inoculated by leaf infiltration with cultures of A. tumefaciens carrying binary 

plasmids for expressing a head-to-tail dimeric (+) insert of PSTVd [35S:dPSTVd(+)] or 

the beta-glucuronidase (GUS) (35S:GUS), both under the control of the 35S promoter 

of CaMV. Western-blot analysis of PSTVd-infected upper non-inoculated leaves 

⎯using a polyclonal antibody raised specifically against the N-terminal region of 

AGO1 from N. benthamiana⎯ revealed that infection by PSTVd induced a slight 

increase in the accumulation of AGO1 compared with mock-inoculated controls 

(expressing GUS) of the same developmental stage. This effect was observed in leaves 

collected at early (15 dpi, when symptoms start appearing) and later infection stages 

(20, 25 and 30 dpi) (Fig. 1A). However, no significant effect on AGO1 was detected 

when the leaves of N. benthamiana agroinfiltrated with the plasmid for expressing 
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the head-to-tail dimeric insert of PSTVd were directly examined at 4, 6 and 8 dpi 

(using again as control leaves agroinfiltrated with 35S:GUS) (Fig. 1B). 

 Although these results anticipated that miRNA168 levels were most likely not 

affected by PSTVd infection, we confirmed that this was indeed the case examining 

total RNA preparations from the same samples by Northern-blot hybridization to 

detect miRNA168 (Fig. 1A and B). Altogether our data showed that, in contrast with 

the situation observed for representative RNA viruses (42, 60), the effect of viroid 

infection on AGO1, if any, is not mediated by miRNA168 targeting of AGO1 mRNA. 

 Endogenous AGO1 loads vd-sRNAs during PSTVd infection of N. benthamiana. 

Using the polyclonal antibody against AGO1 from N. benthamiana, we next tested 

whether this protein interacts in vivo with vd-sRNA. Approximately three weeks after 

inoculation, plants displayed a stunted phenotype with curling and reduction of the 

foliar area when compared with the mock-inoculated controls, as reported previously 

for this and other PSTVd strains (50, 62). Analysis of total RNA preparations by 

denaturing PAGE (in 5% gels) and Northern-blot hybridization confirmed the 

accumulation of the monomeric circular (mc) and linear (ml) PSTVd (+) RNAs in upper 

non-inoculated leaves collected at 20, 25 and 30 days postinfiltration (dpi) (Fig. 1C). 

Parallel analysis of the same samples, fractionated by denaturing PAGE (in 17% gels), 

revealed intense hybridization signals in the gel region corresponding to vd-sRNAs of 

21 to 24 nt (Fig. 1C). Moreover, a minor fraction of the vd-sRNAs of 21-22 nt were 

also detected in the immunoprecipitates generated by the AGO1-specific antibody 

(Fig. 1C), hence showing that the host AGO1 indeed interacts with PSTVd-sRNAs with 

the expected size specificity (29). A more detailed description of those PSTVd-sRNAs 

loaded by AGO1 from N. benthamiana is provided below. 

 Setting up a system for the study of AGO/vd-sRNA interactions: agroexpressed 

AGO1 and AGO2, but neither AGO7 nor AGO10, bind PSTVd-sRNAs. To circumvent 

the problem posed by the inability of PSTVd to infect A. thaliana (10) and by the lack 

of specific antibodies against most other AGOs from N. benthamiana, we then tested 

whether overexpressing AGO1 and other AGO members from A. thaliana in PSTVd-
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infected N. benthamiana resulted in their loading with vd-sRNAs. To increase 

recovery in immunoprecipitates, we used AGO versions tagged at their N-terminal 

region with three tandem repeats of the HA epitope (AGO1, AGO2, AGO7 and 

AGO10) (34, 37), or with a single HA epitope (AGO3, AGO4, AGO5, AGO6 and AGO9, 

kindly provided by Drs. A. Takeda and Y. Watanabe). First we reproduced results 

obtained with a protocol reported previously showing that AGO7 and miR390 from A. 

thaliana interact specifically when overexpressed in N. benthamiana (34). On the one 

hand, leaves of non-infected N. benthamiana were agroinfiltrated with a culture of A. 

tumefaciens with the construct 35S:miR390 for expressing miR390 under the control 

of the 35S promoter. On the other hand, this same culture was coagroinfiltrated with 

others carrying plasmids for expressing either AGO1 or AGO7, both tagged with the 

HA epitope and under the control of the same promoter (35S:HA-AGO1 and 35S:HA-

AGO7, respectively). Northern-blot hybridizations with a 5’-radiolabeled 

oligodeoxyribonucleotide complementary to miR390 revealed that while this RNA 

accumulated to high levels in the total RNA fraction from infiltrated halos, it was only 

detected in AGO7 immunoprecipitate (data not shown). Given that AGO7, but not 

AGO1, binds specifically miR390 (34), and that Western-blot analysis with an anti-HA-

peroxidase monoclonal antibody showed similar accumulation of AGO1 and AGO7 in 

the total protein and in the immunoprecipitate fractions (data not shown), these 

results provided the support needed for extending the same approach to investigate 

whether one or more AGOs interact specifically with vd-sRNAs. 

 We initially examined AGO1, AGO2, AGO7 and AGO10 from A. thaliana because 

some of them have been involved in defense against RNA viruses, namely AGO1, 

AGO2 and AGO7 against turnip crinkle virus (TCV), AGO2 against turnip mosaic virus 

(TuMV) (37) and AGO1 and AGO2 against cucumber mosaic virus (CMV) (31, 33, 36), 

and also because they display distinct size and sequence specificity for some sRNAs 

(29, 30). Moreover, when the present work was started, association of AGO10 with 

sRNAs had not been shown (29), thus serving this protein as a non-sRNA- binding 

AGO control. To begin with, each plasmid for expressing the HA-tagged AGOs was 
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coagroinfiltrated with the 35S:dPSTVd(+) construct to trigger infection. Analysis by 

denaturing PAGE and Northern-blot hybridization revealed the presence of vd-sRNAs 

in the total RNA fractions from the coagroinfiltrated halos —with higher intensity at 

three than at two dpi— but not in the corresponding immunoprecipitates (data not 

shown). In view of these results, we took an alternative approach: plants were first 

agroinfiltrated with the 35S:dPSTVd(+) construct and 19 days later, when PSTVd had 

spread systemically, upper non-inoculated leaves were then agroinfiltrated with the 

HA-tagged AGO constructs (35S:3xHA-AGO1, 35S:3xHA-AGO2, 35S:3xHA-AGO7 or  

35S:3xHA-AGO10). Analysis as stated above of the corresponding halos at two days 

after the second agroinfiltration showed high accumulation of vd-sRNAs of 21 to 24 

nt in the total RNA fractions of the four samples, in contrast with the 

immunoprecipitates, wherein only vd-sRNAs of 21-22 nt were detected and 

exclusively associated with AGO1 and AGO2 (Fig. 2A). Western-blot analyses showed 

that the four agoinfiltrated AGOs (AGO1, AGO2, AGO7 and AGO10) were expressed 

(Fig. 2A). Altogether, these results indicated that vd-RNAs behave like other sRNAs of 

viral and endogenous origin (29), being specifically loaded in some, but not in all, 

AGOs according mainly to their size (and possibly to other structural properties, see 

below). 

 Agroexpressed AGO3, AGO4, AGO5 and AGO9 also bind vd-sRNAs with different 

affinity. We then extended these analyses to other available constructs, also under 

the control of the 35S promoter, for expressing the single HA-tagged AGOs from A. 

thaliana: 35S:HA-AGO3, 35S:HA-AGO4, 35S:HA-AGO5, 35S:HA-AGO6 and 35S:HA-

AGO9; 35S:3xHA-AGO2 was used as an internal control for linking results from these 

experiments with those of the previous one. Analysis by denaturing PAGE and 

Northern-blot hybridization of the corresponding halos at two days after the second 

agroinfiltration revealed high levels of vd-sRNAs of 21, 22 and 24 nt in the total RNA 

fractions of all samples, except in a negative control in which the 35S:dPSTVd(+) 

construct used in the first agroinfiltration for triggering PSTVd infection was replaced 

by the 35S:GUS construct (Fig. 2B). However, the immunoprecipitate fractions 
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behaved in a different manner: the vd-sRNAs of 21-22 nt were detected in samples 

expressing AGO2 and AGO3, while in the samples expressing AGO4 and AGO5 (and 

to a lower extent in that expressing AGO9) vd-sRNAs of 24 nt were additionally 

detected; in contrast, essentially no vd-sRNAs were observed in the sample 

expressing AGO6 (Fig. 2B). Recovery of AGO-bound vd-sRNAs from 

immunoprecipitates could be influenced by the HA epitope being single or triple and 

by the distinct stability of AGOs against endogenous proteases, although Western-

blot analyses with the anti-HA-peroxidase monoclonal antibody showed that, even if 

with different extension, all agroinfiltrated AGOs were expressed (Fig. 2B). AGO6 

inability to bind vd-sRNAs was nevertheless confirmed in further experiments (data 

not shown). Collectively, these results are consistent with vd-RNAs being differentially 

sorted into specific AGOs according to the size reported previously for other viral and 

endogenous sRNAs (29, 30). 

 Deep sequencing reveals that sorting of vd-sRNAs into AGO1, AGO2, AGO4 and 

AGO5 mainly depends on their size and 5’-terminal nucleotide. To better understand 

the differential AGO affinity for vd-sRNAs, AGO1 and AGO2 (as representatives of 

those members of the family that associate preferentially with the sRNAs of 21-22 nt), 

and AGO4 and AGO5 (as representatives of those members of the family that 

associate additionally with the sRNAs of 24 nt) (29, 30), were selected for further 

examination. Moreover, while AGO1, AGO2 and AGO5 are able to bind virus-derived 

sRNAs and have been involved in antiviral defense presumably via post-

transcriptional gene silencing (31, 33, 36, 37), AGO4 mostly mediates transcriptional 

silencing (38). Previous immunoprecipitation assays have also revealed that the 

identity of the 5’-terminal nucleotide and the length of the sRNAs contribute to their 

sorting into these four AGO proteins (34, 35, 63). 

 The first deep sequencing of sRNAs resulted in approximately 137.500.000 reads, 

95.6% of which corresponding to the four bar-coded samples run in the same 

channel: the total sRNAs (inputs) and immunoprecipitates (IPs) from PSTVd-infected 

N. benthamiana overexpressing AGO1 and AGO2, with the fraction of each sample 
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representing 23-29% of the total number of reads. Within the range of 18-26 nt, vd-

sRNAs amounted to about 22% in the inputs, and 34% and 53% in AGO1-IP and 

AGO2-IP, respectively. The second deep-sequencing of sRNAs generated roughly 

209.300.000 reads, 96.6% of which corresponding to the four bar-coded samples run 

in the same channel: the inputs and IPs from PSTVd-infected N. benthamiana 

overexpressing AGO4 and AGO5, with the fraction of each sample representing 19-

29% of the total number of reads. Within the range of 18-26 nt, vd-sRNAs amounted 

to 11-15% in the inputs, and 14% and 28% in AGO4-IP and AGO5-IP, respectively. 

Therefore, with respect to the inputs, the proportion of vd-sRNA was enriched in the 

IPs, making up a significant fraction of the total. This bias was also observed 

(particularly in AGO4 and AGO5) when the vd-sRNAs were disaggregated into size 

classes (Fig. 3). 

 Analysis of the vd-sRNA reads from the inputs revealed a similar size distribution 

in the four samples: 44-45% were of 21 nt, 36-38% of 22 nt, and 9-9.5 of 24 nt, in 

agreement with previous results (50). However, the situation was somewhat different 

in the IPs, dominated in AGO1 and AGO2 by vd-sRNAs of 21 and to a lower extent 22 

nt (with those of 24 nt being essentially absent), while the preponderant vd-sRNA 

species in AGO4 and AGO5 were of 22 nt (and to a lower extent of 21 nt), with those 

of 24 nt amounting to 18 and 10%, respectively. Hence, the AGO proteins exert some 

size-based selection on the vd-sRNAs they capture. On the other hand, the bias 

between (+) and (-) vd-sRNAs (derived from the most and less abundant viroid 

strands accumulating in vivo, respectively) was minor in inputs and IPs, except in the 

AGO2-IP, wherein the fraction of vd-sRNAs of (+) polarity was significantly higher 

(data not shown). 

 We next compared the distribution of the vd-sRNAs with respect to their 5’-

terminal nucleotide, considering that in Arabidopsis this feature has a crucial role in 

sorting the sRNAs into the different AGOs (34, 35, 63). While 21- and 22-nt vd-sRNAs 

with a 5’-terminal U and C were moderately predominant in the inputs (up to 37% 

and 33%, respectively), the corresponding IP patterns were highly biased in their 5’-
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terminal nucleotides: 81% (U), 98% (A), 59% (A) and 72% (C) in AGO1, AGO2, AGO4 

and AGO5, respectively (Fig. 5 4). As for the 24-nt vd-sRNAs, those with a 5’-terminal 

G were moderately prevalent (33%) in the AGO4 input, as also were those with a 5’-

terminal U or C in the AGO5 input (29%); yet, the distribution in their IP counterparts 

was clearly biased for vd-sRNAs with a 5’-terminal C, which were underrepresented in 

AGO4-IP (8%) but prevalent in AGO5-IP (77%). This result indicates that the strong 

preference of AGO5 for binding vd-sRNAs with a 5’-terminal C is size independent. 

Similar distributions were obtained when the (+) and (-) vd-sRNAs from the IPs were 

examined separately (data not shown). Altogether, these results support that the 5’-

terminal nucleotide of vd-sRNAs is a major determinant for AGO sorting, following 

similar rules as those governing AGO sorting of endogenous and viral sRNAs (34, 35, 

63). However, as proposed for certain endogenous sRNAs (39), characteristics other 

than the 5’-terminal nucleotide may also contribute to vd-sRNA loading. 

 The profiles of AGO-loaded vd-sRNAs adopt specific hot spot distributions along 

the viroid genome. Analysis of the vd-sRNA reads from AGO IPs revealed that they 

mapped at numerous positions of the genomic (+) and (-) viroid strands, with a 

significant fraction of the reads accumulating in specific regions (hot spots), and 

displaying some peculiarities (Fig. 5). First, the hot spot profiles of the vd-sRNAs 

immunoprecipitated by each of the four AGO tested were different, as a consequence 

of their affinity for specific 5’-terminal nucleotides and of the uneven distribution of 

the four nucleotides in the PSTVd (+) and (-) genomic strands. Yet, the IP profiles 

were not a direct reflection of their corresponding input counterparts (see for 

instance the vd-sRNAs with their 5’-terminal U mapping at positions 240 and 333 

in the (+) strand, and 123 and 281 in the (-) strand, which are overrepresented in 

the AGO1 IP with respect to the AGO1 input), thus indicating the existence of some 

bias (Fig. 6 5). Second, hot spots in both input and IP profiles mapped at regions with 

a high G+C content, a likely consequence of the preference of DCLs for such regions 

(64, 65). And third, focusing on the vd-sRNAs mapping around positions 45-50 and 

308-318 of the pathogenic (P) domain, 119-122 in the limit between the central (C) 
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and variable (V) domains, and 257 and 259 of the C domain ⎯all associated with 

pathogenesis (66, 67)⎯ striking accumulation of those of (-) and (+) polarity around 

positions 119-122 were observed in the AGO1 and AGO2 IPs, respectively (Fig. 6 5). 

This result may have implications on the mechanism of symptom induction, despite 

the observation that low-abundant vd-sRNAs can be functionally relevant (see 

Discussion). 

 Agroexpression of AGO1, AGO2, AGO4 and AGO5 on PSTVd-infected tissue 

attenuates the level of the genomic RNAs. To test whether AGO-loaded vd-sRNAs 

could have a functional effect, we next examined the titer of the mc and ml PSTVd (+) 

forms. For this purpose, plants of N. benthamiana were agroinfected with PSTVd as 

indicated previously and, eight days later, upper non-inoculated leaves were 

agroinfiltrated with A. tumefaciens cultures for expressing HA-AGO1 or HA-AGO2; 

total RNA preparations from the corresponding halos were extracted two days 

afterward. Subsequent to some preliminary experiments, we chose this early sampling 

time to avoid that the potential effects of AGOs could be masked at later infectious 

stage, when the accumulation levels of the genomic viroid RNA increase very rapidly. 

Plants of N. benthamiana agroinfiltrated with cultures for expressing HA-AGO7 and 

GUS, as well as mock-inoculated plants, were included as controls based on previous 

results (Fig. 2). Analysis by denaturing PAGE and Northern-blot hybridization showed 

that the titer of mc and ml PSTVd (+) RNAs in plants expressing HA-AGO1 and HA-

AGO2 was lower than that of the controls expressing HA-AGO7 and GUS (Fig. 6A). 

Similar effects (attenuation of the titer of mc and ml PSTVd (+) RNAs with respect to 

the same controls) were observed in plants expressing HA-AGO4 and HA-AGO5 (Fig. 

6B). These results are consistent with the view that AGO1, AGO2, AGO4 and AGO5, 

loaded with vd-sRNAs and forming part of RISC, target PSTVd RNAs. Thus, not only 

DCLs ⎯as revealed by the generation of vd-sRNAs in viroid infected tissues (see 

above)⎯ but also RISCs, seem to operate in containing viroid titer below certain 

levels. 
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 Deep sequencing confirms loading of vd-sRNA by the endogenous AGO1 of N. 

benthamiana infected by PSTVd. As a final control in an experimental context 

excluding agroexpression of AGO proteins from A. thaliana, we also performed a 

deep sequencing analysis of the vd-sRNAs in the input and IP generated by a 

polyclonal antibody against the endogenous AGO1 from PSTVd-infected N. 

benthamiana (Fig. 1C). The analysis of the two bar-coded samples run in the same 

channel resulted in 3.839.392 reads of 18-26 nt vd-sRNAs (8.5% of total reads of the 

input) and 4.270.376 reads of 18-26 nt vd-sRNA (9.3% of total reads of the IP). While 

the proportion of vd-sRNAs of 21, 22 and 24 nt in the input were similar (27-32%), 

the 21- and 22-nt vd-sRNAs in the IP amounted to 63 and 28%, respectively, with 

those of 24 nt only representing 2%. Therefore, AGO1 from N. benthamiana exerted a 

size selection on the vd-sRNAs similar to its homologue from A. thaliana, displaying a 

clear preference for binding those of 21 and (to lower extent) 22 nt. Regarding 

polarity, the (+) and (-) vd-sRNAs in the input represented 66 and 34%, respectively, 

while the ratio in the IP was reversed (39 and 61%, respectively). The size selection 

exerted by AGO1 from N. benthamiana on vd-sRNAs (see above) was not significantly 

influenced by their polarity. 

 An enrichment/depletion analysis of vd-sRNA reads in the IP versus the input 

showed a significant enrichment in the IP of (+) and (-) vd-sRNAs of 21 and 22 nt (but 

not of 24 nt) with a 5’-terminal U (but not with the three other 5’-terminal 

nucleotides) (Fig. 7). Therefore, regarding binding specificity for vd-sRNAs, AGO1 

from N. benthamiana behaved similarly to its agroexpressed homologue from A. 

thaliana. 

 Finally, the profile of vd-sRNAs loaded by AGO1 from N. benthamiana presented 

a specific hot spot distribution along the viroid genome (Fig. 7 or 8), thus 

recapitulating the situation previously observed with the agroexpressed AGOs from 

A. thaliana. However, the vd-sRNA profiles corresponding to the agroinfiltrated AGO1 

from A. thaliana and the endogenous AGO1 from N. benthamiana differed, most 

likely because of the different experimental conditions: in the first instance the AGO1 
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from A. thaliana was over-expressed, while in the second instance the accumulation 

of the endogenous AGO1 should be considerably lower and possibly subjected to 

developmental regulation. 

 

DISCUSSION 

 

 Our first immunoprecipitation assays, using PSTVd-infected leaves of N. 

benthamiana and a polyclonal antibody specific for its endogenous AGO1, showed 

that this protein indeed binds preferentially vd-sRNAs with the expected size (21- 22 

nt). However, PSTVd infection of N. benthamiana did not affect significantly the 

accumulation of either endogenous AGO1 or miR168 (which regulates AGO1 mRNA 

expression), as opposed to the situation observed in the same host following 

infection by different RNA viruses (42, 60). Considering that in the latter case the 

specific induction of miR168 is promoted by viral-encoded protein suppressors of 

RNA silencing, and that PSTVd is a non-protein coding RNA, this result is not 

surprising. Moreover, it does not either favor that vd-sRNAs, as proposed previously 

for transgene siRNAs and endogenous siRNAs and miRNAs (68), could compete to 

bind to AGO1 and lead to a reduction in AGO1-miR168 complexes and a decline in 

AGO1 mRNA cleavage. However, recent data indicate that infection by citrus 

exocortis viroid, a close relative of PSTVd, induces the accumulation of other enzymes 

mediating RNA silencing steps in tomato (69). Whether this accumulation is a direct 

or indirect effect, and which is the nature of the underlying mechanism, remains 

unknown. 

 Previous reports indicate that viroids are significantly resistant to RISC-mediated 

degradation (47, 70, 71), suggesting that they may have evolved their secondary 

structures as a response against this selection pressure. In such a scenario, the 

compact secondary structure of PSTVd (+) strands may hinder their targeting (and 

inactivation) by AGO proteins loaded with vd-sRNAs, being even more difficult 

targeting PSTVd (-) strands because they mostly form part of double-stranded 
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replicative complexes (8). From an alternative perspective, the secondary structure of 

viroids could have emerged as a compromise between resistance to DCL and RISC, 

which act preferentially against RNAs with compact and relaxed conformations, 

respectively (48). Indeed, data obtained in other experimental contexts indicate that 

viroids are RISC-sensitive (46, 48, 49, 52), and recent results show that RISC promotes 

cleavage of viral RNAs with a packed secondary structure ⎯resembling that of 

viroids⎯ by targeting bulged regions within this structure (72). However, the 

evidence that one or more AGOs are loaded with vd-sRNAs and function in antiviroid 

RISC is circumstantial, with no data providing direct support for this view. 

 The finding in tissues infected by typical members of both viroid families of vd-

sRNAs with the characteristic features of DCL products (see above), does not 

necessarily entail their loading in one or more AGO proteins. Previous data from a 

study with an RNA virus have shown that the bulk of virus-derived sRNAs in latently 

infected Drosophila cells are not loaded into any AGO member, suggesting that 

dicing of viral dsRNAs, by itself, plays a key function in maintaining the latent state 

(73). Although dicing of the snap-folded genomic viroid ssRNA (or, more likely, of its 

dsRNA replication intermediates) could play a role in containing infection below a 

threshold value, extension of the “dicing-only” model to PSTVd does not seem 

justified. In support of this view, when nine of the ten AGOs from A. thaliana were 

agroexpressed in PSTVd-infected leaves of N. benthamiana all, except AGO6, AGO7 

and AGO 10, bound vd-sRNAs: AGO1, AGO2 and AGO3 those of 21 and 22 nt, while 

AGO4, AGO 5 and AGO9 bound additionally those of 24 nt. Deep sequencing showed 

that, when agroexpressed in PSTVd-infected N. benthamiana leaves, AGO1, AGO2, 

AGO4 and AGO5 bound the vd-sRNA, particularly those of 21 and 22 nt, primarily 

according to their 5’-terminal nucleotide, as reported previously for endogenous and 

viral sRNAs (34, 35, 63). Moreover, the ratio of vd-sRNA to total sRNAs in the AGO-IPs 

was higher than that in the inputs, indicating that vd-sRNA were loaded into these 

AGO proteins even with some preference. Therefore, DCLs could function as the first 
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defense barrier against viroid infection and, additionally, provide vd-sRNAs for 

priming the second RISC-based defensive barrier. 

 Viroids, lacking protein-coding ability, might have also evolved a sort of RNA-

mediated decoy mechanism protecting them against RNA silencing similar to that 

developed by alphaviruses, like Semliki forest virus (SFV), which neither encode RNA 

silencing suppressors. More specifically, alphaviruses have been proposed to produce 

decoy virus-derived sRNAs to hamper the RNA silencing machinery and to provide 

time to the virus for replication before being eventually silenced (74). In consonance 

with this view, the predominant virus sRNAs derived from hot spots are less effective 

at silencing SFV accumulation than those derived from cold spots (74). Regarding 

viroids, infections by PSTVd and the chloroplast-replicating peach latent mosaic 

viroid (PLMVd) (75), are accompanied by large amounts of vd-sRNAs (44, 45; this 

work). Moreover, the experimental evidence available supports that vd-sRNAs, 

mapping at cold spots, are biologically active. Specifically, variants of PLMVd inducing 

a severe albinism have a particular hairpin insertion of 12-14 nt (76, 77), and two low-

abundant (-) vd-sRNAs containing this insertion target for cleavage ⎯as predicted by 

RNA silencing⎯ the peach mRNA coding for cHSP90 involved in plastid-to-nucleus 

signal transduction (51). The two vd-sRNAs are of 21-nt, fulfill the criteria for being 

functional sRNAs (78, 79), and have a 5’-terminal U indicating that they are most 

likely loaded in AGO1; these criteria are also met by a 22-nt RNA, which contains the 

region responsible for the yellow phenotype incited by the Y satellite RNA of CMV 

and directs cleavage, via RNA silencing, of the mRNA of a gene involved in 

chlorophyll biosynthesis (80, 81). A similar mechanism has been proposed for the 

phenotypes induced by artificial miRNAs (amiRNAs) derived from the virulence-

modulating region of PSTVd (82), although the evidence is indirect and the amiRNAs 

do not fulfill all the above-mentioned criteria. The finding that host mRNAs are 

targeted by AGOs loaded with sRNAs derived from viroids and satellite RNAs, 

supports that these subviral replicons, like RNA viruses, are also targets of RISC. 
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 Previously, hypomorphic ago1 mutants have been tested against virus infection, 

with their hypersensitive reaction and overaccumulation of viral RNA being 

interpreted as a confirmation of the involvement of RNA silencing, and particularly of 

AGO1, in antiviral defense (31). Here we have taken the opposite approach: to 

overexpress certain AGO proteins and examine whether they result in viroid 

underaccumulation. Specifically, the synchronized overexpression of AGO1, AGO2, 

AGO4 and AGO5 in leaves of N. benthamiana at early stages of PSTVd infection has 

facilitated the observation of the attenuating effects of these proteins on viroid titer. 

These results, together with the specific loading of vd-sRNAs of the expected size and 

5’-terminal nucleotide by agroinfiltrated AGO1, AGO2, AGO4 and AGO5 from A. 

thaliana, as well as by the endogenous AGO1 of N. benthamiana, are consistent with 

the view that those members of the AGO family may play a role in anti-PSTVd 

defense. 
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LEGENDS TO FIGURES 

 

Fig. 1. PSTVd infection of N. benthamiana has no significant effect on AGO1 or 

miR168 accumulation in the upper non-inoculated leaves (A) or in the agroinfiltrated 

leaves (B). Western-blot analyses were performed with a rabbit polyclonal antibody 

against the N-terminal region of AGO1 from N. benthamiana (-AGO1) and a goat 

anti-rabbit secondary antibody conjugated to horseradish peroxidase. Total proteins 

were separated by PAGE in 4-12% gels and equal loading was assessed by the 

intensity of the large subunit of Rubisco after staining with Ponceau S. Northern-blot 

hybridizations were carried out with a 5’-radiolabeled oligodeoxyribonucleotide 

complementary to miR168. Total RNAs were separated by denaturing PAGE in 17% 

gels and equal loading was assessed by the intensity of tRNA after staining with 

ethidium bromide. Samples in (A) were collected at 15 (lanes 1 and 5), 20 (lanes 2 and 

6), 25 (lanes 3 and 7) and 30 (lanes 4 and 8) days post inoculation (dpi); samples in (B) 

were collected at four (lanes 1 and 4), 6 (lanes 2 and 5) and eight (lanes 3 to 6) dpi. 

(C) Endogenous AGO1 loads vd-sRNAs during PSTVd infection of N. benthamiana. 

Aliquots of total sRNA (INPUT) and of the sRNA fraction immunoprecipitated with a 

rabbit polyclonal antibody against the N-terminal region of AGO1 from N. 

benthamiana (IP), were separated by denaturing PAGE in 17% gels and revealed by 

Northern-blot hybridization with a radiolabeled riboprobe for detecting PSTVd (+) 

strands. Lanes 1 and 4 correspond to a mock-inoculated control, and lanes 2, 3, 5 and 

6 to PSTVd-infected upper non-inoculated leaves collected at 25 days post 

inoculation. IPs were obtained with the antibody against AGO1 (-AGO1)  (lanes 4 

and 6) or with a preimmune rabbit immunoglobuline fraction (IgG) (lane 5). Mock 

inoculations were performed with cultures of A. tumefaciens with a binary plasmid 

expressing GUS intead of the head-to-tail dimeric (+) transcript of PSTVd. 

Accumulation of the PSTVd mc and ml forms was also examined in the RNA Inputs 

after denaturing PAGE in 5% gels (upper panel). Equal loading was assessed by the 
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intensity of the bands generated by the 5S and tRNAs after staining with ethidium 

bromide. 

 

Fig. 2. (A) AGO1 and AGO2, but neither AGO7 nor AGO10, bind specifically certain 

vd-sRNAs. Northern-blot hybridizations with a full-length radiolabeled riboprobe for 

detecting PSTVd (+) strands of total RNAs (INPUT) from mock- and PSTVd-inoculated 

N. benthamiana agroinfiltrated with cultures of A. tumefaciens with binary plasmids 

for expressing HA-tagged AGO1 (lanes 1 and 2), AGO2 (lane 3), AGO7 (lanes 7 and 9) 

and AGO10 (lane 11). A size marker was included in lane M. RNA immunoprecipitates 

(IP) generated with an anti-HA monoclonal antibody from the halos agroexpressing 

HA-tagged AGO1 (lanes 4 and 5), AGO 2 (lane 6), AGO7 (lanes 8 and 10)  and AGO10 

(lane 12) were similarly analyzed.  (B). Other agroinfiltrated AGOs, apart from AGO1 

and AGO2, bind also vd-sRNAs with different affinity. Northern-blot hybridizations 

with a full-length radiolabeled riboprobe for detecting PSTVd (+) strands of total 

RNAs (INPUT) from mock- and PSTVd-inoculated N. benthamiana agroinfiltrated with 

cultures of A. tumefaciens with binary plasmids for expressing HA-tagged AGO2 

(lanes 1, 2, 9 and 10), AGO4 (lane 3), AGO5 (lane 4), AGO3 (lane 11), AGO6 (lane 12) 

and AGO9 (lane 13). RNA immunoprecipitates (IP) generated with an anti-HA 

monoclonal antibody from the halos agroexpressing HA-tagged AGO2 (lanes 5, 6, 14 

and 15), AGO4 (lane 7), AGO5 (lane 8), AGO3 (lane 16, overexposed to make the band 

visible), AGO6 (lane 17) and AGO9 (lane 18) were similarly analyzed. RNAs were 

separated by denaturing PAGE in 17% gels, and equal loading was assessed by the 

intensity of tRNA after staining with ethidium bromide. Western-blot analyses of total 

proteins from halos were carried out with the anti-HA monoclonal antibody following 

protein separation by PAGE in 4-12% gels; equal loading was assessed by the 

intensity of the large subunit of Rubisco after staining with Ponceau S. Mock 

inoculations were performed with cultures of A. tumefaciens with a binary plasmid 

expressing GUS instead of the head-to-tail dimeric transcript of PSTVd. In all cases 
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samples were processed two days after agroinfiltration of plants that were PSTVd-

infected, or mock-inoculated, 19 days before. 

 

Fig. 3. Size distribution of PSTVd and plant sRNAs (orange and green, respectively) in 

total RNAs (INPUT) and immunoprecipitates (IP) from halos of PSTVd-infected N. 

benthamiana agroinfiltrated with cultures of A. tumefaciens with binary plasmids for 

expressing HA-tagged versions of AGO1, AGO2, AGO4 and AGO5 from A. thaliana. 

The histograms compare the distribution of 18–26-nt total sRNA reads. The IP 

fractions were generated with an anti-HA monoclonal antibody. Notice that the 

scales are not identical in the different histograms, and that the fraction of PSTVd-

sRNAs could be higher considering that the viroid may not invade all cells. 

 

Fig. 4. Sorting of PSTVd-sRNAs into AGO1, AGO2, AGO4 and AGO5 mainly depends 

on their 5’-terminal nucleotide. The histograms display, in total RNA (INPUT) and in 

RNA immunoprecipates (IP), the fraction (in %) of total reads corresponding to the 

21–, 22- and 24-nt PSTV-sRNAs (panels A, B and C, respectively) with distinct 5’ 

termini. 

 

Fig. 5. AGO-loaded vd-sRNAs adopt along the viroid genome hot spot distributions 

that are specific for each of the four HA-tagged AGO from A. thaliana agroexpressed 

in PSTVd-infected N. benthamiana. Location and frequency in the genomic PSTVd 

RNA of the 5’ termini of the plus-strand (positive values) and minus-strand (negative 

values) vd-sRNA reads per million (rpm) from total RNAs (INPUT) and from 

immunoprecìpitates (IP) generated with an anti-HA monoclonal antibody. (A) to (D), 

profiles corresponding to AGO1, AGO2, AGO4 and AGO5, respectively. Note that the 

same numbers are used in the plus polarity (5’ to 3’ orientation is from left to right) 

and in the minus polarity (5’ to 3’ orientation is from right to left). 
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Fig. 6. Agroexpression of AGO1, AGO2, AGO4 and AGO5, but neither of AGO7 nor of 

GUS, attenuates viroid accumulation. Northern-blot hybridizations with a full-length 

radiolabeled riboprobe for detecting PSTVd (+) strands of total RNAs from halos of 

mock- and PSTVd-inoculated N. benthamiana agroinfiltrated with cultures of A. 

tumefaciens with binary plasmids for expressing HA-tagged AGO1 (panel A, lanes 1, 4 

and 5), AGO2 (panel A, lanes 6 and 7), AGO4 (panel B, lanes 1, 4 , 5 and 6), AGO5 

(panel B, lanes 7, 8 and 9) and AGO7 (panel A, lanes 8 and 9, and panel B, lanes 10 

and 11), and GUS (panels A and B, lanes 2 and 3). Mock inoculations were performed 

as indicated in the legend to Fig. 3. Total RNAs from halos, extracted two days after 

agroinfiltration, were separated by denaturing PAGE in 5% gels, and equal loading 

was assessed by the intensity of tRNA after staining with ethidium bromide. Western-

blot analyses of total proteins from halos were carried out with the anti-HA 

monoclonal antibody following protein separation by PAGE in 4-12% gels; equal 

loading was assessed by the intensity of the large subunit of Rubisco after staining 

with Ponceau S. In all cases samples were processed two days after agroinfiltration of 

plants that were PSTVd-infected, or mock-inoculated, eight days before. 

 

Fig. 7. Analysis of vd-sRNAs in the IP versus the INPUT generated by a polyclonal 

antibody against AGO1 from N. benthamiana reveals a clear enrichment in the IP of 

(+) (A) and (-) (B) vd-sRNAs of 21 and 22 nt (but not of 24 nt) with a 5’-terminal U. IP 

enrichment or depletion was determined for each unique 21-, 22- or 24-nt vd-sRNA 

as log2 [(IP reads + 1)/(INPUT reads +1)], and plotted for each size class as the 

fraction (%) of unique vd-sRNA sequences enriched >2-fold (log2 >1) or depleted >2-

fold (log2<1) in the IP compared. 

 

Fig. 8. AGO1-loaded vd-sRNAs adopt along the viroid genome a hot spot distribution 

in PSTVd-infected N. benthamiana. Location and frequency in the genomic PSTVd 

RNA of the 5’ termini of the plus-strand (positive values) and minus-strand (negative 

values) vd-sRNA reads per million (rpm) from total RNAs (INPUT, top panel) and from 
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the immunoprecipitate (IP, bottom panel) generated with an anti-Nicotiana 

benthamiana AGO1 (Nb AGO1) polyclonal antibody. Other details as in the legend to 

figure 5. 
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